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Abstract

Image informatics at the Communications Engineering Branch of the Lister Hill National Center for Biomedical Communications

(LHNCBC), an R&D division of the National Library of Medicine (NLM), includes document and biomedical images. In both domains,

research into computer-assisted methods for information extraction, and the implementation of prototype systems incorporating such

methods, is central to our mission. Current document image research focuses on extracting bibliographic data from scanned journal articles.

Current biomedical imaging work focuses on content-based image retrieval (CBIR) and related problems in segmentation, indexing, and

classifying collections of images of the spine and of the uterine cervix.
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1. Introduction

As a creator and provider of biomedical information,

including images, the National Library of Medicine,

through its R&D divisions (particularly the LHNCBC),

has several image informatics projects. Both document

imaging and biomedical imaging are of interest, especially

the automatic extraction of bibliographic information from
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the former for populating MEDLINE, and the recognition of

shape, color, and texture in the latter for image indexing

purposes.

In this paper we provide a broad overview of image

informatics work done by our branch within the LHNCBC.

We first briefly discuss work in the area of document

imaging and provide a summary of major projects and

results (Section 2). In subsequent sections, we transition to
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the major part of the paper, biomedical imaging. We are

working with two major biomedical datasets: the 17,000

spine X-rays and associated health survey data collected in

the second national health and nutrition examination survey

(NHANES II), and the 60,000 uterine cervix images and

associated clinical data collected in the National Cancer

Institute’s Guanacaste Project. Each dataset has its own

requirements, partly determined by the characteristics of the

specific images, but also determined by the user commu-

nities for each dataset. The biomedical imaging work done

for each dataset is presented in separate sections in this

paper, followed by an enumeration of critical issues that

continue to confront the technical worker in this field, and

our conclusion.
2. Document imaging

Current research focuses on document image analysis

and understanding (DIAU) techniques applied to the

problem of extracting bibliographic data from scanned

journal articles to populate MEDLINEw, the NLM’s major

database of 12 million citations to the biomedical journal

literature [1]. Research activities in page segmentation [2,

3], zone labeling [4], zone text reformatting [5] and lexical

techniques, and the incorporation of a commercial OCR

system, have resulted in a production system that automati-

cally produces the titles, author names, institutional

affiliations and abstracts from the TIFF pages of journal

articles. Rule-based algorithms that drive each stage of the

data extraction rely on geometric and contextual features

derived from the OCR output (which in addition to ASCII

text provides bounding boxes and text attributes) as well as

layout analysis. While these features are identified and

incorporated into the rules by manual effort, recent work has

been done in generating features dynamically [6–8].

Investigations have also been done to substitute rule-based

labeling with an artificial neural network approach [9,10].

Lexical analysis has focused on pattern matching

techniques to reduce the uncertainty (low confidence) of

OCR output, and the use of historic affiliation data to correct

the errors in small text and italics incorrectly recognized by

the OCR. Both techniques are designed to reduce the

manual labor involved in text verification [11,12].

In addition to this core research into DIAU algorithm

design, the implementation of a robust production system

(MARS, for Medical Article Records System) has required

such ancillary work as: the use of speech recognition to

enable hands-free operation of scanners [13]; the extension

of the capabilities of the commercial OCR system to include

the recognition of Greek letters and biomedical symbols

[14]; the design of time stamp instrumentation to monitor

the operational efficiency of the modules in the system; the

development of an isomorphic technique to display multiple

instances of the same detected character for rapid text

verification [15], among others.
Recent work has focused on the extraction of biblio-

graphic data from online (Web-based) medical journals

indexed in MEDLINE [16]. This is motivated by the rapidly

increasingly number of journals that are Web-based, and in

many cases without paper equivalents. Here too the

identification of suitable heuristic rules for algorithms to

segment pages, label zones and reformat zone text is crucial.

An added complication is that articles can appear in either

PDF or HTML formats. The system, called WebMARS, first

downloads and classifies the articles [17], converts the PDF

files to HTML, and then the daemons implementing the

zoning, labeling and reformatting algorithms operate on

these files to extract bibliographic data. In contrast to the

crisp rules used in MARS (required by the presence of OCR

errors), fuzzy rules are used for labeling in WebMARS [18].

As a first step in creating fuzzy rules for labeling, feature

statistics (normalized and smoothed histograms) are used to

create membership functions for each label. This step is then

followed by heuristic rules that rely on text content (words

characteristic of a bibliographic element) and syntax of the

element (e.g. @ symbol in an email address.)

These current lines of research have historic precedents

at the LHNCBC. Since the early 1980s, document imaging

has been an active research area in this organization,

motivated originally by the possibility of preserving books

and journals at the NLM as digital images in place of

microfilm, and the accompanying need to understand the

feasibility of the existing technologies, and the equipment

and labor costs of a production system [19,20]. Our

approach was to build a series of prototypes of a system

for document capture, storage and retrieval [21]. These

prototypes, controlled by PDP-11 class computers initially

and later IBM PC machines, were used as testbed systems

for experiments that addressed engineering feasibility,

image enhancement and compression techniques, conver-

sion rates and costs. A significant finding was that digital

imaging costs and production times were comparable to

those for microfilming [22,23].

A challenge at the time was the capturing of the page

images of books and bound journals, many of these fragile,

rapidly and safely. We built a ‘book scanner’ equipped with

split trays that held a document face-up captured by a CCD

camera [24]. This system went through three generations,

each improving on the scanning resolution and image

processing functions. Alternative approaches to document

storage were evaluated: by optical disks [25] and RAID

systems [26].

In the 1990s, subsequent work in document imaging was

motivated by yet another NLM mission objective, viz. the

interlibrary loan service. Here the approach was to build and

test two systems, SAIL and WILL, each implementing a

different vision of delivering documents (articles from

biomedical journals) from one library to another. Both

systems accessed NLM’s automated request routing service

to download interlibrary loan requests from health science

libraries nationwide. The systems then parsed the requests
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to identify the requester, the citation to the article requested,

and the form in which the article was to be sent (fax, email

or postal mail). SAIL automatically retrieved previously

scanned articles from optical disk storage, converted the

TIFF images to the appropriate formats and filled the

requests [27,28]. The WILL system was designed under

the assumption that most requested articles would not be

scanned and stored, and therefore printed out an informative

slip for an operator to retrieve the paper journal from

the library’s stacks. The operator would then scan the

article, the only manual step, after which the machine would

process the TIFF images to the appropriate format for

meeting the request [29,30]. Experiments with these

systems, at different medical libraries, showed that the

WILL approach was more useful in light of the observed

request patterns, leading to commercial acquisitions based

on this design.

While these systems addressed interlibrary loan services

(which deliver documents from one library to another, that

in turn provides its patrons with the documents requested), a

convenient way to deliver documents directly to users over

the Internet was needed. This inspired the development of

DocView, a Windows client software that allowed users to

receive TIFF documents, enhance them and organize them

for later use [31,32]. DocView has over 16,000 users in 190

countries. Most users receive documents from their libraries

or document supply houses. In response to feedback from

DocView users, a companion Web-accessible file-conver-

sion service, DocMorph, was developed to allow users to

upload files to a server and receive them in a desired format,

e.g. TIFF images to PDF [33]. DocMorph, with over 11,000

users by 2003, is designed to convert 50 file formats to PDF,

text (through OCR), and speech. This last facility has been

used to serve sight impaired patrons by creating audio from

TIFF documents [34].

While DocMorph has been used widely, in response to

user feedback a bulk file conversion system, MyMorph has

been developed as a user client. The MyMorph client

software allows the upload of thousands of files at a time to

the DocMorph server, thereby substantially reducing user

interaction with the system [35]. This suggests a role for

MyMorph in the file migration stage of an electronic

preservation system, an objective of increasing interest to

the library and archival communities.
3. Biomedical imaging for spine X-rays

3.1. NHANES databases

The National Health and Nutrition Examination Surveys

(NHANES), conducted by the National Center for Health

Statistics (NCHS), part of the Centers for Disease Control

and Prevention (CDC), are a family of national health

surveys that have been conducted for more than 30 years.

The goals of the NHANES surveys include estimating
prevalence of selected diseases, monitoring disease trends,

monitoring trends in risk behaviors and environmental

exposures, analyzing risk factors for selected diseases,

studying the relationship among diet, nutrition, and health,

exploring emerging public health issues, and establishing a

national probability sample of genetic material for future

genetic testing [36]. The second and third surveys

(NHANES II and NHANES III, respectively) are major

biomedical datasets that we have incorporated into our work

[37] and are both described below. NHANES II has been a

major source of image data for our work and that survey is

emphasized in this paper.

3.1.1. NHANES II

NHANES II was conducted 1976–1980 and included

participants aged 6 months to 74 years. For the NHANES II

survey, the records contain information for approximately

20,000 participants. Each record contains about two

thousand data points, including demographic information,

answers to health questionnaires, anthropometric infor-

mation, and the results of a physician’s examination. In

addition, approximately 10,000 cervical spine and 7000

lumbar spine X-ray films were collected on survey

participants aged 25–74. No X-rays were taken on pregnant

women, and no lumbar X-rays were taken on women under

50. The pathologies of interest on these X-rays were

osteoarthritis and degenerative disc disease [38]. This data

was collected by NCHS mobile examination centers

(MECs). The MECs, consisting of four trailer trucks

connected with walkways and organized into medical

stations, are shown in Fig. 1, along with an X-ray station

used to collect NHANES II spine films. The film was

digitized using a Lumisys scanner at 146 dpi and the

resulting 140 GB of data is currently stored on a Sun A5000

RAID system.

3.1.2. NHANES III

NHANES III was conducted 1988–1994 and included

participants as young as 2 months; this survey had no upper

age limit. The NHANES III database consists of approxi-

mately 30,000 records with more than 2000 fields/record,

including demographic data such as age, height, weight,

race, sex; anthropometric data; physician’s examination

data, laboratory data, and health questionnaire data [39].

Hand and knee X-ray films were collected by the NHANES

III survey, but NCHS has not released this data for public

use. However, NCHS determined that the hand films should

be digitized for archive and restricted research purposes. To

support this effort, we developed a second retrieval/display/

database system for a multiple-reader study to determine the

best digitization level to use for the NHANES III hand

X-ray images; two radiologists participated, using a set of

50 hand films that were digitized at each of three different

digitization levels (50, 100, and 150 mm, respectively). The

results, published in the Journal of Digital Imaging [40],

were used by NCHS in the subsequent digitization of these



Fig. 1. An NCHS Mobile Examination Center. (A) Three trailers joined with walkways to make a single MEC; (B) view down the hallway of one trailer,

showing some of the examination stations; (C) view inside the X-ray station.
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images. Images from this digitization have been used in

research into the automated assessment of hand/wrist

radiographs for arthritis, by the use of neural networks [41].
3.1.3. Biomedical review

Two workshops [42] were convened at NIH under the

sponsorship of the national institute of arthritis and

musculoskeletal and skin diseases (NIAMS) to obtain

expert consensus on the question: ‘What radiological

findings can be interpreted from the NHANES II spine

images with a high level of inter- and intra-expert

repeatability?’ The consensus was that the biomedical

features that may be repeatably interpreted from these

images are anterior osteophytes, disc space narrowing, and

subluxation, for the cervical spine; and anterior osteophytes,

disc space narrowing, and spondylolisthesis, for the lumbar

spine. These features were selected from a larger list of

candidate features that were identified as ‘highly
interesting’ to researchers, but not susceptible of repeatable

inter-/intra-observer interpretation. The candidate and final

features from the NIH workshops are given in Table 1.
3.1.4. Quality control

During the digitization process, a first level quality

control was put in place by the scanning operators, who

viewed a reduced resolution version of the scanned image,

along with its histogram, to minimize errors due to bad film

positioning on the scanner or to equipment failure or

degradation. A second level quality control was conducted

by viewing the images at 1K!1K spatial resolution on PC

monitors and verifying that personal identifier codes were

removed from the images, that image orientation was

correct, and that the image contrast was not excessively

light or dark. Anomalous cases were flagged and redigitized.

A final, third level of quality control was then done by a

medical expert in radiology, who reviewed images and films



Table 1

Candidate biomedical features for the NHANES II X-rays

Anterior osteophytesa

Disc space narrowinga

Spondylolisthesis (L-spine)a

Subluxation (C-spine)a

Posterior osteophytes

Plate erosion/sclerosis

Vacuum phenomenon

Abnormalities (if any noted)

Ankylosing spondylititis

Apophyseal OA

Congenital/developmental disease (specify)

Degenerative disc disease

DISH

Evidence of surgery (level)

Fracture: specify level

Infection

Disc calcification

Neuropathic spine

Osteopenia

Paget’s disease: specify level

Rheumatoid arthritis

Spondyloarthropathy

Spondylosis deformans (spurs)

Anterior ligamentous calcification

Congenital fusion (level)

Tumor (level)

Other (specify)

a Indicates the final feature set of interest from the NIH workshops.
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in a side-by-side display arrangement, using an E-Systems

Megascan monitor to display the digital images and a

lightbox to display the film. The medical expert followed a

protocol that required him to check whether the digital

images were of comparable visual quality as the film, in an

overall sense, and whether the final features identified by the

NIH workshops were visually observable in the digital

images. The expert reviewed 2051 image/film pairs for

overall visual quality and scored 1625 digital images as

being the same quality as the film, 400 digital images worse

than the film, and 26 digital images better than the film. A

total of 14,820 digital images were reviewed in standalone

fashion, and the percentages where the pertinent features

were judged to be observable were as follows [43]: anterior

osteophytes: 94.2%; subluxation (or spondylolisthesis in

lumbar spine): 94.1%; and disc space narrowing: 93.7%.

3.2. Prototype systems, tools, and data repositories for

NHANES

3.2.1. WebMIRS

Our initial work to create a multimedia database system

was a Sun platform dependent application called the

Medical Information Retrieval System [44] (MIRS). The

first Web-based MIRS (WebMIRS) [45] system, built

using Java JDK 1.0.2, provided access to a small number of

NHANES II records and associated X-ray images, and was

successfully demonstrated at the 1996 Radiological Society

of North America convention in Chicago, where it
accessed an NHANES II database at NLM over a dedicated

ATM high-speed link. WebMIRS was demonstrated at the

CDC Data User’s Conference in July 1997, and at the

American College of Rheumatology meeting in November

1997, both in Washington, DC. In each case, it accessed

NHANES databases at NLM over a TK1 Internet

connection. Since these early demonstrations, WebMIRS

has evolved into a highly functional multimedia database

system that provides health survey text and image data

across the Web. The current WebMIRS has features that

include query building with a point-and-click interface,

integrated text/image display, and capability to save query

results to the user’s local hard disk. An example WebMIRS

SQL query, in English, is ‘Find the records of all survey

participants aged 60 or older who have had severe back

pain on most days for at least 2 weeks’. When the results of

the query are returned, images are presented at the top of

the screen in a sliding window, while the text for the

matching records is showing in tabular form at the bottom

(see Fig. 2). The user may change the current image, which

is always highlighted in a red rectangle (not visible in the

black and white illustration), by clicking on any record

within the text data at the bottom.

The WebMIRS NHANES II database also contains

quantitative data for a subset of five hundred and fifty of the

images; this data consists of nine-point boundary landmarks

placed on the vertebrae in these images under supervision of

a board-certified radiologist (see Fig. 3). This quantitative

vertebral data may also be used for WebMIRS query and

retrieval. Fig. 2 in fact gives an example of a WebMIRS

query, with the additional input: ‘restrict the query to the

550 records having the radiologist landmarks, and return the

cervical spine anterior/posterior height ratios for the records

matching the query’. The radiologist landmarks are also

displayed on the images in this example. These nine-point

radiologist landmarks (‘morphometric marks’) have

become a basic reference set for first-order evaluation of

segmentation algorithms for us and our collaborating

researchers. The present WebMIRS system is version

1.0.10 and is deployed as a Java application using Sun’s

Java Web Start 1.4.2 technology. Most WebMIRS users

operate on the PC platform.

3.2.2. Digital atlas of the cervical and lumbar spine

A digital atlas of the cervical and lumbar spine [46] was

developed, using a subset of these images which were

interpreted to consensus by a panel of three medical experts

convened by the NIAMS. The increasing use of digital

medical images requiring expert interpretation has given

rise to the need for convenient online digital reference tools,

to assist in producing interpretations that conform to

recognized standards. We developed the Atlas to fill a

perceived need for such reference data for osteoarthritis in

the cervical and lumbar spine, especially since a standard

reference [47] of photographs of these features is out of print

and difficult to obtain. Important features of the Atlas



Fig. 2. WebMIRS query results including display of nine-point morphometric points; ratio of anterior/posterior vertebra heights is part of the returned data in

this query.
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include: (1) presentation of standard reference images for

a subject area (osteoarthritis of the cervical and lumbar

spines) not previously addressed by digital atlases, to our

knowledge; (2) single/multiple image display; (3) image

processing for contrast enhancement; and (4) capability to

add user-provided images, without code modifications, and

to annotate these images graphically and with text. Color

and grayscale images may be added in JPEG, TIFF, PNG,

GIF or flat file formats, in color or grayscale. An example of

an Atlas display is given in Fig. 4. In this example, four

Atlas images illustrate anterior osteophytes with varying

degrees of severity. The Atlas is currently available for

downloading from the CEB Website, or as a CD.
Fig. 3. Cervical spine vertebrae illustrating nine-point morphometry.
3.2.3. FTP archive

All 17,000 NHANES II X-ray images have been made

publicly available through an FTP archive that is

publicized on the NLM Communications Engineering

Branch website. Users have accessed the images for use

in medical research, medical education, image processing,

compression, display work, database research, art and

illustration, and physiology/kinematics studies. Users have

reported employing the images in four PhD theses,

including two published recently [48,49], where extensive
use has been made of the spine images for segmentation

work. To view these images in full spatial and 12-bit

grayscale resolution, CEB has developed a Java image

viewer that is publicly available from the same site. 550 of

these images have been converted to standard TIFF 8-bit

form and made publicly available also, along with the nine-

point radiologist marks.



Fig. 4. Digital atlas of the spine.
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3.3. Image processing R&D with NHANES
3.3.1. Compression

At the current time, the X-ray images available through

WebMIRS are reduced in spatial resolution by a factor of

four both horizontally and vertically. However, work is

underway to create a lossy-compressed version of the X-ray

images based on wavelet transform technology and to make

this wavelet-compressed version available through Web-

MIRS. The particular method being researched is called

hybrid multiscale vector quantization (HMVQ) [50,51], and

incorporates both vector and scalar quantization.
3.3.2. Segmentation

A goal of our segmentation work has been to develop a

suite of segmentation tools representing leading segmenta-

tion techniques for research and comparative evaluation.

This work has included active contour segmentation (ACS),

active shape modeling (ASM), and a ‘Hierarchical Seg-

mentation’ approach that combines multiple approaches,

including the Generalized Hough Transform (GHT) and

active appearance modeling (AAM). Currently Live Wire

segmentation is being implemented as well. Each method

investigated represents a significant advance beyond
heuristic, edge detection methods which have yielded very

little promise of success in segmenting irregular, noisy

images, into the domain of model-based approaches,

including deformable template methods, with some of

those based on statistical models. For each segmentation

method investigated, we summarize the concept, main

features, level of interactivity, results obtained, and

reference the responsible collaborating researchers. All of

the segmentation implementations described were

implemented in MATLAB.

3.3.2.1. Active contour segmentation (ACS).

Concept: our ACS algorithm is a classical snake model

combined with an initial contour created from a priori

information and a search constraint on the contour. The

algorithm minimizes an objective function by seeking a

contour with maximized gradients along normals to the

contour, and minimized contour length (‘maximum edge

strength and maximum smoothness’). The objective

function has heuristically-determined weights for these

two factors.

Main features: segmentation is one vertebra at a time.

The initial contour is a template created by averaging

manually-segmented vertebral shapes. The algorithm



Fig. 5. Orthogonal curves replace normal line segments in defining the search grid used in Active Contour Segmentation. Points on the solution contour are

constrained to lie on these non-intersecting curves.
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constrains solution contours to lie on a grid between an

‘inner contour’, inside the template, and an ‘outer

contour’, outside the template. A novel feature is that

the grid line are ‘orthogonal curves’, calculated by

numerically solving a boundary-value partial differential

equation (see Fig. 5). This approach is given by Tagare in

[52]. The original implementation used a grid created by

simple normal line segments; however, in cases where

the vertebra has a narrow protrusion, these normals can

be self-intersecting, resulting in bad segmentations in

many cases. The implementation of the core ACS

algorithm is due to Tagare and the orthogonal curves

implementation is due to X. Qian (see Fig. 6 for the ACS

user interface).
Interactivity: The user manually positions, scales, and

orients the initial template.
Performance: No performance evaluation has been

done on ACS at this time.

3.3.2.2. Active shape modeling (ASM).
Concept: The ASM formulation that we have followed is

that described by Cootes and Taylor [53] of the

University of Manchester.
Main features: ASM operates with two models of the

objects to be segmented: (1) a shape model, which

characterizes the shapes of the individual objects, and (2)

a grayscale model, which characterizes the expected
image grayscale along the boundaries of the objects.

Both models are statistical in nature and are derived from

sample images that are assumed to represent the target

images. The shape model is used to provide an initial

template for the objects in a target image and to provide

constraints on the range of shapes to which the deformed

template may converge. The grayscale model is used to

drive the deformation of the template from its initial pose

(position, orientation, and shape) to a pose that is an

optimal fit to the image grayscale data, subject to

the constraints of the shape model.
Interactivity: The user manually positions, scales, and

orients the initial template.
Performance: Our initial evaluation of ASM for

NHANES II cspine images was done by Sari-Sarraf

[54, 55] on a test set of 40 images. For each image a

template with 80 points was manually created, using the

nine-point radiologist marks described earlier as guides;

the template modelled the vertebrae shapes from the

bottom of C2 through C6. Using the leave-one-out

approach, 40 ASM shape and grayscale models were

created, by sequentially omitting one image (the ‘test

image’), and including the remaining 39; for a given test

image, we refer to these 39 images as the ‘model images’

for that test image. The ASM model created by leaving

out one image was then applied to test the performance of

ASM on that image. In this fashion, ASM was evaluated

on an image which it has not previously ‘seen’. The

algorithm was evaluated by taking the manually-created



Fig. 6. Active Contour Segmentation user interface. Solution curve is shown on right panel in zoomed view.
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template for an image as ‘truth’ for that image, and

computing the mean (averaged over the 80 points in the

template) point-to-point pixel error (MPPE) between

truth and the ASM solution. The template used to

initialize ASM for a test image was the ASM shape

model created from the 39 model images for that test

image. The template was manually placed by positioning

the C4 template shape on top of the C4 vertebra in the test

image. Results were as follows, in units of pixels: over

the 40 test cases, the minimum MPPE was 12.8; average

MPPE was 114.7; and maximum MPPE was 282.9. More

extensive ASM evaluations are described in the section

below on hierarchical segmentation.

3.3.2.3. Hierarchical segmentation. A significant aspect of

our work has been the investigation of hybrid segmentation

methods carried out in sequential coarse-to-fine steps. Two

such hierarchical segmentation approaches have been

developed. Both use the generalized Hough transform
(GHT) for the first step: finding the approximate location

of the target vertebrae; both have a core segmentation

method for simultaneously segmenting multiple vertebrae;

and both have a final step for refining the vertebral

boundaries. The first method, developed by Zamora, uses

Active Shape Models as its core method; the other,

developed by Howe, relies on Active Appearance Models.

We precede the discussion of the Zamora and Howe

algorithms with a discussion of the GHT, which is common

to the two approaches.

3.3.2.4. Generalized Hough transform (GHT).

Concept: The basic GHT formulation for detection of

arbitrary shapes in images was given by Ballard [56], and

GHT for the NHANES II images has been extensively

investigated by Sari-Sarraf, Tezmol, and Gururajan [57,

58]. The GHT is a template matching method. Matching

is done up to position, orientation and scale, but the shape

of the template does not deform.



Fig. 7. Geometry for building R-table for generalized hough transform

(GHT).
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Main features: Geometry for the template to be matched

in given in Fig. 7 [57].

In this figure Pr(xr, yr) is a reference point which is the

origin of an axis system fixed in the template, and Pi(xi, yi) is

an arbitrary point on the template boundary, which is

specified by the (distance, angle) pair (r, a). The ‘edge

direction angle’ q is determined by the intersection of the

tangent line through Pi and the horizontal axis. This

geometry allows the construction of a discretized ‘R-table’

that defines the template in terms of edge direction angles qi

and the corresponding (ri, ai) pairs, as illustrated in Fig. 8.

If the template is rotated through an angle 4, relative to

an image-fixed coordinate system, and scaled by a quantity

s, then these relationships hold

xi Z xr Csri cosðai C4Þ

yi Z yr Csri sinðai C4Þ

between a boundary point and the reference point. We

observe that in a given image, the gradient direction is

computed as arctan(Gy/Gx), where (Gx, Gy) is the gradient

vector at (xi, yi), and the edge direction differs by p/2. We

may then apply the GHT algorithm: fix a scale factor s and

orientation angle 4; then, at each candidate boundary point

in the image, compute the gradient vector and the

corresponding edge direction angle qi; use the R-table to

find a corresponding (ri, ai) pair. Finally, use the above

equations to solve for the corresponding (xr, yr). This

procedure uniquely identifies a bin (xr, yr, s, 4) in 4-D

Hough space corresponding to the candidate boundary point

(xi, yi). A counter for the bin is incremented. For a fixed
Fig. 8. R-table for GHT.
(scale, orientation) pair (s, 4), this procedure is repeated for

all candidate boundary points in the image. Then the

procedure is repeated over the discretized range of possible

scales and orientations. At the end of all processing, the bin

with the greatest count identifies the position, scale, and

orientation of the template in the image. The candidate

boundary points in the image for which we compute Hough

bins are edge points that we have detected in the image;

hence the detection of edges in the images is crucial to the

performance of the algorithm. Tezmol applied unsharp

masking, filtering for noise removal, binarization, and

finally Sobel edge detection to produce edge images, as

shown in Fig. 9; Gururajan developed an alternative

technique based on first producing a phase congruency

map of the image, followed by filtering, binarization and

application of the Sobel operators. It is this latter approach

that was used to produce the results described below.

Interactivity: None, but see the discussion below about

incorporating an interactive feature to disambiguate cases

where the template is misplaced along the vertebral column.

Performance: In the most recent work [58], the GHT was

tested on 273 cspine images and 262 lspine images. ‘Truth’

segmentations were manually done for 100 images of each

type. For cspine, vertebrae segmented were bottom of C2

through C5; for lspine, the vertebrae were L1–L5. Each

segmentation contained 100 points. For the cspine images a

template was created by finding the mean of the 100 cspine

segmentations; similarly, for the lspine images. For cspine,

the scale range used was [0.8, 1.25] at increments of 0.05;

orientation range in degrees was [K25, 25] with a 58

increment. For lspine, the scale range used was [0.85, 1.05]

at increments of 0.05; orientation range in degrees was [K5,

5] with a 58 increment. To drive a measure of performance, a

bounding box which closely fit the cspine template was

created, and similarly, for the lspine template. When the

template had been placed on an image by the GHT

algorithm, the number of truth points lying within the

template’s bounding box were counted. For the images

other than the 100 segmented of each type, the coarser

radiologist points (see Section 3.2.1) were available and

were used as truth. For the cspine images, the mean

percentage and standard deviation percentage of points

within the bounding box were (80, 23); median percentage

of points within the bounding box was 82. Corresponding

numbers for the lspine were mean/standard deviation

percentages of (75, 27) and median percentage of 83.

These numbers alone give little insight into the usefulness of

the GHT for first approximation segmentation of the

images. A visual inspection was done on a total of 473

cspine images processed by the GHT (including the above

273); in a number of cases where the GHT placed the

template inaccurately, the misplacement was approximately

correct, up to ‘sliding along the vertebral column’. That is,

instead of begin placed correctly on C2–C5, the template

may have been placed on C3–C6, for example. Many of

these misplacements were determined to correspond to



Fig. 9. Generalized Hough Transform pre-processing. (A) Original cervical spine image; (B) image after unsharp masking to enhance edges; (C) image after

edge detection.
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failure of the algorithm to properly distinguish the correct

template bin in Hough space from among the top three bins.

Hence, an interactive capability was proposed (and later

incorporated) wherein the GHT would return the template

placements corresponding to the top three bins, and allow

the user to choose among these best three candidates. When

the user was allowed to consider these top three candidates,

more than 400 of the GHT results were judged acceptable of

the 473 visually inspected. Similarly, for the lspine images,

472 were processed by GHT (including the above 262) and

visually inspected,and more than 400 were judged accep-

table, again, if the top three candidates are considered. For

the GHT, computation time is an issue; in the above work,

the images were reduced to one quarter of their original size

horizontally and vertically (original size for cspine was

1462!1755; for lspine, 2048!2488). On a 2.1 GHz AMD

microprocessor, processing time for a cspine image was

55 s; for an lspine image, 110 s. Fig. 10 shows an example

cspine template used, a plot of the bins in Hough space, and

a resulting template placement, with bounding box.
Fig. 10. Generalized Hough Transform processing and result. (A) Example cervica

and y position coordinates; the plot is for one fixed value of orientation and one fix

the image; (C) example GHTfinal result, shown by overlaying GHT-positioned/orie

result is also shown.
3.3.2.5. Zamora hierarchical segmentation.

Concept: This hybrid segmentation method, developed

by Zamora and Sari-Sarraf, is described in detail in [49].

The ingredients are (1) the GHT for initial placement of a

rigid template on the vertebrae; (2) ASM for deforming

the template non-rigidly, beginning at the position,

orientation, and scale output by the GHT; and (3) a

final ‘deformable model’ (DM) step to adjust the ASM

output at the vertebral corners, where the ASM

segmentations tend to miss irregular bone deformities

and protrusions, which have proved elusive to model by

statistical shape sampling, as is required by ASM.

(Finding enough examples to represent the corner

variability has not been successful to date.)

Main features: Zamora made two modifications to the use

of the base GHT described above. The first was to allow

interactive access to the top three bins returned by the

GHT when the template created as the mean vertebral

shape from a training set of manually segmented vertebrae

was used. The second modification was to input not only
l spine shape template; (B) Hough bin values plotted in x–y space. Axes are x

ed value of scale; highest peak is GHT estimate for positioning template in

nted/scaled template onto original image. A computed bounding box for the



Fig. 11. Lumbar spine shape templates computed by principal components

analysis (PCA), used for Generalized Hough Transform step in Zamora

Hierarchical Segmentation. These templates represent the mean and

extremes of curvature found in the sample set of images. (A) maximum

curvature template; (B) mean shape template; (C) minimum curvature

template.
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the mean shape as a search template, but also two

additional shapes that represent extremes of bending as

determined by a principal components analysis of the

training data (i.e. the image data used to create the

vertebral templates) (see Fig. 11).

Hence, for each GHT run, five solutions were output for

the operator to choose among (the three top bin solutions

when the mean shape template was used; and the top bin

solution when each of the two extreme-shape templates

were used). For the ASM algorithm, Zamora applied a pre-

processing step to compensate for a phenomenon he had

previously identified in [59]: for a number of the images, the

grayscale values measured along normals to the vertebrae

boundaries carry insufficient information for the ASM

algorithm to localize the boundary. (ASM depends on such

grayscale information to deform the template points to the

vertebral edge locations in the image.) Zamora’s pre-

processing created multiple edge images by unsharp

masking, averaged these edge images, and then blended

the resulting mean edge image with the original grayscale

image. The final deformable model (DM) step takes the two

anterior corners of the segmentation produced by ASM as

input, with each corner consisting of five points from the

segmentation that are centered around a point tagged as a

‘vertebra corner point’ in the original template input to the

GHT. The DM is formulated as a standard ‘snake’ that

deforms to minimize the sum of external and internal energy

terms; hence this final step allows the corners to deform

outside of the shape constraints of the ASM model and,

except for the smoothness constraint imposed by the internal
energy term, is constrained only by the image data itself, not

by a shape a priori, as in ASM.

Interactivity: The operator chooses among five alternative

template placements by the GHT. Performance: The

algorithm was tested on 100 cspine images and 100 lspine

images. For the cspine images templates were created by

manual segmentation that contained 80 points and spanned

the bottom of C2 through C6; for the lspine images,

templates were likewise created that contained 200 points

and spanned L1-L5. These templates were used as the

ground truth for evaluating performance, and the average

pixel distance between the manually-created template for an

image and the shape output by the algorithm was used as a

performance measure. Performance was computed at each

of the segmentation stages, so that the improvement due to

each stage could be assessed. Results were as follows, for

the cspine images, percentages of test images with errors of

20 pixels or less: after GHT alone, 65%; after GHTCASM,

75%; and after GHTCASMCDM, 75% (negligible

improvement with DM). For the lspine images, for errors

of 50 pixels or less: after GHT, 40%; GHTCASM, 47%;

and GHTCASMCDM, 49%.

3.3.2.6. Howe hierarchical segmentation.

Concept: This hybrid segmentation method, developed

by Howe and Sari-Sarraf, is described in detail in Ref.

[60]. Like the Zamora algorithm, it is a three-step

process: (1) the GHT for initial rigid template placement;

(2) active appearance models (AAM) for deforming the

template non-rigidly, beginning from the template output

by GHT; and (3) a final application of AAM to each

individual vertebra to allow the algorithm to adjust the

segmentation for each vertebrae without being influ-

enced by image data associated with the other vertebrae.

Main features: Like Zamora, Howe allowed interactive

access to the top three bins returned by the GHT when the

template created as the mean vertebral shape from a

training set of manually segmented vertebrae was used.

Unlike Zamora, no additional templates from principal

components analysis were used. In AAM, the shape and

texture (‘appearance’) of the entire object to be

segmented is used. The AAM approach implemented

generally follows that given by Cootes [53], although the

AAM models that were created included pixels in

the exterior neighborhoods of the vertebrae, as well as

the vertebrae interiors; in addition, pixels near the

borders of the vertebrae were weighted to be more

significant in the model fitting, than pixels relatively far

from the borders. Fig. 12 gives an example of the lumbar

spine model.

Interactivity: The operator chooses among three alterna-

tive template placements by the GHT. Performance:

Cspine and lspine AAM models were built, following the

procedure described below, again using 100 cspine and

100 lspine images, respectively, that were manually



Fig. 12. Example active appearance model for lumbar spine. This model

was computed as the mean shape and texture of the lumbar spine in 100

sample images. Shapes were manually segmented. In this work, texture was

taken as graylevel pixel values.
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segmented as for the Zamora algorithm testing. For

the GHT step, the cspine template was the mean shape

computed from these images, and similarly, for the lspine

template. Testing was done in leave-one-out manner for

each of the 100 cspine images, where for each image in

turn (the test image), an AAM model was built using the

other 99 images; then this model was applied to the test

image. The same process was applied to the lspine

images. Results were as follow. For cspine images,

percentages of images having errors of 10 pixels or less:

after GHT alone, 10%; after GHTCmulti-vertebrae

AAM, 60%; and after GHTCmulti-vertebrae AAMC
single-vertebrae AAM, 65%. For the lspine images, for

errors of 25 pixels or less, the following success rates

were achieved: after GHT alone, 21%; GHTCmulti-

vertebrae AAM, 67%; and GHTCmulti-vertebrae

AAMCsingle-vertebra AAM, 68%.
3.3.3. Automated classification of biomedical features

Concept: Automated classification of NHANES II images

for biomedical features by shape has been investigated by

Stanley [61,62], using artificial neural networks and

clustering techniques.
Main features: Cherukuri and Stanley [61] have investigated

the application of artificial neural networks to

the discrimination of lumbar spine vertebrae for the

presence of anterior osteophytes. Four geometric features

were derived and tested individually. The most successful

was obtained by first finding the exclusive-OR of a vertebral

area and the area within the convex hull of the vertebra; and,

for this region, finding the area of the largest connected

component on the anterior side of the vertebra. Charmathy

and Stanley [62] have applied K-means and self-organizing

map clustering techniques to the task of scoring adjacent

vertebrae for disc space narrowing on a 0–3 scale,

representing normality (0) to maximum abnormality (3).

Features were derived by first computing an separator curve

equidistant between adjacent vertebrae and then measuring

various quantities relative to this separator, such as

minimum Euclidean distance from the separator to a

vertebra, and normalizing the quantities to obtain features

that are intended to be invariant with respect to vertebral

size.

Interactivity: None. Performance: For the lumbar spine

anterior osteophyte discrimination, 572 vertebrae were used

for training, with half known to be normal and half

abnormal; 108 different vertebrae were used for testing,

half normal and half abnormal. Twenty individual test and

training sets where generated by randomly selecting

572/108 vertebrae from among the available vertebral

data. The neural network used had a 4!4!1 architecture

(four input nodes for the four features; one hidden layer; one

output node), with sigmoid function at input and hidden

layer nodes, and a linear transfer function at the output. The

vertebrae were manually segmented, using the nine-point

radiologist marks as a guide. Results were as follows: the

mean correct classification of normal vertebrae in the test set

was 88.6%; the mean correct classification of abnormal

vertebrae was 90.5%. For the work in classifying disc

space narrowing by grade, 294 adjacent vertebral pairs

(‘interfaces’) of the cervical spine were used. Twenty runs

were made; for each run 80% of the data was randomly

assigned to the training set, and the remaining 20% to the

test set. The mean percentages of correct classifications over

the 20 runs were, for grades 0–3, respectively, 90.4, 85.2,

93.8, and 82.1%.

3.3.4. Content-based image retrieval

Content-based image retrieval (CBIR) is the focus and

principal goal of our work in biomedical imaging. CBIR

methods could provide access to specific visual biomedical

features in large image archives. For biomedical image

databases the notions of image content, content represen-

tation, and content similarity have high relevance. For

example, in the biomedical context, it is to be expected that

many important queries may be intended to retrieve

pathological cases which have only subtle differences

from the normal. Hence, it is important that, at the time of

indexing of biomedical images for later retrieval by image
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contents, the extracted image features are carefully

preserved by the methods selected to represent them

(which usually are oriented toward data reduction and

hence risk sacrificing details); and it is equally important

that, at retrieval time, the similarity measures used are

sufficiently fine-grained, so that subtle similarities between

a query image and a database image are recognized.

We have implemented several modular prototype CBIR

systems for retrieval for a subset of the NHANES II spine X-

rays. We initially used the nine-point model for vertebral

shape representation [63], and Procrustes distance [64] to

measure shape similarity. This system evolved to accept

more complex vertebral segmentations and alternative shape

representations, viz. Fourier descriptors, Polygon Approxi-

mation, Curvature Scale Space, invariant moments and other

shape features [65]. The system supported retrieval based on

shape similarity to a sketch or example vertebral image, as

well as by using text as part of the retrieval process.

(NHANES II health survey data was included in the database,

as well as vertebral shapes.) The shapes are segmented using

the active contour segmentation (ACS) method described

above, with operator interactivity to adjust the ACS output

when required. The system is composed of two subsystems,

one for indexing (segmentation, principally), and one for

retrieval. The indexing system included the ACS segmenta-

tion algorithm and feature extraction, using one of the

alternative shape representations. The retrieval system

provided the interface and the methods for image and text

retrieval. For this it included a query-by-sketch and a query-

by-image example capability and methods for computing

similarity between the user query and shapes stored in the

database. In addition, text retrieval via SQL and methods to

combine the text and image queries were also included.

In order to determine the quality of retrieval, several

evaluation studies were conducted [66]. A summary of the

results from these experiments are presented in Table 2. The

table also gives the average displacement in the results

ranking from the position expected in the truth ranking.
3.4. Partial shape matching

Whole shape matching refers to the matching of

shapes with respect to their global shape characteristics.
Table 2

Results of preliminary vertebral shape retrievals, using query-by-sketch, and who

Experiment Evaluated against

Fourier descriptor on shape data reduced using

polygon approx.

Similarity list using Procrus

point shape data

Fourier descriptor on automatic nine-point data

from modified polygon approx.

Similarity list using Procrus

point shape data

Fourier descriptor on shape data reduced using

polygon approx.

Similarity list by medical p

different grades of patholog
In query-by-sketch and query-by-example paradigms of

shape-based CBIR, whole shape matching methods may be

ineffective or difficult to use for the retrieval of shapes that

have localized shape features of interest, such as protrusions

at one vertebral corner. To address this drawback, we have

investigated partial shape matching (PSM) methods that

allow the user to sketch or identify only the local region of

interest on the vertebral boundary. Figs. 13 and 14 illustrate

the user interface for whole shape matching query results,

and for partial shape matching query creation, respectively.

Our PSM method uses shapes with a fixed number of

boundary points, and Procrustes distance for measuring

similarity [67]. A performance evaluation has been

conducted. For this a data set was generated from a total

of 206 spine NHANES II X-ray images (106 cervical and

100 lumbar images) from subjects who were 60 years of age

or older. The age criterion was used because of higher

prevalence of degenerative joint disease and hence,

expected vertebral shape deformity, in this population.

Vertebrae from the selected 206 images were segmented

using the active contour segmentation (ACS) algorithm

previously described. The process yielded 896 segmented

vertebrae, composed of 407 cervical (C3–C7) and 489

lumbar (L1–L5) vertebrae. Each vertebra was represented

by 36 points.

Two classification schemes for anterior osteophytes were

established by a medical expert to evaluate the accuracy of

the PSM algorithm. One is Macnab’s classification,

established by Macnab and his coworkers in 1956 on

radiological and pathological bases [68,69]. The second

classification is a severity grading system which was defined

by a collaborating medical expert, based on judgment of

reasonable criteria for assigning severity levels to the

Macnab classes. There are two Macnab classes of

osteophytes: claw and traction. Claw osteophyte (‘spur’)

arises from the vertebral rim and curves toward the adjacent

disk. It is often triangular in shape and curved at the tips.

Traction spur protrudes horizontally, is moderately thick,

does not curve at the tips, and never extends across the

intervertebral disk space. Vertebrae that do not exhibit

anterior osteophytes (AO) that fall under these categories

are labeled Normal. There are three grades of severity in

system: slight, moderate, and severe. A grade of Slight is
le shape matching

Summarized results

tes distance on nine- On the average 54.7% of retrieved shapes

matched the top 25 ranked shapes in similarity

list. Average displacementZ23.4

tes distance on nine- On the average 70% of retrieved shapes

matched those in the similarity list. Average

displacementZ9.0

rofessional on

y

Average relevanceZ5.7/10. Average accura-

cyZ3.8/10 using staggered scoring (Scores

averaged over 48 cervical and lumbar queries).



Fig. 13. Prototype CBIR system, query results, whole shape matching.

Fig. 14. Example of query-by-sketch and identification of region of interest for partial shape matching.
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Fig. 15. Claw and traction spurs, and examples of severity of each.
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assigned when the vertebral body is approximately square.

It may have a slight protuberance, where the tip of

osteophyte is round and no narrowing is observed at the

base of the protuberance. Moderate grade is characterized

by evident protuberance from the ideal horizontal or vertical

edge of the vertebra. The bounding edges of the AO form an

angle of at least 458 and the osteophyte has a relatively

wider base than severe grade. Severe grade is characterized

by presence of hook, the angle is less than 458 and has a

narrow base, or protrudes far (about 1/3 of the length of the

horizontal border) from the normal (ideal 908) vertebral

corner, as shown in Fig. 15 below.

‘Ground truth’ for the test was created by having the

medical expert label each vertebrae for anterior osteophytes,

using the classifications: normal, claw spur, or traction spur,

and, if either claw or traction spur was present, by labeling

the spurs as Slight, Moderate, or Severe.

The medical expert selected a total of 28 vertebral shapes

from the data set as queries using combinations of the

classifications and locations of the osteophytes. For

example, queries were created for Superior and Inferior

Claw type with Slight, Moderate and Severe pathologies;

and similarly for Superior and Inferior Traction type. In

addition, queries were developed for Superior and Inferior

Normal vertebrae. The evaluation studied the top 10

vertebral shapes returned by the PSM algorithm and

compared their pathology classification to the query shape

classification. Initial results show a near 100% retrieval

precision for normal vertebra and 65% retrieval precision

for claw and traction types averaged over all grades of

severity. Sample results from a PSM query are shown in

Fig. 16.
4. Biomedical imaging for uterine cervix images

4.1. The Guanacaste database

The Guanacaste Project [70] is an intensive, population-

based cohort study of human papillomavirus (HPV)

infection and cervical neoplasia among 10,000 women in
Guanacaste, Costa Rica, where the rates of cervical cancer

are perennially high. State-of-the-art visual, microscopic,

and molecular screening tests are being used to examine the

origins of cervical precancer/cancer and to explore which

factors make a geographic region ‘high risk’. The

Guanacaste study has completed its field phase after 7

years of follow-up, and now has changed into a variety of

subprojects based on collected specimens, visual images,

and outcomes. The National Cancer Insititute (NCI) is

examining several potentially important etiologic co-

factors, such as chronic inflammation and endogenous

hormone levels, which may contribute to cervical cancer

risk. Most ambitiously, over 20,000 DNA and 20,000

plasma specimens are being tested for HPV DNA and

antibodies, respectively, to determine how type-specific

HPV DNA types (there are over 40 types of cervical HPV)

and antibodies influence outcome. NCI and NLM are

collaborating to develop methods to permit exploration of

visual aspects of HPV and cervical neoplasia. In etiologic

studies NCI will relate the numbers of infecting viral types

with numbers and positions of lesions. NCI will be able to

follow the topographic progression and regression of

lesions. For screening research NCI will be able to use

60,000 digitized uterine cervix images from the Guanacaste

Project to optimize and standardize visual screening of the

cervix. NLM has the role of developing tools and

technologies used in these studies.
4.2. Tools and prototype systems for the uterine

cervix images
4.2.1. Boundary marking

The boundary marking tool (BMT) [71] allows the

collection of a detailed set of data relevant to the evaluation

of uterine cervix images, including adequacy of the image

for visual evaluation, visual diagnosis, presence of the

cervix, and the marking of a set of ‘3/6/9/12’ orientation

landmarks, as well as regions corresponding to aceto-

whitening, invasive cancer, squamous metaplasia,

Nabothian cysts, the os, the squamocolumnar junction



Fig. 16. Results of query-by-sketch, Partial Shape Matching. In the upper left, the user sketch for the query can be seen. The part of the shape (lower corner) for

this particular query has been marked by the user. The rectangular display of images to the right contains the query results, ordered by shape similarity (as

calculated by the algorithm), to the user’s query. The text display at the bottom identifies the images by database ID and anatomical name (e.g. ‘C4’ means

‘cervical spine vertebra 4’).
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(SCJ), and polyps. The BMT user interface is illustrated in

Fig. 17.

Where appropriate, the expert is provided with a pull-

down menu of choices. For example, for ‘visual diagnosis’,

the pull-down menu includes the choices of normal,

cervicitis, metaplasia, condyloma, low-grade lesion, high-

grade lesion, and invasive cancer. When the expert draws

boundaries on the image the boundaries are shown in color-

coded form. Capability is provided to indicate that a

boundary is partially obscured and to record an assumed

boundary path for the obscured area. For particular regions,
the expert may display a detailed view that allows

sub-classification of the region contents. For example, for

acetowhite regions, the presence or absence of visual ‘tiling’

(mosaicism) is recorded, along with a classification of the

mosaicism as coarse or fine. In addition, the margins and

color of the region are classified using a standard four-level

Reid index. All BMT outputs are saved as records in a

central MySQL database that resides on a server at NLM;

these outputs include the spatial boundary data, which is

recorded as a set of (x,y) pixel coordinates in a standard

image coordinate system. The BMT is a cross-platform Java



Fig. 17. Boundary Marking Tool for uterine cervix images; regions are color-coded according to region type (acetowhite lesion, invasive cancer, squamous

metaplasia, Nabothian cyst). The 3/6/9/12 anatomical ‘landmarks’ are manually placed by the user to provide the standard orientation for the cervix that is used

by researchers and clinicians in this field; their placement is independent of the regions marked in the image.
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application that runs on the user’s desktop and loads

digitized cervigrams from local storage (e.g. DVD) while

saving results to the central MySQL database by means of

the MySQL connector/j package which implements Sun’s

Java Database Connectivity (JDBC) API.

The BMT has been already used in a study developed to

explore HPV tropisms for glandular or squamous epi-

thelium. Pictures from 1016 patients were reviewed to

record the junction between those epitheliums by drawing a

boundary around it. The objective of this study is to

determine whether a bigger area of glandular epithelium

exposed on the ectocervix correlates with infections for

specific types of HPV. Currently the evaluation of the

pictures has been finished and results are being analyzed.
4.2.2. Multimedia database tool

The multimedia database tool (MDT) [72] has all the

functionality of the current WebMIRS system: capability to

query a database of text and related images through a

Graphical User Interface over the Web, capability to show

query results with a multiple image display and concurrent

display of associated text data, and capability to export

query results to text files for statistical analysis or other

purposes. In addition, the MDT adds capability for
distributed data collection from remote users; one appli-

cation of this new capability is to allow users at many

geographically dispersed sites to view images and record

interpretations for those images into the central database. To

support this new capability, a system of user privileges is

also being incorporated into the MDT that will restrict

database components that are user-writeable and also

restrict write privileges to those users authorized by the

database administrator. The MDT system has also been

designed to support a broad class of text/image databases.

The MDT user interface is illustrated in Fig. 18, for a

database of uterine cervix images.

An important R&D aspect of the MDT is the investi-

gation into how capabilities originally designed for a

particular database application may be generalized to serve

many databases. Of particular interest is the investigation of

how tools for the retrieval and display of spatial data may be

incorporated into the system. For example, the functionality

of the BMT (described above) is being incorporated into the

MDT to allow the query, retrieval, and display of these

regions superimposed on the uterine cervix images. The

system is flexible enough that other image highlighting, such

as WebMIRS vertebral segmentation, could also be

displayed using the same mechanism.



Fig. 18. Mutlimedia Database Tool. (A) Query-building screen with uterine cervix database tree; (B) results screen; records matching the query are returned.

Text fields request by the user have their values returned in the table at the bottom of the screen. Corresponding images for each record are shown at the top of

the screen in a horizontally-scrolled display.
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4.3. Image processing R&D for the uterine cervix images
4.3.1. Compression

Compression for the uterine cervix images is being

developed by Mitra [73] by methods similar to those for the

NHANES II spine X-ray images, with incorporation of

special processing to maintain color fidelity. Codebooks of

various sizes and control parameters have been generated,

and the HMVQ algorithm has been modified to allow

accurate color quality control by allocating bit-rate

independently by color channel. Alternative color

transformations have been investigated. An enhanced

LBG algorithm is currently under investigation to

further optimize codebook optimization. Preliminary inves-

tigations on the effects of optimized color image com-

pression on quality and bit rate control, as well as

segmentation of acetowhite regions of the cervix have

been done [74,75].
4.3.2. Segmentation

Preliminary work has begun into techniques for the

indexing of the uterine cervix images by color and texture

and the segmentation of significant regions, in particular,

regions corresponding to the squamous epithelmium, the

columnar epithielium, and acetowhitened regions. Green-

span [76] has done preliminary work that classified small

patches chosen from these three regions in a test set of 30

images. Gaussian models were created for each region,

and the classification was by color alone. Color features

from 12 different color spaces were used, and classifi-

cation errors ranging from 9 to 16% were observed. The

general techniques being explored include the CBIR

techniques of the Blobworld [77] system; these are
being further investigated by Gordon [78]. Yang [75]

has also reported initial segmentation investigation for

these images, and King [79] has reported the development

of a segmentation-based technique to allow these images

to be registered with the same orientation with respect to

anatomical landmarks.
5. Critical issues

In spite of the progress we have made many critical

challenges remain. We enumerate major challenges below:
†
 Validation of segmentation, classification, and shape

matching algorithms
†
 The integration of competing algorithms, developed by

multiple collaborating research teams, into coherent

research and operational systems
†
 Performance in terms of execution time for compute-

intensive algorithms such as: the GHT; decompression

for fast display of images using customized compression

algorithms; and searching of N-dimensional space for

similarity matching between a query object and objects

in a database of feature vectors for images indexed by

content
†
 Image color and spatial resolution quality preservation

for Web-based biomedical image database systems
†
 Database system architectures that allow incorporation

of new multimedia datasets without new programming,

and with minimal labor effort of database administrators

Of these issues, algorithm validation is a recognized

critical issue within the entire image processing community.

Haralick [80] has provided an abstract mathematical
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framework applicable to a broad class of problems,

including curve fitting, local feature extraction and

registration. For biomedical image segmentation in particu-

lar, validation approaches have been proposed by Yoo [81],

Chalana [82], Udupa [83], and others. The work that we

have done in segmentation and classification has incorpor-

ated biomedical expert (board-certified) judgment, but has

been limited by the amount of data available from experts

and the number of expert observers. For shape classification,

we have incorporated judgment of medically trained

observers, though not at the board-certified level. Increasing

the rigor of our validation by building ‘truth’ sets from

multiple biomedical experts and incorporating statistical

validation methods as proposed in the references above

remains an important goal.
6. Summary and conclusion

In the field of document imaging the work that we have

done in document analysis and understanding, including the

incorporation of OCR techniques and rule-based algorithms,

are contributing to a labor reduction in the acquisition of

titles, author names, institutional affiliations, and abstracts

from scanned journal articles to populate NLM’s MED-

LINE system. In addition the DocView program has over

16,000 users who use this software to enhance and organize

TIFF documents. DocMorph, with over 11,000 users,

provides capability to convert over 50 file formats to PDF,

to text (through OCR), and to speech.

In the field of biomedical imaging, the creation of

operational image informatics systems that allow users to

easily navigate, browse, and retrieve meaningful image

contents from complex biomedical image data sets remains

an unachieved goal, but a goal that we and our colleagues

in the field of content-based image retrieval are approach-

ing. We have created a multimedia database of 17,000

spine X-rays and national health survey data and the

WebMIRS software that allows access to it, added initial

image content ‘truth’ data in the form of nine-point

morphometry data, and established an FTP archive to

allow access to the spine images at full spatial resolution.

We have created engineering-level ‘truth sets’ for first-

order validation of our segmentation algorithms and, with

model-based algorithms, have achieved over 65% success

in our segmentations, using reasonably tight criteria. For

biomedical feature classification of lumbar spine anterior

osteophytes, we have achieved correct classification of

normal vertebra and of abnormal vertebra in approximately

90% of the test cases, where the neural network

classifications were judged against the expert classifi-

cations of a single expert medical observer. In the area of

database retrieval of vertebrae by shape, we have created a

prototype CBIR system that in tests to date has been able

to return relevant results in the 50–70% range, among the

top N results returned, as judged by medically trained
observers. We are now expanding our work into the uterine

cervix image domain, and have created software for

collecting region-of-interest data from these images,

which will be made available over the Web with a next

generation WebMIRS system, the Multimedia Database

Tool. Work is also under way in segmenting, indexing, and

eventually retrieving these images by color and texture.

In the field of biomedical document processing,

researchers continue to work toward long-range goals that

include full-text searching of vast document stores, more

streamlined Web delivery of biomedical documents,

document understanding by natural language processing,

linkage of heterogeneous databases, and automated recog-

nition of machine or hand-printed multilingual text. In the

field of biomedical image processing, researchers continue

to pursue effective methods to deliver images and associated

metadata over the Web, to efficiently segment and index

biomedical images by visual or computable image content,

and to effectively search and compare images by visual

queries. In both these fields, the results that we have

achieved to date are modest in comparison with these long

term goals. Yet, in the sense of supporting user communities

with document imaging and multimedia database R&D

products, in demonstrating the use of OCR for labor

reduction in document indexing, and in establishing bench-

mark results in techniques for X-ray image segmentation,

shape classification by neural networks, and content-based

image retrieval by shape, we believe that the work described

here may be considered to have a measurable impact on

progress in incorporating the methods of informatics in

more integrated and useful ways within the biomedical

sciences.
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