pmc logo imageJournal ListSearchpmc logo image
Logo of viroljBioMed Central web siteReference to the article.Search.Manuscript submission.Registration.Journal front page.
Virol J. 2008; 5: 119.
Published online 2008 October 16. doi: 10.1186/1743-422X-5-119.
PMCID: PMC2575341
Could FIV zoonosis responsible of the breakdown of the pathocenosis which has reduced the European CCR5-Delta32 allele frequencies?
Eric Faurecorresponding author1
1LATP, CNRS-UMR 6632, IFR48 Infectiopole, Evolution biologique et modélisation, case 5, Université de Provence, Place Victor Hugo, 13331 Marseille cedex 3, France
corresponding authorCorresponding author.
Eric Faure: Eric.Faure/at/univ-provence.fr
Received August 26, 2008; Accepted October 16, 2008.
Abstract

Background
In Europe, the north-south downhill cline frequency of the chemokine receptor CCR5 allele with a 32-bp deletion (CCR5-Δ32) raises interesting questions for evolutionary biologists. We had suggested first that, in the past, the European colonizers, principally Romans, might have been instrumental of a progressively decrease of the frequencies southwards. Indeed, statistical analyses suggested strong negative correlations between the allele frequency and historical parameters including the colonization dates by Mediterranean civilisations. The gene flows from colonizers to native populations were extremely low but colonizers are responsible of the spread of several diseases suggesting that the dissemination of parasites in naive populations could have induced a breakdown rupture of the fragile pathocenosis changing the balance among diseases. The new equilibrium state has been reached through a negative selection of the null allele.

Results
Most of the human diseases are zoonoses and cat might have been instrumental in the decrease of the allele frequency, because its diffusion through Europe was a gradual process, due principally to Romans; and that several cat zoonoses could be transmitted to man. The possible implication of a feline lentivirus (FIV) which does not use CCR5 as co-receptor is discussed. This virus can infect primate cells in vitro and induces clinical signs in macaque. Moreover, most of the historical regions with null or low frequency of CCR5-Δ32 allele coincide with historical range of the wild felid species which harbor species-specific FIVs.

Conclusion
We proposed the hypothesis that the actual European CCR5 allelic frequencies are the result of a negative selection due to a disease spreading. A cat zoonosis, could be the most plausible hypothesis. Future studies could provide if CCR5 can play an antimicrobial role in FIV pathogenesis. Moreover, studies of ancient DNA could provide more evidences regarding the implications of zoonoses in the actual CCR5-Δ32 distribution.