1

Translational Research Information Systems: Building the Integrated Data Repository

² Outline

- Definition
- Section I The Work of Research
 - The Value Proposition Why build an IDR?
 - Value to current research methods
 - New methods made possible
 - Social and Regulatory, i.e., Governance Issues
 - CTSA activities
- Section II The technology
 - Technical Governance
 - Data Sharing
 - UCSF
- Summary

Integrated Data Repository Definition

We define an Integrated Data Repository as a very large-scale database containing data from the full array of systems in a biomedical enterprise, including clinical systems, life sciences (genomics/proteomics), research, billing, registries, clinical trial systems, and more. The purpose of an IDR is to support a wide range of activities within the biomedical research enterprise, including but not limited to hypothesis testing, cohort development, genome/phenome matching, genome-wide association studies(GWAS), development of quality measures, and general population based studies.

⁴ The Value Proposition

- · Taking time out of the research cycle
 - 17 years from discovery to practice!
 - Manually intensive methods of data collection
 - Outdated modes of dissemination
 - Much faster cohort selection, the #1 use case
- · Recast funding dollars
 - Services, not capital or salary
- Create/Enable new research models

5 Typical Research Query

 I was wondering if there was a mechanism in place for UCSF to do retrospective patient analyses using icd-9 code searches/discharge diagnoses. For example, we were interested in looking at our patient series of children <21yo with heparin induced thrombocytopenia in the last 5 years. Is such a query available?

⁶ The Current, Painful Response

- No
- Comprehensive response will require data from up to 8 systems, some of which are still on paper!

- · Different system owners, most not helpful.
- HIMS (Paper Chart), MAR (paper), UCare (newer, EMR), TSI(Billing), WorX(Pharmacy), Pixis(Cart Dispensing), PICIS(Peri-operative), STOR (Older EMR).
- How long? 1 year if lucky? 2 years? Never?

The Current Painful Methods of Data Gathering

- · Intensively Manual
- · Review of paper charts
 - 3 years for flu study of studies
 - Exposes all individual data to investigator
- Manual screen scraping
 - Study coordinators transcribe records from EMR into spreadsheets.
 - Time consuming, error prone,
 - Zero security.

Shortening the Cycle

- Three years becomes 3 weeks, 3 days, 3 hours, 3 minutes.
- Information is managed in secure, professional environments
- Proxy chart review
- i2b2 Workbench as example
- ⁹ i2b2 Workbench Example 1
- 10 i2b2 Workbench Example 2
- 11 Recasting Funding Dollars

12 New Research Paradigms

- Ocean of Data
 - Ventner, Wired article
 - Kohane diabetes analysis
 - Neurocommons/Science Commons project
 - Delineate large effects in small populations and small effects in large populations.
- Virtualized Clinical Trial
 - Mark Weiner's work

13 Enables multi-disciplinary collaboration

14 The IDR is a Disruptive Technology

- Changes the way biomedical research is done
- Changes the speed of research
- · Raises new possibilities
 - Statistical methods vs. RCT
- Increases security and access simultaneously

- Proxy chart review
- Single control point for release of clinical data

15 The Necessity of Automation

- Productivity gains of the last 30 years predicated on automation
- The Information Economy Fedex, Wal-Mart, Google
- · Research IS an information economy
 - The value of a tissue bank is ultimately the information that can be derived from analysis of the samples
 - Managing that information becomes as important as managing the samples.
 - Tissues may be a scarce resource, but information about those tissues can be reproduced at almost no cost.
- · Many technological problems solved in other industries
 - Healthcare and research lag behind in application and investment
- Great advances could be made using today's technology
- However...

16 The Challenge of Narrative Text

- · Automation requires computable data
 - Dominance of narrative text in healthcare
 - Word vs. Excel
 - Natural Language Processing (NLP)
 - Best solutions typically get only 70% accuracy
 - · UPMC claiming much better rates
 - · CTSA has begun NLP interest group, led by Zak Kohane

17 Secondary Use of Healthcare Data

- Predominance of narrative text (see above)
- · Data Quality is the other big issue
 - Always worse than RCT data
 - Precise data not always required for care decisions
 - Large data sets needed to mitigate lower quality of data
 - ref. Mark Weiner's work.

18 Subject Selection

(aka why you need to start with a large database)

19 Governance Examples

- Oversight committees
 - Faculty boards, Privacy Office, ISO
- Documents
 - IRB protocols, MOUs, BAA, Certificates of Confidentiality
- Patient's Rights
 - Opt-out vs. Opt-in?
 - No Opt-out?
 - · Stanford, Partners
 - Challenging Opt-out
 - UCSF
 - Clear Opt-out
 - Vanderbilt
 - Special Cases Prisoners, VIPs, Opt-outs

²⁰ Examples, continued...

- Data Ownership questions
 - Clinician/Investigator vs. Institutional
- Stakeholders
 - Hospital IT, IRB, Privacy Office, Security Office, Medical Records, Legal Office,
- Security requirements
 - AuthN/AuthZ, Two Factor AuthN, Local disk encryption, Securely managed storage
- Limited Data Sets, Honest Broker function
- Small Cell Results

21 Interaction With IT Governance

- IDR within Hospital IT organization
 - Mayo, UPMC, St. Jude's
 - Much less institutional conflict
 - IDR project likely to rank lower in priority schemes than more urgent hospital projects
 - May be much harder to add in non-hospital data sources
- · IDR in IT organization separate from Hospital IT
 - Stanford
 - Long, hard road to intra-institutional agreements
 - IDR project can be prioritized independently of Hospital IT
 - Easier to include non-hospital data sources
- · Federated IDR crosses IT organization boundaries
 - UCSF
 - Architecture maps to stakeholder boundaries
 - Best or Worst of both worlds?

22 IDR Regulatory Environment

- · Extremely challenging and complex
- · Goes well beyond HIPAA
- Contradictory
 - May not be possible to be compliant
 - Laws written without regard to consequences
- · IRB policies may be outdated and insufficient
 - IT staff burdened with policy decisions
- · Very difficult to provide sufficient utility to researchers while fully protecting patient privacy
- IDR use can be especially sensitive
 - Patients generally NOT explicitly consented

23 Federal Laws and Regulations

- LIDAA
- Health Insurance Portability and Accountability Act
- FISMA
- Federal Information Security Management Act
- FERPA
 - Family Education Rights and Privacy Act
 GINA
- Genetic Information Non-Discrimination Act
 21 CFR Part 11
 - Code of Federal Regulations Electronic Signature
- · Sarbanes Oxley

24 🔳 State and Institutional Laws and Regulations

- State of CA
 - Title 22
 - Definition of the Medical Record
 - SB 1386
 - Notification Requirements

- AB 1298
 - Extension of 1386 to include "Medical Data"
- SB541, AB211
 - Specify penalties for individuals and institutions for "negligent" handling of medical data.
 - Up to \$250,000
- 2 UCSF/UC
 - 650-16
 - ECP
 - UCOP IS2 and IS3

25 CTSA

- IKFC Informatics Key Function Committee
 - Loose affiliations
 - No data coordinating center
 - No IT standards
- Multiple Interest Groups, Projects
 - Data Repositories, Data Sharing, Education, Standards and Interoperability, Inventory, Human Studies DB, Collaboration Facilitation, National Recruitment Registry, others.
- · Data sharing
 - CICTR(UW, UCD, UCSF)

26 Data Repository Interest

Group Activities

- Ontology Mapping Service
- · Integration of i2b2 with caGRID
- · Data Sharing Across Repositories
- Best Practices Symposium
- Repository Inventory Survey
- Governance Documents
- Conference Calls
- · Integration of Molecular and Clinical data
- EMPI

27 ■ The i2b2 Hive

28 <a> Technical Data Governance

- Classic Data Warehouse Design
 - Inmon, others.
 - Enterprise Data Model
 - All data transforms and encodings done up front, during ETL
 - Long negotiations between stakeholders to get agreement on the model.
- · Late Binding Design
 - Minimal ETL.
 - Customized data models based on user preferences and beliefs
 - Supports multiple terminologies/ontologies
 - CTSA Ontology Mapper
 - Diverse data models expressed as views or physical marts

²⁹ Ontology Mapper Cell

- Written as an i2b2 cell
 - General purpose instance mapper
 - Translates messy local data into one or more standard formats
 - Maps local data into Ontologies
- Maps will be created and annotated in a Protégé Prompt plug-in and can be shared over HL7 CTS II

both as open source or as commercially sold assets

- Maps contain routing, provenance information and a scriptlet payload of SQL, Perl, SparQL, Horn or R
- The Ontology Mapper Cell within i2b2 is a collaborative effort involving UCSF, UCD, Rochester, UPenn, and U Washington
- This has been a highly active collaborative effort which is now in an Alpha release cycle

30 CaGRID Cell

- The caGRID Cell is a development project which is a collaboration of OSU (Ohio State) and UCSF
- This component allows any i2b2 data mart, which has been translated into standard format by the Ontology Mapper, to share data over caGRID
- This system will allow i2b2 to share data

(a federated query) across any caGRID based data source (not just between other i2b2 instances)

31 CTRgrid Design

32 CTRgrid Components

- NCI caGRID
 - Well defined grid for sharing data in a secure and semantically complete manner
 - Designed for cancer, but the NCI wants to generalize it
- NCBC i2b2
 - The software platform for the Integrated Data Repository
- · CTSA Ontology Mapper
 - Takes the raw data of the repository and turns it into a structured, study domain specific model that can be shared across caGRID
 - First CTSA developed software
 - Led by UCSF
 - Incorporated into HL7 CTS II standard

33 Near Term Projects

- Human Studies DataBase Ida Sim
 - UCSF, Mayo, Wash. U
- CHORI (Dentistry) Joel White
 - UCSF, Harvard, Tufts, UT Houston
- STIRS (Radiology) Max Wintermark
 - UCLA, Georgetown, Wash. U, Edinburgh, Nottingham
- Pediatrics Rare Disease Jennifer Puck
 - UCSF, UT Houston, Harvard, Duke, Emery, OHSU, Vanderbilt, Chicago, Hopkins, Columbia
- Quality Network Andy Auerbach
 - Northwestern, Tufts
- CTSA i2b2 Adoption Russ Cucina
 - U. Wash, UCSF, UC Davis

34 UCSF Activities

- · i2b2, Sybase IQ integration
- · MyResearch Portal
 - Remote desktop for managing research data
- · Virtualized server infrastructure
- Managed Services vi ARCAMIS/ITN
- · Service Model of Research IT
- CTRgrid
- · General Security Model
- Workflow Models

- · Governance difficulties
- Public data sets
- Integrated Data Repository:
 Design by Governance
- 36 Research Data Request Workflow
- 37 Taverna Scientific Workflow
- 38 Summary