
Data
2 x 2 table of allele transmission counts from both parents

x11 = allele 1 is transmitted, allele 1 is not

x12
= allele 1 not transmitted, allele 2 is

x21
= allele 2 is transmitted, allele 1 is not

x22
= allele 2 not transmitted, allele 2 is

x11 x12

x21 x 22

 
 
 

 
 
 

Probability Model
11 = p2 (1 + aB)

12 = p(1− p)[1 + aB − aB /(1−p)]

21 = p(1−p)[1 − aBp/(1−p ) +aB /(1− p)]

22 = (1− p)2 [1 − aBp /(1 − p )]

where  a  =  linkage disequilibrium  – 1
  =  linkage recombination fraction

B  =  mode of inheritance parameter
p  =  marker allele frequency

(Sham and Curtis, 1995)

Statistical Issues
Model is not identifiable at any point of the null space:
not when a = 0 (no association) or when  = 0.5
(no linkage)

Information matrix is singular when a = 0. In fact when
a = 0, linkage term   drops out of the model

Standard estimation methods using
maximum likelihood do not apply, since
regularity conditions aren’t valid for
usual large-sample theory.

Solutions
(1) Introduce first parameterization: d = aB = generalized
association ⇒ d = 0 if and only if a = 0
(2) Use parametric bootstrap for estimation of association,
linkage and marker allele frequency
(3) Use parametric bootstrap percentile method for
confidence intervals and testing
(4) Introduce second parameterization to improve
testing   = 0.5

= (d*, p*, *) = −d /(d + 1 ) ,p (d + 1),1 −( ) if d < 0

                        = (d , p, ) if d > 0.

maps d < 0  to  d* > 0, and * in [0, 1]. Now use likelihood
ratio test (LR) for * = 0.5, as   = 0.5 if and only if * = 0.5.
 (5) Using an integrated Bayesian marginal likelihood yields
a test (IL) and confidence interval for association that is
entirely free of identifiability and information matrix problems

Results
(1) Confidence intervals used for testing association and
linkage are essentially as powerful as the TDT, but some
power loss for association test when marker allele is rare
(e.g., marker allele frequency p = 0.05)
(2) Confidence intervals have good coverage probabilities,
and intervals for  will usefully distinguish between weak,
moderate and tight linkage.
(3) LR test for  = 0.5 is essentially equivalent to the TDT at
all values of association and linkage (!)
(4) IL test for association has significantly greater power
than TDT: for d = 2.5, p = 0.25,  = 0.35, power for TDT =
0.63, but power of IL test = 0.94
(5) C code for program ELAAT and pdf file for paper (under
review at Genetic Epidemiology) available at:

http://mscl.cit.nih.gov/spaj/elaat

Robustness under Population
Stratification
(1) admixture = two populations, both with zero 

association, but different marker allele frequencies.
Under admixture model the d-test for association is just
as robust as the TDT
(2) linkage heterogeneity = two populations, one with

zero association, the other with nonzero association
and tight or moderate linkage (   = 0.01 or 0.20)
note: when d = 0 in a subpopulation  drops out of
the model, and is arbitrary.

Under linkage heterogeneity model the d-test has
essentially the same robustness as the TDT, except for
some power loss for rare marker allele.

Estimation with Realistic Models
Five models from Sham and Curtis (1995) were studied,
having varying levels of association and linkage, with both
parents’ data included. The d-test generally agreed with
the TDT, as did the *-test and the LR test for linkage.
Confidence intervals for d,  and p were generated, all
showing good coverage probabilities. When association
is small (d near 0) then intervals for  are large (see note
above).

Discussion
Estimation and confidence intervals for linkage and
association, is practical, robust and analytically valid,
despite statistical problems of the allele transmission
model. A Bayesian integrated marginal likelihood greatly
increases power for testing, estimation and confidence
intervals for association. It will be applied next to testing,
estimation and intervals for linkage.

Work is being extended to multiple affecteds, missing
parents, and multiple marker alleles.
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