
INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

Phys. Med. Biol. 51 (2006) 4719–4733 doi:10.1088/0031-9155/51/18/017

Mean time-of-flight of photons in transillumination
measurements of optically anisotropic tissue with an
inclusion

Olga K Dudko1, George H Weiss1 and Victor Chernomordik2

1 Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience,
Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
2 Laboratory of Integrative and Medical Biophysics, National Institute of Child Health and
Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Received 8 March 2006, in final form 25 July 2006
Published 5 September 2006
Online at stacks.iop.org/PMB/51/4719

Abstract
We study the effect of optical anisotropy on the mean time-of-flight of photons
in a slab of turbid medium containing an inclusion whose optical properties
differ from those of the bulk. For this analysis the difference in the mean time
for a photon introduced into the slab to reach a specified target point with and
without the inclusion is calculated. This difference is defined to be a measure
of the contrast. The theoretical model is based on a continuous-time random
walk on a lattice, which can be solved exactly and furnishes an exact expression
for the contrast. Qualitative and quantitative characteristics of the contrast are
analysed as functions of the geometric configuration of the system components
(locations of the source, the inclusion and the detector), parameters that specify
the optical anisotropy of the medium, and either the scattering properties of the
inclusion or the lifetime of the small fluorophore in the case of the time-resolved
fluorescence experimental configuration.

1. Introduction

The notion of contrast is central to any imaging modality since the purpose of imaging is to
detect and identify regions in which some physical property in the body differs from that of its
surroundings. Thus, many investigations aim to quantify contrast, as expressed in terms of the
effects of absorption and scattering coefficients that differ, in some local region, from those of
surrounding tissue. Such an approach has been applied to the analysis of data in a number of
recent papers, using as a forward model either diffusion theory, e.g., Michielsen et al (1998),
Painchaud et al (1999), Morin et al (2000), or random walk theory, e.g., Gandjbakhche et al
(1994, 1996, 1998), and Chernomordik et al (2002). All are based on an assumption that
optical parameters are isotropic throughout the tissue which means that there is no preferred
direction associated with photon migration. Nevertheless, it is known that there are many
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Figure 1. A schematic diagram of a transillumination measurement in which photons from a laser
source traverse a slab, emerging on the opposite side. The aim of the measurement is that of
measuring the change in the average traversal time induced by an inclusion at s = (sx , sy , sz) with
scattering properties differing from those on the remaining lattice sites. For simplicity the diagram
is drawn in two dimensions, and the tissue is modelled as a simple cubic lattice bounded by two
parallel absorbing planes.

tissues for which photons tend to migrate preferentially along fibres when these exist, as is
true for example, for skin (Nickell et al 2000) and white matter in brain, collagen and dentin
(Kienle et al 2003) and human skeletal muscle (Binzoni et al 2006). The most common
geometries of aligned fibres correspond either to their orientation being parallel to the surface
being illuminated (skin, muscle) or perpendicular to this surface (brain white matter). An
early theoretical formulation of diffusion that incorporates effects of anisotropy is to be found
in a paper by Heino et al (2002).

Our ultimate goal in the present paper is to find, for the transillumination geometry, a
simple expression that describes the change in the mean time-of-flight (MTOF) due to the
presence of a small inclusion that modifies the time at which photons are detected (either the
result of a scattering perturbation or a fluorescence lifetime). The first moment of the flight
time can easily be estimated from time-resolved data and is robust due to the suppression
of noise that is a result of the integration with respect to time. Use of this parameter was
suggested in Arridge (1995) and applied to the analysis of experimental data generated from
isotropic tissue-like phantoms in Hebden et al (1999) and Arridge et al (2000). To avoid
misunderstanding it is worth noting that the contrast function used for analysing experimental
data in diffuse optical imaging is usually determined as a relative perturbation of light intensity
due to the presence of the inclusion (see, e.g., Hebden and Arridge (1996), Gandjbakhche
et al (1998)). However, here we plan to estimate not the variation in intensity but the MTOF
that results from the presence of the inclusion.

We base our analysis on a simplified model of anisotropy first discussed by Dagdug et al
(2003) and partially verified experimentally in Hebden et al (2004) and Sviridov et al (2005).
Our analysis generalizes formalism developed by Weiss and Calabrese (1996) which dealt
with related questions for diffusion in an unbounded space.

2. The model

2.1. The lattice model

The model, in terms of which we frame the analysis, consists of a slab of infinite extent and
width L as shown in figure 1. Its planar boundaries are assumed to be perfectly transmitting.
By this we mean that a photon reaching the surface emerges as a detectable flash of light at
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the time of arrival, thereafter leaving the system. An arbitrary point in the slab will be denoted
by r = (x, y, z), whose components are integers which satisfy −∞ < x, y < ∞, 0 � z � L.
The units measure distances as integer multiples of the scattering length, z0, which is

√
2/µ′

s ,
where µ′

s is the transport-corrected scattering coefficient. A tacit assumption underlying our
analysis is that L � z0. Without this assumption the validity of a random walk model is
questionable since forward scattering effects might then be important. Our analysis will be
based on the continuous-time random walk (CTRW) as described in Weiss (1994) and Hughes
(1995). This is a random walk in which the times between successive steps are identically
distributed random variables.

Two types of distinctions will be made. The first accounts for the distinction between
properties of a random walk on a bulk point. A bulk point is defined to be any point on the
lattice aside from the inclusion, and the random walk at the point or points of the inclusion.
We consider the simplest possible case in which the inclusion consists of a single point
s = (sx, sy, sz). The second distinction is defined by parameters that determine the optical
anisotropy.

2.2. Differences between pausing-time densities as a measure of tissue inhomogeneity

We define the pausing-time density for a single sojourn by a random walk on a point in the
bulk to be equal to ψb(t). By this we mean that ψb(t) dt is the probability that a random walk
arriving at a bulk point waits for a time between t and t +dt before making the succeeding step.
A random walk arriving at s is characterized by a different pausing-time density, ϕi(t), which
is not necessarily equal to ψb(t). In this terminology ϕi(t) = limT →∞ δ(t −T ) corresponds to
a completely absorbing point. The difference between the two pausing-time densities, ψb(t)

and ϕi(t), is the sole distinction made between the inclusion and the bulk points.
A random walk theory, in this framework, provides an advantage over a diffusion theory

analysis, since when the propagator for the random walk in discrete time can be found, it is
readily converted into a solution in Laplace transform space, which, in turn, can be converted
into a solution in continuous time. This is done by replacing the generating function parameter
by the Laplace transforms of the appropriate densities ψb(t) and ϕi(t). A further advantage in
discussing the discrete-time model initially is that there is no difference between the models
with and without an inclusion since, by our earlier assumption, the degree of inhomogeneity
is based on differences only between the pausing-time densities. In the present analysis we
will neglect the effects of possible inhomogeneity in internal absorption.

2.3. Definition of optical anisotropy

The degree of anisotropy will be characterized by three probabilities, α, β and γ . Each of
these is the probability of making a step in one of six possible directions. For simplicity we
restrict our analysis to nearest-neighbour random walks, so that a random walk at site r can
only step to one of its six neighbouring points, (x ± 1, y ± 1, z ± 1). The assumption will be
made that the probability that a step x → x + 1 or x → x − 1 is made is defined to be α, the
probability that the step y → y + 1 or y − 1 is made is β and so on, so that 2α + 2β + 2γ = 1.
Isotropy therefore corresponds to the choice α = β = γ = 1/6, any other choice indicating
some degree of anisotropy.

As in Dagdug et al (2003) we consider only the two simplified cases defined by α = β �= γ

and β = γ �= α. The first of these, α = β, implies rotational symmetry around the z-axis,
while the second corresponds to rotational symmetry around the x-axis. These may be
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considered to be two extreme cases. Results derived in these two cases therefore provide a
qualitative insight into the extent to which anisotropy affects the contrast.

2.4. Transformation to physical coordinates

Since dimensionless integer coordinates are used in the forthcoming analysis they must be
transformed to physical coordinates having dimensions. If rphys is the vector representation of
the physical coordinate our assumption that the distribution of distances between scatterers is
a negative exponential implies the relation (Gandjbakhche et al 1992, 1993)

rphys = r
√

2

µ′
s

. (2.1)

To be consistent in framing the theory in terms of dimensionless units, we can also define a
dimensionless time, τ , in terms of the (assumed constant) speed of light in the tissue, c, the
relation being τ = µ′

sct .

3. Definition and formalism for evaluating time-of-flight contrast

Most discussions of the idea of contrast are based on calculating the changes induced by
perturbations of either the absorption or the transport-corrected scattering coefficients, µa

and µ′
s respectively. We follow an approach to the definition of contrast first suggested in

Gandjbakhche et al (1998), to estimate the difference in the average times to reach a given
target point on the detecting surface, R = (X, Y,L), with and without the inclusion. Higher
moments, which can, if desired (Arridge 2000), be used to improve the discrimination between
the two cases, can also be evaluated by extending the formalism described in the present paper
since the moments are derived in terms of derivatives of a Laplace transform whose form will
be derived. These, however, require a more detailed knowledge of the pausing-time densities
than assumed in the present analysis.

We first consider the case in which the times between successive steps are all equal.
We ultimately want to calculate the propagator describing the trajectory of a photon initially
injected at a point r0 = (0, 0, 1) and detected at a point R = (X, Y,L) on the surface of
the slab, at time τ . Denote the point adjacent to R, but one step into the bulk of the tissue,
by R− = (X, Y,L − 1). This is required since, by our assumption of a simple cubic lattice
structure, a photon arriving at R in a single step can only have come from R−.

The propagator in discrete time will be denoted by pn(r|r0). This is the probability that
the random walker, initially at r0, is at r at step n. Two further probabilities will be required
in the analysis: q(s)

n (r|r′), which is the probability that a random walker moves from r′ to r
in n steps, without visiting the anomalous point at s, and f

(k)
l (s|r0), which is the probability

that the random walk arrives at s for the kth time at step l, having started from r0. The
two dimensionless pausing-time densities, as mentioned earlier, are ψb(t) for motion on a
bulk point and ϕi(t) for a sojourn on an inclusion site. Later we specialize these to negative
exponentials as discussed in Weiss et al (1998) which will serve to simplify at least some of the
mathematical analyses without compromising the physical content of the theory. The physical
justification for using exponential pausing time densities is based on an assumption often
made in statistical physics that the distribution of scatterers in a turbid medium is negative
exponential with a mean free path equal to the reciprocal of the transport-corrected scattering
coefficient (Gandjbakhche and Weiss 1995).

It is worth noting that potential applications of the suggested approach are not necessarily
limited to scattering perturbations. The exponential pausing time densities are also useful
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in analysing fluorescence lifetime distributions generated by small fluorophores in a turbid
medium (Kumar et al 2005). In this promising application, the rate is often all that is
needed to describe a conventional lifetime distribution, i.e., one without photon migration
effects because such distributions are generally described by exponentials, see, e.g., Lakowicz
(1999). The theoretical approach described in this paper can help to analyse the effects of
photon migration on observed lifetime intensity distributions for several different geometries,
thus enabling one to estimate fluorescence lifetimes from experimental estimates of the rate as
suggested below. Accurate estimates of intrinsic fluorescence fluorophores to report possible
changes in such parameters as pH or temperature can therefore potentially provide valuable
diagnostic information (Gannot et al 2004).

3.1. Enumeration of numbers of steps before reaching the target site

The definitions in the last two paragraphs enable one to derive an expression for the probability,
U

(s)
n,k(R|r0), that the random walk reaches R at step n, having visited the inclusion at s exactly

k times. The variable k can be any integer from 0 to n so that U
(s)
n,k(R|r0) can be represented as

U
(s)
n,k(R|r0) = γ q

(s)
n−1(R−|r0)δk,0 + γ

n−1∑
l=0

f
(k)
l (s|r0)q

(s)
n−1−l (R−|s). (3.1)

The first term on the right-hand side of this equation, δk,0 being the Kronecker delta, accounts
for random walks that reach R− at step n − 1, having been initially at r0, and not having
stopped at the inclusion site at s during the course of the random walk. From site R− it then
reaches the target point R on the following step with probability γ . The lth term in the sum
accounts for random walks that reach s for the kth time at step l, thereafter moving from s to
R− at step n − 1 without returning to s and then moves to R at step n. Our ultimate goal is to
find an expression for the contrast induced by the presence of the inclusion in the remaining
time, and, in particular, to find a simple measure of contrast. While the n-dependent functions
appearing in equation (3.1) are not easily found in a closed form, it is possible to derive
expressions for their generating functions. While we have not explicitly shown the directional
dependence in equation (3.1) α, β, γ probabilities appear in the q functions on the right-hand
side of that equation.

The key to the calculation is that the sum over l on the right-hand side of equation (3.1)
is a discrete convolution which suggests introducing a generating function with respect to n
to transform the summation into a product of two generating functions. A second step in this
process is to convert the discrete-time relation in equation (3.1) into a relation in continuous
time. We first note that our object is to find the joint probability for the occurrence of exactly
k visits to s with a subsequent arrival at R at some time during the time interval (τ, τ + dτ)

at step n. Since all n and k � n can occur, we finally sum over all possible values of these
variables.

We introduce notation for the pausing time density for the sum of times spent in taking
l steps on all sites other than at the inclusion at s. This will be denoted by ψb,l(τ ) which is
the probability density for the sum of l times spent on sites in the bulk. If ψ̂b(ξ) denotes the
Laplace transform of the probability density for a single sojourn time on any point in the bulk,
i.e., ψ̂b(ξ) = ∫ ∞

0 ψb(t) e−ξ t dt , then a standard result in probability theory is that the Laplace
transform for the probability density for the sum of l sojourns is ψ̂b,l(ξ ) = [ψ̂b(ξ)]l . Similarly,
the density for the sum of times spent in making l visits to the site s will be denoted by ϕi,l(τ )

whose transform is [ϕ̂i(ξ)]l .
We will want to convert the relation in equation (3.1), which describes the evolution of

the system in discrete time, to one which evolves in continuous time. Let the required function
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be denoted by U
(s)
n,k(R; τ |r0) so that U

(s)
n,k(R; τ |r0) dτ is the probability that the random walk

reaches R at a time between τ and τ + dτ , having visited the inclusion at s exactly k times.
When k = 0

U
(s)
n,0(R; τ |r0) = γ q

(s)
n−1(R−|r0)ψb,n(τ ) (3.2)

which is the probability that the random walker is absorbed at R at time τ , never having visited
the anomalous point. To generalize this to k � 1 we enumerate all possible trajectories,
finding

U
(s)
n,k(R; τ |r0) = γ

n−1∑
l=0

f
(k)
l (s|r0)q

(s)
n−1−l (R−|s)

∫ τ

0
ϕi,k(τ

′)ψb,n−k(τ − τ ′) dτ ′, k � 1.

(3.3)

As a next step in dealing with the sum in this equation we take the Laplace transform of the
U

(s)
n,k(R; τ |r0). These yield the results

Û
(s)
n,0(R; ξ |r0) = γ q

(s)
n−1(R−|r0)[ψ̂b(ξ)]n

Û
(s)
n,k(R; ξ |r0) = γ

n−1∑
l=0

f
(k)
l (s|r0)q

(s)
n−1−l (R−|s)[ϕ̂i(ξ)]k[ψ̂b(ξ)]n−k, k � 1.

(3.4)

The sum with respect to n of equation (3.4) is readily found by observing that

Sk = γ

∞∑
n=0

[ψ̂b(ξ)]n


q

(s)
n−1(R−|r0)δn,0 +

n∑
l=0,k�1

f
(k)
l (s|r0)q

(s)
n−l−1(R−|s)

(
ϕi(ξ)

ψ̂b(ξ)

)k


 (3.5)

is a generating function with respect to n, the transform parameter being equal to ψ̂b(ξ). If
we denote a generating function formed from the set of constants {hn} by

h̄(α) =
∞∑

n=0

hnα
n (3.6)

then equation (3.5) can be rewritten as

Sk = γ ψ̂b

[
δk,0q̄

(s)(R−; ψ̂b|r0) + f̄ (k)(s; ψ̂b|r0)q̄
(s)(R−; ψ̂b|s)

(
ϕ̂i

ψ̂b

)k
]

. (3.7)

As a final step in the calculation we need to sum over k. To this end we invoke the identity
(Weiss 1994):

f̄ (k)(s; ψ̂b|r0) =
(

1 − 1

p̄(s; ψ̂b|s)

)k−1
p̄(s; ψ̂b|r0)

p̄(s; ψ̂b|s)
(3.8)

which, together with equation (3.5), requires only the summation of a geometric series.
In our development we will use two generating functions to distinguish random walks

which do or do not reach s at least once. The Laplace transform corresponding to those
trajectories that reach the anomalous site at least once will be denoted by Û (s)

anom(R; ξ |r0). The
equivalent function when there is no inclusion will be denoted by Û (s)

norm(R; ξ |r0). The first of
these can be found by performing the sum over k in equation (3.7) using the representation for
f̄ (k)(s; ψ̂b|r0) given in equation (3.8). The sum is a geometric one and leads to the expression

Û (s)
anom(R; ξ |r0) = γ ψ̂b

[
q̄(s)(R−; ψ̂b|r0) +

ϕ̂iq̄(R−; ψ̂b|s)p̄(s; ψ̂b|r0)

p̄(s; ψ̂b|s)(ψ̂b − ϕ̂i) + ϕ̂i

]
. (3.9)
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When ψ̂b = ϕ̂i, this formula reduces to

Û (s)
norm(R; ξ |r0) = γ ψ̂b[q̄(s)(R−; ψ̂b|r0) + q̄(R−; ψ̂b|s)p̄(s; ψ̂b|r0)]. (3.10)

The expressions in square brackets on the right-hand sides of equations (3.9) and (3.10) consist
of two terms. The first of these, γ ψ̂bq̄

(s)(R−; ψ̂b|r0), is identical in both, and corresponds to
trajectories that reach R without stopping at s. The remaining term corresponds to trajectories
that pass through s at least once before reaching R−. We will define the Laplace transform
function of the contrast function, Ĉ(R; ξ |r0), to be the difference

Ĉ(R; ξ |r0) = Û (s)
anom(R; ξ |r0) − Û (s)

norm(R; ξ |r0) (3.11)

whose properties are considered below.

3.2. Laplace transform of the contrast function

The explicit representation of the Laplace transform of the contrast function is found from
equation (3.11) to be

Ĉ(R; ξ |r0) = γ ψ̂bq̄(R−; ψ̂b|s)p̄(s; ψ̂b|r0)p̄(s; ψ̂b|s)(ψ̂b − ϕ̂i)

(ψ̂b − ϕ̂i)p̄(s; ψ̂b|s) + ϕ̂i
(3.12)

which obviously vanishes when ϕi(τ ) = ψb(τ ), i.e., when the lattice is uniform in terms of our
definition framed as a difference in the two pausing time densities. The factors p̄(s; ψ̂b|r0) and
p̄(s; ψ̂b|s) appear directly in terms of the propagator of the random walk on a homogeneous
lattice. It is therefore convenient to express the conditional propagator q̄(s)(R−; ψ̂b|s) also in
terms of the same propagator for the homogeneous lattice.

To do so, let f̂ (1)(s; ψ̂b|r′) be the Laplace transform of the time for a photon to reach s for
the first time, starting from r′ and moving only on points other than the inclusion. To find the
expression for q̄(s)(R−; ψ̂b|s) we return to the discrete-time domain which allows us to write
the relation

q(s)
n (R−|s) = pn(R−|s) −

n∑
j=1

f
(1)
j (s|s)pn−j (R−|s). (3.13)

The first term on the right-hand side of this equation is the unrestricted propagator which takes
the photon from s to R− in n steps. One subtracts from this all trajectories that pass through
s at least once before the nth step. When a trajectory passes through the site s on step j it
automatically reverts to being described by an ordinary propagator which accounts for the
term pn−j (R−|s) in the sum. The result is then to be converted into a generating function in
terms of powers of ψ̂b. This transforms equation (3.13) into

q̄(s)(R−; ψ̂b|s) = p̄(R−; ψ̂b|s)[1 − f̂ (1)(s; ψ̂b|s)] = p̄(R−; ψ̂b|s)
p̄(s; ψ̂b|s)

(3.14)

where the last term on the right-hand side is a consequence of equation (A.2) in appendix A.
We see, finally, that Ĉ(R; ξ |r0) can be expressed entirely in terms of the generating function
of the propagator, p̄, where the variable defining the generating function is taken to be ψ̂b.
The combination of equations (3.12) and (3.14) can be rearranged and expressed entirely in
terms of the generating functions of the single photon propagators and the Laplace transforms
of the pausing-time densities as

Ĉ(R; ξ |r0) = γ
p̄(s; ψ̂b|r0)p̄(R−; ψ̂b|s)(ψ̂b − ϕ̂i)

ϕ̂i + (ψ̂b − ϕ̂i)p̄(s; ψ̂b|s)
. (3.15)

It is worth noting that the contrast function used for analysing experimental data in diffuse
optical imaging is generally determined as a change in light intensity due to the presence of
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an inclusion. Relative intensity distributions are more robust as input data because they are
less sensitive to boundary effects as compared to absolute intensity values. Here, however,
we use the theoretical formula which corresponds to absolute variations in intensity only as
an intermediate equation to derive the expression for the MTOF variations resulting from the
presence of an inclusion. It can be done using the absolute difference in the corresponding
probabilities in the Laplace domain given in equations (3.12) or (3.15).

Although the equation for the transform of the contrast contains a considerable amount of
information, it is nevertheless useful to have just a single parameter to measure the difference
in the mean time-of-flight of a photon to arrive at site R attributable to the inclusion at s. This
can be done using the absolute difference as found from the Laplace domain given later in
equation (3.18). This will have the dimensions of time and will be denoted by 	T (R). We
define it in terms of the Laplace transform of the contrast function, Ĉ(R; ξ), by

	T (R) = − d

dξ
Ĉ(R; ξ)

∣∣∣∣
ξ=0

. (3.16)

To calculate this quantity we invoke the rather obvious assumption that both ψb(t) and ϕi(t)

have finite first moments. These parameters are easily found from time-resolved experimental
data. A simple expression, given below, relates them to characteristics of the inclusion, either
the scattering perturbation or fluorescence lifetime for a fluorophore.

By way of notation the average time spent in a single sojourn on a bulk site will be denoted
by τb and the average sojourn time on the site of the inclusion by τi. This allows us to expand
ψ̂b and ϕ̂i in the neighbourhood of ξ = 0 as

ψ̂b(ξ) ≈ 1 − τbξ, ϕ̂i(ξ) ≈ 1 − τiξ. (3.17)

Hence, to lowest order in ξ we have

	T (R)

(τi − τb)
= γ p̄(s; 1|r0)p̄(R−; 1|s). (3.18)

The right-hand side of this equation is dimensionless and contains quantities that refer only
to the geometry that describes the system. While we have phrased the present problem in
terms of the transillumination geometry, this is no real restriction, and it may be applied to
reflectance measurements as well. Exact, but rather tedious to evaluate series for the generating
functions that appear in equation (3.18) are given in appendix B. Extremely accurate integral
approximations for these functions, requiring only the physically realistic condition L � z0

are given as equations (B.10) and (B.11) of that appendix.
The dependence of the result in equation (3.18) on the two mean residence times, τi and

τb, is intuitively reasonable. When these times are equal the contrast vanishes, and when a
photon tends to remain at a bulk point for a time longer than at the inclusion the contrast is
negative as is obvious from the physics. In the case of a scattering perturbation 	τ = τi − τb

is proportional to the difference in scattering lengths

	τ ∝ (µ′
s)

−1
i − (µ′

s)
−1
b (3.19)

while in the case of an embedded small fluorophore it is simply the fluorescence lifetime.
The result of the present analysis is expected to be valid when the scattering coefficient

is much greater than the absorption coefficient, which is very often the case with normal
biological tissues in red and near-infrared light (the so-called therapeutic window, λ = 650–
1100 nm, cf recent reviews, Taroni et al (2002), Gibson et al (2005)). When this condition
does not hold the use of a diffusion or a random walk model may itself be called into question.



Mean time-of-flight of photons in transillumination measurements 4727

(a) (b)

(c)

Figure 2. The contrast as defined by equation (3.18) for three values of the depth, sz (indicated
near the curves) for the configuration in which the source and detector are moved simultaneously.
In the source trajectory X and Z are held fixed and motion is along Y indicated by the line
{X = 0, Y, Z = 0}. Similarly, the detector trajectory is {X = 0, Y, Z = L}. In this configuration
the two depths, sz = (L/5) and sz = (4L/5) of the inclusion relative to the centre of the slab have
indistinguishable effects. The parameter values used to generate the curves were L = 50, z0 = 1
and (a) α = β = γ = 1/6; (b) case 1: α = β = 0.05, γ = 0.4; (c) case 2: α = γ = 0.05, β = 0.4.

To this point our analysis has been approximate, depending only on the first moments
as indicated by the expansion in equation (3.17). To develop more exact expressions for the
functions appearing in equation (3.18) we propose the specific ansatz

ψb(t) = 1

τb
exp

(
− t

τb

)
, ϕi(t) = 1

τi
exp

(
− t

τi

)
(3.20)

whose transforms have properties that agree with those of equation (3.17). The use of these
densities enables us to calculate the functions that appear in equation (3.18). Details of the
derivation are given in appendix B.

3.3. Dependence of time contrast on location of the inclusion and type of optical anisotropy

In a typical transillumination experiment the source and detector are simultaneously moved
along the two surfaces so that the line connecting them is perpendicular to the two surfaces.
Figure 2 shows the contrast, 	T (R)/(τi − τb), as found from equation (3.18), as a function
of the source and detector position (in the present case, X) for three different values of the
inclusion depth and for two cases of optical anisotropy. In this collinear configuration it is
impossible to distinguish between the cases in which the inclusion is nearer to the source or
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Figure 3. The contrast as defined by the MTOF in equation (3.18) for three values of the depth,
sz (indicated near the curves) for the configuration in which the source and inclusion are collinear
and stationary, while the detector alone scans along the line defined by {X = 0, Y, Z = L}. This
configuration, in contrast to the one defined in figure 2, allows a distinction to be made between the
two depths, sz = (L/5) and sz = (4L/5) of the inclusion symmetric relative to the centre of the slab.
The parameter values used to generate the curves were L = 50, z0 = 1, α = β = 0.05, γ = 0.4.

to the detecting surface as can be seen by comparing figures 2(b) and (c). Another striking
difference in the generated curves is in the order of magnitudes of the contrasts in figures 2(a)
and (c) as compared with 2(b). The contrast is 30 times greater in figure 2(b) than in
figures 2(a) and (c) for the chosen bias and fibre orientation, because the largest transition
probability moves the photon perpendicular to the surface of the slab, which maximizes the
chance of the photon leaving the slab in a fixed amount of time.

A second possible configuration, leading to a qualitatively richer picture, consists of the
detector being moved along the slab surface, while the source is held fixed. It is evident from
figure 3 that in this configuration the depth of the inclusion can be determined unambiguously
from the contrast distributions. This case can be realized, for example, when area detection,
based on a CCD camera, is used. As is intuitively obvious the contrast reaches a maximum
when the source, detector and inclusion lie along the same line perpendicular to the surfaces.

It is intuitively obvious that the anisotropy also must have an effect on the contrast. A
comparison of the solid and dashed curves in figures 2 and 3 indicates that 	T (R)/(τi − τb)

is more localized in space when the anomalous direction is perpendicular to the slab surface
(α = β �= γ ) than when it is parallel to the slab surface.

3.4. The distributed detector measurement

So far we have assumed that the detector consists of a single point. The distributed detector
measurement provides a single MTOF change integrated over the exit plane. This is not, strictly
speaking, a contrast. It can nevertheless be used to verify the consistency of the model. The
formalism can be generalized to deal with the case in which the detector consists of an arbitrary
set of points. An example of such a generalization is the one when the detected intensity
consists of photons that reach every point on the surface z = L. An analysis of this case
requires that the coefficient in equation (3.18) be summed over all values of X and Y. This step
of the analysis requires the sum (Abramowitz and Stegun 1971)

∑∞
X=−∞ IX(2αθ) = exp(2αθ).

Therefore, in case 1 when α = β �= γ the functions �l(x − x ′, y − y ′) given in appendix B
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are to be replaced by
∞∑

X=−∞

∞∑
Y=−∞

�l(X, Y ) = 4π2
∫ ∞

0
exp

[(
4α − 1 + 2γ cos

(
πl

L

))
θ

]
dθ

= π2

γ
csc2

(
πl

2L

)
(3.21)

which is to be used in finding the generating functions of the Laplace transforms as is done
earlier in this section in the context of single points.

It is clearly possible to extend this technique to deal with detectors at finite sets of points
which do correspond to implementable experiments, but the resulting output might not be in
as neat a mathematical form as the two examples considered so far. A further extension of the
present theory replaces the single inclusion site at s by a set of inclusion sites. Investigations
along these lines were outlined in Rubin and Weiss (1982), Weiss and Gandjbakhche (1997),
but a much more elaborate analysis is required to derive useful results from the general
formalism.

4. Conclusions

The principal results of our paper are the time contrast, 	T (R), whose expression is given in
equation (3.18), and the auxiliary functions �l(x − x ′, y − y ′) required to calculate p̄(r; 1|r′)
for the two orientations of the fibre structure responsible for anisotropy considered in the
present paper (α = β �= γ and α = γ �= β). Details of these functions are given in
appendix B. An analysis that allows for a continuum of configurations can be developed by
basing the theory on a diffusion model as in Dudko and Weiss (2005).

We have presented a tentative approach to the analysis of time-resolved data from
transillumination measurements to estimate optical parameters (scattering perturbations or
fluorescence lifetimes) of small inclusions or fluorophores inside turbid tissue samples. It
partially accounts for anisotropic effects by allowing for fibrous structure either parallel to, or
perpendicular to, the sample surface. A suggested procedure for estimating the fluorescence
lifetime or the scattering perturbation consists of several steps.

(a) The inclusion is localized by analysing the time-resolved intensity distributions found
by scanning the surfaces of the sample by a source–detector tandem. In the case of
an increased scattering perturbation or lifetime of the fluorophore, lateral coordinates
of the inclusion are determined from the position of the maximum of the MTOF of the
photons, while in the case of an inclusion that induces decreased scattering these would
correspond to the minimum of the MTOF of the photons. Estimation of the depth of
the inclusion requires independent scans with different relative source–detector positions
involving oblique angle source–detector geometry (Gandjbakhche et al 2003). All of the
data collection can be carried out using area detection by a streak camera in combination
with scanning by the source fibre over the entry plane of the sample.

(b) Optical characteristics of the background can be estimated from the intensity distributions
of the time-of-flight at locations far from the inclusion fitted to either a diffusion or a
random walk model (Gandjbakhche et al 2003).

(c) When optical properties of the background and positions of the source, detector and
inclusion are known, equation (3.18) can be calculated from equations (B.10) and (B.11),
allowing one to estimate the change in the MTOF of a photon due to the inclusion. This
can, for example, be used to estimate the fluorescence lifetime. The latter parameter
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can, under certain conditions, be used to characterize certain physical conditions (pH,
temperature, etc) in the vicinity of deeply embedded inclusions and thus can provide
useful diagnostic information.

It is worth noting that our suggested quantification procedure is based on a relatively
robust parameter, the MTOF, and can easily be modified to deal with other configurations,
e.g., reflection, by choosing in equation (3.18) the appropriate propagator describing photon
migration.

Although we have dealt with only a simple model for the inclusion consisting of a single
site, more complicated configurations can be dealt with using the formalism developed in
Rubin and Weiss (1982) and applied in the optical context in Weiss and Gandjbakhche (1997).
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Appendix A. Derivation of the generating function p̄(R−; ψ̂b|s)

The function under consideration, defined essentially in equation (3.7) is

p̄(R−; ψ̂b|s) =
∞∑

n=0

n∑
k=0

U
(s)
n,k(R; ξ |s)

= γ

∞∑
n=0

ψ̂n
b(ξ)

n∑
k=0

n−1∑
l=0

f
(k)
l (s|s)q(s)

n−1−l (R−|s)
(

ϕ̂i(ξ)

ψ̂b(ξ)

)k

. (A.1)

The only difference between this and the result of summing equation (3.4) is the replacement of
f

(k)
l (s|r0) in that equation by f

(k)
l (s|s) in the present one. We therefore consider the structure

of the latter function. When l = 0 we have f
(k)
0 (s|s) = δk,0.

The structure of equation (A.1) indicates that we are interested in calculating a generating
function with respect to n. To evaluate this function we begin by setting k = 1. A well-known
result in the random walk theory is (Weiss 1994)

f̄ (1)(s; ψ̂b|s) = 1 − 1

p̄(s; ψ̂b|s)
. (A.2)

Having this result in hand we can evaluate the remaining functions f̄ (k)(s; ψ̂b|s) for k � 1
by iteration since

f (k+1)
n (s; ψ̂b|s) =

n∑
l=0

f
(k)
l (s; ψ̂b|s)f (1)

n−l(s; ψ̂b|s). (A.3)

In the generating function domain this translates into f̄ (k+1) = f̄ (k)f̄ (1), omitting the
arguments, so that

f̄ n,k(s; ψ̂b|s) =
[

1 − 1

p̄(s; ψ̂b|s)

]k

(A.4)

which is the analogue of equation (3.8) provided that the initial point is s rather than r0.
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Appendix B. Generating functions for the propagators

Case 1. Anomalous direction perpendicular to the slab surface (α = β �= γ )

A significant feature of the results derived in the last subsection is that they can all be expressed
in terms of the generating function of the discrete-time propagator as well as Laplace transforms
of the pausing-time densities that define the CTRW. We provide an expression for the desired
generating function by recalling that in discrete time the propagator for a nearest-neighbour
random walk in a slab with absorbing boundaries at z = 0 and z = L, takes the form: (Weiss
1994)

pn(r|r′) = 1

2π2L

L−1∑
l=1

sin

(
πlz

L

)
sin

(
πlz′

L

) ∫ π∫
−π

λn
l (ω1, ω2)

× cos[ω1(x − x ′)] cos[ω2(y − y ′)] dω1 dω2 (B.1)

in which

λl(ω1, ω2) = 2α(cos ω1 + cos ω2) + 2γ cos

(
πl

L

)
(B.2)

which is just a characteristic function associated with the random walk in discrete time. Since,
in finding p̄(r|r′) the bracketed term must be raised to the nth power, we need only to sum a
geometric series to find that the required characteristic function has the form

p̄(r; 1|r′) = 1

2π2L

L−1∑
l=1

sin

(
πlz

L

)
sin

(
πlz′

L

)
�l(x − x ′, y − y ′) (B.3)

where

�l(x − x ′, y − y ′) =
∫ π∫

−π

cos[ω1(x − x ′)] + cos[ω2(y − y ′)]
1 − λl(ω1, ω2)

dω1 dω2. (B.4)

To simplify the double integral we invoke the identity u−1 = ∫ ∞
0 exp(−uθ) dθ which

transforms the expression for �l(x − x ′, y − y ′) to

�l(x − x ′, y − y ′) =
∫ ∞

0
e−u du

∫ ∞

0
{cos[ω1(x − x ′)] + cos[ω2(y − y ′)]}

× exp u

[
2α(cos ω1 + cos ω2) + 2γ cos

(
πl

L

)]
dω1 dω2. (B.5)

The integrals with respect to the ω’s are proportional to modified Bessel functions of the first
kind (Abramowitz and Stegun 1971), since, for example,∫ π

−π

cos[ω(x − x ′)] exp(−2αξ cos ω) dω = 2πIx−x ′(2αξ) (B.6)

so that �l(x − x ′, y − y ′) can be expressed in the form of a Laplace transform:

�l(x − x ′, y − y ′) = 4π2
∫ ∞

0
Ix−x ′(2αξ)Iy−y ′(2αξ) exp

(
−

{
1 − 2γ cos

[
πl

L

]}
ξ

)
dξ

(B.7)

which is easily evaluated numerically or else can be written in terms of a hypergeometric
function whose exact form is somewhat complicated (Roberts and Kaufman 1966).

Case 2. Anomalous direction parallel to the slab surface (α = γ �= β)

An important distinction to be made between the present and the earlier configuration is that
contours of equal intensity on the detecting surface are elliptical, as opposed to being circular
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(Dagdug et al 2003). The mathematical formalism for case 2 differs only slightly from that
used in dealing with the case 1. The major difference is that λl(ω1, ω2) in equation (B.2) is
now to be replaced by

λl(ω1, ω2) = 2α

[
cos ω1 + cos

(
πl

L

)]
+ 2β cos ω2. (B.8)

The further analysis proceeds exactly as in case 1 except for the slight modification required
in the calculation of �l(x − x ′, y − y ′) required by the last equation. A similar analysis leads
to

�l(x − x ′, y − y ′) = 4π2
∫ ∞

0
Ix−x ′(2αξ)Iy−y ′(2βξ) exp

[
−

{
1 − 2α cos

(
πl

L

)}
ξ

]
dξ.

(B.9)

As is true for the function �l given in equation (B.2) an exact expression for the resulting
integral in terms of a hypergeometric function can be found but is not useful for generating
numerical results.

While equation (B.3) is exact, it requires rather extensive numerical calculations which
can be avoided by noting that it will quite generally be true that L � 1 allowing us to derive
an accurate approximation in this limiting case. Consider case 1 as defined above. We pass to
the limit of an integral by defining the variable η = πl/L, in which case we can write

p̄(r; 1|r′) ≈ 2

π

∫ π

0
sin(ηz) sin(ηz′) dη

×
∫ ∞

0
Ix−x ′(2αξ)Iy−y ′(2αξ) exp(−{1 − 2γ cos η}ξ) dξ

=
∫ ∞

0
e−ξ Ix−x ′(2αξ)Iy−y ′(2αξ)[Iz−z′(2γ ξ) − Iz+z′(2γ ξ)] dξ. (B.10)

In a similar fashion in case 2, α = γ �= β, equation (B.9) can be used to approximate to the
sum for p̄(r; 1|r′) by

p̄(r; 1|r′) ≈ 2

π

∫ π

0
sin(ηz) sin(ηz′) dη

×
∫ ∞

0
Ix−x ′(2αξ)Iy−y ′(2βξ) exp(−{1 − 2α cos η}ξ) dξ

=
∫ ∞

0
e−ξ Ix−x ′(2αξ)Iy−y ′(2βξ)[Iz−z′(2αξ) − Iz+z′(2αξ)] dξ. (B.11)
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Nickell S, Herman M, Ehrenpreis M, Farrell T J, Krämer U and Patterson M S 2000 Anisotropy of light propagation

in human skin Phys. Med. Biol. 45 2873–6
Painchaud Y, Mailloux A, Morin M, Verrault S and Beaudry P 1999 Time-domain optical imaging: distinction

between scattering and absorption Appl. Opt. 38 3686–93
Roberts G E and Kaufman H 1966 Table of Laplace Transforms (Philadelphia, PA: Saunders)
Rubin R J and Weiss G H 1982 Random walks on lattices. The problem of visits to a set of points revisited J. Math.

Phys. 23 250–3
Sviridov A, Chernomordik V, Eidsath A, Hassan A G and Gandjbakhche A H 2005 Intensity profiles of linearly

polarized light backscattered from skin and tissue-like phantoms J. Biomed. Opt. 10 C1D04012
Taroni P 2002 Time-resolved spectroscopy and imaging in diffusive media applied to medical diagnostics Riv. Nuovo

Cimento 25 1–19
Weiss G H 1994 Aspects and Applications of the Random Walk (Amsterdam: North-Holland)
Weiss G H and Calabrese P P 1996 Occupation times of a CTRW on a lattice Physica A 234 443–54
Weiss G H and Gandjbakhche A H 1997 Effects of nonlocalized target shape in the random walk description of

transillumination experiments Phys. Rev. E 56 3451–9
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