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In this paper, we discuss the fluctuation theorem for channel-facilitated transport of solutes through a membrane
separating two reservoirs. The transport is characterized by the probability,Pn(t), thatn solute particles have
been transported from one reservoir to the other in timet. The fluctuation theorem establishes a relation
betweenPn(t) andP-n(t): The ratioPn(t)/P-n(t) is independent of time and equal to exp(nâA), whereâA is
the affinity measured in the thermal energy units. We show that the same fluctuation theorem is true for both
single- and multichannel transport of noninteracting particles and particles which strongly repel each other.

1. Introduction

This paper is devoted to statistics of translocations of solute
particles in channel-facilitated transport through a membrane
that separates left (L) and right (R) reservoirs containing the
particles in concentrationscL andcR as shown in Figure 1. The
driving force for the transport may be the difference in the solute
concentrations,cL * cR, or a potential drop between the
reservoirs, and of course, both factors may act simultaneously.
The key quantity of our analysis is the probability,Pn(t), thatn
particles have been transported from the left reservoir to the
right one in timet, which is the probability that the difference
between the numbers of Lf R and Rf L transitions between
the reservoirs in timet is equal ton. We will see that the
probabilitiesPn(t) andP-n(t) are related to each other and obey
the fluctuation theorem. This theorem states that the ratio
Pn(t)/P-n(t) is independent of time and establishes a relation
between the ratio and the affinity that may be considered as a
measure of the distance from equilibrium for a nonequilibrium
system.1

Recently, we derived this theorem for transport of strongly
repelling solute particles through a single membrane channel
using an exact solution for the Laplace transform ofPn(t).2 In
what follows, we show that the same relation between the ratio
Pn(t)/P-n(t) and the affinity is fulfilled for transport of nonin-
teracting solute particles through a single channel, as well as
for multichannel transport.

The outline of this paper is as follows: An exact solution
for Pn(t) and the fluctuation theorem for single-channel transport
of noninteracting particles are derived in the next section. Then
we outline the derivation of the exact solution for the Laplace
transform ofPn(t) and the fluctuation theorem for single-channel
transport of strongly repelling particles in Section 3. Finally,
we discuss the fluctuation theorem for multichannel transport
in Section 4. In Appendix A, we give a list of symbols used as
notations throughout the paper.

2. Single-Channel Transport of Noninteracting Solutes

A distinctive feature of transport of noninteracting solutes is
that transitions/fluxes in the Lf R and Rf L directions do
not affect each other. To characterize these transitions we
introduce probabilitiesQLfR(n|t) andQRfL(n|t) that the number
of transitions in the corresponding direction in timet is equal
to n, n g 0, assuming that the system is in a steady state at
time t ) 0 when the observation starts.

We will describe entrance of the particles into the channel
from the two reservoirs by the bimolecular rate constantskon

(I), I
) L, R. When the potential drop is localized on the membrane,
kon

(I) are given by the Hill formula for the trapping rate by an
absorbing circular disk on the otherwise reflecting planar wall3

or its generalization to non-circular absorbers.4 The probability
QI(n|t) that n solute particles have entered the channel from
reservoirI in time t is given by the Poisson distribution,1

where kin
(I) is the monomolecular rate constant,kin

(I) ) kon
(I)cI,

which is the inverse of the mean time between successive en-
trances of new particles into the channel from the reservoirI.
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Figure 1. Schematic representation of a channel in a membrane that
separates the left (L) and right (R) reservoirs containing the solute
particles in concentrationscL andcR, respectively.

QI(n|t) ) 1
n!

(kin
(I)t)n exp(-kin

(I)t) (2.1)

6228 J. Phys. Chem. B2008,112,6228-6232

10.1021/jp075870i CCC: $40.75 © 2008 American Chemical Society
Published on Web 02/13/2008



The fate of the particle in the channel depends on the side
from which the particle enters. A particle entering the channel
from the left reservoir traverses the channel and escapes to the
right reservoir with probabilityPLfR and returns to the left
reservoir with probabilityPLfL ) 1 - PLfR (see Figure 2).
Corresponding translocation and return probabilities for particles
entering the channel from the right reservoir arePRfL andPRfR

) 1 - PRfL.

Whenm particles enter the channel from the left reservoir,
the probability thatn of them pass through the channel and exit
into the right reservoir while the restm - n particles return to
the initial reservoir is given byPLfR

nPLfL
m-nm!/[n!(m - n)!],

n e m. Keeping this in mind, we can writeQLfR(n|t) as an
infinite sum,

where we have used the expression forQL(n|t) in eq 2.1. Using
the relation

we find that the probability,QLfR(n|t), is given by the Poisson
distribution of the form

wherekeff
(L) is the inverse of the mean time between successive

L f R translocations given by

Respectively, the probabilityQRfL(n|t) is

where

We use the expressions in eqs 2.4 and 2.6 to find the
probability that the difference between the number of particles
passing from the left reservoir to the right one in timet and the
number of particles passing for this time in the opposite direction
is equal ton, Pn

(ni)(t),

whereδij is the Kronecker delta and the superscript “ni” indicates
that this probability describes transport of noninteracting
particles. Thus

and

Using eqs 2.4 and 2.6 and the relation5

where In(z) is the modified Bessel function of the first kind,
which is a symmetric function ofn, In(z) ) I-n(z), we obtain

Note that this result can be obtained using an alternative
approach based on the idea that the probabilityPn

(ni)(t) can be

Figure 2. Schematic representation of the fate of a solute particle
entering the channel from the left (L) and right (R) reservoirs (panels
a and b, respectively). The two reservoirs and the channel are shown
as a three-state system. The state in the middle shows the channel that
separates the two reservoirs.

QLfR(n|t) ) ∑
m)n

∞ m!

n!(m - n)!
PLfR

nPLfL
m-n QL(m|t) )

1

n!
PLfR

n exp(-kin
(L)t)∑

m)n

∞ 1

(m - n)!
PLfL

m-n(kin
(L)t)m (2.2)

∑
m)n

∞ 1

(m - n)!
PLfL

m-n(kin
(L)t)m ) (kin

(L)t)n exp(kin
(L)PLfLt) (2.3)

QLfR(n|t) ) 1
n!

(keff
(L)t)n exp(-keff

(L)t) (2.4)

keff
(L) ) kin

(L)PLfR ) kon
(L)cLPLfR (2.5)

Figure 3. The number of solute particles transported from the left
reservoir to the right one as a function of time in the situation when
there is a net flux of the particles in the Lf R direction.

QRfL(n|t) ) 1
n!

(keff
(R)t)n exp(-keff

(R)t) (2.6)

keff
(R) ) kin

(R)PRfL ) kon
(R)cRPRfL (2.7)

Pn
(ni)(t) ) ∑

l,m)0

∞

QLfR(l|t)QRfL(m|t) δ(l-m)n (2.8)

Pn
(ni)(t) ) ∑

k)0

∞

QLfR(k + n|t) QRfL(k|t) n g0 (2.9)

P-n
(ni)(t) ) ∑

k)0

∞

QLfR(k|t) QRfL(k + n|t) n g0 (2.10)

∑
k)0

∞ xk

k!(n + k)!
)

1

xn/2
In(2xx) (2.11)

Pn
(ni)(t) ) (keff

(L)

keff
(R))n/2

In(2xkeff
(L) keff

(R)t) exp[-(keff
(L) + keff

(R))t] (2.12)
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considered as a propagator for a nearest-neighbor random walk
between identical sites in one dimension

Different sites correspond to different numbers of the particles
transported in timet, Pn

(ni)(t) ) Pni(n, t|0, 0). A trajectory of
such a random walk is shown in Figure 3. According to eqs
2.4 and 2.6 the random walk is Markovian with the probability
density for the lifetime on a site,øni(t), given by

The probabilitiesW+
(ni) andW-

(ni) that the random walk makes a
step in the positive or negative directions are

For such a random walk, one can find an exact solution for the
propagator,6,7 which is identical to the result in eq 2.12.

We will assume that the potential drop between the two
reservoirs is localized on the membrane. Denoting the potential
energies of a solute particle in the left and right reservoirs by
UL and UR, respectively, and using the condition of detailed
balance,

where â ) (kBT)-1 with kB and T denoting the Boltzmann
constant and the absolute temperature, we can write the
probabilities in eqs 2.15 and 2.16 in terms of the affinity,
A(cL/cR, ∆U), defined by1

where∆U ) UL - UR. The affinity is the difference in the
electrochemical potential of a solute particle in the two
reservoirs. The result is

In equilibrium,A(cL/cR, ∆U) ) 0 andW+
(ni) ) W-

(ni) ) 1/2.
The propagator in eq 2.12 satisfies the relation

where we have used the above-mentioned symmetry of the
Bessel functions,In(z) ) I-n(z). Using the relations in eqs 2.15,
2.16, and 2.19 we can write eq 2.20 in the form

which shows that the probabilityPn(t) obeys the fluctuation
theorem.8-23 Specifically, this form of the fluctuation theorem
has been discussed by Andrieux and Gaspard in ref 18, in which

they analyze ion transport in the framework of Schnakenberg’s
model of the ion channel.24 We will see that the relations in
eqs 2.19 and 2.21 are universal in the sense that the same
relations are fulfilled for particles that strongly repel each other,
as well as for multichannel membrane transport.

3. Single-Channel Transport of Strongly Repelling
Solutes

This section is focused on transport of solute particles, which
strongly repel each other, through a single membrane channel.
We will discuss some of the results from ref 2, where the
repulsion is modeled by the requirement that the channel cannot
be occupied by more than one particle. This implies that a
particle can enter only an empty channel and, once inside, it
blocks the channel. Such a model of a singly occupied channel
has been used in refs 25-29 to analyze the steady-state flux
with the goal to find an optimal solute-channel interaction that
maximizes the flux through the channel. As for noninteracting
particles, the probability,Pn

(sr)(t), is the propagatorPsr(n, t|0, 0)
for a random walk,Pn

(sr)(t) ) Psr(n, t|0, 0), where the subscript/
superscript “sr” indicates that the quantity characterizes strongly
repelling particles.

A random walk, in general, is characterized by the prob-
abilities of making a step in the positive and negative directions,
W+

(sr) and W-
(sr) ) 1 - W+

(sr), respectively, as well as the
probability densities for the waiting time before the correspond-
ing step is made,ø+

(sr)(t) and ø-
(sr)(t). Relations between these

probabilities and probability densities and quantities that
characterize dynamics of the particles in the channel and the
reservoirs have been established in ref 2. Specifically, it has
been shown that

and that the two probability densities for the waiting time are
identical.

This implies that the waiting time distribution is independent
of the passage direction.

In ref 2, we derived an expression for the Laplace transform
of øsr(t) denoted byø̂sr(s) ) ∫0

∞ e-støsr(t) dt. This expression
contains six probabilities only three of which are independent.
In addition to the translocation and return probabilities men-
tioned above, it also contains probabilities that a new particle
enters the channel from the left or right reservoir,Pin

(L) andPin
(R)

) 1 - Pin
(L), respectively. These probabilities are given by

The expression forø̂sr(s) also contains the Laplace transforms
of four probability density functions,æemp(t), æLfL(t), æRfR(t),
and ætr(t). Functionæemp(t) is the probability density for the
channel lifetime in the empty state,

FunctionsæLfL(t) andæRfR(t) are the probability densities of
the lifetimes in the channel for nontranslocating particles
entering the channel from the left and right reservoirs and

øni(t) ) (keff
(L) + keff

(R)) exp[-(keff
(L) + keff

(R))t] (2.14)

W+
(ni) )

keff
(L)

keff
(L) + keff

(R)
)

kon
(L)cLPLfR

kon
(L)cLPLfR + kon

(R)cRPRfL

(2.15)

W-
(ni) )

keff
(R)

keff
(L) + keff

(R)
)

kon
(R)cRPRfL

kon
(L)cLPLfR + kon

(R)cRPRfL

(2.16)

kon
(L)PLfR exp(-âUL) ) kon

(R)PRfL exp(-âUR) (2.17)

âA(cL/cR, ∆U) ) ln(cL

cR
) + â∆U (2.18)

W (
(ni) ) 1

1 + exp[-âA(cL/cR, ∆U)]
(2.19)

Pn
(ni)(t)

P-n
(ni)(t)

) (keff
(L)

keff
(R))n

) (kon
(L)cLPLfR

kon
(R)cRPRfL

)n

(2.20)

Pn
(ni)(t)

P-n
(ni)(t)

) (W+
(ni)

W-
(ni))n

) exp[nâA(cL/cR, ∆U)] (2.21)

W(
(sr) ) W(

(ni) (3.1)

ø +
(sr)(t) ) ø-

(sr)(t) ) øsr(t) (3.2)

Pin
(I) )

kin
(I)

kin
(L) + kin

(R)
)

kon
(I)cI

kon
(L)cL + kon

(R)cR

I ) L, R (3.3)

æemp(t) ) (kin
(L) + kin

(R))exp[-(kin
(L) + kin

(R))t] )

(kon
(L)cL + kon

(R)cR)exp[-(kon
(L)cL + kon

(R)cR)t] (3.4)
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coming back to the same reservoir from which they entered.
As shown in refs 30-32, the probability density of the lifetime
in the channel for translocating particles is independent of the
translocation direction. This probability density is denoted as
ætr(t).

The expression forø̂sr(s) derived in ref 2 has the form

This function and the probabilitiesW+ and W- completely
characterize the random walk. Note that although the prob-
abilities of the step direction for noninteracting and strongly
repelling solutes are identical (eq 3.1), the probability densities
øni(t) andøsr(t) are quite different. Whereas the former is single
exponential, the latter is definitely not. This implies that that
the equivalent random walk is Markovian for noninteracting
solute particles and non-Markovian for strongly repelling
particles. The second random walk is non-Markovian because
the overall translocation process is viewed as at least a two-
state process (entering the empty channel and translocating).33,34

After the problem of findingPn
(sr)(t) has been reduced to that

of finding the random walk propagator, the latter can be
analyzed by solving a set of integral equations. Using this set,
one can obtain an exact solution for the Laplace transform of
Pn

(sr)(t). An expression giving Pˆn
(sr)(s) in terms ofW+, W-, and

ø̂sr(s) has been derived in ref 2:

This can also be obtained using the results presented in ref 7.
Note that the Laplace transform in eq 3.6 might be used to derive
Pn

(ni)(t) in eq 2.12. This can be done by replacingø̂sr(s) by the
Laplace transform of its Markovian counterpart,ø̂ni(s) ) (keff

(L)

+keff
(R))/(s + keff

(L) + keff
(R)), and inverting the resulting Laplace

transform.5,7

One can see thatP̂n
(sr)(s) satisfiesW-

n P̂n
(sr)(s) ) W+

n P̂-n
(sr)(s)

and, hence, the probabilityPn
(sr)(t) obeys the same fluctuation

theorem asPn
(ni)(t) (eq 2.21).

Thus, as has been mentioned above this fluctuation theorem is
fulfilled for both noninteracting and strongly repelling solute
particles.

4. Multichannel Transport

In this section, we consider transport between the two
reservoirs through a membrane containingM independent
channels that do not affect each other. Assuming that the
probabilityPn(t) for each isolated channel obeys the fluctuation
theorem,

we will show that the probabilityPn
(M)(t) that n particles have

been transported from the left reservoir to the right one through
M channels in timet obeys the same fluctuation theorem,

There are several different ways to prove this relation. The way
we chose is, presumably, the shortest one.

Since the channels are independent, the probabilityPn
(M)(t)

can be written in terms of the single-channel probabilities
Pni(t), i ) 1, ...,M as

Using eq 4.1, one can see that each term in the sum satisfies

Substituting this into eq 4.3 and taking the Kronecker delta into
account, one arrives at the relation in eq 4.2.

In summary, the main results of this paper are the expressions
in eqs 2.12 and 4.3 providing explicit solutions forPn(t) as well
as expressions in eqs 2.21, 3.7, and 4.2, which represent the
fluctuation theorem for single- and multichannel membrane
transport of noninteracting solute particles and particles that
strongly repel each other. These expressions have been derived
using explicit solutions forPn(t) and its Laplace transform.

Appendix A: List of Symbols

A(cL/cR, ∆U) the affinity;

cI the solute concentration in the reservoirI;

I ) L, R the index of the reservoir;

keff
(L) the inverse of the mean time between successive Lf

R translocations;

keff
(R) the inverse of the mean time between successive Rf

L translocations;

kin
(I) the monomolecular rate constant that is equal to the

inverse of the mean time between successive en-
trances of new particles into the channel from
reservoirI;

kon
(I) the bimolecular rate constant for trapping particles

entering the channel from reservoirI;

Pin
(I) the probability that a new particle enters the channel

from reservoirI;

Pn(t) the probability that n solute particles have been
transported from the left reservoir to the right one
through a single channel in timet;

Pn
(M)(t) the probability thatn particles have been transported

from the left reservoir to the right one throughM
channels in timet;

PLfR the translocation probability for a particle entering the
channel from the left reservoir;

PLfL the return probability for a particle entering the channel
from the left reservoir;

PRfL the translocation probability for a particle entering the
channel from the right reservoir;

PRfR the return probability for a particle entering the channel
from the right reservoir;

ø̂sr(s) )

(Pin
(L)PLfR + Pin

(R)PRfL)æ̂emp(s)æ̂tr(s)

1 - [Pin
(L)PLfLæ̂LfL(s) + Pin

(R)PRfRæ̂RfR(s)]æ̂emp(s)
(3.5)

P̂n
(sr)(s) ) (W+

W-)n/2[ 2xW+W-ø̂sr (s)

1 + x1 - 4W+W- [ø̂sr (s)]
2]|n|

×

1 - ø̂sr(s)

sx1 - 4W+W-[ø̂sr(s)]
2

(3.6)

Pn
(sr)(t)

P-n
(sr)(t)

)
Pn

(ni)(t)

P-n
(ni)(t)

) (W+

W-
)n

) exp[nâA(cL/cR, ∆U)] (3.7)

Pn(t)

P-n(t)
) (W+

W-
)n

) exp[nâA(cL/cR, ∆U)] (4.1)

Pn
(M)(t)

P-n
(M)(t)

)
Pn(t)

P-n(t)
) (W+

W-
)n

) exp[nâA(cL/cR, ∆U)] (4.2)

Pn
(M)(t) ) ∑

n1,...,nM ) -∞

∞

Pn1
(t) ... PnM

(t)δ(n1+...+nM)n (4.3)

Pn1
(t) ... PnM

(t) ) (W+

W-
)n1+...+nM

P-n1
(t) ... P-nM

(t) (4.4)
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Pni(n, t|0, 0) the propagator for the nearest-neighbor random walk
between identical sites in one dimension, which
starts from the origin,n ) 0, at t ) 0; representing
transport of noninteracting particles

Psr(n, t|0, 0) the propagator for the nearest-neighbor random walk
between identical sites in one dimension, which
starts from the origin,n ) 0, at t ) 0; representing
transport of strongly repelling particles

QI(n|t) the probability thatn solute particles have entered the
channel from reservoirI in time t;

QLfR(n|t) the probability that the number of transitions from the
left reservoir to the right one in timet is equal ton;

QRfL(n|t) the probability that the number of transitions from the
right reservoir to the left one in timet is equal ton;

UI the potential energy of a solute particle in the reservoir
I;

W(
(ni) the probability that the random walk, which represents

transport of noninteracting particles, makes a step
in the positive (+) or negative (-) direction;

W(
(sr) the probability that the random walk, which represents

transport of strongly repelling particles, makes a step
in the positive (+) or negative (-) direction;

∆U the energy difference,∆U ) UL - UR;

â the inverse thermal energy,â ) (kBT) - 1, with kB and
T denoting the Botlzmann constant and the absolute
temperature;

æemp(t) the probability density for the channel lifetime in the
empty state;

ætr(t) the probability density of the lifetime in the channel
for a translocating particle;

æIfI(t) the probability density of the lifetime in the channel
for a non-translocating particle entering the channel
from reservoirI;

øni(t) the probability density for the lifetime on a site of the
Markovian random walk which represents transport
of noninteracting particles;

øsr(t) the probability density for the lifetime on a site of the
non-Markovian random walk which represents trans-
port of strongly repelling particles;

ø(
(sr)(t) the probability density for the lifetime on a site before

the non-Markovian random walk, which represents
transport of strongly repelling particles, makes a step
in the corresponding (() direction.
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