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In this paper, we discuss the fluctuation theorem for channel-facilitated transport of solutes through a membrane
separating two reservoirs. The transport is characterized by the proba®j(tly thatn solute particles have

been transported from one reservoir to the other in timehe fluctuation theorem establishes a relation
betweenP,(t) andP_.(t): The ratioPy(t)/P_q(t) is independent of time and equal to ewf4), wherepA is

the affinity measured in the thermal energy units. We show that the same fluctuation theorem is true for both
single- and multichannel transport of noninteracting particles and particles which strongly repel each other.

1. Introduction

This paper is devoted to statistics of translocations of solute
particles in channel-facilitated transport through a membrane
that separates left (L) and right (R) reservoirs containing the
particles in concentratiorg andcg as shown in Figure 1. The
driving force for the transport may be the difference in the solute c
concentrations,c. = Cr, Or a potential drop between the
reservoirs, and of course, both factors may act simultaneously.
The key quantity of our analysis is the probabiliBg(t), thatn
particles have been transported from the left reservoir to the
right one in timet, which is the probability that the difference
between the numbers oft R and R— L transitions between
the reservoirs in time is equal ton. We will see that the
probabilitiesPy(t) andP_y(t) are related to each other and obey
the fluctuation theorem. This theorem states that the ratio
Pn(t)/P-n(t) is independent of time and establishes a relation o Single-Channel Transport of Noninteracting Solutes
between the ratio and the affinity that may be considered as a

measure of the distance from equilibrium for a nonequilibrium A distinctive feature of transport of noninteracting solutes is
systemt that transitions/fluxes in the &= R and R— L directions do

not affect each other. To characterize these transitions we
introduce probabilitie®, —-r(n|t) andQr— (N|t) that the number
of transitions in the corresponding direction in timis equal
ton, n = 0, assuming that the system is in a steady state at
timet = 0 when the observation starts.

We will describe entrance of the particles into the channel
from the two reservoirs by the bimolecular rate constaﬂﬁsl
=L, R. When the potential drop is localized on the membrane,
kY are given by the Hill formula for the trapping rate by an
absorbing circular disk on the otherwise reflecting planar3vall
or its generalization to non-circular absorbgihe probability
Qi(n|t) that n solute particles have entered the channel from
reservoirl in time t is given by the Poisson distributidn,

Figure 1. Schematic representation of a channel in a membrane that
separates the left (L) and right (R) reservoirs containing the solute
particles in concentrations andcg, respectively.

Recently, we derived this theorem for transport of strongly
repelling solute particles through a single membrane channel
using an exact solution for the Laplace transfornPg(t).? In
what follows, we show that the same relation between the ratio
Pn(t)/P-n(t) and the affinity is fulfilled for transport of nonin-
teracting solute particles through a single channel, as well as
for multichannel transport.

The outline of this paper is as follows: An exact solution
for P(t) and the fluctuation theorem for single-channel transport
of noninteracting particles are derived in the next section. Then
we outline the derivation of the exact solution for the Laplace
transform ofP,(t) and the fluctuation theorem for single-channel
transport of strongly repelling particles in Section 3. Finally,
we discuss the fluctuation theorem for multichannel transport
in Section 4. In Appendix A, we give a list of symbols used as Q(nit) = l, (k" exp(—k{) (2.1)
notations throughout the paper. n
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Figure 3. The number of solute particles transported from the left

. . . . reservoir to the right one as a function of time in the situation when
Figure 2. Schematic representation of the fate of a solute particle y ore is a net flux of the particles in the-t R direction.

entering the channel from the left (L) and right (R) reservoirs (panels
a and b, respectively). The two reservoirs and the channel are shown

as a three-state system. The state in the middle shows the channel th . - .
separates the tWo reservoirs. E’Ig?espectlvely, the probabilitQr—. (n[t) is

Qe (i) = = (kP expkf)  (26)
The fate of the particle in the channel depends on the side '

from which the particle enters. A particle entering the channel where
from the left reservoir traverses the channel and escapes to the
right reservoir with probabilityP. g and returns to the left K& = kPP = kBerPr . (2.7)
reservoir with probabilityP.—. = 1 — P_—r (see Figure 2).
Corresponding translocation and return probabilities for particles We use the expressions in eqs 2.4 and 2.6 to find the
entering the channel from the right reservoir Bre.. andPr—-r probability that the difference between the number of particles
=1— Pr.L. passing from the left reservoir to the right one in titrend the
number of particles passing for this time in the opposite direction

Whenm particles enter the channel from the left reservoir, | ()
is equal ton, P, (t),

the probability thanh of them pass through the channel and exit
into the right reservoir while the rest — n particles return to

the initial reservoir is given b —g"PL—..™"ml/[nl(m — n)!], PM(t) = Z Q_r(I1H)Qg (M) 6 (2.8)
n < m. Keeping this in mind, we can writ®_—gr(n|t) as an " =) (=mn
infinite sum,

wheredj is the Kronecker delta and the superscript “ni” indicates
w , that this probability describes transport of noninteracting

m! . .
Q_r(nlt) = z m P_r P " "Q.(m[t) = particles. Thus
m=n Ik - H

1 bt 1 (i) py — -

— exp(—ki(,?t) Z PL—»Lm_n(kin(L)t)m 2.2) Pn () kZO Qr(k+n[t) Qg (kIt) n=0 (2.9)
n! m=n (m - n)!

and

where we have used the expression@(n|t) in eq 2.1. Using

the relation (i) b
PIa(t) = Z; QL r(KIt) Qg (k+njt) n=0 (2.10)
K=

1 -
" P " (kPD™ = (k)" exphP_ D) (23) Using egs 2.4 and 2.6 and the relafion

[oe] k
X 1
we find that the probabilityQ_—r(n|t), is given by the Poisson 20— =— In(2\/;) (2.11)
distribution of the form Ski(n+ k! x"?
1 whereln(2) is the modified Bessel function of the first kind,
QN = k&0" exp—kLt) (2.4)  which is a symmetric function af, 1,(2) = I_n(2), we obtain

L\n2
- i
wherek® is the inverse of the mean time between successive Py (t) = (@) 1n(2y/ k&t k70 expl=(k& + kit (2.12)
L — R translocations given by eff

O O O Note that this result can be obtained using an alternative
keit = Kin'PL—r = KonCLPL—g (2.5) approach based on the idea that the probakﬂﬁﬂ}(t) can be
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considered as a propagator for a nearest-neighbor random walkhey analyze ion transport in the framework of Schnakenberg’s

between identical sites in one dimension model of the ion channéf. We will see that the relations in
egs 2.19 and 2.21 are universal in the sense that the same
23z2z2-leila2aiz (2.13) relations are fulfilled for particles that strongly repel each other,

. . . ) as well as for multichannel membrane transport.
Different sites correspond to different numbers of the particles

transported in time, P{(t) = Py(n, 1|0, 0). A trajectory of 3. Single-Channel Transport of Strongly Repelling
such a random walk is shown in Figure 3. According to eqs Solutes
2.4 and 2.6 the random walk is Markovian with the probability

density for the lifetime on a siteg(t), given by This section is focused on transport of solute particles, which

strongly repel each other, through a single membrane channel.
) = (kO + kR expl— (k& + kR 214 We W!|| d_|scuss some of the rt_asults from ref 2, where the
Koi®) = (Keit + Keir) €XPL-(ker + ker)]  (2.14) repulsion is modeled by the requirement that the channel cannot
be occupied by more than one particle. This implies that a
particle can enter only an empty channel and, once inside, it
blocks the channel. Such a model of a singly occupied channel

The probabilitiesA" andW™ that the random walk makes a
step in the positive or negative directions are

) kOc p has been used in refs 229 to analyze the steady-state flux
) — ef onL” LR (2.15) with the goal to find an optimal solute-channel interaction that
KO + kB kYo p o+ k®epe maximizes the flux through the channel. As for noninteracting
® ® particles, the probabilityP®"(t), is the propagataPs(n, t|0, 0)
W — ket Kon CrRPR—L (2.16) for a random walkP(t) = Pg(n, t|0, 0), where the subscript/
- T Ll R) (L R ) superscript “sr” indicates that the quantity characterizes strong!
kéf? + kc(aff) k(on) P gt kS)n)CRPR—-L P P q y 9y

repelling particles.

For such a random walk, one can find an exact solution for the A random walk, in general, is characterized by the prob-
propagatof;” which is identical to the result in eq 2.12. abilities of making a step in the positive and negative directions,
We will assume that the potential drop between the two W& and W) = 1 - W, respectively, as well as the
reservoirs is localized on the membrane. Denoting the potential Probability densities for the waiting time before the correspond-

energies of a solute particle in the left and right reservoirs by ing step is madex(j”(t) and x(_sr)(t). Relations between these
UL and Ug, respectively, and using the condition of detailed probabilities and probability densities and quantities that
balance, characterize dynamics of the particles in the channel and the
reservoirs have been established in ref 2. Specifically, it has
kKLP _exppU,) = kPP, | exp(—pUg) (2.17)  been shown that

where 8 = (kgT)"* with kg and T denoting the Boltzmann W = wi (3.1)
constant and the absolute temperature, we can write the

probabilities in eqs 2.15 and 2.16 in terms of the affinity, and that the two probability densities for the waiting time are
A(c /cr, AU), defined by identical.

BA(C /e, AU) = |n(§—;) +AU (218) 270 =220 = 10 (3:2)

This implies that the waiting time distribution is independent

where AU = U, — Ug. The affinity is the difference in the  of the passage direction. _
electrochemical potential of a solute particle in the two  Inref2, we derived an expression for the Laplace transform

reservoirs. The result is of xs(t) denoted byjs(s) = /& e Ss(t) dt. This expression
contains six probabilities only three of which are independent.
(ni) __ 1 (2.19) In addition to the translocation and return probabilities men-

14 exp[FPA(c /cg, AU)] tioned above, it also contains probabilities that a new particle
enters the channel from the left or right reserveff) andP{Y

In equilibrium, A(cL/cr, AU) = 0 andW(” = W™ = 1/2. =1 — PY, respectively. These probabilities are given by
The propagator in eq 2.12 satisfies the relation

0] 0]
P(ni) t k(L) n k(L) P n P(l) — kin _ koncl I — L R (3 3)
n O _ ko) _ [KonGLPLor 2.20 KD kR O 4 kR ’ '
P(ni)(t) - k(R) - k(R)C P ( . ) in in on ~L on ~R
-n eff on YR' R—L

_ The expression fofs{S) also contains the Laplace transforms
where we have used the above-mentioned symmetry of theof four probability density functionspemdt), L (), pr-r(t),
Bessel functiondn(2) = |-n(2). Using the relations in eqs 2.15,  and ¢y (t). Functiongemdt) is the probability density for the

2.16, and 2.19 we can write eq 2.20 in the form channel lifetime in the empty state,
P (W oA e ALY 21y o) T KD (50 =
PO (W o (K, + K¥eq) expl-(Ke, + ke (3.4)

which shows that the probabilit,(t) obeys the fluctuation Functionsp_—.(t) and gpr—r(t) are the probability densities of
theorenm?—22 Specifically, this form of the fluctuation theorem the lifetimes in the channel for nontranslocating particles
has been discussed by Andrieux and Gaspard in ref 18, in whichentering the channel from the left and right reservoirs and
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coming back to the same reservoir from which they entered.
As shown in refs 36-32, the probability density of the lifetime
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we will show that the probability?(*(t) thatn particles have
been transported from the left reservoir to the right one through

in the channel for translocating particles is independent of the M channels in time obeys the same fluctuation theorem,

translocation direction. This probability density is denoted as

Pu(t).
The expression fogs(s) derived in ref 2 has the form

XslS) =
(PYPL g+ PPr ) @emfd#u(9)
Lp ¢ Rp_ ¢ ; 3.5)
1= [P’ Pl @19 + Piy’Prr@r-r(] PemdS)

This function and the probabilitie®/, and W- completely
characterize the random walk. Note that although the prob-
abilities of the step direction for noninteracting and strongly
repelling solutes are identical (eq 3.1), the probability densities
xni(t) andys(t) are quite different. Whereas the former is single
exponential, the latter is definitely not. This implies that that
the equivalent random walk is Markovian for noninteracting

P PO (W,
N W

P(_'\f,)(t) P —) = exp[hBA(c, /cg, AU)] (4.2)

There are several different ways to prove this relation. The way
we chose is, presumably, the shortest one.

Since the channels are independent, the probatf{fj(t)
can be written in terms of the single-channel probabilities
Pn),i =1, ..,Mas

=9

PM(t) = z P (® . Py 000+ 4npn  (4-3)

solute particles and non-Markovian for strongly repelling Using eq 4.1, one can see that each term in the sum satisfies
particles. The second random walk is non-Markovian because
the overall translocation process is viewed as at least a two-
state process (entering the empty channel and transloc&tifg).

After the problem of findindP®"(t) has been reduced to that
of finding the random walk propagator, the latter can be
analyzed by solving a set of integral equations. Using this set,
one can obtain an exact solution for the Laplace transform of
PS(t). An expression giving &)(s) in terms ofW,, W_, and
Zs(S) has been derived in ref 2:

W+ ni+... Ny
P, (0 . P, (1) = (VT) P_, (1) ...P_, () (4.4)

Substituting this into eq 4.3 and taking the Kronecker delta into
account, one arrives at the relation in eq 4.2.

In summary, the main results of this paper are the expressions
in egs 2.12 and 4.3 providing explicit solutions ®y(t) as well
as expressions in eqs 2.21, 3.7, and 4.2, which represent the

AL 2> AW 5 (S In| fluctuation theorem for single- and multichannel membrane
ﬁ;(sr)(s) - | WY (9) transport of noninteracting solute particles and particles that
n W._ = . . .
1+ \/1 — AW, W_[7, (9] strongly repel each other. These expressions have been derived

1- er(s)
sy1— AW, W_[7(9)°

This can also be obtained using the results presented in ref 7.,

(3.6)

Note that the Laplace transform in eq 3.6 might be used to derive| _ | 1

PM(t) in eq 2.12. This can be done by replacipgs) by the kY '
Laplace transform of its Markovian counterpaiti(s) = (k&) ¢
+k{(s + k§ + k&), and inverting the resulting Laplace  ®
transform?”’

One can see tha@((s) satisfiesW"PEY(s) = W' PEs) kO
and, hence, the probabiliﬂ?f’)(t) obeys the same fluctuation
theorem a™(t) (eq 2.21).

e (W+)” NBA(C, /cr, AU)] (3.7) “
= - = |1 = expn C /Cyh, .
P P™M@)  \W- P LR =0

Thus, as has been mentioned above this fluctuation theorem isp,(t)
fulfilled for both noninteracting and strongly repelling solute
particles.
PR

4. Multichannel Transport

In this section, we consider transport between the two
reservoirs through a membrane containiNg independent
channels that do not affect each other. Assuming that the
probability Pn(t) for each isolated channel obeys the fluctuation
theorem,

L—R

L—L

Pr—L

Pn(t) _ W+ ”_
P () (W_) = expnBA(c /cg, AU)] 4.1) Prr

using explicit solutions foPy(t) and its Laplace transform.

Appendix A: List of Symbols
A(CL/CR, AU)

the affinity;

the solute concentration in the reservhir

the index of the reservoir;

the inverse of the mean time between successive L
R translocations;

the inverse of the mean time between successive R
L translocations;

the monomolecular rate constant that is equal to the
inverse of the mean time between successive en-
trances of new particles into the channel from
reservoirl;

the bimolecular rate constant for trapping particles
entering the channel from reservajr

the probability that a new particle enters the channel
from reservoirl;

the probability thatn solute particles have been
transported from the left reservoir to the right one
through a single channel in tinte

the probability thain particles have been transported
from the left reservoir to the right one through
channels in time;

the translocation probability for a particle entering the
channel from the left reservoir;

the return probability for a particle entering the channel
from the left reservoir;

the translocation probability for a particle entering the
channel from the right reservoir;

the return probability for a particle entering the channel
from the right reservoir;
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