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Abstract

Background: Regulatory functions of nitric oxide (NO) that bypass the second messenger cGMP are
incompletely understood. Here, cGMP-independent effects of NO* on gene expression were globally
examined in U937 cells, a human monoblastoid line that constitutively lacks soluble guanylate cyclase.
Differentiated U937 cells (>80% in GO/GI) were exposed to S-nitrosoglutathione, a NO* donor, or
glutathione alone (control) for 6 h without or with dibutyryl-cAMP (Bt,cAMP), and then harvested to
extract total RNA for microarray analysis. Bt,cAMP was used to block signaling attributable to NO"-
induced decreases in cAMP.

Results: NO- regulated |10 transcripts that annotated disproportionately to the cell cycle and cell
proliferation (47/110, 43%) and more frequently than expected contained AU-rich, post-transcriptional
regulatory elements (ARE). Bt,cAMP regulated 106 genes; cell cycle gene enrichment did not reach
significance. Like NO-, Bt,cAMP was associated with ARE-containing transcripts. A comparison of NO*and
Bt,cAMP effects showed that NO" regulation of cell cycle genes was independent of its ability to interfere
with cAMP signaling. Cell cycle genes induced by NO* annotated to G1/S (7/8) and included E2F| and p21/
Wafl/Cipl; 6 of these 7 were E2F target genes involved in GI/S transition. Repressed genes were G2/M
associated (24/27); 8 of 27 were known targets of p21. E2FI mRNA and protein were increased by NO-,
as was E2F| binding to E2F promoter elements. NO- activated p38 MAPK, stabilizing p21 mRNA (an ARE-
containing transcript) and increasing p2| protein; this increased protein binding to CDE/CHR promoter
sites of p2| target genes, repressing key G2/M phase genes, and increasing the proportion of cells in G2/M.

Conclusion: NO* coordinates a highly integrated program of cell cycle arrest that regulates a large
number of genes, but does not require signaling through cGMP. In humans, antiproliferative effects of NO*
may rely substantially on cGMP-independent mechanisms. Stress kinase signaling and alterations in mMRNA
stability appear to be major pathways by which NO* regulates the transcriptome.
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Distribution of NO*-regulated genes. Of | 10 differentially regulated genes, 71 were up-regulated (red) and 39 (green)
were down-regulated. Genes were classified into functional categories using NIH-DAVID [83] and PubMed [52]. Data are from

seven independent microarray experiments.

Background

Nitric oxide (NO*) plays a pivotal role in vascular biology
through both cGMP-dependent and -independent mech-
anisms. In health, NO* regulates vascular tone by activat-
ing soluble guanylate cyclase [1-3]. However, other
important effects of NO* in the vasculature such as cyto-
protection and anti-adhesion appear to occur independ-
ent of cGMP signaling [4-6]. Likewise, NO* regulation of
inflammation has frequently been associated with signal
transduction events that do not involve cGMP [7,8]. NO*
induces TNFo in human cells by decreasing intracellular
levels of cCAMP, thereby removing cAMP-mediated repres-
sion of the TNFo promoter through a proximal Sp ele-
ment [9,10]. Analogs of cAMP and Sp site mutation both
block, while antagonists of cAMP-dependent protein
kinase simulate the effect of NO®* on TNFa. [9,11]. In con-
trast to TNFo, NO°® induces interleukin-8 (IL-8) [12]

through a distinct post-transcriptional mechanism that is
both cGMP- and cAMP-independent. IL-8 mRNA is stabi-
lized by NO* activation of p38 MAPK, increasing its half-
life and translation [13]. These and other reports [14-16].
suggest that cGMP-independent gene regulation by NO*
occurs through multiple pathways.

Similar to the regulation of blood pressure and inflamma-
tory responses, NO* regulation of cell proliferation is of
central importance to circulatory health. Failure of this
regulatory pathway has been linked to atherosclerosis and
other forms of vascular dysfunction [17-19]. Despite
extensive investigation, the relative contribution of
cGMP-independent NO*signaling in the regulation of cell
cycle genes remains controversial. In rats, NO* has been
shown to activate transcription through cGMP-dependent

Page 2 of 18

(page number not for citation purposes)



BMC Genomics 2005, 6:151

Table I: NO--regulated cell cycle related genes
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GenBank Symbol Functional category Fold change?

Gl/s

04111 JUN Regulation of cell cycle 3.68 £0.76
U09579 CDKNIA (p21) CDK inhibitor 2.06 + 0.58
U77949 CDCé DNA replication 1.95 £ 0.48
M74093 CCNEI Cell cycle control 1.77 £ 0.31
X89398 UNG DNA repair 1.68 £ 0.30
549592 E2FI| G phase of mitotic cell cycle 1.60 £ 0.19
X61123 BTGI Negative regulation of cell proliferation 1.60 £ 0.28
L13689 BMII Modifies chromatin 0.67 £ 0.09
U67369 GFIl G1/S-specific transcription in mitotic cell cycle 0.54 + 0.06
U22376 c-Myb Cell cycle control 0.30+0.10
G2

U66838 CCNAI Regulation of CDK activity 0.60 £ 0.12
736714 CCNF Regulation of cell cycle 0.60 £ 0.11
04088 0.57 £ 0.14
L47276 TOP2A® Spindle assembly, chromsome condensation 0.42 £ 0.07
X05360 CDC2 Start control point of mitotic cell cycle 0.57 £ 0.11
U28386 KPNA2 Cytoskeleton organization and biogenesis 0.51 £0.05
D14678 KIFCI Spindle assembly, chromsome condensation 0.44 £ 0.10
Ul4518 CENPA Chromosome organization and biogenesis 0.38 + 0.06
G2/M

U48807 DUSP4 Regulation of cell cycle 1.40 £ 0.35
U63743 KIF2C Microtubule motor activity 0.72 £ 0.10
u83lI5 AIMI Tumor supressor, cytoskeleton 0.71 £ 0.07
M34458 LMNBI Cytoskeletal anchoring 0.66 £ 0.16
D63880 CNAPI Mitotic surveilance 0.63 £ 0.05
X65550 MKI67 Chromatin/chromosome structure 0.61 £0.09
S78187 CDC25B Cell cycle control 0.60 £ 0.05
D38553 BRRNI Chromatid separation 0.59 £ 0.08
U73379 UBE2C Protein degradation 0.54 + 0.08
u30872 CENPF Mitosis 0.53 + 0.07
Z15005 CENPE Mitotic chromosome movement 0.53 £0.10
U29343 HMMR Mitotic surveilance, cell motility 051 £0.11
U05340 CDC20 Ubiquitin-dependent protein degradation 0.49 + 0.07
M86699 TTK Spindle assembly/mitotic checkpoint 0.47 £ 0.05
uo1038 PLK Mitosis 0.44 + 0.04
M25753 CCNBI Mitotic checkpoint 0.43 + 0.07
D38751 KIF22 Mitosis 0.40+0.18
u04810 TROAP Cell adhesion 0.24 + 0.03

2 Fold change comparing glutathione (GSH) to S-nitrosoglutathione (GSNO)-treated cells, expressed as the mean + SE (N = 7)
b Represented by more than one probe set on the microarray that reached statistical significance; each result is shown

effects on AP-1 promoter sites [20]. Also in rodents, a
NO*-cGMP-PKA-ERK1/2 signal transduction pathway has
been described that inhibits cell proliferation [21,22] and
increases expression of p21/Waf1/Cip1 [23,24]. A master
regulatory gene, p21 directly inhibits Cdk complexes
[25,26] and represses the transcription of many cell cycle
genes through CDE/CHR (cell cycle dependent element/
cell cycle gene homology region) promoter elements
[27,28]. In contrast to rodents, NO*® regulation of cell cycle
genes in humans, including regulation of p21, appears to

occur, at least in part, independent of cGMP [19,29].
However, a global examination of cGMP-independent
NO-* effects on the transcriptome in general or on cell
cycle genes specifically has not been undertaken in either
rodents or humans.

Here, oligonucleotide microarrays and human U937 cells
that lack soluble guanylate cyclase [9,30] were used to glo-
bally characterize the cGMP-independent effects of NO*
on gene expression. Differentiation with PMA was
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Figure 2

A
Fold Change

GenBank |Symbol |[Microarray [RT-PCR
X06985 |HMOX1 [9.80 +3.13 [12.04 +1.55
M28130 |[IL8 5.55 + 1.00 8.62 + 1.05
L19871 |ATF3 5.24 + 0.71 4.91 +0.23
X04500 |IL1B 4.98 +1.00 2.60 + 0.46
J04111 |JUN 3.96 + 0.88 2.82 + 0.32
M57731 |GRO2 3.92 +0.71 8.07 +2.92
X02910 |TNF 3.34 +0.33 2.95 +1.07
D14874 |[ADM 2.68 + 0.26 6.36 + 2.67
X99920 |S100A13 [2.56 +0.17 1.24 £ 0.15
U09579 [CDKN1A [2.54 +0.95 2.16 £ 0.24
U57721 | KYNU 2.53 +0.15 2.99 +1.34
M27288 |OSM 2.05 + 0.49 2.33 +2.34
S49592 |E2F1 1.42 £ 0.23 1.12 £ 0.01

|_U66838 |CCNA1 |0.60 +0.05 0.60 + 0.02
M25753 [CCNB1 [0.50 +0.12 0.31 + 0.09
Z15005 |CENPE |0.48 % 0.05 0.29 +0.14
U01038 [PLK 0.41 +0.05 0.36 + 0.02
U22376 [c-Myb 0.32 +0.10 0.23 + 0.05
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Validation of microarray results by real-time, reverse transcription (RT) PCR and Western blotting. (A) Fold
changes for microarray and RT-PCR at 6 h comparing S-nitrosoglutathione (GSNO; 400 M) to glutathione (GSH; 400 uM)
incubated cells. (B) Correlation of fold change comparing the two methods after logarithmic transformation. Results are means
* SE of the last three microarray experiments for which material was available for RT-PCR (performed in triplicate). (C) Repre-
sentative Western blots of cell cycle genes detected by specific antibody and enhanced chemiluminescence. Differentiated
U937 cells (1 x 107) were incubated with PBS, GSH (400 LM) or GSNO (400 uM) for 12 h and then lysed for Western blot-
ting. (D) Western blot results quantified with laser densitometry and expressed as ratios relative to PBS control values. Data

are means * SE of three or four independent experiments.
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Table 2: NO--regulated genes containing AU-rich elements
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GenBank Symbol Regulation by NO* Reported regulation by p38

MAPK=

X54150 FCAR up

L06633 PSCDBP up

K03195 SLC2AI up

X59834 GLUL upP

U03398 TNFSF9 upP

M59465 TNFAIP3 up UP [77]

Ul5174 BNIP3 up

D86962 GRBI10 upP

M60278 DTR up UP [77]

M69043 NFKBIA up

M92357 TNFAIP2 up

u48807 DUSP4 upP

M16750 PIMI up UP [77]

X89398 UNG up UP [77]

$49592 E2FI upP UP [66]

U70426 RGSI16 up

X02910 TNF up UP [87, 88]

X04500 ILIB up UP [77, 87]

M20681 SLC2A3 upP

M28130 IL8 up UP [77, 89]

M57731 GRO2 up UP [77]

U71203 RIT upP

S81914 IER3 upP

04076 EGR2 up

D90070 PMAIPI up UP [77]

04111 JUN upP UP [90]

u09579 CDKNIA up UP [42]

D16532 VLDLR up

uUli4518 CENPA DOWN

U67369 GFlI DOWN

U22376 c-Myb DOWN

U66838 CCNAI DOWN DOWN [91]

M25753 CCNBI DOWN DOWN [74]

a2 As reported in the literature; citations shown in parentheses

employed to render cells capable of cytokine production
[9]. This treatment also forced >80% of cells into the GO/
G1 phase of the cell cycle, which facilitated the analysis of
cell cycle gene regulation. Since NO* lowers cAMP levels
in U937 cells [9] and cAMP is known to affect cell prolif-
eration, NO* effects were also tested in the absence and
presence of a cell permeable cAMP analog. For genes
affected by NO*-induced decreases in cAMP, cAMP analog
would be expected to produce an apposite effect. Hypoth-
eses generated from microarray results were further inves-
tigated by examining downstream changes in protein
expression and signal transduction pathways.

Results

Functional distribution of NO*-regulated genes and
hypothesis generation

Of 110 NO¢-responsive genes, 71 were induced, and 39
were repressed; the majority were not previously known
to be NO*-responsive. Both naive and differentiated U937

cells lack NO¢*-sensitive soluble guanylate cyclase [9,30],
and therefore gene regulation by NO*® in these cells can be
attributed to cGMP-independent mechanisms. Genes
were annotated into functional categories (Fig. 1) [see
Additional files 1 and 2 for complete gene lists]. NO* had
broad biological effects independent of cGMP. Heme oxy-
genase 1 (HMOX1), a known NO*-responsive gene, had
the second largest fold change among up-regulated genes.
TNFo and IL-8, cytokines previously associated with spe-
cific cGMP-independent mechanisms of NO* regulation
[8,9,12], were also detected as differentially regulated by
the microarray analysis. NO*-regulated genes annotated
disproportionately to the cell cycle [[31] of 106 (29%)
compared to 407 of 4870 genes (8%) on the microarray,
as annotated in the Gene Ontology [GO] Biological Proc-
ess database; P = 0.0001] (Table 1). In particular, a large
majority of NO* down-regulated genes annotated specifi-
cally to the cell cycle (21/38, as annotated in the GO Bio-
logical Process database; P = 0.0001). Additional
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Figure 3

Heat map of NO° and cAMP effects on the expression
of NO*-regulated cell cycle genes. Differentiated U937
cells were incubated with glutathione (GSH; 400 uM) or S-
nitrosoglutathione (GSNO; 400 uM) in the absence or pres-
ence of dibutyryl-cAMP (Bt,cAMP; 100 uM). Color intensity
reflects fold change from differentiated cells at 0 h; up-regula-
tion is shown in red and down-regulation in green. Fold
changes were computed from the mean results of seven
independent microarray experiments.

annotation using PubMed identified 47 of 110 genes
(43%) as cell cycle or cell proliferation related. Of 39
down-regulated transcripts, 27 (69%) were ultimately
annotated specifically to the cell cycle.

Previously, we demonstrated that NO® activates p38
MAPK and thereby stabilizes IL-8 mRNA through effects
on AU-rich elements [ARE] in 3' untranslated regions
[UTR] [13]. Therefore, the ARE database http://
rc.kfshrc.edu.sa/ared was used to identify ARE-containing
genes among those regulated by NO*. Twenty-two of 110
genes contained ARE (20%) compared to 540 ARE genes
of 5086 on the microarray (11%; P = 0.008). An addi-
tional 11 ARE-containing genes were identified in
PubMed for a total of 33 (Table 2). Nearly half of these
genes (14/33; 42%) have been reported to be p38 MAPK
regulated (Table 2). Importantly, for these 14 genes, p38

http://www.biomedcentral.com/1471-2164/6/151

MAPK activation produces responses that are in the same
direction as those observed here for NO*. The broad influ-
ence of NO* on cell cycle-related genes and ARE-contain-
ing transcripts independent of cGMP was unexpected, as
was the strong association of these effects with p38 MAPK.
Therefore, further experiments were performed to confirm
these results and to define underlying regulatory mecha-
nisms that might link NO* effects on the cell cycle with
post-transcriptional gene regulation through ARE sites.

Validation of NO*-regulated genes

To determine whether NO* and cAMP effects on mRNA, as
measured by microarray, produced downstream effects on
secreted protein, TNFa, IL-8 and IL-1 were measured in
supernatants collected from parallel cell cultures incu-
bated for 24 h. S-nitrosoglutathione (GSNO) significantly
increased TNFa, IL-8, and IL-1f protein [see Additional
file 3, part A (P < 0.0001 for all)]. In contrast, CAMP
decreased TNFo (P < 0.0001), increased IL-13 (P = 0.003),
and had no significant effect on IL-8. NO*®-induced
changes in transcript abundance as determined by micro-
array were consistent with these results (see Additional file
3, part BJ.

Real-time RT- PCR (TagMan®) was used to validate NO*-
mediated changes in mRNA levels (Fig. 2A and 2B). Of 18
selected genes, 13 were NO® up-regulated, and 5 were
down-regulated. Fold changes from microarray experi-
ments strongly correlated with results from RT-PCR (R =
0.95, P < 0.0001).

Western blotting of key cell cycle genes regulated by NO*®
was performed to test whether microarray results accu-
rately predicted changes in protein expression (Fig. 2C
and 2D). Three induced genes, E2F transcription factor 1
(E2F1), p21/Waf1/Cip1 (Cdk inhibitor; CDKN1A), and
cell division cycle 6 (CDC6) were examined. E2F1 and
p21 are well-characterized master regulatory proteins that
control the cell cycle. Four repressed genes, cyclin Al
(CCNA1), cyclin B1 (CCNB1), polo-like kinase (PLK) and
cyclin F (CCNF) were also measured by Western blotting.
In all cases, directional changes in protein expression were
consistent with the differential effect of NO* on corre-
sponding transcripts as determined by microarray analy-
sis.

NOr--regulation of cell cycle genes independent of cAMP

NO*induces TNFo by decreasing intracellular cAMP; dib-
utyryl-cAMP (Bt,cAMP), a cell permeable cAMP analog,
blocks this effect [9,10]. Moreover, CAMP is an omnipres-
ent second messenger that affects cell proliferation and
the cell cycle in a variety of contexts [31-33]. Therefore,
Bt,cAMP was added to some conditions to test for the
cAMP-dependence of NO°®-mediated effects. Of 106
Bt,cAMP-responsive genes, 16 of 103 (16%) compared to
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407 of 4870 on the microarray (8%), as annotated in the
GO Biological Process database, were cell cycle related,
but this effect was not statistically significant (P = 0.5).
Only one additional cAMP-responsive gene was subse-
quently annotated to the cell cycle by searching PubMed
[see Additional file 4]. However, like NO®, cAMP-regu-
lated genes did contain ARE more frequently than
expected [[24] of 106 (23%) compared to 540 of 5086
(11%) on the microarray; P = 0.0003]. This finding was
consistent with the known ability of cAMP to stabilize
transcripts that contain ARE [34].

To further compare the effects of NO*®* and cAMP, a hierar-
chical cluster analysis was performed using the 35 cell
cycle genes regulated by NO* (Fig. 3). For each of the 5 cell
cycle genes significantly affected by both NO* and
Bt,cAMP [c-MyDb, B-cell translocation gene 1 (BTG1), dual
specificity phosphatase 4 (DUSP4), growth factor inde-
pendent 1 (GFI1), and cyclin A1 (CCNA1)], the direction
of regulation was the same. Further, for cell cycle genes
regulated by NO*, cAMP analog either had no effect on or
produced expression changes that were similar to and
additive with those observed for NO°® (Fig. 3). These
results suggest that NO* effects on cell cycle genes are
independent of its interference with CAMP signaling, since
cAMP analog (the opposite signal) was not antagonistic to
the actions of NO°.

Analysis of NO* effects on the cell cycle

NO-* causes arrest in either the G1 or G2/M phase of the
cell cycle [19,35-37]. However, the mechanisms underly-
ing this effect are not well characterized. Annotation of
NO¢-regulated genes to their respective phase of the cell
cycle revealed that expression changes were not random
(Table 1). Most NO* up-regulated genes (7/8) were G1/S
associated, while down-regulated genes were strikingly G2
and G2/M phase associated (24/27). The latter included
topoisomerase II alpha (TOP2A), cyclin B1, PLK, and
CDC25B, genes that are necessary factors for mitosis.
These results show that NO* suppresses the cell cycle in
early G2/M by triggering a highly integrated program of
gene regulation that does not require soluble guanylate
cyclase or cGMP.

To further test this hypothesis, cell cycle analysis was per-
formed on U937 cells using flow cytometry. PMA-differ-
entiation significantly increased the portion of cells in GO/
G1 (P < 0.0001), while decreasing cells in S (P = 0.0007)
and G2/M (P = 0.003) compared to a naive, undifferenti-
ated cell population (Fig. 4A). Differentiated cells were
then treated with glutathione (GSH) or GSNO in the
absence or presence of Bt,cAMP. Consistent with NO*-
induced changes in mRNA expression at 6 h, cell cycle
analysis at 24 h demonstrated that NO*® increased the por-
tion of cells in G2/M (P = 0.0004), and in combination

http://www.biomedcentral.com/1471-2164/6/151

with Bt,cAMP, NO* synergistically increased G2/M phase
cells (Fig. 4B; P = 0.008).

NO-' induction of p21, a master cell cycle regulator;
dependence on p38 MAPK and role of mRNA stabilization
The Cdk inhibitor, p21 is known to induce cell cycle arrest
in late G1 or early G2/M, [38-40] effects similar to those
of NO*. NO* increased both p21 mRNA and protein
expression in the current experiments. We have previously
shown that NO* activates p38 MAPK in U937 and THP-1
cells [13,41]. Activation of p38 MAPK induces p21 in
other cell types, [42] and like NO*® here, can trigger G2/M
cell arrest [40]. We therefore reasoned that NO* might up-
regulate p21 by activating p38 MAPK in the present sys-
tem.

GSNO was first confirmed in PMA-differentiated U937
cells to dose-dependently increase p38 MAPK activation.
This effect reached significance at the lowest (100 uM)
GSNO concentration tested (P < 0.0001; Fig. 5). Next,
three chemically distinct NO* donors were tested for their
ability to up-regulate p21 protein in PMA-differentiated
U937 cells. GSNO, S-nitroso-N-acetylpenicillamine
(SNAP), and DETA-NONOate similarly increased p21
expression in these cells compared to degraded controls
(Fig. 6A; P < 0.05 for all). Thus, independent of cGMP and
type of donor molecule, NO* consistently increased the
expression of p21 protein in U937 cells. A specific p38
MAPK inhibitor (SB202190) was used to determine
whether blocking this pathway could prevent NO*® induc-
tion of p21. As shown in Fig. 6B, SB202190 dose-depend-
ently reduced NO*®-induced p21 protein expression (P =
0.0005). Collectively, these results suggest that NO*
induces p21 through p38 MAPK activation. Finally, we
investigated the effects of NO* and p38 MAPK inhibition
on the stability of p21 mRNA, which harbors ARE in its 3'
UTR [43]. After 8 h of PMA exposure, p21 expression
increased almost 100 fold compared to naive U937 cells
(Fig. 6C). NO- stabilized p21 mRNA in the absence of
S$B202190 (Fig. 6D;P = 0.004), but had no effect in the
presence of SB202190 (P = 0.5).

NO: regulation of the cell cycle through E2FI and p21

The E2F family of transcription factors and p21 act as mas-
ter regulatory switches that control the cell cycle. E2F1 reg-
ulates target genes through E2F-binding sites and thereby
plays an essential role in DNA synthesis and the G1/S
transition [44-47]. Some p21 effects are mediated by inhi-
bition of E2F factor binding, while other downstream tar-
gets contain cell cycle dependent element/cell cycle gene
homology region [CDE/CHR] repressor sites within their
promoters [27,28,39,48-50]. Protein binding to CDE/
CHR sites, triggered by p21 expression, causes repression
of a diverse group of cell cycle genes and subsequent late
G1 or early G2/M phase arrest, responses that are highly
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Cell cycle analysis of U937 cells. (A) U937 cells (I x 10¢) were differentiated with PMA (100 nM) for 48 h and then com-
pared with naive cells for cell cycle distribution using propidium iodide staining. The cell cycle distribution of stained cells was
examined by flow cytometry. The percentage of cells in GO/GI, S, and G2/M was determined using ModFit software. (B) U937
cells (I x 10¢) differentiated as in A were treated for 24 h with medium alone, medium with glutathione (GSH; 400 uM) or
medium with S-nitrosoglutathione (GSNO; 400 LM) in the absence or presence of dibutyryl-cAMP (Bt,cAMP; 100 uM). Cell
cycle distribution data, presented as fold change (percentage of cells in each phase of the cell cycle relative to medium alone),

are means * SE of four independent experiments.

similar to NO* effects shown here. The ability of NO* to
increase the expression of E2F1 and p21 may explain
much of its broad control over the cell cycle that ulti-
mately involves dozens of gene products. We therefore
identified NO*-regulated genes that contain E2F or CDE/
CHR promoter sites by searching TRANSFAC [51] and
PubMed|[52]. Sixteen NO*-regulated genes contain appar-
ent E2F sites (Table 3A). Seven of these are annotated to
the G1/S phase of the cell cycle, six of which have reported
E2F1 responses that are concordant with NO* effects in
the current experiment. Notably, of 10 NO* down-regu-
lated transcripts with possible E2F-binding sites, only c-
Myb is a G1/S phase gene. Further, 5 of these genes are
known to also contain a CDE/CHR binding site that
appears to be functionally dominant (Table 3B). Moreo-
ver, of the 27 cell cycle genes down-regulated by NO*, 8
are known targets of p21 repression (all G2/M associ-
ated), including 6 genes with putative CDE/CHR sites

(Table 3B) and two others, lamin B1 (LMNB1) and cen-
tromere protein F (CENPF) [39].

Next, electrophoretic mobility shift assays (EMSA) were
performed to test whether NO* altered protein binding to
E2F and CDE/CHR consensus sequences. PMA-differenti-
ated U937 cells were treated with PBS, GSH, or GSNO fol-
lowed by preparation of nuclear extract. NO* increased
binding to both E2F (Fig. 7A and 7B) and CDE/CHR
probes (Fig. 7C and 7D). Site-directed mutagenesis of
each consensus sequence abolished competition (Fig. 7)
and E2F1-directed antibody blocked complex formation
with labeled E2F probe (Fig. 7A and 7B).

Summary

NO¢, independent of cGMP, regulated a diverse subset of
genes involved in inflammation, metabolism, apoptosis,
the cell cycle, proliferation, signal transduction, and trans-
port. Notably, genes associated with the cell cycle and pro-
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Effect of NO* on p38 MAPK phosphorylation. Differen-
tiated U937 cells (5 x 10 6) were incubated with S-nitro-
soglutathione (GSNO; 0—400 M) for 30 min; cells were then
lysed for Western blotting to detect total (p38) and phos-
phorylated forms (pp38) p38 MAPK. (A) Representative gel
for Western blotting. (B) Western blotting results were
quantified with laser densitometry and expressed as ratios
relative to control values (GSNO = 0 uM). Data are means *
SE of three independent experiments.

liferation, including the master cell cycle regulatory genes
E2F1 and p21, were over-represented. Further, NO*-regu-
lated transcripts had ARE (post-transcriptional regulatory
sites) in their 3' UTR and were p38 MAPK responsive more
frequently than expected. E2F1 induction by NO* was
associated with up-regulation of several genes involved in
G1/S transition that contain E2F-binding sites. NO* also
induced p21, an ARE-containing gene, through p38
MAPK activation and mRNA stabilization. This was asso-
ciated with the down-regulation of G2/M phase genes, at
least in part, through changes in protein binding to CDE/
CHR promoter sites. Collectively, these results demon-
strate that NO*, independent of cGMP and cAMP, triggers
a specific and highly coordinated genetic program that
alters the G1/S transition and induces arrest in early G2/
M (Fig. 8). MAPK pathways and mRNA stability are major
mechanisms by which NO* regulates the transcriptome.

Discussion

NO-* has potent anti-tumor and anti-atherosclerotic effects
that are closely associated with its ability to block cell pro-
liferation [18,53]. This activity of NO* has been ascribed
to both cGMP-dependent and -independent mechanisms.
Experiments in rodents have found, with a few notable
exceptions [54,55], that NO® controls the cell cycle

http://www.biomedcentral.com/1471-2164/6/151

through cGMP. These studies have focused on the impor-
tance of a NO*-cGMP-PKA-ERK 1/2 signal transduction
pathway [22-24]. Accordingly, cAMP itself has also been
reported to inhibit cell proliferation through activation of
PKA and/or ERK 1/2 with the up-regulation of p27 or p21
in a cell-specific manner [31-33,56]. In contrast, the anti-
proliferation effects of NO*® in human cells have been fre-
quently associated with cGMP-independent signaling
[19,29]. Here, a transcriptome-wide approach revealed
that NO* exerts broad control over the cell cycle through
P38 MAPK activation and mRNA stabilization.

In a previous study, we found that NO* up-regulates TNFo.
by decreasing cAMP, an effect antagonized by cAMP ana-
logs. Therefore Bt,cAMP was used in this investigation to
explore whether some effects of NO* on the transcriptome
could be attributed to its interaction with cAMP signaling.
However, our results indicate that NO*-cAMP signaling
appears to be a minor pathway, regulating less than 6 of
the affected transcripts in U937 cells (data not shown).
These included TNFaq, as well as pim-1 oncogene (PIM1),
TNFo-induced protein 2 (TNFAIP2), and glutathione
reductase (GSR). Importantly, for cell cycle genes, NO*
and Bt,cAMP consistently had the same directional effect
on transcripts, although NO*® regulated more genes over-
all. Thus, decreases in intracellular cAMP appear unrelated
to NO* effects on the cell cycle. Furthermore, treatment
with both NO*® and Bt,cAMP synergistically provoked cell
cycle arrest in G2/M, suggesting that NO°®-induced
decreases in cCAMP may attenuate some of its effects on the
cell cycle. Although this experiment also provides useful
intormation on gene regulation by cAMP in U937 cells,
the reader should keep in mind that Bt,cAMP was the only
analog studied and some effects may have been caused by
its butyryl component.

U937 cells were PMA-differentiated in the current experi-
ments to render them capable of producing TNFa and IL-
8, two cytokines previously identified as NO*®-responsive
[7-13]. Further, this treatment also reduced cell prolifera-
tion and forced >80% of the cells into the GO/G1 phase of
the cell cycle, allowing for a more coherent analysis of cell
cycle regulation (Fig. 4). However, PMA itself had large
effects on NO*-regulated genes such as p21 (Fig. 6D) and
the findings here cannot be extrapolated directly to naive
U937 cells. Fortunately, Turpev and colleagues have
recently reported selected microarray results from NO*
exposure of undifferentiated U937 and Mono Mac 6 cells
[57]. Of interest, a number of key genes identified by this
group were also found to be similarly regulated by NO*® in
PMA-differentiated cells including HMOX1, IL-8, activat-
ing transcription factor 4 (ATF4), BCL2/Adenovirus E1B
19 kD-interacting protein 3 (BNIP3), and importantly
p21/Waf1/Cipl.
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Figure 6

Effect of NO* donors and p38 MAPK inhibition on p21 expression and mRNA stabilization. (A) Differentiated U937
cells (I x 107) were incubated with NO* donors, S-nitrosoglutathione (GSNO; 400 M), S-nitroso-N-acetylpenicillamine
(SNAP; 400 uM), or DETA-NONOate (I mM) or their degraded controls. Western blotting was then performed to detect
p2| expression after 12 h of incubation. Results were quantified with laser densitometry and expressed as ratios relative to
their appropriate degraded control. Data are means + SE of four independent experiments. (B) Differentiated U937 cells (I x
107) were incubated with increasing concentrations of the p38 inhibitor SB202190 (0 nM to 25 nM) for 30 min, then exposed
to PBS, glutathione (GSH; 400 uM) or GSNO (400 uM) for 12 h. Western blotting was performed to detect p2| expression.
Results were quantified with laser densitometry. Data, presented as fold change relative to PBS control values, are means + SE
of three independent experiments. Next, TagMan® RT-PCR was used to quantify p21 mRNA levels normalized to GAPDH
mRNA. (C) Changes in p2]1 mRNA levels during differentiation of U937 cells (1 x 107) with PMA. Data, presented as fold
change relative to mean mRNA level in naive cells, are means + SE of three independent experiments. (D) NO" stabilization of
p21 mRNA is dependent on p38 MAPK. U937 cells (I % 107) were differentiated with PMA for 8 h. After 30 min pretreatment
with actinomycin D (2.5 pg/ml) without and with SB202190 (0.1 uM), cells were further incubated with GSH (400 uM) or
GSNO (400 M) for 2 to 4 h. At the specific time points, cells were harvested for total RNA extraction. Data, presented rela-
tive to mRNA level at 0 h (arbitrarily set to 100%), are means + SE of three independent experiments.

Page 10 of 18

(page number not for citation purposes)



BMC Genomics 2005, 6:151

http://www.biomedcentral.com/1471-2164/6/151

Table 3A: Specific promoter elements associated with NO*-regulated cell cycle genes

3A. Genes with E2F sites

GenBank Symbol Cell cycle phase Regulation by NO* Regulation by E2F |2
04111 JUN GI/S Up Up [63]
U09579 CDKNIA GI/S Up Up [59]
U77949 CDCé GI/S Up Up [61]
M74093 CCNEI GI/S Up Up [63]
X89398 UNG GI/S Up Up [64]
549592 E2FI GI/S Up Up [61]
U22376 c-Myb GI/S Down Up [63, 92]
U66838 CCNAI b G2 Down Up [93]
04088 TOP2Ab G2 Down Up [62]
L47276 TOP2A b G2 Down Up [62]
X05360 CcDC2 b G2 Down Up [62, 64]
X65550 MKl167 G2M Down Up [63]
ul4518 CENPA b G2/M Down

578187 CDC25B G2/M Down

M86699 TTK G2/M Down

u01038 PLK b G2/M Down

M25753 CENPE G2/M Down

2 As reported in the literature; citations shown in parentheses
b These genes also contain CDE/CHR sites as shown in Table 3B

The NO* donor GSNO was found to activate p38 MAPK in
U937 cells, which was consistent with our previous result
using SNAP, another NO* donor [41]. Furthermore, three
different NO* donors were shown here to consistently
increase p21 protein expression, indicating that this effect
is NO*-specific and donor independent. Importantly, very
low concentrations of the p38 MAPK inhibitor SB202190
were found to block the induction of p21 protein by NO®,
further establishing the role of p38 MAPK as an interme-
diary signal transduction event. Finally, p21 mRNA was
measured serially by RT-PCR after transcriptional block-
ade in the absence or presence of SB202190 showing that
this transcript is stabilized by NO* through a p38 MAPK-
dependent mechanism.

Others have found that NO® increases p21 mRNA and
protein expression in human vascular smooth muscle

independent of cGMP [58]. In addition, p38 MAPK acti-
vation has been shown to increase p21 expression by both
transcriptional activation and protein stabilization [42].
E2F1 is also known to induce p21 transcription [59] pro-
viding another mechanism by which NO® may have
increased p21 expression in the current experiment. Con-
versely, as already discussed, NO*® decreases cAMP, reduc-
ing the ability of Sp1 to bind to GC box elements and
thereby repressing the transcription of Spl-dependent
genes such as eNOS [11]. Interestingly, p21 is highly
dependent on Sp1 for transcription [60] and is induced by
cAMP [56], findings consistent with the possibility that
p21 may be transcriptionally repressed by NO*-cAMP-Sp1
signal transduction. Nonetheless, NO*® induction of p21
demonstrates that other mechanisms dominate over any
negative effects of NO*® on Sp1 binding to the p21 pro-
moter. Here, we focused on mRNA stabilization, because

Table 3B: Specific promoter elements associated with NO*-regulated cell cycle genes

3B. Genes with CDE/CHR sites

GenBank Symbol Cell cycle phase Regulation by NO* Reported regulation by p212
U66838 CCNALI b G2 Down Up [62]
04088 TOP2A b G2 Down Up [62]
L47276 TOP2A b G2 Down Up [62]
X05360 CDC2b G2 Down Down
ul4518 CENPA b G2/M Down Down
uo01038 PLK b G2/M Down Down
M25753 CCNBI G2/M Down Down

2 As reported in the literature [39]
b These genes also contain E2F sites as shown in Table 3A
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Figure 7

NO-increases protein binding to E2ZF and CDE/CHR promoter sites. (A) Representative gel for protein binding to the
E2F probe detected by ECL. (B) Results for the E2F probe quantified with laser densitometry. Data, presented as ratios relative
to PBS values (set to |), are means * SE of six independent experiments. (C) Representative gel for protein binding to CDE/
CHR probe detected by ECL. (D) Results for the CDE/CHR probe quantified with laser densitometry. Data, presented as
ratios relative to PBS values (set to 1), are means + SE of six independent experiments. Differentiated U937 cells were incu-
bated with glutathione (GSH; 400 uM) or S-nitrosoglutathione (GSNO; 400 uM) for 3 h. Nuclear extract (15 pg) was prepared
and incubated with double-stranded, biotin-N4-CTP labeled DNA probe representing the E2F or CDE/CHR concensus
sequence from the E2F| or PLK promoter, respectively. Protein binding was then determined by electrophoretic mobility shift
assay. Complexes were competed with |00-fold molar excess of cold probes, site-directed mutagenesis of the consensus
sequence, and for the E2F probe, E2F[-directed antibody as indicated to test for binding specificity.
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of the strong indication in our microarray data that this is
a major mechanism of gene regulation by NO*. However,
other mechanisms such as changes in transcription, trans-
lation, or protein stability may have contributed substan-
tially to the net effects of NO*® on p21 expression.

The E2F family of transcription factors play important
roles in G1/S phase transition. E2F1 up-regulates many
G1/S phase genes including itself, cyclin E1 (CCNE1),
CDC6, uracil-DNA glycosylase (UNG), JUN, p21 and c-
Myb [46,47,61-65]. Except for c-Myb, all were up-regu-
lated by NO* in the present study, suggesting that NO*
may drive differentiated U937 cells through the G1/S
transition by inducing E2F1 expression. This conclusion is
further supported by EMSA showing that NO* increases
E2F1 binding to E2F consensus sequence. However,
increased E2F1 expression may not be the only mecha-
nism contributing to these observed changes in DNA
binding. NO* activates p38 MAPK in U937 cells and p38
MAPK has been shown to increase E2F1 binding to E2F
sites [66]. Further, cyclin A1 was down-regulated by NO*
and has been shown to turn off E2F1 target genes by
decreasing E2F1 DNA binding [47,67].

Notably, c-Myb and a number of G2 or G2/M phase genes
that contain E2F sites were down-regulated by NO*. E2F
sites can function as repressors in some genes and their
disruption by mutation leads to promoter activation
[46,61,68]. Further, NO*-responsive genes with both E2F
elements and CDE/CHR repressor sites were uniformly
down-regulated. Promoters with CDE/CHR motifs are
repressed by p21 [28,39], which was also induced by NO®.
Therefore, even for promoters activated by E2F1, repres-
sion through CDE/CHR sites appears to be the dominant
action of NO* in this cellular context. Moreover, E2F and
CHR sites may cooperate as co-repressors [69]. Although
CDC25B lacks an identifiable CDE/CHR site, it does have
a proximal repressor and its regulation is similar to CDE/
CHR-containing genes [70].

Cell cycle arrest induced by p21 occurs in late G1/S
[40,71] or early G2/M [38] and is mediated, at least in
part, by the repression of target genes with CDE/CHR sites
[28]. CDE/CHR sites are present in the promoters of cyc-
lin A1 [50], CDC2 [48], cyclin B1 [72], and TOP2A [49],
centromere protein A (CENPA) [73] and PLK [27]. All of
these genes are G2 or G2/M related and are down-regu-
lated by p21, results consistent with the effects of NO*
observed here. EMSA confirmed the hypothesis that NO*
regulates protein binding to CDE/CHR sites. Collectively,
these findings suggest that NO*® regulates many G2/M
phase cell cycle genes through p21. However, NO*® may
also regulate some of these downstream p21 targets
through additional mechanisms. For example, c-Myb, cyc-
lin A1, cyclin B1, and CENPA have ARE in their 3' UTR,
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indicating that NO* might alter the stability of these tran-
scripts. Notably, cyclin A1 and cyclin B1 are down-regu-
lated by p38 MAPK, a signal transduction pathway that
was activated by NO* in the current experiments. Impor-
tantly, p38 MAPK has been shown to induce cell cycle
arrest at the G2 checkpoint through mechanisms that
were only partially dependent on p21 [74].

ARE in 3' UTR have been implicated in the control of tran-
script stability and have an important post-transcriptional
impact on transcriptome content [11,75-77]. We previ-
ously demonstrated that independent of cGMP, NO* up-
regulates 1L-8, but not TNFo post-transcriptionally
through p38 MAPK activation [13]. In the current investi-
gation, ARE- containing genes including IL-8 and p21
were over-represented among NO°®-regulated genes.
Nearly half of these ARE genes have been reported to be
regulated by p38 MAPK (Table 2). Notably, NO°*
responses were all in the same direction as those reported
for p38 MAPK activation. Previous microarray experi-
ments that globally tested mRNA stability found that 10%
of transcripts were associated with p38 MAPK-dependent
regulation [77]. The over-representation of p38 MAPK-
regulated genes in our experiments indicates that this
stress kinase is an important target of NO®*.

Conclusion

The present investigation was focused on understanding
cGMP-independent gene regulation by NO°®. Major
themes within the identified gene list were the predomi-
nance of cell cycle-related genes and ARE-containing tran-
scripts. NO* was found to trigger a specific and
coordinated cell cycle arrest independent of both cGMP
and cAMP. E2F1 induction up-regulated target genes
involved in G1/S transition through E2F sites. NO* stabi-
lization of p21 mRNA was p38 MAPK dependent and led
to increased protein binding to CDE/CHR promoter sites
and the down-regulation of G2/M phase genes. The cell
cycle is a major target of NO*-mediated gene regulation.
Importantly, p38 MAPK and mRNA stability are major
intermediary mechanisms through which NO* affects the
human transcriptome.

Methods

Reagents and cell culture

PMA, GSNO, S-nitroso-N-SNAP, Bt,cAMP and SB202190
were purchased from Calbiochem (San Diego, CA).
DETA-NONOate was obtained from Cayman (Ann Arbor,
Michigan); actinomycin D and GSH were from Sigma-
Aldrich (St. Louis, MO). U937 cells (ATCC, Rockville,
MD), a human monoblastoid line devoid of NO* sensitive
guanylate cyclase, [9,30] were cultivated and then differ-
entiated with PMA (100 nM) for 48 h as described previ-
ously [9].
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Ubiquitin
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Figure 8

Schematic representation of NO* regulation of the
cell cycle. Genes differentially regulated in this investigation
are shown in color; red signifies up- and green down-regula-
tion. At the bottom, NO" is depicted as allowing progression
to G2 where it induces cell cycle arrest. KEGG pathway [86]
reproduced and Modified with permission.

Microarray experiments

NO* donor, GSNO (400 uM), or its precursor GSH (400
uM) was added into differentiated U937 cells in the
absence or presence of Bt,cAMP (100 uM) followed by
incubation at 37°C for 6 h (N = 7). Cells were then
washed three times with ice cold PBS. Total RNA was
extracted using RNeasy Mini kits (Qiagen, Valencia, CA)
and reverse transcribed (10 pug) using the SuperScript I11°
custom kit (Invitrogen, Carlsbad, CA). Resulting cDNA (1
ug) was in vitro transcribed into biotin-labeled cRNA
using the BioArray high yield RNA transcript labeling kit
(Enzo Life Sciences, Farmingdale, NY). After fragmenta-
tion, biotin-labeled cRNA (20 pg) was hybridized to
Affymetrix HuGeneFL 6800° microarrays [> 5,000 unique
transcripts after masking uninformative probe sets
[Affymetrix Website, #106] following the Affymetrix pro-
tocol [78]. After staining with streptavidin phycoerythrin
(Molecular Probes) and enhancing with anti-streptavidin
(0.5 mg/ml, Vector Laboratories, Burlingame, CA), micro-
arrays were scanned using Agilent GeneArray Scanner.

Cytokine assay and TagMan® Real time RT-PCR

Supernatants were collected from duplicate cell cultures
after 24 h of incubation. TNFq, IL-8 and IL-1f production
were measured using ELISA kits (R & D Systems, Minne-
apolis, MN) according to the manufacturer's instructions.

The TagMan® Real time RT-PCR system (Applied Biosys-
tems, ABI, Rockville, MD) was employed to quantify
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mRNA levels. Gene-specific TagMan®probes and PCR
primers were designed using Primer Express 1.0 (ABI) and
their sequences are provided in supplemental data [see
Additional file 5]. The High-capacity cDNA Archive kit
(ABI, Foster City, CA) was employed to prepare cDNA
from 2 pg of total RNA. The resulting cDNA was used for
RT-PCR in triplicate according to the standard ABI proto-
col. The average quantities of target gene mRNA relative to
GAPDH mRNA was determined for each sample. The tar-
get gene/ GAPDH ratio in GSH treated cells was arbitrarily
set at 1 and results from all other samples were expressed
relative to that standard.

Western blotting

Polyclonal antibodies detecting p21, cyclin A1, cyclin B1,
CDC6, E2F1 and cyclin F were obtained from Santa Cruz
Biotechnology (Santa Cruz, CA). PLK antibody was pur-
chased from BD Transduction Laboratories (San Diego,
CA). Aliquots of 1 x 107 cells were incubated with PBS,
GSH (400 uM), or GSNO (400 uM) for 12 h to prepare
whole cell lysates. Separate experiments were conducted
to detect total and phosphorylated p38 MAPK using anti-
p38 and anti-pp38 (Promega, WI). All Western blotting
was performed using 20 pg of whole cell lysate as previ-
ously described [13].

Cell cycle analysis

Cells were harvested and stained with propidium iodide
and the cell cycle distribution of stained cells was deter-
mined by flow cytometry (FACS Calibur, Becton Dickin-
son). The percentage of cells in GO/G1, S, and G2/M was
determined using ModFit (Verify Software House Inc.,
Topsham, ME) and expressed as relative change compared
to PMA-differentiation alone. Naive U937 cells were com-
pared to cells (1 x 10°) incubated with PMA for 48 h to
examine the effects of differentiation on the cell cycle. As
expected, PMA differentiation pushed cells into GO/G1
arrest (>80% of cells). These cells were then treated with
GSH (400 uM) or GSNO (400 puM) without or with
Bt,cAMP for 24 h and processed for cell cycle analysis as
described above.

EMSA

Differentiated U937 cells were cultured for 3 h with GSH
(400 uM) or GSNO (400 uM). EMSA were performed
with 15 pg of nuclear extract and double-stranded DNA
probes labeled with biotin-N4-CTP according to manu-
facturer's instructions (Pierce, Rockford, Illinois). Probes
purchased from Sigma-Genosys (The Woodlands, TX)
were as follows: E2F probe (5-CGTGGCTCTTTCGCG-
GCAAAAAGGA-3') representing the -39 to -15 section of
the E2F1 promoter and CDE/CHR probe (5'-GTTC-
CCAGCGCCGCGTTITGAATTC-3') representing the -10 to
+14 section of human PLK promoter. Binding complexes
were competed using 100-fold molar excess of cold
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probes. Sequences for these cold probes are available in
[see Additional file 6].

Microarray data analysis, gene annotation, and statistics
Images were analyzed using Microarray Suite 4.0 (Affyme-
trix). Global scaling was set at 100. Data were transformed
and analyzed using the MSCL Analyst's Toolbox http://
affylims.cit.nih.gov written in the JMP scripting language
(SAS Institute, Cary, NC). Average difference (AD) values
were standardized and transformed using the Symmetric
Adaptive Transform [79-81] yielding quantile-normal-
ized, homogenous variance scaled results. Differentially
regulated genes were identified from 7 independent
experiments using a combination of consistency tests set
at a 4% false discovery rate (FDR) and an average AD
above 20 for at least one condition. One of 7 experiments
was an outlier for some genes, but was not allowed to
eliminate genes found significant in the other six. Fold
change in gene expression was calculated directly from AD
results after raising negative values to 10, and likewise
adding 10 to all positive values.

Genes were annotated by searching NIH-DAVID [82,83]
and PubMed [52]. Over-representation of gene categories
among differentially expressed transcripts was tested
using Expression Analysis Systematic Explorer [84,85].
EASE scores (penalized Fisher exact test), corrected for
multiple comparisons using bootstrap resampling with
10,000 iterations, are reported as P-values. These analyses
and tests of significance relied on databases within EASE
and therefore did not include additional genes that were
annotated to particular functional categories using
PubMed.

All data not derived from microarrays are presented as
mean + standard error (SE) of at least three independent
experiments. All P-values are two-sided unless noted oth-
erwise, and considered significant if less than 0.05. To
compare treatment effects on cytokine secretion, a two-
way ANOVA with blocking for experiment was carried out
on the logarithm of the measured concentrations for
TNFo, IL-8 and IL-1B (supplemental Fig. 1A). A linear
regression of RT-PCR log fold change versus microarray log
fold change was generated to evaluate the validity of the
microarray data (Fig. 2B). To determine whether NO*
affected the protein expression of various cell cycle genes,
paired t-tests, unadjusted for multiple comparisons, were
performed for GSH versus GSNO, after log normalization
to PBS (Fig. 2D). Log percentages of naive and PMA-differ-
entiated U937 cells in each phase of the cell cycle were
compared by paired t-tests, unadjusted for multiple com-
parisons (Fig. 4A). Two-way ANOVAs with blocking were
performed on log percentage of cells in each phase of the
cell cycle to assess the significance of the NO* effect, cAMP
effect, and their interaction (Fig. 4B). Effects of NO* on
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p38 MAPK phosphorylation (Fig. 5) were investigated
with a one-way ANOVA comparing the log fold change of
laser densitometry intensity (pp38/p38) over different
concentrations of GSNO. A post-hoc Dunnett's test was
carried out to determine the lowest concentration at
which the effect became significant compared to control.
The expression of p21 in the presence of GSNO, SNAP, or
DETA-NONOate was compared to that in the presence of
their respective degraded controls with paired t-tests,
unadjusted for multiple comparisons (Fig. 6A). The dose
effect of SB202190 on NO*-induced p21 protein expres-
sion normalized to PBS was analyzed using a one-way
ANOVA (Fig. 6B). NO-* stabilization of p21 mRNA over
time (with and without SB202190) was assessed using
constrained one-way analysis of covariance, after natural
log transformation of relative mRNA amounts (Fig. 6D).
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ARE: AU-rich elements; Bt,cAMP: dibutyryl-cAMP; CDE/
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ogy region; EMSA: electrophoretic mobility shift assays;
GO: Gene Ontology; GSH: glutathione; GSNO: S-nitro-
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Additional File 1

Classification of NO*-Upregulated Genes. Complete list of genes upregu-
lated by NO* Genes are classified by function and fold change from con-
trol is shown.
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Additional File 2

Classification of NO*-Downregulated Genes. Complete list of genes
downregulated by NO* Genes are classified by function and fold change
from control is shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-151-S2.doc]

Additional File 3

Confirmation of NO* effects on TNFe;, IL-8 and IL-1 (A) NO® up-reg-
ulated secreted TNFo, IL-8 and IL-1 protein at 24 h as measured by
ELISA. Dibutyryl cAMP (Bt,cAMP) decreased TNF o, increased IL-143,
and had no effect on IL-8. Data are means + SE of six independent exper-
iments. (B) NO* effect on TNFo, IL-8 and IL-13mRNA at 6 h as meas-
ured by microarray (N = 7) were similar to changes in secreted protein.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-151-S3.ppt]

Additional File 4

Classification of cAMP-Regulated Genes. Complete list of genes regulated
by cAMP. Genes are classified by function and fold change from control is
shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-151-S4.doc]

Additional File 5

RT-PCR Primers and Probes. List of genes tested by RT-PCR including the
sequence of primers and probes used in the assays.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-151-S5.doc]

Additional File 6

Electrophoretic Mobility Shift Assay (EMSA) Probes. List of genes from
which E2F and CDE/CHR promoter sequences were derived for testing by
electrophoretic mobility shift assay (EMSA). For each gene, the EMSA
probe sequence is shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-6-151-S6.doc]
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