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Transport of strongly repelling particles through a single membrane channel is analyzed assuming that
the channel cannot be occupied by more than one particle. An exact solution is found for the Laplace
transform of the probability Pn�t� that n particles have been transported in time t. This transform is used to
find the flux through the channel and to show that Pn�t� and P�n�t� are related by the fluctuation theorem.
The solution is obtained using an observation that Pn�t� is the propagator for a non-Markovian random
walk, which can be found by solving a set of integral equations.
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In this Letter we analyze transport of solute particles
through a single channel in a membrane separating left (L)
and right (R) reservoirs. The flux of the solute particles
may be driven either by the difference in solute concen-
trations, cL and cR, in the reservoirs, cL � cR, or by a
potential drop between the reservoirs, and, of course, both
factors may act together. The goal of the theory is to build a
bridge establishing a relation between the flux through the
channel and a more detailed description of the solute
dynamics in the channel and the reservoirs that underlie
the transport. We consider solute particles that strongly
repel each other and model the repulsion by the require-
ment that the channel cannot be occupied by more than one
particle. Assuming that the channel is empty at t � 0 we
describe the particle exchange between the reservoirs by
the probability Pn�t� that the difference between the num-
ber of particles passing from the left reservoir to the right
one in time t and the number of particles passing for the
same time in the opposite direction is equal to n. One of the
main results of this Letter is an exact solution for the
Laplace transform of this probability, P̂n�s�, where s is
the Laplace parameter. This solution is used to find the flux
through the channel and to show that the ratio Pn�t�=P�n�t�
obeys the fluctuation theorem. There are several recent
papers on the steady-state flux through a singly occupied
channel with the major focus on the optimal particle-
channel interaction that maximizes the flux driven by the
difference in the solute concentrations in the two reservoirs
[1–4]. The theory developed in the present Letter leads to
an expression for the steady-state flux in the limit t! 1.

We derive P̂n�s� in two steps. First, we formulate the
problem in terms of a random walk between identical
neighboring points of a one-dimensional lattice, which
correspond to different numbers of particles transported
from the left reservoir to the right one for time t (not to be
confused with the site model of the particle intrachannel
dynamics):

 

! � 3! � 2! � 1! 0! 1! 2! 3! (1)

Second, assuming that the random walk starts from site 0 at
t � 0 we identify Pn�t� with the random walk propagator,
Pn�t� � P�n; tj0; 0�, and find P̂n�s� solving a set of integral
equations for this propagator.

The random walk, Eq. (1), is characterized by the prob-
abilities of making a step in the positive and negative
directions, W� and W� � 1�W�, as well as the proba-
bility densities for the distributions of the waiting times
before the random walk makes a corresponding step, ���t�
and ���t�. To formulate the problem in terms of random
walk we derive expressions, which give W� and the
Laplace transforms of ���t� as functions of some quanti-
ties that characterize motion of the solute particles in the
channel and their entrance into the channel from the res-
ervoirs. These relations are another important result of this
Letter. We find that ���t� � ���t�; that is, the distribution
of the random walk waiting time is independent of the
direction in which a solute passes through the channel.
This is done using a recently proven identity of the dis-
tributions of the direct translocation times for particles
traversing the channel in the opposite directions, which is
fulfilled at an arbitrary relation between the translocation
probabilities [5]. It is worth mentioning that there is a well-
known resemblance between formalisms used to describe
channel transport and enzymatic reactions [6]. Therefore,
this is not surprising that the invariance of the waiting time
distribution with respect to the random walk step direction,
derived below, is identical to the result recently obtained by
Qian and Xie [7] in their theory of kinetics of enzymatic
reactions based on the random walk formalism.

We describe the entrance of the particles into the channel
from the reservoirs as first order processes characterized by
the rate constants, kIin � kIoncI, I � L, R. Then the proba-
bility density of the channel lifetime in the ‘‘empty state,’’
’emp�t�, is given by ’emp�t� � kin exp��kint�, where kin �

kLin � k
R
in, and the probabilities of the particle entrance into
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the channel from the left and right reservoirs, PLin and PRin,
are PLin � kLin=kin and PRin � kRin=kin. When the potential
drop is localized on the membrane, the bimolecular rate
constants, kIon, are given by the Hill formula for the trap-
ping rate by an absorbing circular disk on the otherwise
reflecting planar wall [8] or its modification for noncircular
absorbers [9]. The fate of the particle in the channel
depends on the side from which it enters. A particle enter-
ing the channel from the left reservoir comes back with
probability PL!L and passes to the right reservoir with
probability PL!R � 1� PL!L. Corresponding return and
translocation probabilities for particles entering the chan-
nel from the right reservoir are PR!R and PR!L. The
probability densities of the lifetime in the channel for
returning and traversing particles are denoted as ’L!L�t�,
’R!R�t�, ’L!R�t�, and ’R!L�t�. Recently, using several
different models of the particle dynamics in the channel, it
has been shown [5] that the probability densities ’L!R�t�
and ’R!L�t� are identical, ’L!R�t� � ’R!L�t� � ’tr�t�,
independently of how different the translocation probabil-
ities, PL!R and PR!L, are.

We begin with finding probabilities W� and W�.
Consider the total number of entrances into the channel,
N, for sufficiently long time, so that the number of tran-
sitions in each direction is much greater than unity.N is the
sum of the numbers of entrances into the channel from the
left and right reservoirs,N � NL � NR, where, on average,
NI � PIinN, I � L, R. The numbers of the L! R and R!
L transitions are given by NL!R � PL!RNL � PLinPL!RN
and NR!L � PR!LNR � PRinPR!LN. The probability W�
is the fraction of the L! R transitions out of the total
number of transitions,

 W� �
NL!R

NL!R � NR!L
�

PLinPL!R
PLinPL!R � P

R
inPR!L

�
kLoncLPL!R

kLoncLPL!R � kRoncRPR!L
: (2)

Respectively, the probability W� is

 W� �
NR!L

NL!R � NR!L
�

PRinPR!L
PLinPL!R � P

R
inPR!L

�
kRoncRPR!L

kLoncLPL!R � kRoncRPR!L
: (3)

Assuming that the potential drop between the two res-
ervoirs is localized on the membrane we use the condition
of detailed balance

 kLonPL!R exp���UL� � kRonPR!L exp���UR�; (4)

where UL and UR are the potential energies of a solute
particle in the left and right reservoirs, respectively, and
� � �kBT��1 with kB and T denoting, respectively, the
Boltzmann constant and the absolute temperature, to write
W� andW� in terms of the affinity, A�cL=cR;�U�, defined
as �A�cL=cR;�U� � ln�cL=cR� � ��U, with �U �
UL �UR [10]. The result is

 W� �
1

1� exp���A�cL=cR;�U�	
: (5)

It shows how the probabilities W� and W� depend on the
external parameters cL, cR, and �U. In the absence of the
potential drop between the reservoirs the probabilities W�
and W� are given by W� � cL;R=�cL � cR�, while for
equal concentrations in the reservoirs these probabilities
are W� � �1� exp����U�	�1. Naturally, W� � W� �
1=2 at equilibrium.

Next we proceed to the probability densities ���t� and
���t� that characterize the distributions of the waiting
times before the random walk makes a step in the positive
or negative direction, respectively. Consider all possible
realizations leading to the L! R transition. Note that a
particle entering the channel from the right reservoir must
return since we count only realizations that lead to the L!
R transition, while a particle entering from the left reser-
voir may either pass through the channel or come back.
With this in mind we can write an integral equation, which
takes all these possibilities into account:

 

W����t� �
Z t

0
dt1’emp�t1�

�
PRinPR!RW�

Z t�t1

0
’R!R�t2����t� t1 � t2�dt2

� PLin

�
PL!R’L!R�t� t1� � PL!LW�

Z t�t1

0
’L!L�t2����t� t1 � t2�dt2

��
: (6)

The first term in the square brackets, which is proportional to PRin, is due to nontranslocating trajectories of the particles
entering the channel from the right reservoir. The second term, proportional to PLin, is due to the particles entering the
channel from the left reservoir. Solving Eq. (6) we find the Laplace transform of ���t� denoted by �̂��s�,

 �̂��s� �
�PLinPL!R � P

R
inPR!L�’̂emp�s�’̂L!R�s�

1� �PLinPL!L’̂L!L�s� � P
R
inPR!R’̂R!R�s�	’̂emp�s�

: (7)

Respectively, the Laplace transform of ���t� is given by

 �̂��s� �
�PLinPL!R � P

R
inPR!L�’̂emp�s�’̂R!L�s�

1� �PLinPL!L’̂L!L�s� � P
R
inPR!R’̂R!R�s�	’̂emp�s�

: (8)
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Using the fact that ’L!R�t� � ’R!L�t� � ’tr�t� [5], we arrive at an important conclusion that the probability densities
���t� and ���t� are also identical, ���t� � ���t� � ��t�, and, hence, the probability density of the waiting time between
successive steps of the random walk is independent of the step direction. The Laplace transform of ��t� is

 �̂�s� �
�PLinPL!R � P

R
inPR!L�’̂emp�s�’̂tr�s�

1� �PLinPL!L’̂L!L�s� � P
R
inPR!R’̂R!R�s�	’̂emp�s�

: (9)

Equations (5) and (9) are important results of our analysis
since they establish the relation between the parameters of
the random walk in Eq. (1) W� and �̂�s�, on one hand, and
quantities that characterize dynamics of the solute particles
in the channel and their entrance into the channel from the
reservoirs, on the other hand.

Now we proceed to the propagator, P�n; tj0; 0� � Pn�t�.
Introducing the survival probability of the random walk on
a site, S�t� �

R
1
t ��t

0�dt0, we can write an integral equation
for the propagator

 Pn�t� � �n0S�t� �
Z t

0
S�t� t0��W�Jn�1�t0�

�W�Jn�1�t0�	dt0; (10)

where �ij is the Kronecker delta and Jn�t� is the probability
flux escaping from site n at time t. This flux satisfies

 Jn�t� � �n0��t� �
Z t

0
��t� t0��W�Jn�1�t

0�

�W�Jn�1�t
0�	dt0: (11)

To solve these equations we introduce two generating
functions FP�’; t� �

P
ein’Pn�t� and FJ�’; t� �P

ein’Jn�t�. First we use Eq. (11) to find the Laplace
transform of FJ�’; t� and then Eq. (10) to find the
Laplace transform of FP�’; t�:
 

F̂P�’; s� �
1� �̂�s�

s
�1� �W�ei’ �W�e�i’�F̂J�’; s�	

�
1� �̂�s�

s�1� �̂�s��W�e
i’ �W�e

�i’�	
: (12)

From this we obtain the Laplace transform of the propa-
gator in terms of W� and W� and �̂�s�:

 P̂ n�s� �
1

2�

Z �

��
e�in’F̂P�’; s�d’

�

�
W�
W�

�
n=2
�

2
������������������������
W�W��̂�s�

p
1�

�����������������������������������������
1� 4W�W���̂�s�	

2
p

�
jnj



1� �̂�s�

s
�����������������������������������������
1� 4W�W���̂�s�	

2
p : (13)

One can see that P̂n�s� satisfies Wn
�P̂n�s� � Wn

�P̂�n�s�
and, hence, the probability Pn�t� obeys the fluctuation
theorem [11] which for the nonequilibrium steady state
under consideration has the form
 

Pn�t�
P�n�t�

�

�
W�
W�

�
n
�

�
kLoncLPL!R
kRoncRPR!L

�
n

� exp�n�A�cL=cR;�U�	; t > 0: (14)

In the absence of the potential drop between the reservoirs
Eq. (14) reduces to the relation Pn�t�=P�n�t� � �cL=cR�n

discussed by Qian and Xie in the context of kinetics of
enzymatic reactions [7]. When the concentrations in the
reservoirs are equal and the transport is due to the potential
drop, Eq. (14) takes the form Pn�t�=P�n�t� � exp�n��U�.
It is interesting that the fluctuation theorem in Eq. (14) is
true not only for solute particles that strongly repel each
other. It can be shown that Eq. (14) is also true for non-
interacting solutes so that the channel can be occupied by
an arbitrary number of particles [12].

The average number of particles transported from the
left reservoir to the right one in time t, hn�t�i, is given by

 hn�t�i �
X1

n��1

nPn�t�: (15)

The Laplace transforms of hn�t�i and of the flux through the
channel at time t, j�t�, defined as j�t� � dhn�t�i=dt, can be
readily obtained using P̂n�s� in Eq. (13):

 ĵ�s� � shn̂�s�i � �W� �W��
�̂�s�

1� �̂�s�

� tanh
�
�A�cL=cR;�U

2

�
�̂�s�

1� �̂�s�
: (16)

This expression is another important result of our analysis
since it allows one to find transient behavior of j�t� from
zero at t � 0 to its steady-state value, jss, given by the
asymptotic long-time behavior of j�t�. The steady-state
flux can be found from the small-s expansion of ĵ�s� using
the relation �̂�s� � 1� ��s, s! 0,
 

jss �
d̂j�s�
ds

��������s�0
�
W� �W�

��

�
1

��
tanh

�
�A�cL=cR;�U�

2

�
; t� ��; (17)

where �� is the mean time between successive transloca-
tions through the channel. This time can be expressed in
terms of the mean lifetimes in the channel of translocating
and returning particles, �tr, �L!L, and �R!R,

 ����tr�
1�kLoncLPL!L�L!L�kRoncRPR!R�R!R

kLoncLPL!R�k
R
oncRPR!L

: (18)

Equation (17) has a transparent physical interpretation:
The flux is the product of the average number of transitions
between the reservoirs per unit time, 1=��, and the proba-
bility that the transition occurs in the L! R direction,
(W� �W�).
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Using Eqs. (2), (3), and (18) we can write jss in Eq. (17)
as

 jss �
kLoncLPL!R � kRoncRPR!L

1� kLoncL�Linside � k
R
oncR�Rinside

; (19)

where �Linside and �Rinside are the average lifetimes in the
channel of the particles entering from the left and right
reservoirs, �Linside � PL!L�L!L � PL!R�tr and �Rinside �
PR!R�R!R � PR!R�tr. To our knowledge this expression
for the steady-state flux through a singly occupied channel
was first suggested on the basis of physically appealing
arguments in [1] and derived in [4]. The theory above
shows how the expression in Eq. (19) can be obtained
analyzing the time-dependent behavior of the flux j�t�. In
the absence of the potential drop between the reservoirs the
flux in Eq. (19) can be written as

 j�0�ss �
kLonP

�0�
L!R�cL � cR�

1� kLoncL�Linside � k
R
oncR�Rinside

: (20)

When the solute concentrations in the reservoirs are equal,
cL � cR � c, and the transport is due to the potential drop,
Eq. (19) reduces to

 jssjcL�cR�c �
c�kLonPL!R � kRonPR!L�

1� c�kLon�Linside � k
R
on�Rinside�

: (21)

Linearizing the right-hand side of this expression with
respect to the potential drop one recovers the Ohm law
for the channel.

In summary, we have shown that the probability density
of time between successive particle translocations from
one reservoir to the other is independent of the direction
in which the particle goes, and we derived an expression
for the Laplace transform of this function as well as the
expressions for the probabilities of the L! R and R! L
transitions. These expressions are given in terms of quan-
tities that characterize motion of the particles in the chan-
nel and in the reservoirs, Eqs. (5) and (9). We use these
expressions to derive the Laplace transform of the proba-
bility, Pn�t�, Eq. (13). We demonstrate that Pn�t� satisfies
the fluctuation theorem, Eq. (14), and we use its Laplace
transform to find the flux of the particles between the
reservoirs, Eqs. (17) and (19). General relations derived
in this Letter are model independent in the sense that they
remain unchanged whatever model of the solute dynamics
in the channel is used. Different models simply lead to
different expressions for the probabilities and lifetimes that
describe the particle’s life in the channel. For the diffusion
model of the particle motion in the channel [13] one can
find explicit expressions for all the quantities appearing in
our analysis in Ref. [14]. These expressions show how
these quantities depend on the solute-channel interaction,
which implicitly includes the dependence on the shape and
the size of the translocating particles, as well as the channel
geometry. Finally it might be interesting to apply the same
ideas to transport through confined quantum systems with
Coulomb or van der Waals blockades [15].
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