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There are many current applications of the continuous-time random walk �CTRW�, particularly in
describing kinetic and transport processes in different chemical and biophysical phenomena. We
derive exact solutions for the Laplace transforms of the propagators for non-Markovian asymmetric
one-dimensional CTRW’s in an infinite space and in the presence of an absorbing boundary. The
former is used to produce exact results for the Laplace transforms of the first two moments of the
displacement of the random walker, the asymptotic behavior of the moments as t→�, and the
effective diffusion constant. We show that in the infinite space, the propagator satisfies a relation that
can be interpreted as a generalized fluctuation theorem since it reduces to the conventional
fluctuation theorem at large times. Based on the Laplace transform of the propagator in the presence
of an absorbing boundary, we derive the Laplace transform of the survival probability of the random
walker, which is then used to find the mean lifetime for terminated trajectories of the random walk.
�DOI: 10.1063/1.2830254�

I. INTRODUCTION

The continuous-time random walk1,2 �CTRW� is fre-
quently used as a model for kinetics and transport in chemi-
cal and biophysical processes. Several instances, in which its
utilility has been demonstrated, include �1� single-molecule
enzyme kinetics, i.e., the rate of transformation of reactants
into products by single enzyme molecules; �2� the transport
of molecular motors in biological systems; �3� the transport
of large solutes, exemplified by metabolites, different mac-
romolecules, etc., through singly occupied channels in bio-
logical membranes. Further references are to be found in
Refs. 3–10.

The most commonly met kinetic scheme of the one-
dimensional nearest-neighbor CTRW has the generic form

¯ � − 2 � − 1 � 0 � 1 � 2 � ¯ . �1.1�

The state of the system at time t will be denoted by n and
three independent quantities are needed to specify the subse-
quent kinetic development of the system. The first of these is
W+, the probability that the following step will be n→n+1.
Then, W−=1−W+ is the probability that the step will be n
→n−1. Since we are dealing with a CTRW, we define two
pausing time densities ���t�, normalized to unity, where, for
example, �+�t� is the probability density for the random time
between a step taken between sites n and n+1. Further, we
will assume that all the moments derived from ���t� are
finite.

In the present paper, we derive an exact expression for
the Laplace transform of the propagator Pn�t�, the probability
that the difference in the number of steps in positive and
negative directions in time t is equal to n, assuming that the

system arrives at the initial site at t=0. Although there are
many publications on random walks, to our knowledge, this
result has not been published. The propagator will be used to
derive the mean displacement of the random walker as a
function of time as t→� and the effective diffusion constant.

The transform will be denoted by P̂n�s�=�0
�e−stPn�t�dt, and

because the system in Eq. �1.1� is non-Markovian, in general,
it will only be possible to find general results in terms of

Laplace transforms. We use the result for P̂n�s� to show that
the propagator obeys a generalized fluctuation theorem
which reduces to the conventional one,11–25 when �+�t�
=�−�t�. In our case, the latter establishes a relation between
Pn�t� and P−n�t� of the form

Pn�t�
P−n�t�

= �W+

W−
�n

. �1.2�

The CTRW in Eq. �1.1� has been defined without bound-
aries. Later, we generalize the solution for the Laplace trans-
form of the propagator still further to allow for the presence
of a single absorbing boundary, say at n=0. That is to say,
the random walk terminates when site 0 is reached. This
possibility suggests further parameters of interest to be dis-
cussed in the course of the paper. Specifically, we find an
exact solution for the Laplace transform of the survival prob-
ability. This can either be finite or zero as t→�, depending
on the relation between W+ and W−.1,2 We find the mean
lifetime for trapped realizations of the random walk, which is
a conditional lifetime when the system survives as t→�.

The main results of our analysis are summarized in the
next section and derived in the remainder of the paper.
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II. FORMULATION OF RESULTS

A. The propagator and generalized fluctuation
theorem

Having defined the pausing-time densities �+�t� and
�−�t�, it is convenient to also define w+�t�=W+�+�t� and
w−�t�=W−�−�t� so that, for example, w+�t� is the probability
density for a transition n→n+1 to follow a sojourn of time t
at site n, which is normalized to W+. As before, ŵ��s� will
denote the Laplace transform of w��t�. A second useful func-
tion is

K̂�s� = 1 + �1 − 4ŵ+�s�ŵ−�s� . �2.1�

We will show that the Laplace transform of the propagator is

P̂n�s� = 	 ŵ+�s�
ŵ−�s�


n/2	2�ŵ+�s�ŵ−�s�

K̂�s�

�n�

P̂0�s� , �2.2�

in which

P̂0�s� =
1 − ŵ+�s� − ŵ−�s�

s�1 − 4ŵ+�s�ŵ−�s�
. �2.3�

The transform of the propagator in Eq. �2.2� satisfies the

normalization condition �n=−�
� P̂n�s�=1 /s.

An explicit expression for Pn�t� can be found only for
the case of the Markovian system in which w��t�
=k� exp�−kt�, where k=k++k−, so that the transforms can be
inverted explicitly. The results are found to be

Pn�t� = � k+

k−
�n/2

e−ktIn�2t�k+k−� , �2.4�

where In�z� is a modified Bessel function of the first kind,
which is a symmetric function of n, In�z�= I−n�z�.25

The transform in Eq. �2.2� satisfies the relation

P̂n�s�

P̂−n�s�
= 	 ŵ+�s�

ŵ−�s�

n

= 	W+�̂+�s�
W−�̂−�s�


n

. �2.5�

This leads us to the fluctuation theorem in Eq. �1.2� when
�+�t�=�−�t�. Therefore, we will call the relation in Eq. �2.5�
a generalized fluctuation theorem.

B. Moments of displacement and the diffusion
constant

When the pausing-time densities have at least two finite
moments, the moments of displacement n�t� will likewise
also have two finite moments. We will see that at long times,
the first moment is asymptotically proportional to t and that
it is possible to define an effective diffusion constant in terms
of the large-t behavior of the first two moments of the dis-
placement. The Laplace transforms of the moments can be
generated from the transforms of the propagators. Let w�t�
=w+�t�+w−�t�. This is the probability density for a single
sojourn time spent by the random walk on a site. The trans-
forms of the first two moments can be written in terms of the
transforms of w�t� and w��t� as

n̂�s�� = �
n=−�

�

nP̂n�s� =
ŵ+�s� − ŵ−�s�
s�1 − ŵ�s��

�2.6�

and

n̂2�s�� = �
n=−�

�

n2P̂n�s� =
ŵ�s��1 + ŵ�s�� − 8ŵ+�s�ŵ−�s�

s�1 − w�s��2 .

�2.7�

The long-time behavior of these moments can be found
using small-s expansions of their Laplace transforms in Eqs.
�2.6� and �2.7�.26 The results can be expressed in terms of the
first two moments of the sojourn times on a site, ��

m� and
�m�, where

��
m� = �

0

�

tm���t�dt �2.8�

and

�m� = �
0

�

tmw�t�dt = W+�+
m� + W−�−

m� . �2.9�

The long-time limit of the average displacement is up to
the constant term,

n�t�� �
W+ − W−

��
t −

W+�+� − W−�−�
��

+ �W+ − W−�
�2�

2��2 , �2.10�

so that �W+−W−� / �� is a measure of bias induced by the
asymmetry of the transition probabilities. When �+�t�
=�−�t�=w�t� so that �+�= �−�= ��, Eq. �2.10� takes the
form

n�t�� �
W+ − W−

��
t + �W+ − W−�� �2�

2��2 − 1� . �2.11�

When the random walk is Markovian, the second term van-
ishes since �2�=2��2.

A second parameter of physical interest is the effective
diffusion constant Deff, which is defined in terms of the mo-
ments of displacement as

Deff =
1

2
lim
t→�

1

t
�n2�t�� − n�t�2�� . �2.12�

A straightforward calculation based on the transforms leads
to the expression

Deff =
1

2��2	4W+W−��−� + �−��

+ �W+ − W−�2 �2�
��

− ��
 . �2.13�

When �+�t�=�−�t�=��t� so that �+�= �−�= ��, the expres-
sion for Deff reduces to
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Deff =
1

2��	1 + �W+ − W−�2� ��2

��2 − 2�
 . �2.14�

In the special case of the Markovian random walk �2�
=2��2, from which it follows that Deff=1 / �2��� is indepen-
dent of the asymmetry of the transition probabilities.

It can be shown in a number of different ways that at
sufficiently long times the propagator approaches a Gaussian
form

Pn�t� �
1

�4�Defft
exp	−

�n − n�t���2

4Defft

 . �2.15�

This is known in the mathematical literature as the central
limit theorem.1,2

C. Effect of the absorbing boundary

A different set of questions arises when a random walker
moves in the presence of a perfectly absorbing site. Suppose
that the absorbing site is located at n=0 and the random walk
begins its sojourn at site n0�0 at t=0. The propagator for
this walk will be denoted by Pabs�n , t �n0�, which must satisfy
the absorbing boundary condition, Pabs�0, t �n0�=0. The solu-
tion for the Laplace transform of the propagator can be found
in terms of the transforms of the propagators in the infinite
space

P̂abs�n,s�n0� = Pn−n0
�s� − 	 ŵ−�s�

w+�s�
n0

P̂n+n0
�s� . �2.16�

Setting n=0 in P̂abs�n ,s �n0� and using the generalized fluc-

tuation theorem in Eq. �2.5�, one can see that P̂abs�n ,s �n0�
satisfies the absorbing boundary condition. A further gener-
alization can be made to the case in which the system con-
sists of a finite number of states terminated by two
absorbing/reflecting ones, in which case the method of im-
ages produces a solution in terms of an infinite series of
terms in place of the two-term expression in Eq. �2.16�.

Having an expression for P̂abs�n ,s �n0� in hand we can
calculate the transform of the probability that the random
walk has not been absorbed by time t, S�t �n0�. It will be
shown that its Laplace transform has the form

Ŝ�s�n0� = �
n=1

�

P̂abs�n,s�n0� =
1

s�1 − 	2ŵ−�s�

K̂�s�

n0� , �2.17�

where K̂�s� is defined in Eq. �2.1�.
More specific information is available in terms of

Ŝ�s �n0� related to the moment at which a random walk is
absorbed. First, we observe that not all of the random walks
will be eventually absorbed. A well-known result in probabil-
ity theory is that the probability that the random walk will
survive indefinitely is equal to 1− �W− /W+�n0 when W+

�W− and 0 otherwise.1,2 If f�t �n0�dt is the probability that
the random walk is absorbed at the origin at a time between
t and t+dt, then it is related to S�t �n0� by −dS�t �n0�
= f�t �n0�dt. It then follows that the conditional probability
density for the absorption time is

��t�n0� =
f�t�n0�

1 − S���n0�
. �2.18�

The transform of this relation can be used to generate
expressions for the moments, i.e., the conditional first mo-
ment of the time to absorption is

�abs�n0�� = − �d�̂�s�n0�
ds

�
s=0

= n0�
W−�+� + W+�−�

W+ − W−
, W+ � W−

��
W+ − W−

, W− � W+.� �2.19�

Both the probability density in Eq. �2.18� and �abs�n0�� are
unconditional when S�� �n0�=0. When W+=W−, this result
indicates that the mean time to absorption is infinite while
S�� �n0�=0, a result first derived by Polya in 1924.1,2

III. DERIVATIONS

A. The propagator and the generalized fluctuation
theorem

Since all sites are identical, the initial state will be taken
to be n0=0 without loss of generality. Let ��t� be the sur-
vival probability on a site for time t, i.e., the probability that
a random walk remains at any site for a time greater than t,

��t� = 1 − �
0

t

w�t��dt� = 1 − �
0

t

�w+�t�� + w−�t���dt�

�3.1�

and let 	n�t� be the probability flux entering site n at time t.
The propagator Pn�t�= P�n , t �0,0� can be expressed in terms
of 	n�t� and ��t� as

Pn�t� = �
0

t

	n�t����t − t��dt�, �3.2�

since the random walker enters site n at time t� and remains
there for the time t− t�. Transforming Eqs. �3.1� and �3.2�, we
obtain the relation

P̂n�s� =
1

s
�1 − ŵ+�s� − ŵ−�s��	̂n�s� . �3.3�

A final step in the derivation of P̂n�s� is that of finding
	̂n�s�, which will be done by formulating and solving a re-
cursion relationship for it. The function 	n�t� satisfies

	n�t� = 
�t�
n,0 + �
0

t

�w+�t − t��	n−1�t��

+ w−�t − t��	n+1�t���dt�, �3.4�

where the first term on the right-hand side accounts for the
initial condition, and the remaining terms account for all re-
maining interchanges in the random walk. Since Eq. �3.4�
has the form of a convolution, it can be simplified through
the application of a Laplace transform, becoming
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	̂n�s� = 
n,0 + ŵ+�s�	̂n−1�s� + ŵ−�s�	̂n+1�s� . �3.5�

This can be simplified still further by defining a new function
which has the effect of setting the coefficients of the un-
knowns equal on the right-hand side of the transformed
equation. The required transformation is

	̂n�s� = 	 ŵ+�s�
ŵ−�s�


n/2

v̂n�s� , �3.6�

so that the v̂n�s� now satisfy

v̂n�s� = 
n,0 + �ŵ+�s�ŵ−�s��v̂n−1�s� + v̂n+1�s�� . �3.7�

This can be solved by introducing the generating func-
tion

V̂��,s� = �
n=−�

�

v̂n�s�ein�. �3.8�

By multiplying both sides of Eq. �3.7� by exp�in�� and sum-

ming we see that V̂�� ,s� satisfies

V̂��,s� = 1 + 2�ŵ+�s�ŵ−�s� cos �V̂��,s� , �3.9�

whose solution is

V̂��,s� =
1

1 − 2�ŵ+�s�ŵ−�s� cos �
. �3.10�

We use this solution to find v̂n�s�

v̂n�s� =
1

2�
�

−�

�

V̂��,s�e−in�d�

=
1

�1 − 4ŵ+�s�ŵ−�s�	2�ŵ+�s�ŵ−�s�

K̂�s�

�n�

. �3.11�

The combination of Eqs. �3.3� and �3.6�, and this last equa-

tion leads to the final result for P̂n�s� cited in Eq. �2.2�.
Note that the generalized fluctuation theorem in Eq. �2.5�

is an immediate consequence of the transformation in Eq.
�3.6�. By substituting 	̂n�s� in this equation into Eq. �3.3�, we
obtain

P̂n�s� =
1

s
	 ŵ+�s�

ŵ−�s�

n/2

�1 − ŵ+�s� − ŵ−�s��v̂n�s� . �3.12�

The generalized fluctuation theorem is a consequence of this
expression and the fact that v̂n�s�= v̂−n�s�.

B. Laplace transform of the first two moments
of displacement

The definitions of Laplace transforms of the moments of
displacements are given in Eqs. �2.6� and �2.7�. Performance
of the necessary calculations is straightforward since the

n-dependence of P̂n�s� in Eq. �2.2� is relatively simple. To
evaluate the sums, we define the two functions

Ĉ��s� = 2ŵ��s�/K̂�s� . �3.13�

In terms of these, we find

n̂�s�� = ��
n=1

�

n�Ĉ+
n�s� − Ĉ−

n�s���P̂0�s� . �3.14�

The sums are elementary and lead to the intermediate result

n̂�s�� =
�Ĉ+�s� − Ĉ−�s���1 − Ĉ+�s�Ĉ−�s��

��1 − Ĉ+�s���1 − Ĉ−�s���2
P̂0�s� . �3.15�

The final result given in Eq. �2.6� is obtained by substituting
the detailed expressions for the functions appearing on the
right-hand side of this equation.

The long-time behavior of n�t�� is found by expanding
n̂�s�� in Eq. �2.6� in a power series in s assuming that s
→0. This can be done using the expansion of ŵ��s� to the
second order in s

ŵ��s� = W��̂��s� � W��1 − ���s + ��
2 �

s2

2
� . �3.16�

The singular behavior of n̂�s�� at s=0 can be used to deter-
mine the long-time behavior of n�t��.26 Eventually, we ar-
rive at the expansion

n̂�s�� �
W+ − W−

s2��
−

1

s��	W+�+� − W−�−�

+ �W+ − W−�
�2�
2��
 . �3.17�

An inversion of this leads us to n�t�� in Eq. �2.10�.
The Laplace transform of n2�t�� given in Eq. �2.7� can

be obtained by a technique similar to that used to derive
n̂�s��. After expanding n̂2�s�� in a power series in s and
inverting the result one can derive the large-t behavior of
n2�t��, from which the expression for Deff given in Eq.
�2.13� is a consequence.

C. Effects of an absorbing site: Survival probability
and mean lifetime

The result for Ŝ�s �n0� in Eq. �2.17� is based on the ex-

pression in Eq. �2.16�, which gives P̂abs�n ,s �n0� in terms of
the transform of the propagator for an infinite space in Eq.
�2.2�,

Ŝ�s�n0� = �
n=1

�

P̂n−n0
�s� − 	 ŵ−�s�

ŵ+�s�

n0

�
n=1

�

P̂n+n0
�s� . �3.18�

By making use of the Laplace transform of the normalization
condition for Pn�t� in this expression, we obtain

Ŝ�s�n0� =
1

s
− �

n=n0

�

P̂−n�s� − 	 ŵ−�s�
ŵ+�s�


n0

�
n=n0+1

�

P̂n�s� . �3.19�

The sums in this equation have an easily summable form as
seen from Eq. �2.2� and lead to the result in Eq. �2.17�.

Our final results are those given in Eq. �2.19�. We use the
fact that f�t �n0�=−dS�t �n0� /dt so that the Laplace transform
of f�t �n0� is
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f̂�s�n0� = 1 − sŜ�s�n0� = 	2ŵ−�s�

K̂�s�

n0

, �3.20�

which may be substituted into the Laplace transform of Eq.
�2.18� to find the result in Eq. �2.19�.
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