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A particle diffusing in a tube with dead ends, from time to time enters a dead end, spends some time
in the dead end, and then comes back to the tube. As a result, the particle spends in the tube only
a part of the entire observation time that leads to slowdown of its diffusion along the tube. We study
the transient diffusion in a tube with periodic identical dead ends formed by cavities of volume Vcav

connected to the tube by cylindrical channels of length L and radius a, which is assumed to be much
smaller than the tube radius R and the distance l between neighboring dead ends. Assuming that the
particle initial position is uniformly distributed over the tube, we analyze the monotonic decrease of
the particle diffusion coefficient D�t� from its initial value D�0�=D, which characterizes diffusion
in the tube without dead ends, to its asymptotic long-time value D���=Deff�D. We derive an

expression for the Laplace transform of D�t�, denoted by D̂�s�, where s is the Laplace parameter.
Although the expression is too complicated to be inverted analytically, we use it to find the
relaxation time of the process as a function of the geometric parameters of the system mentioned
above. To check the accuracy of our results, we ran Brownian dynamics simulations and found the
mean squared displacement of the particle as a function of time by averaging over 5�104

realizations of the particle trajectory. The time-dependent mean squared displacement found in
simulations is compared with that obtained by numerically inverting the Laplace transform of the

mean squared displacement predicted by the theory, which is given by 2D̂�s� /s. Comparison shows
excellent agreement between the two time dependences that support the approximations used when
developing the theory. © 2007 American Institute of Physics. �DOI: 10.1063/1.2805068�

I. INTRODUCTION

This paper deals with diffusion of a particle in a tube
with periodic identical dead ends separated by the distance l,
as shown in Fig. 1. A dead end is formed by a cavity of
volume Vcav connected to the tube by a cylindrical channel of
length L and radius a. The presence of dead ends slows down
the diffusion along the tube compared to that in the ordinary
tube. This happens because the particle interrupts its motion
along the tube when it enters in a dead end. The major focus
of this paper is on the transient behavior of the diffusion
coefficient D�t�, assuming that the particle is in the tube at
t=0, and the distribution of its initial position is uniform
over the tube. As t goes from zero to infinity, D�t� monotoni-
cally decreases from D to Deff, where D is the particle diffu-
sion constant in the tube without dead ends and Deff is the

effective diffusion constant in the tube with dead ends. While
it is easy to find Deff, analysis of the transient behavior of
D�t� is a much more complicated problem.

Effect of dead ends on diffusion has been discussed
when analyzing diffusive transport in different biological
processes. Examples include transport in dendrites,1,2 extra-
cellular diffusion in brain tissue,3–7 and intratissue diffusion
of water and other substances in muscle.8–10 Another field,
where dead ends play an important role, is diffusive transport

a�Electronic mail: ldagdug@helix.nih.gov.
FIG. 1. A tube with identical dead ends located at regular intervals. A dead
end is formed by a cavity connected to the tube by a narrow channel.
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in soil.11–14 The first approximate theory of non-steady-state
diffusion in a linear porous medium with dead ends was
suggested by Goodknight et al.15 We discuss the relation
between our approach to the problem and that by Goodnight
et al. in Section V. A rigorous formulation of the theory
based on the eigenfunction expansion was suggested by Sen
et al.16 To find the eigenfunctions, one has to solve the ei-
genvalue problem in three dimensions. Unfortunately, for a
tube with dead ends, this problem is unsolvable because of
the geometrical complexity. In the theory developed in this
paper, we suggest a new approximate approach which allows
us to overcome the difficulties.

Our analysis is based on the assumption that the channel
radius is small compared to the tube radius R and the dis-
tance l, a�R , l, while L and Vcav can be arbitrary. We define
the time-dependent diffusion coefficient for a particle ini-
tially at x=x0, D�t �x0�, in terms of the mean squared dis-
placement of this particle along the tube, ��x2�t �x0��. This
quantity linearly grows with time when the particle is in the
tube and does not change when the particle is in a dead end.
Introducing the probability of finding the particle in the tube
at time t, P�t �x0�, we can write

D�t�x0� =
1

2

d��x2�t� + x0��
dt

= DP�t�x0� . �1.1�

The probability P�t �x0� varies from unity at t=0, P�0 �x0�
=1, to its equilibrium value as t→�, P�� �x0�= Peq,

P���x0� = Peq =
Vtube

Vtube + Vde
, �1.2�

where Vtube and Vde are volumes of the tube and the dead end
given by Vtube=�R2l and Vde=Vch+Vcav with the channel
volume Vch=�a2L. Respectively, D�t �x0� is equal to D at t
=0 and Deff,

Deff = DPeq = D
Vtube

Vtube + Vde
, �1.3�

as t→�.
Thus, the problem of finding D�t �x0� is reduced to that

of finding probability P�t �x0�. To calculate D�t�, we have to
average D�t �x0� over x0,

D�t� =
1

l
�

−l/2

l/2

D�t�x0�dx0 = DP�t� , �1.4�

where P�t� is the probability of finding the particle in the
tube at time t averaged over the particle initial position x0,

P�t� =
1

l
�

−l/2

l/2

P�t�x0�dx0. �1.5�

One of the main results of this paper is an exact solution for
the Laplace transform of P�t�. This transform is too compli-
cated to be inverted analytically. Nevertheless, we use it to
find a relaxation time �rel that provides a natural time scale
characterizing relaxation of D�t� from D to Deff. We derive
an expression which gives �rel as a function of the geometric
parameters, a, R, l, L, and Vcav, as well as the particle diffu-
sion constants in the tube and in the channel, Dch, which may

be much smaller than D. It is assumed that the particle dif-
fusion constant in the cavity is equal to that in the tube.

The outline of the paper is as follows. Main general
results of our analysis are presented in the next section. In
Sec. III, we introduce the relaxation function and use it to
find the relaxation time. Illustrative examples are discussed
in Sec. IV. In this section, we show that our theoretical pre-
dictions are in excellent agreement with the results obtained
in Brownian dynamics simulations. This supports the ap-
proximations, which we use when developing the theory. In
Sec. V, we discuss the relation between our approach and the
Goodnight-Klikoff-Fatt �GKF� approach proposed in Ref.
15. We show that the GKF approach is a particular case of
the more general approach proposed in this paper and indi-
cate the conditions of its applicability. A summary of this
study is given in the last section.

II. GENERAL RESULTS

In this section, we present our general results and outline
their derivation. Because the system under consideration is
periodic, we can analyze the probability P�t �x0� by consid-
ering the particle motion within a unit cell of the periodic
structure with reflecting boundaries at its ends, as shown in
Fig. 2�a�. The problem is too complicated to be solved ana-
lytically by means of conventional methods of mathematical
physics16 because of the nontrivial three-dimensional �3D�
geometry. A key step of our analysis, which allows us to
solve the problem, is a replacement of the unsolvable 3D
problem by an equivalent one-dimensional �1D� problem,
shown in Fig. 2�b�, that can be solved with relative ease.

The equivalent problem describes the particle motion in
the tube as 1D diffusion in the x direction on an interval of
length l with reflecting endpoints. The dead end is modeled
as a reversible binding site located in the center of the inter-
val. Entrance on the site is described by a delta sink of the
amplitude �,

� =
4Da

�R2 , �2.1�

in the 1D diffusion equation.17 After spending some time in
the dead end the particle returns to the tube. The time spent

FIG. 2. A unit cell of the periodic structure shown in Fig. 1 with reflecting
boundaries at the ends of the cell �panel a� and the equivalent 1D problem
with a reversible binding site representing the dead end �panel b�.
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in the dead end is a random variable. We describe its distri-
bution by the probability density 	de�t�. For the sake of con-
venience, we have placed the binding site at the origin, x
=0, and the reflecting endpoints of the interval at x= ± l /2.

Replacement of the initial 3D problem �Fig. 2�a�� by the
equivalent 1D problem �Fig. 2�b�� is an approximation which
is justified only on the condition that a�R , l. We discuss the
approximations used in our analysis in detail at the end of
this section. To validate the approximations, we ran Brown-
ian dynamics simulations and found excellent agreement be-
tween the theoretical predictions and numerical results. This
is discussed in Sec. IV.

We begin with establishing a relation between the
Laplace transforms of the probabilities P�t �x0� and P�t �0�.
The latter may be considered as the probability of finding a
particle in the tube at time t after it escaped from the dead
end at t=0. To find the relation, we introduce the probability
density for the first passage time from x0 to the origin,
w�t �x0�, and the probability that the particle, initially at x0,
has never touched the origin for time t, W�t �x0�,

W�t�x0� = �
t

�

w�t��x0�dt�. �2.2�

We use these two functions to write the integral equation
which relates P�t �x0� and P�t �0�,

P�t�x0� = W�t�x0� + �
0

t

P�t − t��0�w�t��x0�dt�. �2.3�

Laplace transforming this equation and using the relation

Ŵ�s�x0� =
1

s
�1 − ŵ�s�x0�� , �2.4�

which follows from Eq. �2.2�, we obtain

P̂�s�x0� =
1

s
�1 − ŵ�s�x0�� + ŵ�s�x0�P̂�s�0� . �2.5�

This allows us to find a relation between the Laplace

transform of P�t� defined in Eq. �1.5� and P̂�s �0� by averag-
ing Eq. �2.5� over the starting position x0,

P̂�s� =
1

s
�1 − ŵ�s�av�� + ŵ�s�av�P̂�s�0� , �2.6�

where ŵ�s �av� is the average of ŵ�s �x0�,

ŵ�s�av� =
1

l
�

−l/2

l/2

ŵ�s�x0�dx0. �2.7�

A derivation of ŵ�s �av�, outlined in Appendix A, leads to

ŵ�s�av� =
2

l
	D

s
tanh
 l

2
	 s

D
� . �2.8�

Function P̂�s �0� can be found by solving a two-state
problem of the particle transitions between the tube and the
dead end,

tube � dead end. �2.9�

In general, the transitions are non-Markovian and the prob-
ability densities for the particle lifetime in the tube 	tube�t�
and in the dead end 	de�t� are not single exponentials. Deri-
vations of 	̂tube�s� and 	̂de�s� outlined in Appendices B and
C, respectively, lead to

	̂tube�s� =
1

1 +
2	sD

�
tanh
 l

2
	 s

D
�

=
1

1 +
�R2

2a
	 s

D
tanh
 l

2
	 s

D
�

=
1

1 +
Vtube

4Da
sŵ�s�av�

�2.10�

and

	̂de�s� =

�s + kcav�cosh
L	 s

Dch
� + �ch	 s

Dch
sinh
L	 s

Dch
�

�2s + kcav�cosh
L	 s

Dch
� + �ch	 s

Dch
�1 +

Dch

�ch
2 �s + kcav�
sinh
L	 s

Dch
� . �2.11�

Here, kcav and �ch are given by18,19

kcav =
4Da

Vcav
, �ch =

4D

�a
. �2.12�

In Eq. �2.10�, we have used the expression for � given in Eq.
�2.1�.

According to the kinetic scheme in Eq. �2.9�, the prob-
ability P�t �0� satisfies the linear integral equation

P�t�0� = Stube�t�

+ �
0

t

dt1	tube�t1��
0

t−t1

P�t − t1 − t2�0�	de�t2�dt2,

�2.13�

where we have introduced the particle survival probability in
the tube Stube�t�,
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Stube�t� = �
t

�

	tube�t��dt�. �2.14�

Laplace transforming Eq. �2.13� and solving the resultant
linear equation, we obtain

P̂�s�0� =
1 − 	̂tube�s�

s�1 − 	̂tube�s�	̂de�s��
. �2.15�

Finally, we use Eq. �1.4� and the results in Eqs. �2.6� and
�2.15� to write the Laplace transform of the ratio D�t� /D as

D̂�s�
D

= P̂�s� =
1

s
�1 − ŵ�s�av�

	̂tube�s��1 − 	̂de�s��
1 − 	̂tube�s�	̂de�s� � .

�2.16�

The Laplace transform in Eq. �2.16� is one of the main
results of this paper. One can find transient behavior of D�t�
inverting this transform. The illustrative example discussed
in Sec. IV shows that our theoretical predictions are in ex-
cellent agreement with the results obtained in Brownian dy-
namics simulations. In general, the transform can be inverted
only numerically. However, one can use the transform to find
the mean relaxation time, which provides a natural time scale
that characterizes transition of D�t� from D to Deff. This is
done in the next section.

The theory leading to the expression for P̂�s� in Eq.
�2.16� has been developed in two steps. First, we establish an

exact relation between P̂�s� and P̂�s �0� �Eq. �2.6��. Then, we

find an exact solution for P̂�s �0� �Eq. �2.15�� by analyzing
the two-state problem �Eq. �2.9��, which leads to the integral
equation in Eq. �2.13�. The exact result in Eq. �2.16� is ob-

tained when we substitute P̂�s �0� given in Eq. �2.15� into Eq.

�2.6�. The expression in Eq. �2.16� gives P̂�s� in terms of
functions ŵ�s�, 	̂tube�s�, and 	̂de�s� defined in Eqs. �2.8�,
�2.10�, and �2.11�, respectively. Only one of these three func-
tions is an exact solution, namely, ŵ�s� in Eq. �2.8�. Three
different approximations are used in Appendices B and C
when deriving 	̂tube�s� and 	̂de�s� given in Eqs. �2.10� and
�2.11�. �i� When deriving 	̂tube�s�, we describe the entrance
of a particle diffusing in the tube into a narrow connecting
channel, a�R , l, by introducing a delta sink into the diffu-
sion equation �Eq. �B1��. �ii� We assume that the distribution
of the particle lifetime in the cavity is single exponential and
characterize this distribution by the rate constant kcav given
in Eq. �2.12�. �iii� When analyzing the particle motion in the
channel, we replace complex dynamics at the channel bound-
aries by the effective radiation boundary conditions �see Eqs.

�C1�–�C3��, containing the rate constant �ch given in Eq.
�2.12�. These three approximations have been suggested and
tested numerically in Refs. 17–19.

III. RELAXATION TIME

As t→�, P�t� and D�t� approach their asymptotic values
Peq and Deff given in Eqs. �1.2� and �1.3�, respectively. One

can see this from the small-s expansion of P̂�s� in Eq. �2.16�,

P��� = Peq = lim
s→0

sP̂�s� =
��tube�

��tube� + ��de�
=

Vtube

Vtube + Vde
,

�3.1�

where we have used the relations which we also use in our
further analysis,

	̂tube�s� � 1 − s��tube� +
s2

2
��tube

2 � , �3.2�

	̂de�s� � 1 − s��de� +
s2

2
��de

2 � , �3.3�

ŵ�s�av� � 1 − s��w� . �3.4�

Here, ��tube�, ��tube
2 � and ��de�, ��de

2 � are the first and second
moments of the particle lifetime in the tube and in the dead
end, respectively, and ��w� is the mean first passage time of
the particle to the origin averaged over its starting positions.
The last equality in Eq. �3.1� follows from the ergodicity of
the particle dynamics as well as from the expressions for
��tube� and ��de�, which can be obtained from Eqs. �2.10� and
�2.11�,

��tube� =
Vtube

4Da
=

�R2l

4Da
, ��de� =

Vde

4Da
=

Vcav + �a2L

4Da
.

�3.5�

It is convenient to describe the relaxation process by
means of the relaxation function R�t� given by

R�t� =
D�t� − Deff

D − Deff
=

P�t� − Peq

1 − Peq
. �3.6�

This function monotonically decreases from unity to zero as
t goes from zero to infinity. The relaxation time �rel can be
defined in terms of R�t� as

�rel = �
0

�

R�t�dt = R̂�s = 0� . �3.7�

Here, R̂�s� is the Laplace transform of R�t�, which can be

found by using the expression for P̂�s� in Eq. �2.16�,

R̂�s� =

P̂�s� −
1

s
Peq

1 − Peq
=

�1 − Peq��1 − 
̂tube�s�	̂de�s�� − ŵ�s�av�	̂tube�s��1 − 	̂de�s��
s�1 − Peq��1 − 	̂tube�s�	̂de�s��

. �3.8�

Substituting the expansions in Eqs. �3.2�–�3.4� into Eq. �3.8� and taking the limit s→0, we obtain
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�rel =

��tube���de
2 � + 2��de����tube�2 + ��w����tube� + ��de�� −

1

2
��tube

2 �

2��de����tube� + ��de��

. �3.9�

Using Eq. �2.10�, we find that

��tube
2 � = 2��tube����tube� + ��w�� , �3.10�

where the mean first passage time ��w� is given by

��w� =
l2

12D
. �3.11�

This can be obtained from the Laplace transform of the prob-
ability density ŵ�s �av� in Eq. �2.8�. The relation in Eq.
�3.10� allows us to write Eq. �3.9� as

�rel =
��tube���de

2 � + 2��w���de�2

2��de����tube� + ��de��
. �3.12�

Three out of the four moments entering into Eq. �3.12�
are given in Eqs. �3.5� and �3.11�. The unknown moment is
the second moment of the particle lifetime in the dead end,
��de

2 �. It can be found from 	̂de�s� in Eq. �2.11�. The result is

��de
2 � = 2��de�2�1 + 
Vcav

Vde
�2

+
4DL

�Dcha
�Vcav

Vde
+

1

3

Vch

Vde
�2
� . �3.13�

Thus, we can find �rel as a function of the geometric param-
eters a, R, l, L, and Vcav and the diffusion constants D and
Dch. This is another important result of this paper.

A. No connecting channels: L=0

In the absence of the connecting channel, L=0, transi-
tions from the dead end to the tube are Markovian, and Eq.
�3.13� simplifies and takes the form

��de
2 � = 4��de�2. �3.14�

As a consequence, Eq. �3.12� also simplifies and can be writ-
ten as

�rel =
��de��2��tube� + ��w��

��tube� + ��de�
=

1

2D

Vtube

a
+

l2

6
� Vcav

Vtube + Vcav
,

�3.15�

where we have used the expressions in Eqs. �3.5� and �3.11�
for the times ��tube�, ��de�, and ��w�, respectively, and the fact
that Vde=Vcav.

Capture of the particle diffusing in the tube by the dead
ends can be characterized by the dimensionless parameter
�=al /R2. When ��1, time ��tube� is much greater than time
��w�, ��tube�� ��w�, and the average distance passed by the
particle between successive captures significantly exceeds
distance l between neighboring dead ends. In this weak cap-
ture �wc� regime, the expression in Eq. �3.15� further simpli-
fies and takes the form

�rel
�wc� =

1

2Da

VcavVtube

Vcav + Vtube
. �3.16�

In the opposite, strong capture �sc� regime, ��1, we have
��tube�� ��w�, and a particle escaping from a dead end is re-
captured by the same dead end with probability close to
unity. In this regime, �rel in Eq. �3.15� takes the form

�rel
�sc� = ��w�

Vcav

Vcav + Vtube
=

l2

12D

Vcav

Vcav + Vtube
. �3.17�

The relaxation kinetics significantly simplifies and be-
comes single exponential when L=0 and ��1 �the weak
capture regime�. According to Eqs. �2.8�, �2.10�, and �2.11�
in this case, we have

ŵ�s�av�	̂tube�s� � 	̂tube�s� �
ktube

s + ktube
, �3.18�

	̂de�s� =
s + kcav

2s + kcav
, �3.19�

where we have introduced the rate constant ktube,

ktube =
l

�
=

Vtube

4Da
. �3.20�

Substituting the expressions in Eqs. �3.18� and �3.19� into
Eq. �3.8� we find that

R̂�s� =
1

s + �ktube + kcav�/2
�3.21�

and, hence,

D�t� = Deff + �D − Deff�exp�− �ktube + kcav�t/2� . �3.22�

In this case, the transitions in the kinetic scheme �Eq. �2.9��
are Markovian with the rate constants given by k�tube
→cav�=ktube /2 and k�cav→ tube�=kcav /2. The expressions
for k�tube→cav� and k�cav→ tube� become obvious if one
takes into account the fact that, sitting at the boundary sepa-
rating a cavity and the tube, a particle enters the tube or the
cavity with equal probability, 1 /2.

B. Infinitely long connecting channels: Anomalous
diffusion

As L→�, the relaxation time in Eq. �3.12� diverges,
while Deff in Eq. �1.3� vanishes. In this limiting case, it is
instructive to analyze the behavior of the mean squared dis-
placement ��x2�t �x0�� averaged over x0, which we denote as
��x2�t �av��,
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��x2�t�av�� =
1

l
�

−l/2

l/2

��x2�t�x0��dx0 = 2D�
0

t

P�t��dt�.

�3.23�

Here, we have used the relations in Eqs. �1.1� and �1.5�. The
Laplace transform of ��x2�t �av�� is given by

��x̂2�s�av�� = 2D
P̂�s�

s

=
2D

s2 �1 − ŵ�s�av�
	̂tube�s��1 − 	̂de�s��
1 − 	̂tube�s�	̂de�s� � .

�3.24�

One can find the small-s behavior of this Laplace transform
using Eqs. �2.8�, �2.10�, and �2.11�. Note that when L→�,
Eq. �2.11� simplifies and takes the form

	̂de�s� =
1

1 +
	sDch

�ch

=
1

1 +
�a	sDch

4D

, �3.25�

where we have used �ch given in Eq. �2.12�. Eventually, as
s→0, Eq. �3.24� takes the form

��x̂2�s�av�� =
2D��tube��ch

	Dchs
3/2 =

2DR2l

a2	Dchs
3/2 . �3.26�

This implies that the large-t behavior of the averaged mean
squared displacement is given by

��x2�t�av�� �
4R2lD

	�Dcha
2
	t, t → � . �3.27�

Thus, in this limiting case, we have anomalous diffusion,
��x2�t �av��� t
, with the exponent 
=1 /2. Such anomalous
diffusion was first discovered in studies of random walks on
comblike structures with infinitely long teeth �see the book
by Weiss20 and references therein�.

IV. ILLUSTRATIVE EXAMPLES

To illustrate the accuracy of our theory, we compare the
theoretically predicted ��x2�t �av�� with the time dependence
of the mean squared displacement averaged over x0 obtained
in Brownian dynamics simulations. This is done in Fig. 3 for
the following set of the parameters: D=1 /2, R= l=1, a
=0.1, L=0, and Rcav=2, where Rcav is the cavity radius and
we have assumed that the cavities are spherical. Note that for
this set of parameters, Deff is more than ten times smaller
than D, as follows from Eq. �1.3�. The theoretically predicted
dependence is shown in the figure by the solid curve, while
the small circles with error bars represent numerical results
obtained by averaging the mean squared displacement over
5�104 trajectories. The theoretical curve is obtained by nu-
merically inverting the Laplace transform of ��x2�t �av��
�Eq. �3.24��, in which functions ŵ�s �av�, 	̂tube�s�, and 	̂de�s�
are defined in Eqs. �2.8�, �2.10�, and �3.19�, respectively. The
insert in Fig. 3 shows the ratio D�t� /D= P�t� obtained by
numerically inverting the Laplace transform in Eq. �2.16�
with the same functions ŵ�s �av�, 	̂tube�s�, and 	̂de�s�.

Figure 3 shows that the theoretical curve is in excellent
agreement with the numerical results. For spherical cavities
of radius Rcav, the expression for the relaxation time in Eq.
�3.15� can be written as

�rel =
l2

2D

�

�
+

1

6
� 4Rcav

3

4Rcav
3 + 3R2l

. �4.1�

In our case, �=0.1 and �rel is about 30 dimensionless time
units. From the insert, one can see that �rel�30 provides a
reasonable time scale that characterizes relaxation of D�t�
from its initial value D to its asymptotic �t→�� value Deff.

In our first example, we considered the case of no con-
necting channels between the tube and the cavities �L=0�.
Now, we will discuss how the presence of connecting chan-
nels affects the particle diffusion in a tube with dead ends. In
Fig. 4, we compare ��x2�t �av�� in structures with the same
tubes and cavities but with channels of different lengths. The
dependences are obtained by numerically inverting the
Laplace transform in Eq. �3.24� with ŵ�s �av�, 	̂tube�s�, and
	̂de�s� given in Eqs. �2.8�, �2.10�, and �2.11�, respectively, for
the following set of the parameters: Dch=D=1 /2, R= l=1,
a=0.1, Rcav=2, where Rcav is the radius of the spherical cav-
ity, and L=0, 500, and �. The results for L=0, 1, 3, and �
are shown in the insert. When L=�, the expression for 	̂de�s�
in Eq. �2.11� simplifies and takes the form

	̂de�s� =
1

1 +
�a

4
	 s

D

. �4.2�

All curves have the same short-time limiting behavior,
��x2�t �av��=2Dt. Their large-t asymptotic behavior is differ-

FIG. 3. The mean squared displacement of the particle averaged over the
uniform distribution of its initial position in the tube as a function of time
for the following set of the parameters: D=1 /2, R= l=1, a=0.1, L=0, and
Rcav=2. The solid curve shows the dependence obtained by numerically
inverting the Laplace transform in Eq. �3.24�, in which functions ŵ�s �av�,
	̂tube�s�, and 	̂de�s� are defined in Eqs. �2.8�, �2.10�, and �3.19�, respectively,
while small circles with error bars represent the values found in Brownian
dynamics simulations. The dashed line shows the mean squared displace-
ment in the tube without dead ends. The insert shows the ratio D�t� /D
= P�t� obtained by numerically inverting the Laplace transform in Eq. �2.16�
with the same functions ŵ�s �av�, 	̂tube�s�, and 	̂de�s�. One can see that
Deff=D��� is more than ten times smaller than D. One can also see that the
expression in Eq. �4.1�, leading to �rel�30, provides a reasonable time scale
which characterizes the relaxation of D�t� from D to Deff.
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ent, ��x2�t �av��=2Defft, with Deff given in Eq. �1.3� for sys-
tems with finite length of the channel, and ��x2�t �av��
= �4R2l /a2�	Dt /� when L=�, �cf. Eq. �3.27��.

The figure shows that although the curve corresponding
to L=0 wins at large times, it goes below the curves corre-
sponding to nonzero length of the channel in the initial stage
of the process. To rationalize this complex behavior, we note
that the mean squared displacement in Eq. �3.23� can be
written in terms of the mean time spent in the tube by a
diffusing particle observed for time t; the particle initial po-
sition is uniformly distributed over the tube. Introducing the
notation �ttube�t�� for this time,

�ttube�t�� = �
0

t

P�t��dt�, �4.3�

we can write Eq. �3.23� as

��x2�t�av�� = 2D�ttube�t�� . �4.4�

Based on this equation, we infer that Fig. 4 shows that the
longer the channel is, the more time the particle spends in the
tube in the initial stage of the process is. To explain this
observation, we indicate that a particle entering a cylindrical
channel of radius a and length L traverses the channel and
exits on the opposite side with probability Ptr given by21

Ptr =
1

2 +
4DL

�Dcha

. �4.5�

This probability is a monotonically decreasing function of L.
Thus, the larger L is, the higher the chance that a particle

entering the channel from the tube returns to the tube is. This
is why the particle spends more time in the tube in the initial
stage of the relaxation process in the systems with longer
channels.

V. COMPARISON WITH THE GKF APPROACH

In this section, we discuss the relation between our ap-
proach and the GKF approach suggested in Ref. 15. For this
purpose, we consider the propagator of a particle that starts
from the point x=x0 located in the tube, −��x0��, at t
=0. At time t, this particle can be found either in the tube or
in one of the dead ends. Therefore, the propagator is a two-
component vector, whose components are denoted by
gi�x , t �x0�, i=1,2. The first component, g1�x , t �x0�, is the
probability density of finding the particle at point x in the
tube at time t. The second component, g2�x , t �x0�
=g2�nl , t �x0�, is the probability of finding the particle at time
t in the nth dead end, and we do not specify the particle
position inside the dead end. The two components satisfy

�g1�x,t�x0�
�t

= D
�2g1�x,t�x0�

�x2 − �
n=−�

�

��x − nl�
�g2�x,t�x0�

�t
,

�5.1�

�g2�x,t�x0�
�t

= ��g1�x,t�x0� − �
0

t

	de�t − t��g1�x,t��x0�dt�
 ,

�5.2�

where � is the sink force defined in Eq. �2.1�. The last term
in Eq. �5.1� describes the particle transitions between the
tube and the dead ends. Equation �5.2� is the conservation
equation for the probability of finding the particle in the dead
end located at x=nl.

An equivalent set of equations obtained in the frame-
work of the GKF approach has the form

�g1
GKF�x,t�x0�

�t
= D

�2g1
GKF�x,t�x0�

�x2 −
1

l

�g2
GKF�x,t�x0�

�t
,

�5.3�

�g2
GKF�x,t�x0�

�t
= −

�a2Dch

L
�g2

GKF�x,t�x0�
Vde

−
g1

GKF�x,t�x0�
�R2 
 .

�5.4�

We will see that these equations are a special case of the
more general Eqs. �5.1� and �5.2�. The former can be recov-
ered from the latter when �i� �=al /R2�1 �the weak capture
regime� and �ii� the parameters of the dead end satisfy
aDch�LD and Vch=�a2L�Vcav.

To show this, we use the fact that in the weak capture
regime, the length scale associated with variation of the
propagator is much greater than l on times larger than l2 /D.
This allows one to reduce Eq. �5.1� to the form identical to
that in Eq. �5.3�. Next, we note that when the channel length
satisfies aDch /D�L�Vcav /a2, 	̂de�s� in Eq. �2.11� can be
approximately written as

FIG. 4. The mean squared displacement of the particle averaged over the
uniform distribution of its initial position in the tube as a function of time
for the following set of the parameters: Dch=D=1 /2, R= l=1, a=0.1, Rcav

=2, where Rcav is the radius of the spherical cavity, and L=0, 500, and �.
The results for L=0, 1, 3, and � are shown in the insert. The curves are
obtained by numerically inverting the Laplace transform in Eq. �3.24� with
ŵ�s �av�, 	̂tube�s�, and 	̂de�s� given in Eqs. �2.8�, �2.10�, and �2.11�, respec-
tively. When L=�, we use 	̂de�s� given in Eq. �2.11�. The solid and dashed
curves correspond to L=0 and L=�, respectively. The dashed-dotted curve
corresponds to L=500, while the dotted and dashed-double-dotted curves in
the insert correspond to L=3 and L=1, respectively. One can see that the
longer the channel is, the larger the mean squared displacement in the initial
stage of the process is. The reason is that the particle spends more time in
the tube in systems with longer channels in the initial stage.
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	̂de�s� �
s�1 − Ptr� + kcavPtr

s + kcavPtr
, �5.5�

where Ptr is the translocation probability given in Eq. �4.5�
which, in the case under consideration, is

Ptr �
�Dcha

4DL
� 1. �5.6�

Note that when L=0, Ptr=1 /2 and Eq. �5.5� reduces to Eq.
�3.19�. Inverting the Laplace transform in Eq. �5.5�, we ob-
tain

	de�t� � �1 − Ptr���t� + kcavPtr
2 exp�− kcavPtrt� . �5.7�

Substituting this into Eq. �5.2�, we arrive at

�g2�x,t�x0�
�t

= �Ptr�g1�x,t�x0� − kcavPtr

��
0

t

exp�− kcavPtr�t − t���g1�x,t��x0�dt�
 ,

�5.8�

which is identical to Eq. �5.4�. One can easily see this by
comparing the Laplace transforms of the two equations.

The single-exponential approximation of 	de�t� �Eq.
�5.7�� is justified when the translocation probability for a
particle entering the channel is small, and the time which the
particle spends in the channel can be neglected. In this case,
the GKF approach provides the approximation which leads
to the single-exponential transient behavior of D�t�,

DGKF�t� = Deff + �D − Deff�RGKF�t� , �5.9�

with

RGKF�t� = exp�− t/�rel
GKF� , �5.10�

where the GKF relaxation time �rel
GKF is given by

1

�rel
GKF = 
kcav +

�

l
�Ptr �

�a2Dch

L

 1

Vcav
+

1

Vtube
� . �5.11�

To summarize, the GKF approach suggests an approxi-
mation which is applicable in the weak capture regime when
the particle translocation probability through the channel is
small and the time spent in the channel can be neglected. The
approach fails when these conditions do not hold �for ex-
ample, when L→0 or ��. In such a situation, one has to use
the more general approach based on Eqs. �5.1� and �5.2�.

VI. SUMMARY

To summarize in this paper, we have analyzed the tran-
sient behavior of D�t� for a particle diffusing in a tube with
dead ends shown in Fig. 1. Our goal was to establish a rela-
tion between the transient behavior and the geometric param-
eters of the system, R, l, a, L, and Vcav, as well as the diffu-
sion constants D and Dch. Two main results of our analysis
are given in Eqs. �2.16� and �3.12�. The former gives the
Laplace transform of D�t� in terms of the functions ŵ�s �av�,
	̂tube�s�, and 	̂de�s� defined in Eqs. �2.8�, �2.10�, and �2.11�,
respectively. The latter gives the relaxation time as a function

of the moments, ��w�, ��tube�, ��de�, and ��de
2 �, which are ex-

pressed in terms of the geometric parameters and the diffu-
sion constants in Eqs. �3.5�, �3.11�, and �3.13�, respectively.
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APPENDIX A: DERIVATION OF Eq. „2.8…

Consider a particle diffusing on the interval of length
l /2, 0�x� l /2, terminated by an absorbing endpoint at x
=0 and reflecting endpoint at x= l /2. The particle starts from
x=x0, and its propagator G�x , t �x0� satisfies the diffusion
equation

�G

�t
= D

�2G

�x2 , 0 � x � l/2, �A1�

the initial condition G�x ,0 �x0�=��x−x0�, and the boundary
condition

G�0,t�x0� =� �G�x,t�x0�
�x

�
x=l/2

= 0. �A2�

The probability density for the particle lifetime, which is the
probability density for its first passage time to the absorbing
boundary, w�t �x0� is given by

w�t�x0� =�D
�G�x,t�x0�

�x
�

x=0
. �A3�

To find the Laplace transform of w�t �x0�, we first find the
Laplace transform of the propagator by solving Eq. �A1� in
the Laplace space. Then, using the definition in Eq. �A3�, we
obtain

ŵ�s�x0� =

cosh

 l

2
− x0�	 s

D
�

cosh
 l

2
	 s

D
� . �A4�

Averaging this expression over the starting points x0, 0�x0

� l /2, we arrive at the expression in Eq. �2.8�.

APPENDIX B: DERIVATION OF Eq. „2.10…

Consider a particle diffusing on the interval of length l,
−l /2�x� l /2, terminated by reflecting endpoints at x
= ± l /2. The interval contains a delta sink of the strength �
located at the origin. The particle starts from the origin, x
=0, and its propagator G�x , t� satisfies the diffusion equation

224712-8 Dagdug et al. J. Chem. Phys. 127, 224712 �2007�

Downloaded 14 Dec 2007 to 128.231.88.5. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



�G

�t
= D

�2G

�x2 − ���x�G, − l/2 � x � l/2, �B1�

the initial condition G�x ,0�=��x�, and the boundary condi-
tion

� �G�x,t�
�x

�
x=±l/2

= 0. �B2�

The probability density for the particle lifetime in the tube
	tube�t� is given by

	tube�t� = �G�0,t� . �B3�

To find the Laplace transform of 	tube�t� given in Eq. �2.10�,
we first find the Laplace transform of the propagator Ĝ�0,s�
by solving Eq. �B1� in the Laplace space, and then use the
definition in Eq. �B3�.

APPENDIX C: DERIVATION OF Eq. „2.11…

Consider a particle entering a dead end channel from the
tube at t=0. We take that the channel is parallel to the z axis,
and its exits at z=0 and L, connects the channel with the tube
and cavity, respectively. If the particle does not escape from
the dead end for time t, it can be found either in the channel
or in the cavity. Therefore, the particle propagator in the dead
end is a two-component vector: Its first component, G�z , t�,
is the probability density of finding the particle at point z of
the channel at time t, while the second component, P�t�, is
the probability of finding the particle in the cavity. The two
components satisfy

�G

�t
= Dch

�2G

�z2 − ��z − L���chG − kcavP�, 0 � z � L ,

�C1�

dP�t�
dt

= − kcavP�t� + �chG�L,t� , �C2�

the initial conditions G�z ,0�=��z�, P�0�=0, and the bound-
ary conditions

�Dch
�G�z,t�

�z
�

z=0
= �chG�0,t�, � �G�z,t�

�z
�

z=L
= 0. �C3�

The probability density for the particle lifetime in the dead
end 	de�t� is given by

	de�t� = �chG�0,t� . �C4�

To find the Laplace transform of 	de�t� given in Eq. �2.11�,
we first find the Laplace transform of G�0, t� by solving Eqs.
�C1� and �C2� in the Laplace space, and then use the defini-
tion in Eq. �C4�.
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