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Abstract

In the United States cancer as a whole is the second leading cause

of death and a major burden to health care, thus the medical progress

against cancer is a major public health goal. There are many individ-

ual studies to suggest that cancer treatment breakthroughs and early

diagnosis have significantly improved the prognosis of cancer patients.

To better understand the relationship between medical improvements

and the survival experience for the patient population at large, it is

useful to evaluate cancer survival trends on the population level, e.g.,

to find out when and how much the cancer survival rates changed. In
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this paper, we analyze the population-based grouped cancer survival

data by incorporating joinpoints into the survival models. A joinpoint

survival model facilitates the identification of trends with significant

change points in cancer survival, when related to cancer treatments

or interventions. The Bayesian Information Criterion is used to select

the number of joinpoints. The performance of the joinpoint survival

models is evaluated with respect to cancer prognosis, joinpoint loca-

tions, annual percent changes in death rates by year of diagnosis, and

sample sizes through intensive simulation studies. The model is then

applied to the grouped relative survival data for several major cancer

sites from the Surveillance, Epidemiology and End Results (SEER)

Program of the National Cancer Institute. The change points in the

survival trends for several major cancer sites are identified and the

potential driving forces behind such change points are discussed.

KEY WORDS: Annual percentage change, BIC, relative survival, join-

point model, proportional hazards, SEER.

1 INTRODUCTION

In recent decades, there has been considerable progress against cancer due

to improvement in treatment, the development of cancer prevention, and

the dissemination of early diagnosis and cancer screening techniques. These

medical advances improved both the quality of life and the length of survival,

permitting many survivors to continue full and productive lives. Joinpoint
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models (Kim et al. 2000) have been used to characterize cancer trends and

progress as connected linear segments. The Cancer Statistics Review (Ries

et al. 2006), an annual publication of the NCI, reports the trends of cancer

incidence and mortality rates, using the joinpoint models. First issued in

1998, the Annual Report to the Nation, a collaboration among the NCI, the

Centers for Disease Control and Prevention (CDC), the American Cancer

Society (ACS), and the North American Association of Central Cancer Reg-

istries (NAACCR), also provides updated information on cancer incidence

and mortality rates in the United States obtained from the joinpoint models.

These trends help in understanding the impact of cancer control and inter-

ventions on cancer incidence and mortality. However, there is no analogous

method for reporting trends in cancer survival, which is also an important

measure for monitoring and evaluating the impact of early diagnosis and

treatment breakthroughs.

Medical breakthroughs impact survival of patients diagnosed in a specific

time frame. Including the joinpoints into the survival models enables us to

identify and evaluate the impact of important medical breakthroughs. Feuer

et al. (1991) and Weller et al. (1999) have modeled the impact of treatment

breakthroughs on survival in testicular cancer and Hodgkins disease using

joinpoint regression. In their work two joinpoints occur when a medical

development is changing survival as a function of the year of diagnosis; the

first joinpoint when the intervention is introduced, and the second one is

when survival levels off, indicating the end of dissemination through the

population. However, they only assumed a fixed number of joinpoints and do
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not solve the more general problem of determining the number of joinpoints.

The Surveillance, Epidemiology, and End Results (SEER) Program of

the NCI is an authoritative source of information on cancer incidence and

survival in the U.S. SEER currently collects and publishes cancer incidence

and survival data from population-based cancer registries, now covering ap-

proximately 26 percent of the US population. In this article, we extend the

use of the joinpoint model to the grouped survival data from the SEER Pro-

gram. Hence, the results are representative of the general population in the

U.S. The main goal of the Joinpoint survival model (JPSM) is to describe

the trends in cancer survival, i.e., to find out when the cancer survival starts

to improve; and, if there is a leveling off of such realized improvement, how

much of an improvement was finally attained.

The rest of the paper is organized as follows. In Section 2, we propose the

JPSM for population-based grouped cancer survival data, and describe the

estimation method and the model selection criteria. While mainly developed

for population-based grouped survival data, the method could also be applied

to any arbitrary interval-censored survival data. Extensive simulation studies

are carried out to assess the performance of the JPSMs in Section 3. In

Section 4, the JPSMs are applied to the grouped cancer survival data for

several major cancer sites from the SEER Program. Finally, the advantages

and the utilities of the JPSMs are discussed.
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2 JOINPOINT SURVIVAL MODEL

Let x be the calendar time, which reflects the possible change point of cancer

survival trends. In cancer survival studies, the survival time is usually defined

as the time from diagnosis to death. We assume that the hazard rate of dying

at time t follows a proportional hazards model with

λ(t|x) = λ0(t) exp{h(x)}, (1)

where λ0(t) is the baseline hazard and

h(x) = βx +
K∑

k=1

δk(x− τk)
+ + γ

′
z, (2)

indicates the trend of survival with respect to calendar time x. Here, u+ = u

if u > 0 and = 0 otherwise. Throughout the paper, we use x to denote the

year of diagnosis. The other covariates z, e.g., race, sex, and comorbidity

status, can also be included in h(x). For simplicity, we omit the covariate z

from now onwards. In the model, the regression parameters are β, δ1, ..., δK.

The τ1, ..., τK are called the joinpoints because the function h(x) is contin-

uous at, but has different slopes before and after, τ1, ..., τK. The continuity

constraint on h(x) at the joinpoints is more realistic as the effect of the new

treatment or intervention on the hazard rate usually takes place gradually.

We call the survival model, with h(x) defined as in (2), a K-joinpoint JPSM.

There are a total of (K + 1) segments, and for the k-th segment, the slope

coefficient is βk = β +
∑k−1

l=1 δl, k = 1, ...,K + 1.

The baseline hazard λ0(t) can be modeled, for example, by a time-dependent

function such as regression spline (Rosenberg 1995). Some authors have con-
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sidered modeling λ0(t) using one discontinuous change point, see, for exam-

ple, Liang et al. (1990), Luo et al. (1997) and Lim et al. (2002), among

others. Recently, Goodman et al. (2006) considered a multiple change point

model and a multiple joinpoint model for the baseline hazard. So far, there

is no literature on the multiple joinpoint models for the survival trends.

Therefore, rather than focus on change points in the baseline hazard, we are

interested in modeling the trend in cancer survival by introducing joinpoints

following the calendar time of cancer diagnosis. For the population-based

cancer survival data, e.g., the SEER survival data, the survival times after

diagnosis are usually grouped into intervals Ij = [tj−1, tj), j = 0, ..., J , where

t0 = 0, and tJ is the end of the follow-up. We call it grouped survival data.

The death rate during the interval Ij given that a patient is alive at the

beginning of the interval is

λj(x) = P (T < tj|T ≥ tj−1;x) = 1 − S(tj|x)

S(tj−1|x)
, j = 1, ..., J. (3)

Under the proportional hazards assumption, the survival function is given by

S(t|x) = S0(t)
exp{h(x)}, (4)

where S0(t) is the baseline survival function, and

log
{
− log

[
1 − λj(x)

]}
= log

{
− log

[ S0(tj)

S0(tj−1)

]}
+ h(x). (5)

Let αj = log
{
− log

[
S0(tj)

S0(tj−1)

]}
. Then, the baseline survival function can be

expressed as S0(tj) = exp[−∑j
l=0 eαl].

When there is no joinpoint, h(x) = βx and we have exp(β) =
log(1−λj(x+1))

log(1−λj(x))
.

If the death rates λj(x) are small for j = 1, ..., J , then exp(β) − 1 ≈
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λj(x+1)−λj(x)

λj(x)
. Thus, [exp(β)−1]100% can be interpreted as the annual percent

change (APC) of the death rates, λj(x), with respect to the diagnosis year x.

A negative value of the APC means that the death rates λj(x) decrease as

x increases. When h(x) is defined by a joinpoint model (2), the APC of the

death rates in the k-th segment is APCk = [exp(βk)− 1]100%. In sequel, we

use θ = (α, β, δ, τ )T , where α = (α1, ..., αJ), δ = (δ1, ..., δK), τ = (τ1, ..., τK).

2.1 The Likelihood function for the grouped cancer

survival data

When we evaluate the progress and trend in cancer survival, it is ideal that

the confounding effects of death from other causes are removed. The cancer

net survival is a hypothetical quantity that measures the excess mortality due

to the cancer of interest as if other causes of death are eliminated. There are

two common measures of net survival, namely, the cause-specific survival and

the relative survival. In cause-specific survival analysis, the cause of death

is identified and used. The event is the death due to the cancer of interest

and the people dying from other causes or lost to follow-up are considered

as censored. For the patient cohort diagnosed in the year x, let nxj be

the number of people alive at the beginning of interval Ij, let dxj be the

number of cancer deaths and let lxj be the number of patients lost to follow-

up or dying from other causes in interval Ij. By the actuarial assumption

(Gail, 1975), the adjusted number of person-years at risk is rxj = nxj − 1
2
lxj

and the number of cancer deaths in Ij follows a binomial distribution, i.e.,
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dxj ∼ Bin(rxj, λj(x)). Hence, the likelihood function for the cause-specific

grouped survival data D = {x, (rxj, dxj), j = 1, ..., J} is

L(θ|D) =
∏

x

J∏

j=1

{
λj(x)

}dxj
{
1 − λj(x)

}rxj−dxj
. (6)

The cause-specific survival analysis requires accurate information on cause

of death. The accuracy of death certificates for determining the underlying

cause of death is problematic in some situations (Percy 1981). An alterna-

tive method of estimating cancer net survival is to use the relative survival

ratio (Ederer et al. 1961), defined as the observed survival proportion in the

patient group divided by the expected survival rate of a comparable group

from the general population, who are assumed to be practically free of the

cancer of interest. Both measures estimate the same conceptual quantity,

i.e., cancer specific net survival, although in different ways. The major ad-

vantage of the relative survival is that the information on cause of death is

not required, thereby circumventing problems with the inaccuracy or non-

availability of death certificates. In relative survival analysis, the cause of

death is not used. Let dxj denote the number patients dying from all causes

and lxj denote the number of patients lost to follow-up during interval Ij.

The conditional probability of surviving the interval Ij from all causes is

pj(x)Ej(x), where pj(x) = 1 − λj(x) is the interval relative survival prob-

ability and Ej(x) is the expected probability of surviving interval Ij for

the general population. We assume that dxj follows a binomial distribu-

tion dxj ∼ Bin(rxj, 1 − pj(x)Ej(x)). The likelihood function for the relative
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survival data D = {x, (rxj, dxj, Exj), j = 1, ..., J} is

L(θ|D) =
∏

x

J∏

j=1

{
1 − pj(x)Ej(x)

}dxj
{
pj(x)Ej(x)}

}rxj−dxj
. (7)

Here, Ej(x) are calculated from the life tables for the matched general pop-

ulation (National Center for Health Statistics, 2003).

2.2 Parameter estimation

When the covariates are fixed, the likelihood functions (6) and (7) corre-

spond to generalized linear models with complementary log-log link function.

For this case, the estimation methods have been described by Prentice and

Gloeckler (1978), and Hakulinen and Tenkanen (1987). If the locations of

the joinpoints, τ1, ..., τK, are known, then (x − τ1)
+, ..., (x − τK)+ are fixed

and the above available methods apply. When the locations of the joinpoints

are not known, we can use the grid search method (Lerman 1980) to find

the estimates of joinpoints. We assume that the joinpoints only occur at

the observed data points, i.e., τk ∈ Ξ, k = 1, ...,K, where Ξ is the set of

observed x values. Let `(θ) = log L(θ|D) be the loglikelihood function. First

the loglikelihood is maximized for fixed values of τ = (τ1, ..., τK) and the

associated estimates of (α, β, δ) are denoted by (α̂τ , β̂τ , δ̂τ ). The maximum

loglikelihood value of `(θ) for given τ is a profile loglikelihood. All possi-

ble combinations of the joinpoints are tried by grid search and the maximum

likelihood estimates (MLEs) of the joinpoints, τ̂ are the values that maximize

`τ . Thus, the MLE of the parameters is θ̂ = (α̂τ̂ , β̂τ̂ , δ̂τ̂ , τ̂ ).

The asymptotic distribution theory in the joinpoint regression has been
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proved by Feder (1975a,b). With this approach, `max is the maximum value

of `τ and `τ (τ1, ..., τK|τk = x) is the maximum value of `τ conditional on

τk = x. Then the 100(1 − q)% confidence interval (CI) for τk includes the x

values such that

−2
{
`τ (τ1, ..., τK|τk = x)− `max

}
≤ (χ2

1)
−1(q), (8)

where (χ2
1)

−1(q) is the quantile function of a chi-squared distribution with

one degree of freedom.

Feder (1975b, p.53) proved that when the number of data points n goes

to infinity, the MLE θ̂ has the same asymptotic normal distribution as the

estimates for the data with a small number of observations deleted near the

true joinpoints. In practice, the standard errors of the MLEs (α̂, β̂, δ̂) are

estimated by fitting the JPSM after deleting the data points that are on the

estimated joinpoints τ̂1, ..., τ̂K (Lerman 1980; Feder 1975b). The standard

errors for the slopes β̂k, k = 1, ...,K + 1, and that of the estimated survival

function S(t|x, θ̂) can be calculated from the delta method using Equations

(4) and (2). The CIs for βk are obtained from the normal approximation and

the CIs for APCk can be transformed from the CIs for βk, k = 1, ...,K + 1.

Kim et al. (2006) have showed by simulations that the CIs for β̂ from

this approach have good coverage rates. In practice, we limit the maximum

number of joinpoints to 3 because the patient’s survival usually improves

gradually and changes in survival are few in number. Also, we impose the

restriction that two joinpoints may not be too close to each other and that

a joinpoint may not occur too early or too late in the study period. We
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also restrict that, after excluding the joinpoints, the minimum number of

data points between two consecutive joinpoints is 2 and that the minimum

number of data points from a joinpoint to either end of the data is 2.

2.3 Model selection

There are several methods available for model selection, such as the Akaike’s

information criterion (AIC) (Akaike 1973) and the Bayesian Information Cri-

terion (BIC) (Schewarz 1978). The AIC tends to over fit the true model

and the BIC is consistent when the number of true covariates does not in-

crease with the sample size (Yang 2006; Zheng and Loh 1995). The BIC has

been used for selecting the number of joinpoints in Bayesian models (Tiwari

et al. 2005). Kim et al. (2000) used permutation tests for model selec-

tion in the joinpoint models for rates and proportion. The permutation-test

based (PTB) model selection approach consists of a series of permutation

tests for H0 : K = k0 against H1 : K = k1. This model selection method

for cancer incidence and mortality rates has been developed by the NCI

(http://srab.cancer.gov/joinpoint). The PTB approach can also be used to

pick the joinpoint number. The test for H0 : K = k0 against H1 : K = k1 is

carried out by permuting the residuals.

The PTB approach can also be used to select the number of joinpoints in

JPSM. Let λ̂j(x) be the predicted value of λj(x) in (3) under the null model.

The predicted value for the number of deaths dxj is given by d̂xj = rxjλ̂j(x)

and its variance Vxj = rxjλ̂j(x){1 − λj(x)}. Then the residuals d̂xj − dxj are
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standardized to exj with mean 0 and variance 1. The permuted residuals, e∗xj

are added back to create permuted samples d∗
xj , where

d∗
xj = d̂xj + r∗xj

√
Vxj .

Let F (D) be the F -type statistic for testing the difference between the null

and alternative model using the original data D. Because the joinpoints

are estimated, F (D) no longer follows an asymptotic F distribution, and its

empirical distribution has to be estimated from the permuted sample D∗.

The p-value is the proportion of times that F (D∗) > F (D) over a large

number of permutations.

However, it is computationally too intensive to use the PTB approach

for the survival data in practice. There are two major contributions of the

difference in computation time using the PTB approach for model selection

on survival data and for age-adjusted mortality and incidence rates (Kim

et al. 1999). First, fitting linear trend for grouped survival data involves

maximizing the loglikelihood (6) or (7), which is an iterative calculation and

thus is much slower than the simple linear regression for rates. Second,

there is only one observation of rates per year, but L observations of follow-

up intervals for survival for each diagnosis year, where L is the difference

between the diagnosis year and the end of follow-up. For example, for the

people diagnosed from 1975 to 2002 with study cutoff date December 31,

2002, the maximum follow-up time is 27 years for the people diagnosed in

1975, and there is one less year follow-up for each diagnosis year ahead. In

total there are 27+26+· · ·+1=378 observations. In contrast, there are only 28
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observations of incidence or mortality rates for 1975 to 2002. To fit a single

JPSM with fixed joinpoints it takes from 1000 to 5000 times longer with

survival data than with a series of incidence or mortality data, depending on

the number of joinpoints and the number of iterations necessary. To permute

378 observations takes about 75 times longer than permuting 28 observations.

Since the fit of the JPSM’s are nested within the permutations, the computing

time for fitting a PTB survival model is therefore from (1000×75)=75,000 to

(5000×75)=375,000 times longer than for an analogous incidence or mortality

model. For a typical problem, it takes 5 seconds for incidence or mortality

data considering to select from 0-3 joinpoints using a PTB approach with

4499 permutations using a Pentium (R) 4 3.00GHz CPU and 1.00G RAM,

and it would take about 22 days to fit the analogous survival model. Hence,

the permutation test is not practical for fitting JPSMs.

Alternatively, BIC is often used as a model selection criterion in frequen-

tist settings (Burham and Anderson, 2004). Based on an empirical study,

Kim et al. (2006) compared the BIC with the PTB approach and found that,

although liberal, the BIC approach is much less computationally intensive

and is a strong competitor of the PTB approach. The AIC is even more

liberal, and tends to pick a higher number of joinpoints. Therefore, we use

the BIC for model selection. Let MK denote a K-joinpoint model and let `K

be the maximum loglikelihood value of model MK as defined in (6) or (7),

then

BIC(MK) = −2`K + pK log n, (9)
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where n is the total number of follow-up years for all diagnosis years and

pK is the number of parameters under model MK. For JPSM MK with a

maximum J years of follow-up, pK = J + 1 + 2K. If the possible range of

the number of joinpoints is from 0 to, a pre-defined value, Kmax, the BIC

approach selects the model MK with the minimum BIC as the final model.

3 SIMULATION STUDY

The purpose of the simulation study is to evaluate how well the proposed

JPSM picks the correct number of joinpoints during a long study period. The

grouped survival data are simulated with various combinations of the number

of new cancer incidences diagnosed each year, severity of the cancer, number

of joinpoints, locations of the joinpoints and the APC of the death rates. The

simulation study may provide a general reference of the performance of the

method before they analyze the population-based survival data in practice.

To avoid the use of the expected survival, we assume that the cause of death

is known and use cause-specific analysis in the simulation. The results can

be generalized to the relative survival case.

We consider the range of the diagnosis year as x = 0, 1, ..., 27, representing

1975 to 2002 in the SEER data. The study cutoff year is the end of the 27th

year, so the maximum follow-up time is 27 years. After examining the new

cancer cases diagnosed in each year in period 1975-2002 from the real SEER

data, we found that the average numbers of new cases each year are over 5000

for the most common cancer sites, are around 1000-2000 for the common
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cancer sites and are in hundreds for the rare cancer sites. To simulate the

grouped survival data, we assume that in each calendar year, there are 5000,

1000 and 500 new cancer cases diagnosed, representing the most common,

common, and rare cancer sites in the SEER 9 registries. These numbers

correspond to nx1, the number of people alive in the beginning of the first

interval I1 for each calendar year x. The number of people dying from other

causes in the interval j is generated as a binomial variable lxj ∼ Bin(nij, p0j),

where p0j are the probabilities of dying from other causes from the US life

tables (Anderson, 1999) for the people with age (65+j), which is approximate

the average age of cancer diagnosis. Hence the adjusted number of people at

the risk of cancer death is rxj = nxj − 1
2
lxj. The numbers of cancer deaths

dxj, j = 1, · · · , 27, are generated using the binomial distributions for cause-

specific survival data described in Section 2.1, where the death rate λj(x)

is calculated from (3). The number of people alive at the beginning of the

interval j + 1 is nx,j+1 = nxj − lxj − dxj .

Cure becomes a possibility for many cancers if diagnosed early. The

mixture cure models (Boag 1949; Farewell 1982; Gamel et al. 2000; Yu et

al. 2004), which postulate that a fraction of the patients are cured from the

disease of interest, are widely used to model the survival data from clinical

studies as well as population-based cancer survival studies. In the simulation

study, we use the mixture cure model and the exponential model without

cure as the baseline survival function S0(t). The baseline survival function

S0(t) = c+ (1− c) exp(−t/µ), where c is the cure fraction and µ is the mean

survival time in years for uncured patients. When c = 0, it reduces to an
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exponential model. For the purpose of illustration, the parameters (c, µ) are

set to be (0, 60), (0, 20) and (0, 4) for the exponential model and (0.7, 10),

(0.4, 5) and (0.1, 2) for the mixture cure model to represent cancer with best,

moderate, and poor survival rates, respectively. The corresponding survival

curves are shown in Figure 1. Notice that the population of patients with

(c = 0, µ = 60) or (c = 0.7, µ = 10) have the best chance of survival and can

live for a longer time, thus leaving not much room for the improvement in

survival. For the patients with (c = 0, µ = 4) or (c = 0.1, µ = 2), the survival

is poor, so if there is a big treatment improvement of the disease, it is easier

to observe an increase in survival and to detect a significant joinpoint in the

trend.

The performance of the JPSM is also associated with the number and the

locations of joinpoints. The total number of joinpoints K is selected to be

0, or 1, or 2. There are a total of 13 different choices of the joinpoints and

the APC values as specified in Table 1. For example, there is no joinpoint in

Case 1, one joinpoint at varying locations in Cases 2-7, and two joinpoints

for Cases 8-13. In order to see whether the JPSM can detect the change

occurring close to the end of study, some joinpoints are set to the year 23.

For Case 2, there is one joinpoint at τ1 = 10 with APC=-5% before, and

APC=0% after, the year 10. The difference of the APC in the two segments

0-10 and 10-27 is 5%. When the difference of the APCs in two consecutive

segments is big, we expect to detect that joinpoint, but when the difference

is small, there is less chance to detect the joinpoint.

The percentages of picking the correct number of joinpoints in different
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scenarios are shown in Table 2. The effects of different parameter specifica-

tions are summarized below:

• Effect of sample size: For common cancer with the number of new cases

n = 5000 every year, the JPSM finds the correct number of joinpoints

most of the time. As the number of new cases decreases to n = 1000,

the estimated number of joinpoints K̂ tends to be less than the true

K. For n = 500, the model tends to find no joinpoint.

• Effect of cancer prognosis: The JPSMs select a lower number of join-

points for less severe cancer with high survival rates. For the same value

of APC, the higher baseline death rate λj(x) implies a larger absolute

difference in death rates λj(x+1)−λj(x). For example, if APC=-20%,

then the referent death rate λj(x) = 50% induces an absolute reduc-

tion of 10% in death rates, while the λj(x) = 10% only leads to a 2%

decrease in death rates. Thus, JPSMs have more capability to detect

a joinpoint when the baseline death rates are high.

• Effect of the number of joinpoints: The chance of capturing the correct

total number of joinpoints is higher for smaller K. When the true

model is M0, the percentages of selecting the correct model are close

to 100% for all the data with different size and severity status, which

implies that the false alarm rate of a significant improvement in survival

is very low if the there is no trend variation. For the Cases 2-7 where

the number of joinpoints K ≥ 1, there is a tendency to underestimate

the total number of joinpoints, i.e., the JPSMs tend to be conservative.
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• Effect of the locations of joinpoints: As the people diagnosed more re-

cently have less follow-up, the JPSMs are not able to detect a joinpoint

when the true joinpoint is very close to the end of the study period. See,

e.g., Cases 6 and 7 with joinpoint located at 23, which is only 4 years

away from the last year in the study. Even though, there exist some

improvements in trend, there is not enough follow-up time to allow the

model to detect the difference. Therefore, the closer are the joinpoints

to the beginning or to the end of the study period, the harder it is to

detect the joinpoints. These issues are worse near the end of the study

period since the follow-up time is shorter.

• Effect of the change in APC on death rates: The model selection

method tends to select a lower number of correct models when the

APCs for the two consecutive segments are -5% and -2% (with abso-

lute difference 3%) compared with those with APC=-5% and 0% or

APC=0% and -5% (with absolute difference 5%). So larger changes in

APC lead to better performance of the model for detecting the join-

point.

• Effect of cure fraction c: The difference is minor between the standard

survival model and the mixture cure model when the survival level

is the same. For example, the percentage of correctly selecting one

joinpoint is 99.4% for data with (c, µ) =(0.7, 10) and 99.1% for data

with (c, µ)=(0, 50) when n = 5000 for Case 2. From Figure 1, the

outcomes of these two cases are very close.
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Generally, the JPSMs are conservative with low false alarm rate or Type I

error, especially when the patient’s survival prognosis is good (less severe)

and the cancer is rare.

4 APPLICATION

The SEER registries routinely collect data on patient demographics, primary

tumor site, morphology, stage at diagnosis, first course of treatment, follow-

up for vital status, etc. The SEER Program began collecting data on cancer

cases in 1973, in the states of Connecticut, Iowa, New Mexico, Utah, and

Hawaii and the metropolitan areas of Detroit and San Francisco-Oakland.

In 1974-1975, the metropolitan area of Atlanta and the 13-county Seattle-

Puget Sound area were added. These original 9 regions are referred to as the

SEER 9 registries, covering 10% of the US population. Because of their long

history, we apply the JPSM to the survival data from the SEER 9 registries

from 1975 to 2002, which is the most recent year with complete follow-up

information. To avoid the inaccuracy of the cause of death information, we

use the relative survival data.

We start by presenting the survival trends for all cancer sites combined

for males and for females (Figure 2a, b). The estimates of the joinpoints

and APC are shown in Table 3. The standard errors of the APCs are not

reported. Instead, the significant differences of the APC values are marked

with asterisks. For men, the trend in survival is divided into four segments

demarcated by joinpoints in 1988 (95% CI, 1987-1990), 1992 (95% CI, 1991-
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1993) and 1995 (95% CI, 1994-1996). The slopes of the four segments reveal

that the APC in mortality was decreasing significantly by 2.1% in the first

segment, by 8.5% in the second segment, and was not significantly different

from zero with APC=0.7% and -2.5% for the last two segments. The join-

points for 1988 and 1992 are suggestive of changes that were taking place in

prostate cancer screening and diagnosis. The large and significant changes in

prostate cancer incidence in 1989 and 1992 appear to be responsible for the

major details of the overall survival curve for males. Because the prostate

cancer contribution to the overall survival curve is related to several factors

including PSA screening, a more detailed analysis and discussion is needed to

address the organ specific details that contribute to the blended composite.

With prostate cancer incidence included in the overall model, it is difficult

to interpret what portion of the trend is artificial, or in other words gener-

ated by well recognized sources of bias. The introduction of screening in a

population causes survival to improve, since the time of diagnosis is shifted

to an earlier time point, even if the time of death is unchanged (lead time

bias). In addition, screening can detect some cancers that never would have

produced symptoms, if screening had not detected the cancer (over-diagnosis

bias). Consequently, we elected to obtain a survival progress measure inde-

pendent of prostate cancer, by generating a survival model for all male cancer

excluding prostate. In this model, a single joinpoint remained for 1993 (95%

CI, 1990-1995), with a steady significant improvement in survival through

1993 (APC=-1.3%) and with an acceleration of the improvement after that

(APC=-1.9%). While screening influences cancers sites other than prostate
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cancer and colorectal cancer, factors that artificially increase survival are in-

fluenced mostly by the rapid introduction of screening, where prostate cancer

is by far the prime example.

We used a similar approach to examine the survival of females from can-

cer at all sites. The trend in overall survival for women was marked by

joinpoints in 1982 (95% CI, 1979-1983)and 1986 (95% CI, 1984-1990), with

the largest APC amounting to -2.9% in the middle segment, and a slowing

of the improvements after that (APC=-1.4%) (Table 3). Major advances

in adjuvant endocrine and multi-agent chemotherapy for breast cancer treat-

ment influenced survival over this period. However, screening mammography

undoubtedly affected trends in breast cancer incidence during the 1980s, in-

troducing some level of artifact into the survival trends. When breast cancer

cases were removed, the model showed significant improvements from 1981

(95% CI, 1979-1983) through 1994 (95% CI, 1992-1998) with APC=-0.6%

and an acceleration after that (APC=-1.5%). The approach that we have

used shows that it is preferable to examine joinpoints in organ specific sur-

vival curves when looking for their connection to patterns of care.

To illustrate the utility of the JPSM and certain characteristics of our

results, we have selected three additional organ site examples: distant tes-

ticular cancer, distant pancreatic cancer, and regional melanoma (Figure 3).

For distant testicular cancer in Figure 3a, two joinpoints observed in 1977

(95% CI, 1976-1979) and 1993 (95% CI, 1988-1997) separate 3 phases of sur-

vival improvement for distant testicular cancer. Distant testicular cancer is

highlighted because the circumstances surrounding changes in survival of tes-
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ticular cancer patients are particularly well documented. In the earliest time

period, the APC of death rates is decreasing 32.2% each year. This period

of dramatic survival improvement stabilizes in 1977 followed by a period of

moderate but consistent gains in late stage survival from 1977 to 1993. Then

in the period following 1993, the survival for late stage disease ceases to im-

prove. In Figure 3b the data for distant pancreatic cancer also reveal a single

joinpoint, indicating a modest change in survival in this subgroup starting in

1995 (95% CI, 1993-1998) and corresponding to a 2.9% annual improvement.

For regional melanoma in Figure 3c, a single joinpoint is observed in 1998

(95% CI, 1996-1999). This joinpoint heralds a large improvement in survival

corresponding to an APC of 14.8%.

Our confidence in the JPSM approach is strengthened by the data for

testicular cancer. Changes in survival for testicular cancer are closely linked

with the introduction of platinum therapy in 1974, a development which

enabled a dramatic improvement in the survival of distant stage testicular

cancer patients prior to 1977. The gain in survival in these patients was

largely related to an increased cure fraction (Huang et al. 2007). From 1977

to 1993, the more modest gains in survival correspond to the optimization

of platinum-based, multi-agent therapy. The decline in survival for distant

stage testicular cancer after 1993 is probably associated with an increase

of biologically aggressive disease in the distant stage category, as observed

in other study populations. (Sonneveld et al. 1999) Over time, the stage

distribution of testicular cancer has changed so that more Stage 1 cancer

is diagnosed in conjunction with less of all other stages combined. This
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evidence of earlier detection is consistent with a shift to earlier stages of

more indolent tumors with their extended opportunity for detection, leaving

the more virulent and rapidly progressing forms of the disease to be diagnosed

in the late stage setting.

Moving away from diagnoses where evolving patterns of care and their

impact are relatively well characterized, it could not have been anticipated

that JPSM would uncover a statistically significant joinpoint in the survival

profile for regional melanoma or for distant pancreatic cancer. For regional

melanoma, our results suggest that a change in practice somewhat prior to

1998 started a trend for a sizable increase in the survival of patients with

a diagnosis of regional melanoma. This result underscores the difficulty in

understanding a trend that is premised on data from a limited number of

cases (259) subject to uncontrolled factors. From a review of clinical trials

for patients receiving systemic adjuvant therapy for melanoma, there is no

clear cut evidence that a breakthrough has been achieved or that long-term

survival has been extended (Verma et al. 2006). However, after a landmark

trial of high-dose Interferon alfa-2b (IFN alpha-2b) in 1996, (Kirkwood et

al. 1996) a case can be made that increasing use of IFN alpha-2b may have

contributed to improved survival. Indeed, a meta-analysis of 12 randomized

trials suggested that recurrence free survival was improved by IFN alpha-2b

with a statistically significant benefit associated with increasing dose (Wheat-

ley et al. 2003). Based on this kind of information, it might be useful to

return to the records for the regional melanoma cases involved in this study,

to look for a trend of increasing interferon use in this cohort. In addition,

23



alternative hypotheses for an apparent improvement in survival could also

be considered.

A change in surgical practice associated with regional melanoma might

also be a factor that could influence survival. Lymphatic mapping with sen-

tinel node biopsy was the basis for the Multi-center Selective Lymphadenec-

tomy Trial (MSLT-1) that started in 1994 and completed accrual in 2002

(Morton et al. 2006). The participants in this trial were individuals with

relatively advanced lesions (Clark level IV, V, or level III with intermediate

thickness). With randomization to observation versus sentinel node biopsy

with immediate clearing of the lymphatic basin for a positive sentinel node,

the MLST-1 showed that immediate lymphadenectomy increases the survival

of patients with nodal metastases. The five year survival for immediate lym-

phadenectomy was 72% vs. 52% for delayed lymphadenectomy. However, it

is debatable whether 1998 is a milestone in the use of sentinel node biopsy

for melanoma patients. Nevertheless, the possibilities for explaining a sur-

vival trend of this magnitude starting in 1998 are limited in number. This

experience highlights the potential for JPSM to improve cancer surveillance.

When unrecognized trends are identified, there is an opportunity to return

to the registries to collect additional data that may explain the trend and

support wider application of beneficial interventions.

In the case of distant pancreatic cancer, JPSM has identified a trend in

survival improvement starting in 1995. This result highlights another surveil-

lance issue. Using SEER data from 1988 to 1999, investigators were able to

appreciate survival improvements in distant pancreatic cancer when com-
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paring 2-year survival rates for the years after 1992 compared with the years

before 1991 (Riall et al. 2006). However, the authors noted that even though

the trend they observed was statistically significant, they doubted that it was

clinically significant. Using the more precise data obtained with JPSM, atten-

tion can be focused on identifying a change in treatment that could account

for an improvement in survival starting around 1995. After many years when

single agent 5-fluorouracil (5-FU) was the standard systemic treatment for

unresectable pancreatic cancer, gemcitabine was approved for this indication

by the FDA in May, 1996 (Storniolo et al. 1999). The introduction of this

drug into practice is a likely explanation for a modest improvement in sur-

vival for patients with advanced pancreatic cancer. In a randomized clinical

trial comparison of gemcitabine with 5-FU, patients treated with gemcitabine

experienced a median survival extension of 5 weeks (Burris et al. 1997). The

details of this example show that a relative improvement in survival for a

cohort that experiences short survival can be pinpointed and identified as

statistically significant; however, further information is needed to provide

a scale to the benefit. Otherwise, large numbers of patients may serve as

the basis for identifying statistically significant events of small magnitude

without much insight as to benefit. In this event, the value of a more com-

plex decision making model (Tennvall and Wilking, 1999) can be invoked,

attempting an assignment of cost-effectiveness with the attendant risks of

that process.
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5 CONCLUSION

The JPSM is useful to describe the progress of cancer survival and to gain

understanding about the effect of changes in medical practice. Although we

used relative survival data in our application, it is also possible to use cause-

specific survival data when the information on cause of death is more reliable.

The JPSM can serve as a tool to find a potential change point in cancer

survival. Compared to the cancer incidence or mortality trends, survival

trends usually improve gradually, and there tends to be a smaller number of

joinpoints. When evaluating survival, one must be aware of various biases

introduced by screening and new diagnostic technologies, e.g., lead time,

length bias and over diagnosis. For instance, screening mainly influences

survival by detecting earlier, either earlier stage or event at a smaller size

within stage, and this shift to earlier disease if hard to control. Hanin et al.

(2006) presented a biologically motivated model of breast cancer development

and detection, and examined the effect of screening schedules and clinical

covariates at the time of diagnosis on survival. It is useful to incorporate the

models for screening effect in the change point modeling.

So JPSM can be used when we have confidence in the effect of medical

breakthroughs on survival or we are interested in the identification of possible

change in trends. However, we need to be cautious about the possible biases

due to screening or selection. It is not advised that one use the JPSM

directly to evaluate the benefits of treatment using the population-based

cancer survival data since the data are not from a randomized trial where
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the treated and untreated group are balanced in confounders. That is also

why we should look at improvements on a population level instead of using

treatment information directly.

The simulation studies presented here evaluate the performance of the

JPSM in picking the correct number of joinpoints. The model selection

criterion used for the JPSM is the BIC, which tends to detect a lower number

of joinpoints, especially when the sample size is small. An alternative model

selection criterion such as AIC , which is more sensitive to changes in the

trend could also be used. The focus of this paper is on the description of

current survival trends and the identification of change points. However, the

JPSM can also be used for the survival prediction. The standard survival

models, such as the proportional hazards models, have been used to predict

the survival rates for the newly diagnosed cancer patients (Mariotto et al.

2006). It is useful to compare the accuracy of the predictions resulting from

the standard survival models with those from the JPSM.

As treatments progress, more and more patients are cured and become

long-term survivors for certain types of cancers. The major medical break-

throughs can significantly increase the probability of cure as well as prolong

the survival time for the uncured patients favoring the use of the mixture

cure model. It is possible to include joinpoints in the mixture cure model

to evaluate the change in trend for both cure fraction and the survival times

for the uncured patients. Even though the JPSM described is primarily for

cancer survival data, it can be applied to other similar survival data. Adding

change points to the baseline hazard for relative survival data is useful to ex-
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amine the survivals of cancer patients and general population, for example,

whether the patients and general population have the same survival rates.
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Table 1: Locations of the joinpoints and APC values in the simulation for
the K-joinpoint models

Case K (τ1, ..., τK) (APC1, ..., APCK+1)
1 0 -2%
2 1 10 (-5%, 0%)
3 1 10 (-5%, -2%)
4 1 15 (-5%, 0%)
5 1 15 (-5%, -2%)
6 1 23 (-5%, 0%)
7 1 23 (-5%, -2%)
8 2 (10, 15) (0%, -5% , 0%)
9 2 (10, 15) (0%, -5% ,-2%)
10 2 (10, 23) (0%, -5% , 0%)
11 2 (10, 23) (0%, -5% ,-2%)
12 2 (15, 23) (0%, -5% , 0%)
13 2 (15, 23) (0%, -5% ,-2%)

Figure 1: The baseline survival functions S0(t) used in the simulation
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Table 2: Percentage of selecting different joinpoint models M0-M3
n = 5000 n = 1000 n = 500

(c,µ) M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3

Case 1: Model=M0, APC=-2%
(0.7,10) 99.8 0.2 . . 99.6 0.4 . . 99.6 0.4 . .
(0,60) 99.4 0.6 . . 99.4 0.5 0.1 . 99.7 0.3 . .
(0.4,5) 99.7 0.3 . . 99.8 0.2 . . 99.5 0.5 . .
(0,20) 99.8 0.2 . . 99.8 0.2 . . 99.5 0.5 . .
(0.1,2) 99.3 0.6 0.1 . 99.0 1.0 . . 98.6 1.3 0.1 .
(0,4) 99.5 0.5 . . 100.0 . . . 100.0 . . .
Case 2: Model=M1, JP=10, APC=(-5%, 0%)
(0.7,10) . 99.4 0.6 . 3.3 96.6 0.1 . 37.9 62.0 0.1 .
(0,60) . 99.6 0.4 . 6.0 93.9 0.1 . 46.4 53.6 . .
(0.4,5) . 99.1 0.9 . . 99.8 0.2 . 0.1 99.3 0.6 .
(0,20) . 99.5 0.5 . . 99.4 0.6 . 1.2 98.3 0.4 0.1
(0.1,2) . 99.2 0.8 . . 98.6 1.3 0.1 . 98.4 1.5 0.1
(0,4) . 99.0 1.0 . . 99.4 0.6 . . 100.0 . .
Case 3: Model=M1, JP=10, APC=(-5%, -2%)
(0.7,10) . 99.9 0.1 . 61.1 38.8 0.1 . 87.4 12.5 0.1 .
(0,60) 0.2 99.3 0.5 . 68.8 31.0 0.2 . 90.8 9.1 0.1 .
(0.4,5) . 99.1 0.9 . 4.4 95.0 0.6 . 33.2 66.4 0.4 .
(0,20) . 99.5 0.5 . 11.1 88.5 0.4 . 55.6 44.2 0.2 .
(0.1,2) . 99.2 0.8 . . 99.0 0.9 0.1 1.2 97.5 1.3 .
(0,4) . 99.0 1.0 . . 100.0 . . 1.4 98.6 . .
Case 4: Model=M1, JP=15, APC=(-5%, 0%)

(0.7,10) . 99.1 0.9 . 16.2 83.4 0.4 . 59.4 40.4 0.2 .
(0,60) . 99.6 0.4 . 32.3 67.1 0.6 . 74.1 25.9 . .
(0.4,5) . 99.4 0.5 0.1 . 99.7 0.3 . 1.7 97.8 0.5 .
(0,20) . 99.4 0.6 . 0.5 99.0 0.5 . 14.6 85.4 . .
(0.1,2) . 99.0 1.0 . . 98.9 1.0 0.1 . 98.9 1.1 .
(0,4) . 99.3 0.7 . . 99.5 0.5 . . 98.8 1.2 .
Case 5: Model=M1, JP=15, APC=(-5%, -2%)
(0.7,10) 1.6 98.2 0.2 . 77.5 22.5 . . 93.6 6.3 0.1 .
(0,60) 5.8 93.8 0.4 . 84.9 14.9 0.2 . 95.4 4.6 . .
(0.4,5) . 99.8 0.2 . 10.9 88.5 0.6 . 53.1 46.8 0.1 .
(0,20) . 99.5 0.5 . 36.4 63.3 0.3 . 75.0 25.0 . .
(0.1,2) . 99.0 1.0 . . 98.7 1.3 . 2.3 96.8 0.9 .
(0,4) . 99.3 0.6 0.1 . 99.5 0.5 . 6.0 92.8 1.2 .
Case 6: Model=M1, JP=23, APC=(-5%, 0%)
(0.7,10) 87.9 11.8 0.3 . 99.3 0.7 . . 99.8 0.2 . .
(0,60) 95.1 4.9 . . 99.3 0.7 . . 99.8 0.2 . .
(0.4,5) 27.8 71.8 0.3 0.1 93.3 6.7 . . 96.7 3.3 . .
(0,20) 68.5 31.5 . . 97.8 2.1 0.1 . 99.1 0.9 . .
(0.1,2) . 99.5 0.5 . 42.8 56.2 0.9 0.1 73.3 26.4 0.3 .
(0,4) 0.9 99.0 0.1 . 76.1 23.9 . . 87.7 11.1 1.2 .

Case 7: Model=M1, JP=23, APC=(-5%, -2%)
(0.7,10) 98.0 2.0 . . 99.7 0.3 . . 99.5 0.5 . .
(0,60) 98.6 1.4 . . 99.8 0.2 . . 99.7 0.3 . .
(0.4,5) 80.5 19.4 0.1 . 99.1 0.9 . . 99.3 0.7 . .
(0,20) 94.5 5.4 0.1 . 99.3 0.7 . . 99.5 0.5 . .
(0.1,2) 14.5 85.0 0.5 . 84.1 15.9 . . 91.6 8.4 . .
(0,4) 45.7 54.0 0.3 . 91.1 8.9 . . 98.8 1.2 . .
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Table 2: Percentage of selecting different joinpoint models M0-M3 (contin-
ued)

n = 5000 n = 1000 n = 500
(c,µ) M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3

Case 8: Model=M2, JP=(10,15), APC=(0%, -5%, 0%)
(0.7,10) 0.8 0.2 98.7 0.3 87.4 5.1 7.5 . 97.2 2.0 0.7 0.1
(0,60) 2.0 2.4 95.5 0.1 89.9 5.0 5.1 . 97.6 1.7 0.6 0.1
(0.4,5) . . 99.2 0.8 27.9 2.7 69.2 0.2 76.5 3.9 19.3 0.3
(0,20) . . 99.6 0.4 40.5 7.8 51.5 0.2 81.7 7.1 11.0 0.2
(0.1,2) . . 99.2 0.8 0.2 0.1 98.5 1.2 16.0 2.4 80.3 1.3
(0,4) . . 99.1 0.9 . . 100.0 . 44.4 . 55.6 .
Case 9: Model=M2, JP=(10,15), APC=(0%, -5%, -2%)
(0.7,10) . 47.2 52.8 . 50.5 47.7 1.8 . 86.8 12.7 0.5 .
(0,60) . 61.3 38.7 . 53.8 44.4 1.8 . 86.6 13.0 0.4 .
(0.4,5) . 1.5 97.8 0.7 2.2 74.2 23.6 . 36.9 56.0 7.1 .
(0,20) . 7.5 92.1 0.4 6.4 79.7 13.8 0.1 44.0 52.5 3.5 .
(0.1,2) . . 98.8 1.2 . 28.8 70.0 1.2 3.7 61.7 34.2 0.4
(0,4) . . 99.6 0.4 . 37.9 58.6 3.4 . 42.9 57.1 .

Case 10: Model=M2, JP=(10,23), APC=(0%, -5%, 0%)
(0.7,10) . 81.7 18.2 0.1 2.0 96.3 1.7 . 36.2 63.1 0.7 .
(0,60) . 90.6 9.2 0.2 5.4 93.0 1.6 . 43.7 55.8 0.5 .
(0.4,5) . 11.8 87.6 0.6 . 89.1 10.9 . 0.5 94.5 5.0 .
(0,20) . 50.4 49.2 0.4 . 95.5 4.4 0.1 1.8 96.2 1.9 0.1
(0.1,2) . . 99.1 0.9 . 29.3 70.0 0.7 . 64.3 35.5 0.2
(0,4) . 0.2 99.6 0.2 . 62.1 37.9 . . 75.0 25.0 .
Case 11: Model=M2, JP=(10,23), APC=(0%, -5%, -2%)
(0.7,10) . 95.0 4.9 0.1 2.6 96.4 1.0 . 34.6 64.7 0.7 .
(0,60) . 98.0 1.9 0.1 3.9 95.5 0.6 . 37.9 61.8 0.3 .
(0.4,5) . 72.6 27.4 . . 97.9 2.1 . 0.2 98.4 1.4 .
(0,20) . 88.8 11.2 . . 98.2 1.7 0.1 1.0 98.4 0.6 .
(0.1,2) . 7.9 91.7 0.4 . 80.6 19.3 0.1 . 90.6 9.4 .
(0,4) . 28.3 71.4 0.4 . 88.3 11.7 . . 92.3 7.7 .
Case 12: Model=M2, JP=(15,23), APC=(0%, -5%, 0%)
(0.7,10) . 80.4 19.6 . 10.2 87.9 1.9 . 49.1 50.3 0.6 .
(0,60) . 89.5 10.5 . 18.1 80.9 1.0 . 63.3 36.4 0.3 .
(0.4,5) . 12.7 87.1 0.2 . 88.3 11.6 0.1 0.6 95.0 4.4 .
(0,20) . 55.8 44.2 . . 95.9 4.1 . 6.9 91.5 1.6 .
(0.1,2) . . 99.3 0.7 . 41.5 58.0 0.5 . 71.5 28.4 0.1
(0,4) . . 99.6 0.4 . 68.9 31.1 . . 100.0 . .
Case 13: Model=M2, JP=(15,23), APC=(0%, -5%, -2%)
(0.7,10) . 96.0 3.9 0.1 5.0 94.2 0.8 . 41.5 58.1 0.4 .
(0,60) . 96.7 3.2 0.1 13.5 85.9 0.6 . 61.2 38.4 0.4 .
(0.4,5) . 77.0 23.0 . . 97.7 2.3 . 0.2 98.5 1.2 0.1
(0,20) . 90.9 9.1 . . 99.0 0.9 0.1 3.6 95.6 0.8 .
(0.1,2) . 12.9 86.3 0.8 . 82.0 17.8 0.2 . 90.7 9.2 0.1
(0,4) . 34.0 66.0 . . 88.1 11.9 . . 100.0 . .
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Table 3: Estimates of the joinpoints and the APC of annual death (hazard)
rates for selected cancer sites

Case #
Cancer site per year K Joinpoints APC
Male/All Sites 43173 3 (88, 92, 95) ( -2.1*, -8.5*, 0.7, -2.4)
Female/All Sites 40396 2 (82, 86) ( 0.5, -2.9*, -1.4*)
Male/Non-prostate 31470 1 93 (-1.3*,-1.9* )
Female/Non-breast 28039 2 (81, 94) (0.9*, -0.6*,-1.5*)
Distant Testicular 69 2 (77, 93) (-32.2*, -4.2, 4.2)
Distant Pancreatic 1043 1 95 ( -0.3*, -2.9*)
Regional Melanoma 261 1 98 ( -1.1*,-14.8*)
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Figure 2: The trends of 1-, 3- and 5-year relative survival rates by the year
of diagnosis
a. Male/All sites b. Female/All sites

c. Male/Non-prostate c. Female/Non-breast
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Figure 3: The trends of 1-, 3- and 5-year relative survival rates by the year
of diagnosis
a. Distant testicular b. Distant pancreatic

c. Regional melanoma
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