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Summary 
Objectives: To review the issues that have arisen with the advent of 
translational research in terms of integration of data and knowledge, 
and survey current efforts to address these issues. 
Methods: Using examples form the biomedical literature, we 
identified new trends in biomedical research and their impact on 
bioinformatics. We analyzed the requirements for effective knowledge 
repositories and studied issues in the integration of biomedical 
knowledge. 
Results: New diagnostic and therapeutic approaches based on gene 
expression patterns have brought about new issues in the statistical 
analysis of data, and new workflows are needed are needed to 
support translational research. Interoperable data repositories based 
on standard annotations, infrastructures and services are needed to 
support the pooling and meta-analysis of data, as well as their 
comparison to earlier experiments. High-quality, integrated 
ontologies and knowledge bases serve as a source of prior 
knowledge used in combination with traditional data mining 
techniques and contribute to the development of more effective data 
analysis strategies. 
Conclusion: As biomedical research evolves from traditional clinical 
and biological investigations towards omics sciences and 
translational research, specific needs have emerged, including 
integrating data collected in research studies with patient clinical 
data, linking omics knowledge with medical knowledge, modeling 
the molecular basis of diseases, and developing tools that support 
in-depth analysis of research data. As such, translational research 
illustrates the need to bridge the gap between bioinformatics and 
medical informatics, and opens new avenues for biomedical 
informatics research. 
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Access to information, analysis of data, 
and integration of knowledge are key 
components of biomedical research. 
Scientists and physicians must be able 
to integrate their data with other data, 
to combine information from multiple 
sources, and to compare their results to 
prior knowledge. This paper illustrates 
the role of knowledge in biomedical 
research, with focus on omics disci­
plines, and surveys current efforts to 
address the needs of biomedical re­
searchers for better access to informa­
tion and better integration of data and 
knowledge. 

1 Trends in Biomedical Re-
search and their Impact on 
Bioinformatics 
The current era of biomedical research 
can be characterized by what NIH Di­
rector E.A. Zerhouni calls the "four Ps" 
of medicine: Predictive, Personalized, 
Preemptive and Participatory1. Risk fac­
tors of diseases must be identified early 
in order to adapt counter-measures, es­
pecially for long-term, chronic diseases. 
Treatments must be tailored in order 
to take into account the characteristics 
of individual patients. Shifting the fo­
cus of medicine from the current doc­
tor-centric, curative paradigm to pre­

venting diseases will require the active 
involvement of patients. With the ad­
vent of personalized medicine, bio­
markers, including genetic markers, will 
be tested for each patient in order to 
diagnose specif ic forms of diseases, 
predict disease progression and patient 
outcome, and propose the best thera­
peutic options. This scenario puts 
genomics and pharmacogenomics at the 
centre of medicine [1]. This new vi­
sion of personalized medicine is sup­
ported by very active biomedical re­
search. As the role of "omics" 
disciplines2 in biomedical research be­
comes more important, classical clini­
cal studies must be adapted to these new 
approaches. New models of diseases 
have emerged from these studies. The 
genes identif ied through omics studies 
provide clues to possible pathogenetic 
mechanisms and are likely to be useful 
in developing diagnostic tests and 
adapting therapeutic responses. Discov­
eries typically begin at "the bench" with 
basic research. Then they must be trans­
lated into practical applications and 
progress to the clinical level, the 
patient's "bedside." In parallel, clinical 
researchers make novel observations 
about the nature and progression of dis­
ease that often stimulate basic investi­
gations. This exchange of information 

2 omics is a generic term for new disciplines enabled by 
high-throuput technologies, such as genomics,

1 http://nihroadmap.nih.gov/ transcriptomics, and proteomics 
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describes translational research or trans­
lational medicine: researchers and phy­
sicians applying newly gained knowl­
edge to the clinic - and back again to 
the bench3. Such recent changes in bio­
medical research have brought about 
new challenges for bioinformatics and 
medical informatics. The analysis of 
genomic studies and the new workflows 
between research and health care gen­
erate greater demand for accessing and 
integrating information. 

1.1 New Diagnostic and Therapeutic 
Approaches 
Disease classification based on gene 
expression patterns. Over the past de­
cade, biomedical research has evolved 
to mine gene expression prof iles for 
clues to the pathogenesis, prognosis and 
treatment of human diseases. In oncol­
ogy, for example, this research rests on 
the premise that extraordinary insights 
into the molecular basis of cancer can 
be obtained by analyzing gene expres­
sion in patient-derived tumor samples, 
in addition to experimental models. 
DNA microarrays (DNA chips) are 
used to monitor the gene expression 
(i.e., a proxy for gene activity) of thou­
sands of genes simultaneously across the 
human genome. This technique involves 
the extraction of RNA from tumor 
samples and its subsequent fluorescent 
labeling and hybridization to an array 
of DNA probes. Microarrays covering 
nearly the entire human genome are 
now available. In a series of experi­
ments, Golub demonstrated that the 
classif ication of cancer -- specif ically 
two principal forms of acute leukemia 
-- could be achieved by using DNA 
microarrays to monitor gene expres­
sion, without a prior molecular under-

http://nihroadmap.nih.gov/clinicalresearch/ 
overview-translational.asp 

standing of this distinction [2]. This 
f inding implies that such methodolo­
gies can be applied to the molecular 
dissection of cancers. This approach 
has been used for the molecular clas­
sification of many tumor types, includ­
ing lymphoma (e.g., [3]), prostate can­
cer (e.g., [4]), brain tumors (e.g. [5]), 
and lung cancer (e.g., [6]). Similar 
approaches have demonstrated that pat­
terns of gene expression (or gene ex­
pression "signatures") may be found 
across different tumor types. For ex­
ample, Golub et al identif ied a signa­
ture of metastatic propensity across 
prostate, breast, and lung cancers, sug­
gesting that a genetic test performed at 
the time of diagnosis might predict the 
future behavior of some tumors [7]. 
While most studies of gene expression 
have been carried out on tissue samples, 
some have used peripheral blood 
samples (e.g. [8]), thus extending the 
applicability of this technique. 
Pharmacogenomics. Gene expression-
based approaches are also widely used 
in pharmacology (e.g., [9]). The ex­
pectation here is that genomic ap­
proaches might lead to the discovery 
of molecules and compounds capable 
of modulating biological processes in 
cells. Drug discovery typically starts 
with prior knowledge of a target gene 
that is biologically relevant to a dis­
ease state (e.g., a gene mutation in can­
cer). The protein product of this gene 
is then biochemically purif ied, and a 
collection of compounds screened in 
vitro for their ability to bind to the pro­
tein. Novel approaches to drug discov­
ery are based on genomics. Gene ex-
pression-based methods are used to 
identify candidate drugs that modulate 
previously intractable targets. These 
genes and gene products can serve as 
potential therapeutic targets or tools in 
addition to providing diagnostic and 
prognostic markers, as well as end­
points for clinical trials. In cancer re­

search, this approach has been applied 
to the discovery of substances that may 
induce the maturation of abnormal cells 
(e.g., acute myeloid leukemia cells), in­
hibit androgen or estrogen action in can­
cer cells, inhibit angiogenesis associ­
ated with tumor cell proliferation or 
inhibit the activity of the causal pro­
tein in some tumors (e.g., Ewing sar­
coma [10]). 

The functional consequences of ge­
netic polymorphisms have been exam­
ined for several drug-metabolizing en­
zymes [11]. Variants leading to reduced 
or increased enzymatic activity com­
pared to the wild-type alleles have been 
identified. The possible application of 
genotyping has been discussed for sev­
eral pathologic conditions. Among 
many other examples, the acetylator 
status has long been used for predict­
ing isoniazid-induced hepatic toxicity 
in tuberculosis [12], and associations 
between genetic variability and re­
sponse to beta-adrenergic medications 
have been explored [13]. The associa­
tion between gene expression and re­
sponse to treatment holds the promise 
of personalized medicine, as doctors 
will be able to individualize drug 
therapy and provide specif ic therapies 
to those most likely to respond, while 
avoiding therapies in those most likely 
to suffer adverse effects. 

1.2 New Issues Related to the 
Analysis of Genomic Studies 
Clinical trials provide an evaluation 
framework for interventions. Param­
eters are measured in patients under 
different types of interventions and the 
values of these parameters are compared 
across groups of subjects in order to 
identify associations between interven­
tions and outcomes. Traditional clini­
cal trials generally involve many sub­
jects in which only few parameters are 
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measured. Conversely, omics studies 
typically generate a large number of 
measurements on the limited number 
of test subjects (relatively to the num­
ber of parameters measured). This im­
balance has created new issues involv­
ing statistics and bias [14]. Omics studies 
offer a potentially powerful approach 
to identifying new biomarkers, but 
many of them are plagued by a lack of 
consistency and reproducibility (e.g., 
[15]). In principle, the inconsistency 
may be due to false positive studies, 
false negative studies or true variabil­
ity among heterogeneous groups. In 
order to avoid biases and get more re­
liable results, the data from individual 
experiments at different centers could 
be pooled and public data repositories 
used for comparative data analysis [16]. 
Moreover, the goal of omics approaches 
is also to acquire comprehensive, inte­
grated understanding of biology by 
studying all biological processes in ad­
dition to analyzing parameters individu­
ally (e.g., [17]). Therefore, solutions 
exploiting prior knowledge about gene 
functions (e.g., in gene annotations 
databases) and multi-scale biological 
models have been proposed and are dis­
cussed in section 3.3. 

1.3 New Workflows in Biomedical 
Research 
In the context of translational research 
and translational medicine, information 
sharing between medical research, epi­
demiology and clinical medicine has 
been identif ied as a strong require­
ment. Translational research creates a 
bidirectional information transfer that 
accelerates trials and evaluates their 
clinical potential. In this framework, 
clinical data and biomarkers must be 
collected early in order to extract new 
knowledge and form new hypotheses 
from the mass of collected data. There­

fore the relationship between research, 
population studies and health care rests 
on the integration of the data and 
knowledge from these three areas: re­
search (scientif ic publications, public 
databases, experimental results), epide­
miology (e.g., cohort studies), and 
healthcare (clinical data stored in pa­
tient records). 

Two main challenges have to be over­
come when automatically interrelating 
data from these different areas. First, 
these data are annotated to different 
terminologies and data referring to the 
same entity may be represented by dif­
ferent identifiers [18]. For instance, the 
disease "acute myeloid leukemia" is 
coded D015470 in bibliographic data­
bases indexed with MeSH, 91861009 
in clinical records coded with 
SNOMED Clinical Terms® 
(SNOMED CT®)4, and C3171 in re­
search records annotated to the NCI 
Thesaurus5 [19]. The second issue is that 
the data to be integrated are comple­
mentary in nature but intrinsically dif­
ferent (omics - pathology - anatomy ­
physiology). Ontologies have been 
proven useful for data integration (e.g., 
[20, 21]). Several ontologies have been 
developed in bioinformatics and in the 
biomedical domain. However, they are 
still incomplete (neither all concepts nor 
relations are present) and fragmented 
(ontologies are orthogonal and few 
bridges are established between 
complementary ontologies) (e.g., [22]). 
Enrichment and integration of biomedi­
cal ontologies are therefore important 
stakes for translational medicine and 
bioinformatics, as well as for the fu­
ture links between these two disciplines 
(e.g., [23, 24, 25]) 

4	 http://www.ihtsdo.org 
5	 h t t p : / / w w w. n c i . n i h . g o v / c a n c e r i n f o /  

terminologyresources 

2 Effective Data Repositories 
Pooling experimental data requires the 
standard annotation of the experiments. 
It also requires interoperability among 
data repositories supported by standard 
services and workflows. Interoperable 
data repositories constitute an enabling 
resource for meta-analysis. 

2.1 Repositories of Experimental 
Data 
Public datasets have been created in re­
sponse to the growing demand for pub­
licly available repositories for high-
throughput gene expression data. Such 
public repositories represent an impor­
tant resource for the biological research 
community as they provide unre­
stricted access to microarray data pub­
lished by other researchers. As such, 
they complement local in-house gene 
expression databases by providing ref­
erence data for comparative studies. 
Among them, the Gene Expression 
Omnibus (GEO) repository developed 
by the National Center for Biotechnol­
ogy Information (NCBI) is publicly 
accessible on the NCBI website at http:/ 
/www.ncbi.nlm.nih.gov/geo [26]. 
GEO archives and helps disseminate 
microarray and other forms of high-
throughput data generated by the sci­
entific community [27]. GEO data can 
be viewed from the perspective of the 
experiment or the gene. The experi­
ment-centric view presents the entire 
study, while the gene-centric view dis­
plays quantitative gene expression mea­
surements for one given gene across a 
dataset, with links to gene annotations. 
Other efforts to archive experiments and 
make them accessible to the whole com­
munity include the Stanford Microarray 
Database (SMD) [28] (http://smd. 
stanford.edu) and the ArrayExpress 
database of microarray [29] (http:// 
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www.ebi.ac.uk/arrayexpress), devel­
oped by the European Bioinformatics 
Institute. All these repositories promote 
standard exchange formats such as 
MAGE-TAB [30]. Moreover, data sub­
mitted to these repositories are required 
to have a common set of core elements. 
As many other resources in this do­
main, including local experimental da­
tabases, data sets in public reposito­
ries are compliant with the standards 
that def ine a minimum information 
about a microarray experiment. Broad 
adhesion to these standards facilitates 
the publication and retrieval of data, 
as it ensures consistency across 
datasets. 

In addition to such wide-scale 
projects, more focused initiatives seek 
to collect all published data on a given 
medical topic. Specif ic pipelines and 
services have been developed in con­
junction with such focused databases. 
For example, the Oncomine initiative 
seeks to collect all published cancer 
microarray data (http://www. 
oncomine.org). To date, this effort has 
accumulated 18,000 cancer gene ex­
pression experiments. Automated analy­
ses can be performed to identify the 
genes, pathways, regulatory networks, 
and functional networks activated and 
repressed in human cancer. As described 
in [31], all cancer microarray data de­
posited in GEO and SMD are automati­
cally copied to Oncomine and then stan­
dardized. 

Data repositories may be extended 
with clinical data. With focus on three 
types of tumors -- breast carcinoma, 
bladder carcinoma and uveal mela­
noma -- the Integrated Tumor 
Transcriptome Array and Clinical data 
Analysis (ITTACA) centralizes public 
datasets containing both gene expres­
sion and clinical data on these tumors 
[32]. This system enables users to carry 
out different class comparison analy­
ses, including the comparison of ex­

pression distribution profiles, tests for 
differential expression and patient sur­
vival analyses and to compare personal 
results with the results in the existing 
literature (http://bioinfo.curie.fr/ 
ittaca). 

2.2 Standard Annotations 
The generation of large amounts of data 
and the need to share and compare these 
data bring about challenges for both 
data management and data annotation 
and highlight the need for standards. 
The Microarray Gene Expression Data 
(MGED) society is an international or­
ganization created in 1999 for facili­
tating sharing of functional genomics 
and proteomics array data. MGED has 
def ined the Minimum Information 
About a Microarray Experiment 
(MIAME) that corresponds to the 
minimum information that must be re­
ported about a microarray experiment 
to enable its unambiguous interpreta­
tion and reproduction. This standard has 
been used for years worldwide. The 
Microarray Gene Expression Object 
Model (MAGE-OM) and resulting 
markup language (MAGE-ML) provide 
a mechanism for standardizing data rep­
resentation for data exchange purposes 
[33]. Moreover, a common terminol­
ogy, the MGED Ontology (MO) has 
been developed by the Ontology Work­
ing Group of the MGED society to 
complement these standards. The ob­
jective of MO is to provide common 
'terms for annotating experiments in 
line with the MIAME guidelines, i.e., 
to provide the semantics to describe a 
microarray experiment according to the 
concepts specif ied in MIAME' [34]. 
(http://mged.sourceforge.net/ontolo­
gies/index.php.) 

Similar efforts in the f ield of func­
tional annotation have established stan­
dard vocabularies for the annotation of 
genes and gene products [35]. With the 

aim of contributing to the unif ication 
of biological information, the Gene On­
tology (GO) has been developed since 
2000 [36, 37] and has been adopted by 
most model organism databases, such 
as the Gene Ontology Annotation 
(GOA) database [38] (http:// 
www.ebi.ac.uk/GOA). 

Moreover, some research communi­
ties have decided to standardize their 
data models and data types to address 
interoperability issues. One of the re­
quirements for a federated information 
system is interoperability, i.e., the abil­
ity of one computer system to access 
and use the resources of another sys­
tem. In order to meet this need, the U.S. 
National Cancer Institute Center for 
Bioinformatics (NCICB) has created 
the cancer Common Ontologic Repre­
sentation Environment (caCORE) to 
address interoperability issues in the 
f ield of cancer research [39]. The 
caCORE system includes controlled 
terminologies such as the NCI Thesau­
rus (NCIT) [40], as well as common 
data elements (CDEs), which are named 
identifiers for the entities and attributes 
found in databases. 

However, despite these standardiza­
tion efforts, not all the data created, 
stored, and made available in the bio­
medical domain are homogeneously 
represented. Because most biomedical 
systems have been developed indepen­
dently of each other, these systems do 
not have a common structure, nor do 
they share common data elements. Be­
cause determining the correspondences 
between heterogeneous data sources is 
complex and time-consuming, auto­
mated support is needed [41]. Several 
approaches have been proposed, either 
based on the comparison of data-ele­
ments (schema-level approaches) or 
based on the comparison of value sets 
of data elements coming from distinct 
sources (instance-level approaches) 
[42, 43, 44]. 
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2.3 Infrastructures and Services 

Biomedical research requires to pool 
and to integrate information from di­
verse data sources, which is facilitated 
by the use of common data models and 
common ontologies. Additionally, co­
ordinated research efforts typically 
span multiple institutions. Therefore, 
there is a need for an infrastructure that 
supports such collaborative efforts, 
with the objective of enabling more 
eff icient access to the resources and 
sharing distributed computational re­
sources. To address this need, the U.S. 
National Cancer Institute (NCI) has 
initiated a nationwide effort, called the 
cancer Biomedical Informatics Grid 
(caBIG), to develop a federation of 
interoperable research information sys­
tems [45]. At the heart of the caBIG 
approach to federated interoperability 
is a Grid middleware infrastructure, 
called caGrid. [46]. Moreover, this in­
frastructure is based on the caCORE 
system mentioned earlier, which sup­
ports the creation of interoperable bio­
medical information systems. Similar 
efforts in Europe have established grid 
infrastructures for sharing computa­
tional resources in bioinformatics (e.g., 
http://www.embracegrid.info ) and en­
abling cooperative research in bio­
medical research [47], for example in 
infectious diseases [48] and immune 
diseases [49], as well as in cancer re­
search [50]. 

More generally, grid technologies 
are expected to facilitate the launch and 
ongoing management of coordinated 
cancer research studies involving mul­
tiple institutions, to provide the abil­
ity to manage and securely share in­
formation and analytic resources. 
Additionally, grid computing supports 
high-throughput data analysis and pre­
dictive classif ication studies on large 
datasets [51]. Grid computing can also 
support the modeling of complex bio­

logical systems, which requires ad­
vanced computer simulations to bring 
together knowledge at all the different 
levels of biological understanding -­
from the cell (e.g., gene function) to 
the organism (e.g., physiology) -- in 
order to provide a coherent theory of 
biology, which can then be applied to 
clinical medicine. 

In conjunction with the develop­
ment of distributed databases and grid 
computing, an increasing number of 
tools in biomedical informatics have 
been developed as Web Services, with 
potential applications in genomic 
medicine (e.g., [52]). Web Services of­
fer two major benefits for the biomedi­
cal community: interoperability and re­
usability. Web Services use standard 
communication protocols over the 
Internet, which makes them virtually 
platform-independent. Instead of de­
veloping a specif ic service locally, de­
velopers can reuse Web Service com­
ponents in their own applications. With 
the objective of implementing complex 
data analysis processes, Web Services 
must be associated with workflow man­
agement systems (e.g., [53]). Environ­
ments such as Taverna provide a lan­
guage and software tools to create and 
execute workflows and to construct 
highly complex analyses over public 
and private data and computational re­
sources [54, 55]. 

In the near future, these efforts will 
hopefully be strengthened by the cre­
ation of publicly available registries 
that describe all these services in a stan­
dard manner. For example, Stevens et 
al [56] recommend the use of ontolo­
gies to express the semantic informa­
tion associated with the description of 
Web Services. The design of broad-
coverage formal models of tasks and 
their representation as formal ontolo­
gies will facilitate the discovery of ser­
vices, their selection and their compo­
sition into dynamic workflows [57]. 

2.4 Meta-analysis 
One advantage of integrating large num­
bers of microarray studies and compil­
ing them in a data-warehouse is that it 
makes it possible to compare the re­
sults of different studies and to deter­
mine which methods are robust and pro­
duce consistent results across a range 
of studies. There are, however, many 
problems associated with the compari­
son of gene expression profiles across 
disparate microarray data sets. In stud­
ies performed in 2004 and 2007 by sev­
eral teams, the authors demonstrated 
that the consistency of replicates in each 
experiment exhibits a large degree of 
variation. Different technologies 
seemed to show good agreement within 
and across labs using the same RNA 
samples. The variability between two 
labs using the same technology was 
higher than that between two technolo­
gies within the same lab. Moreover, the 
source of RNA samples can make a dif­
ference in microarray data [58, 59, 60]. 

Several methods have been developed 
to address these variability issues in mul­
tiple, independent data sets generated on 
various platforms. Among others : 

•	 Comparative meta-profiling is used 
in Oncomine to compare differen­
tial expression measured in each 
data set [61]. In this approach, users 
f irst select appropriate studies for 
comparison, and then use meta­
analysis to identify the genes that 
are signif icantly overexpressed or 
underexpressed across multiple in­
dependent studies. 

•	 SubMap is an unsupervised sub­
class mapping method, which 
reveals common subtypes between 
independent data sets. This method 
revealed the correspondence 
between several cancer-related data 
sets. Notably, it identif ied common 
subtypes of breast cancer associated 
with estrogen receptor status, and a 
subgroup of lymphoma patients 
who share similar survival patterns, 
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thus improving the accuracy of a 
clinical outcome predictor [62]. 

The approach associating data integra­
tion and meta-analysis helps address sta­
tistical methodological issues [63]. Data 
related to the same pathologic condi­
tion from different laboratories may be 
analyzed (e.g. [64]). For example, 
Bhanot et al have used classif ication 
models with non-Hodgkin's lymphoma-
related microarray data from different 
laboratories [65], and Lyman et al have 
used meta-analysis techniques to detect 
predictors of recurrence-free survival 
in breast cancer [66]. Data integration 
may also be used with data correspond­
ing to different diseases, for example 
different types of cancers [67]. Differ­
ent kinds of experimental data can be 
integrated (e.g., microarray and prote­
omics). Moreover, data from different 
species can be integrated. For example, 
English and Butte evaluated 49 obesity-
related genome-wide experiments in­
cluding microarray, genetics, proteomics 
and gene knock-down from human, 
mouse, rat and worm. They created an 
integrative model and showed that in­
tersecting the results of experiments sig­
nif icantly improved the sensitivity, 
specif icity and precision of the predic­
tion of obesity-associated genes [68]. 

3 Integrating Knowledge 
Computable forms of knowledge in­
clude knowledge bases and ontologies. 
Existing resources are often incomplete 
and need to be enriched and integrated. 
Incorporating prior knowledge into the 
analysis of gene expression datasets has 
been shown to improve the results. 

3.1 Knowledge sources and ontologies 
Multiple knowledge bases. The number 
of data sources has grown tremendously 

over the last decade. Frey et al mention 
that around 900 biological public data­
bases (e.g., genomic, proteomic, 
metabolomic, and others) were avail­
able in 2007, representing a vast amount 
of information about genes, proteins, 
diseases and their interrelations [1]. 
Besides repositories of experimental 
data, many knowledge resources are 
also publicly available. Such resources 
typically compile manually curated 
knowledge extracted from the biomedi­
cal literature and other sources. For 
example Entrez Gene provides infor­
mation about genes, Online Mendelian 
Inheritance in Man (OMIM) provides 
information about genetic diseases and 
GOA provides the functional annota­
tion of gene products. 
Multiple ontologies. Ontologies have 
been developed to represent the enti­
ties of biomedical interest and their re­
lations, in multiple subdomains and for 
multiple levels of granularity. Figure 1 
shows ontologies from genomics 
(white), chemistry (blue), anatomy (yel­

low), and diseases (green). Some ref­
erence ontologies are domain-specif ic 
such as the Chemical Entities of Bio­
logical Interest (ChEBI) for chemical 
entities or the Foundational Model of 
Anatomy (FMA) for anatomical enti­
ties [69]. Some ontologies are level-
specific such as GO at the cellular level, 
or SNOMED at the organism level. 
Ontologies can be overlapping in part. 
For example, subcellular anatomical 
entities are def ined in both the FMA 
and the Cell Component axis of GO 
[70]. In contrast, some ontologies may 
reuse the entities def ined in other on­
tologies. For example, reasoning over 
the anatomical location of diseases in a 
clinical ontology can be delegated to 
the anatomical ontology in which the 
anatomical entities are def ined [71]. 
Ontology repositories. The use of on­
tologies is a key element to inter­
operability among resources. For this 
reason, high-quality ontologies must be 
available to the community, ideally at 
no cost and without any constraints 

Fig. 1  Interrelations among biomedical ontologies 
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impeding their use or redistribution. 
The Open Biomedical Ontologies 
(OBO) are a collection of controlled 
vocabularies freely available to the bio­
medical community. Web-based ontol­
ogy portals such as the BioPortal (http:/ 
/www.bioontology.org/ tools /por tal / 
bioportal.html) allow users to browse, 
search, and visualize ontologies (and 
metadata) in the library, and to submit 
an ontology to the library. Ontology 
portals also tend to include features 
popularized by the "Web 2.0" move­
ment, including the collaborative re­
view of ontologies by users [72]. The 
need for innovative technology and 
methods that allow scientists to record, 
manage, and disseminate biomedical 
information and knowledge in machine­
processable form gave rise, in part, to 
initiatives such as the National Center 
for Biomedical Ontology (NCBO) cre­
ated in 20056 [73]. 
Ontology federation. The development 
of OBO ontologies is regulated within 
the OBO Foundry, which defines a set 
of shared principles governing ontol­
ogy development [74]. Knowledge in­
tegration will also benefit from the de­
velopment of top-domain ontologies, 
such as BioTop [75]. Such ontologies 
define the top-level classes of biomedi­
cal ontologies and can be used for link­
ing f iner-grained domain ontologies. 
Of note, some recently created ontolo­
gies were designed to be interoperable 
and to incorporate accurate representa­
tions of biological reality [74]. For ex­
ample, the PRotein Ontology (PRO) 
includes connections to other ontolo­
gies, including GO. It is expected that 
the connection of protein forms to GO 
classes using appropriate relations will 
support accurate functional annotation. 
Analogously, relations defined between 
protein classes and the OBO Disease 

Ontology will facilitate disease under­
standing [76]. Until the development 
of federated biomedical ontologies is 
fully orchestrated by organizations such 
as the OBO Foundry - if it ever is, there 
will be a need for creating ad hoc bridges 
across existing ontologies, which is one 
of the objectives of the Unified Medical 
Language System (UMLS)7 developed 
by the US National Library of Medi­
cine. The UMLS Metathesaurus inte­
grates 1.4 million concepts from over 
one hundred terminologies in use in life 
sciences, as well as some 12 million 
relations among these concepts. UMLS 
concepts are not only inter-related, but 
may also be linked to external resources 
such as GenBank, providing easy access 
to the knowledge contained in these re­
sources [77]. More generally, various ap­
proaches to aligning existing ontologies 
are discussed in [78]. 
Semantic Web for Health Care and Life 
Sciences. Knowledge integration efforts 
have benef ited from the development 
of Semantic Web technologies [21]. In 
the past few years, the World-Wide Web 
Consortium (W3C) has developed a set 
of standards and tools to support the 
vision of a flexible, integrated, auto­
matic and self-adapting Web. Some of 
these technologies are now mature and 
have started making an impact in the 
life sciences. Semantic Web languages 
include the Resource Description 
Framework (RDF), a variety of data 
interchange formats (e.g., RDF/XML, 
N3, Turtle, N-Triples) and notations, 
such as RDF Schema (RDFS), and the 
Web Ontology Language (OWL), all 
of which are intended to provide a for­
mal description of concepts, terms, and 
relationships within a given knowledge 
domain. OWL provides formal compu­
tational definitions, as well as tools for 
reasoning, in order to facilitate ontol­

ogy development and ontology main­
tenance. Therefore most health science 
ontologies, including those originally 
developed in OBO format [79], have 
been converted to OWL [80, 81]. 

3.2 Knowledge Enrichment 
Standard terminologies, such as the 
Gene Ontology, are widely used in da­
tabases and knowledge bases as con­
trolled vocabularies for functional an­
notations and largely facilitate 
comparative functional analysis. How­
ever, the functional annotation of gene 
products is not always consistent across 
databases and often remains incomplete. 
Although GO curators adhere to the 
same protocols and standards while as­
signing GO annotations, specif ic anno­
tation procedures and the specialization 
of curators vary across groups. Meth­
ods have been developed to assess the 
consistency of GO annotation across 
model organism databases (e.g., [82]). 
Enriching biological knowledge bases. 
Determining the function of uncharac­
terized proteins remains a major chal­
lenge and is an active field of research. 
Various knowledge sources have been 
explored, including large scale protein-
protein interaction assays, global 
mRNA expression analyses and system­
atic protein localization studies in [83]). 
Various techniques have been explored 
as well to generate functional annota­
tion predictions, among which informa­
tion theory-based semantic similarity, 
based on existing GO annotations [84]. 

Methods based on natural language 
processing and statistical techniques 
have been widely used for years for 
mining free text and extracting GO an­
notations. While the content of most 
biological databases is acquired through 
careful manual curation of literature 
and data, the increasing volume of bio­

6 7http://www.bioontology.org/ http://umlsks.nlm.nih.gov medical literature to be reviewed and 
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the increasing number of gene prod­
ucts in need of annotation are likely to 
overload the manual curation process. 
Consequently, text mining techniques 
are often employed to retrieve and ex­
tract functional annotation from the lit­
erature. For example, GoPubMed uses 
GO to organize the results of a PubMed 
search [85]. The BioCreAtIvE initia­
tive, with tasks such as gene name nor­
malization and identif ication of func­
tional annotation from free text, 
demonstrated that term recognition 
techniques are suitable for real appli­
cations in biology [86]. However, au­
tomatic annotation techniques generally 
require additional knowledge process­
ing and had lesser performance than 
gene identif ication tasks. Daraselia et 
al also showed the usefulness of com­
bining NLP techniques (protein anno­
tation extracted from Medline) with 
additional knowledge (information 
from protein-protein interactions 
datasets) [87]. 
Enriching biomedical ontologies. 
Analogous to the methods devoted to 
quality assurance and enrichment of 
knowledge bases, methods have been 
developed for the evaluation of ontolo­
gies, including terminology enrichment 
and consistency checking. 

Terminology enrichment techniques 
are used for identifying missing rela­
tions in terminologies. For example, GO 
lacks explicit associative relations across 
its three hierarchies, which may impede 
the consistent clustering of gene prod­
ucts according to functional character­
istics. For instance, while the gene 
APOC3 is associated with both the mo­
lecular function 'lipid transporter ac­
tivity' and the biological process 'lipid 
transport', APOH is only annotated with 
'lipid transporter activity'. To address 
this issue, various approaches to sug­
gesting new relations among biologi­
cal terms have been proposed, based on 
lexical and statistical phenomena. 

Biological terms are often found as 
proper substrings of other terms. 
Compositionality of terms has been 
used to suggest semantic relations 
among GO terms directly [88, 89] or 
through ChEBI terms [90]. Moreover, 
Mungall proposed a formal language, 
Obol, for def ining allowed composi­
tional patterns among terms from OBO 
ontologies [91]. Statistical and data 
mining techniques have also been ap­
plied to biological knowledge bases 
annotated to the GO in order to auto­
matically extract candidate relations 
among GO terms and help enrich on­
tologies with associative relations [92]. 

When ontologies are represented 
with formal languages and def ined in 
reference to formal upper-level ontolo­
gies, it becomes possible to validate ex­
isting relations among classes and to 
identify new relations. OWL, the Web 
Ontology Language, is often used to 
represent the concepts and the relations 
in ontologies. OWL is more expressive 
than XML, RDF, and RDF-S, because 
it contains additional features for de­
scribing properties and classes formally. 
Such features include equivalence and 
disjointness among classes, cardinality 
of relations (e.g., "exactly one"), char­
acteristics of properties (e.g., symme­
try), and enumerated classes. Using the 
formal semantics of the OWL language 
makes it possible to reason about these 
classes and their instances and to en­
sure the consistency of these ontologies. 

3.3 Strategies for Analysis and 
Applications 
Key to the analysis of omics data is the 
integration of prior knowledge. Of spe­
cial interest are methods that include 
functional characteristics from the be­
ginning of the data analysis process, 
integrate medical knowledge with bio­
logical knowledge, and combine min­

ing techniques with inference-based 
knowledge processing. 

The analysis of transcriptomic data 
is classically carried out in two steps. 
First, data are clustered according to 
gene expression levels in order to cre­
ate three clusters: over-expressed, un­
der-expressed and invariant. Only sub­
sequently is functional information 
introduced in order to characterize the 
clusters "functionally". One of the limi­
tations of this approach is that func­
tional similarity does not contribute to 
the clustering process. Methods includ­
ing functional annotation from the be­
ginning of the analysis have been pro­
posed (e.g., [93]). These methods rely, 
for example, on semantic similarity 
measures among genes based on func­
tional annotations [94]. 

Moreover, besides gene expression, 
proteomic patterns, functional charac­
teristics of genes and the medical fea­
tures associated with a sample (e.g., 
phenotype, clinical history, environ­
mental factors, experimental condi­
tions) could contribute to the cluster­
ing process. Such characteristics can be 
represented as UMLS concepts [95], 
NCIT or SNOMED CT concepts [96, 
97]. Once annotated to these ontolo­
gies, the datasets can be clustered in such 
a way that the annotations themselves 
participate in the clustering, along with 
the expression prof iles of the genes. 
More generally, knowledge integration 
has been shown to increase the power 
of analysis in several genomic studies. 
Butte has developed an approach based 
on the UMLS [95], while other authors 
have integrated Entrez Gene and GO 
[98]. Chabalier has proposed a method 
for integrating information from the 
KEGG pathway database and the GO 
annotation repository into a disease 
ontology [99]. 

Various data mining techniques have 
been applied to biomedical data analy­
sis (e.g., [100], [101]). Among data 

IMIA Yearbook of Medical Informatics 2008 



 

 

 

 

 

 

 

  

 

  

 

 

99 

 Accessing and Integrating Data and Knowledge for Biomedical Research 

mining techniques, association rule 
mining, used widely in the area of mar­
ket basket analysis, can be applied to 
the analysis of biological data as well. 
Based on the frequencies of co-occur­
rence between a gene G and a pheno­
type P, a typical rule would be: "if P is 
present, then G is present". Association 
rules can reveal biologically relevant 
associations between different genes or 
between environmental effects and gene 
expression prof iles. The mining tech­
niques may include negative rule gen­
eration (e.g., [102]) in addition to posi­
tive rule generation. Ideally, data 
mining techniques should be combined 
with inference-based knowledge pro­
cessing. For example, the classification 
capabilities associated with ontologies 
may be used to aggregate annotations 
in order to improve the support and 
confidence values of association rules. 
More generally, knowledge bases and 
inference may contribute to increase the 
power of data mining techniques. 

4 Conclusion 
As biomedical research evolves from 
traditional clinical and biological re­
search towards omics sciences and trans­
lational research, specif ic needs have 
emerged, including integrating data col­
lected in research studies with patient 
clinical data, linking omics knowledge 
with medical knowledge, modeling the 
molecular basis of diseases, and devel­
oping tools that support in-depth analy­
sis of research data. As such, transla­
tional research illustrates the need to 
bridge the gap between bioinformatics 
and medical informatics [103], and 
opens new avenues for biomedical 
informatics research. 
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