
An experiment in integrating large biomedical knowledge 
resources with RDF: Application to associating genotype 

and phenotype information 
 

Satya S. Sahoo1, Olivier Bodenreider2, Kelly Zeng2, Amit Sheth1  
1The Kno.e.sis Center, Wright State University, Dayton, OH USA 

2U.S. National Library of Medicine, NIH, Bethesda, Maryland, USA 
{sahoo.2, amit.sheth}@wright.edu, {olivier, zeng@nlm.nih.gov}

 
 

ABSTRACT 
Bridging between genotype and phenotype is generally achieved 
through the integration of knowledge sources such as Entrez Gene 
(EG), Online Mendelian Inheritance in Man (OMIM) and the 
Gene Ontology (GO). Traditionally, such integration implies 
manual effort or the development of customized software. In this 
paper, we demonstrate how the Resource Description Framework 
(RDF) can be used to represent and integrate these resources and 
support complex queries over the unified resource. We illustrate 
the effectiveness of our approach by answering a real-world 
biomedical query linking a specific molecular function, 
glycosyltransferase, to the disorder congenital muscular 
dystrophy, which potentially forms a new hypothesis. Some 
challenges encountered along the way are discussed, namely 
issues with the identification of biomedical entities and the lack of 
a reference ontology of relationships. 

Categories and Subject Descriptors 
H.3.3 [Information Systems] Information Search and Retrieval, 
H.1.m [Miscellaneous] 

General Terms 
Experimentation, Standardization  

Keywords 
Data integration, Semantic Web, Resource Description 
Framework, Entrez Gene, Gene Ontology, SPARQL, path queries. 

1. INTRODUCTION 
Integrating multiple heterogeneous knowledge sources has 
become a necessity in many domains, yet still represents a major 
challenge to both domain experts (e.g., biologists) and computer 
scientists. 

The interpretation of experimental data generally requires 
physicians and biologists to compare their clinical and biological 
data to already existing data sets and to reference knowledge 
bases. However, most biomedical systems have been developed 
independently of each other, and, as a result, they do not have a 
common vocabulary or structure that would facilitate navigation 

across resources [1]. The integration of biomedical resources has 
been proposed as a solution to facilitate access to multiple, 
heterogeneous resources [2]. 

Information integration is also one of the most challenging area of 
research in Computer Science [3]. The use of heterogeneous 
schemas designed primarily to ensure optimization of storage 
space makes it extremely difficult for users to query data sources 
in an integrated manner. However, recent research in Semantic 
Web technologies has delivered promising results to enable 
information integration across heterogeneous knowledge sources. 
In effect, the Semantic Web provides a common framework that 
enables the integration, sharing and reuse of data from multiple 
sources. Additionally, the use of a representation formalism based 
on a formal language enables software applications to reason over 
information. 

In this paper, we discuss the use the Semantic Web technology 
RDF (Resource Description Framework) for integrating two 
heterogeneous data sources frequently used in genomic studies: 
Entrez Gene and the Gene Ontology. We describe an experiment 
in integrating and querying these resources and present an 
application to hypothesis formulation in biomedicine. The 
objective of this experiment is not to match the schemas of the 
two resources, but rather to leverage the presence of entities 
common to both resources. The resulting integrated resource is 
shown to support complex queries (e.g., representing hypotheses) 
that could not be answered by any of the resources taken 
separately. 

Finally, we discuss some of the challenges encountered along the 
way, namely the need for formalizing the predicates that relate 
entities in order to support reasoning, as well as the need for 
unique identifiers for entities across data sources and standard 
identification schemes for biomedical entities. 

2. BACKGROUND 
The Resource Description Framework (RDF) 

The Resource Description Framework (RDF) is a W3C-
recommended framework for representing data in a common 
format that captures the logical structure of the data [4]. This is in 
contrast to pure storage aspects addressed by traditional relational 
database schema. The RDF representational model uses a single 
schema in contrast to multiple heterogeneous schemas or Data 
Type Definitions (DTD) used by different sources to represent  
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data in XML. All data represented in RDF form a single 
knowledge repository that can be queried as one knowledge 
resource. An RDF repository consists of a set of assertions or 
triples. Each triple consists of three entities namely, the subject – 
the triple pertains to this entity, the object – the entity that states 
something about the object and the predicate – the relationship 
between the subject and the object. 

Integrating biomedical data sources 

Three main approaches to integrating heterogeneous, distributed 
data sources in the biomedical domain have been proposed [2] 
warehouse integration, navigational integration and mediator-
based integration. 

In the warehouse integration approach, data are imported from 
various sources and stored locally in a unique format. Data are 
transformed as necessary in order to make the various sources 
compatible with each other. Queries are made directly to the 
warehouse. GUS [5] is an example of warehouse for genomic 
sources such as Swiss_Prot and GenBank. 

With mediator-based integration, data sources are queried 
remotely rather than stored locally. Queries, not data, are adapted 
to the specific characteristics of each source. A mapping is 
established between the schema of each source and a global 
schema representing the integrated resource. Examples of 
mediator-based integration systems include TAMBIS [6] and 
BioMediator [7]. 

The navigational integration approach focuses on links between 
sources, provided by the sources (e.g., cross-references) or 
specifically generated (e.g., BLAST similarity). The resulting 
system is, in effect, a graph in which the various entities are 
linked by paths, making it possible for users to navigate between 
resources. Example of navigational systems include Entrez [8]. 

In this paper, we propose an integrative approach to querying 
across knowledge sources based on the Resource Description 
Framework (RDF) [4]. Our approach shares some features with 
the traditional approaches presented earlier. Like warehouse 
integration, it requires the various data sources to be converted 
into a common format, here RDF. Our current implementation 
also integrates the sources into a unique store. The RDF store 
constitutes a large graph and is therefore similar to the underlying 
structure of the systems based on navigational integration. Finally, 
our approach relies on ontologies to support inference, which of 
also a feature of many mediator-based systems. 

Related work 

The creation of a permanent repository was selected over queries 
made “on the fly” to the resources mainly because this integrated 
RDF repository constitutes the central knowledge resource of a 
larger project. In fact, this work is a pilot contribution to the 
Biomedical Knowledge Repository under development at the U.S 
National Library of Medicine as part of the Advanced Library 
Services project [14]. This repository integrates knowledge not 
only from structured resources (database and knowledge bases), 
but also from the biomedical literature (e.g., MEDLINE), in order 
to support various applications, including knowledge discovery. 

Integrating biomedical knowledge resources through RDF is also 
one of the goals of the BioRDF task force of the W3C Semantic 
Web Health Care and Life Sciences Interest Group 
(http://www.w3.org/2001/sw/hcls/). In a recent paper, they 

described how RDF-integrated resources can support translational 
research in the domain of neurosciences [9]. Example of 
applications using RDF to integrate biomedical knowledge 
sources include YeastHub [10] and LinkHub [11], Taverna [12] 
and BioDASH [13]. 

Biological example 

A common scenario in biomedical research involves the 
correlation of genomic data with disease information, in other 
words, associating genotype and phenotype information. In the 
particular scenario illustrated in this paper, a researcher is 
interested in glycosylation and its implications for one disorder: 
congenital muscular dystrophy. The biological process of 
glycosylation results in the post-translational addition of glycosyl 
groups (saccharides) to proteins (and lipids). Various enzymes, 
namely glycosyltransferases, catalyze glycosylation reactions. 

From the functional annotation of gene products with terms from 
the Gene Ontology (GO), a researcher can identify the genes 
having the molecular function of catalyzing the transfer of specific 
glycosyl groups (e.g., hexosyltransferase, for hexosyl groups). 
Known associations between these genes and diseases can then be 
mined from resources such as NCBI’s Entrez Gene (EG), where 
phenotypic information is recorded as pointers to the Online 
Mendelian Inheritance in Man (OMIM) knowledge base [15]. 

In order to validate the hypothesis of possible association between 
the molecular function glycosyltransferase and the disease 
congenital muscular dystrophy, a researcher could simply search 
EG for the term glycosyltransferase, and all records containing 
the string “glycosyltransferase” in GO annotations would be 
returned. This approach, however, is suboptimal for at least two 
reasons. First, the term glycosyltransferase might appear as a 
substring in other GO terms (e.g., in UDP-glycosyltransferase), 
possibly leading to false positives. Conversely, not all GO terms 
related to glycosyltransferase actually contain the string 
“glycosyltransferase” (e.g., acetylglucosaminyltransferase, a kind 
of glycosyltransferase), possibly leading to false negatives. 

To avoid false positives and false negatives, a careful researcher 
would likely start exploring the Gene Ontology database to create 
a list of glycosyltransferase-related terms by selecting the term 
glycosyltransferase itself (GO:0016757) and all its descendants, 
including specialized types of glycosyltransferase, such as 
acetylglucosaminyltransferase. This researcher would then look 
for the genes annotated with any of the glycosyltransferase-related 
terms. Resources such as the web browser AmiGO [16] support 
such searches and can retrieve the genes associated with any 
descendant of a given GO term. Finally, each of the genes found 
associated with any of the glycosyltransferase-related terms must 
be searched individually in EG, looking for mentions of the 
disease congenital muscular dystrophy (as an OMIM phenotype) 
in the corresponding records. 

The procedure described above is evidently inefficient, time 
consuming and error prone as several web interfaces need to be 
utilized (AmiGO and Entrez), and as the results of the search in 
one resource need to be copied and pasted as search terms in the 
other. The main reason for such inefficiency is that high quality 
resources such as GO and EG have been designed primarily for 
consultation by humans, not for automated processing by agents 
or integration in applications. Moreover, these resources have 
been developed by different groups, independently of each other 
and are therefore not interoperable. No system currently supports 



complex queries such as: Find all the genes annotated with 
glycosyltransferase-related terms in GO and associated with the 
disease congenital muscular dystrophy in OMIM. Typically, 
querying across the different knowledge sources is accomplished 
manually through meticulous work or requires the development of 
complex and customized software applications. 

3. MATERIALS 
Gene Ontology 

The Gene Ontology (GO) seeks to provide a consistent 
description of gene products [17]. GO consists of three controlled 
vocabularies for biological processes (9,234 terms), molecular 
functions (7,456 terms) and cellular components (1,804 terms). 
The GO monthly releases are made available on the GO website in 
various formats, including RDF. The version of GO used in this 
study is dated of September 2006. 

Entrez Gene 

The Entrez Gene (EG) database records gene-related information 
from sequenced genomes and of model organisms that are focus 
of active research [18], totaling about two million genes. EG 
contains gene information about genomic maps, sequences, 
homology, and protein expression among others [18]. In contrast 
to GO, EG is not available in RDF, but in XML (converted from 
ASN1 by the program gene2xml provided by NCBI), and can be 
downloaded from the NCBI website. The version of EG used in 
this study is dated of July 2006. 

4. EXPERIMENTAL METHODS   
Our integration method can be summarized as follows and is 
illustrated in Figure 1. First, we extract manageable subsets from 
the two resources to be integrated. We then have to convert the 
EG subset from XML to RDF. Finally, we load both RDF 
resources in a common store, apply inference rules, and issue 
queries against it. 

Creating subsets 

The entire Entrez Gene data file (in XML format) is very large (50 
GB) and unnecessarily difficult to manipulate. In order to obtain a 
manageable subset from EG, we restricted the gene records to two 
species: Homo sapiens (human) and Mus musculus (mouse). The 
resulting EG subset contains a total of 99,861 complete gene 
records (excluding obsolete records). 

Converting XML format Entrez Gene data to RDF 

A key element of our integration approach is the conversion of 
Entrez Gene from XML to RDF. There are many issues involved 
in the conversion of XML data into RDF format, including 
modeling the original semantics of the data, filtering redundant 
XML element tags, linking data entities using meaningful named 
relationships and identifying entities consistently within and 
across resources. Unlike traditional XML to XML conversion, 
XML to RDF conversion should exploit the advantages of the 
RDF model in representing the logical structure of the 
information. 

A naïve approach to converting XML resources into RDF would 
transform each XML element tag into a predicate, mechanically. 
The resulting RDF representation, although syntactically correct, 
would be semantically limited, as the naming of the element tags 

is not necessarily reflective of their underlying semantics and may 
not be consistent. Instead, we manually examined the XML 
element tags and converted them into meaningful and 
standardized relationship names that convey explicitly the 
semantics of the connection between the subject and the object. 
For example, the element <Org-ref_taxname> was mapped to the 
more meaningful relationship named has_source_organism_-
taxonomic_name. 

In fact, the main objective of the conversion of EG to RDF is not 
to make it syntactically compatible with other RDF resources, but 
mostly to add expressive semantics to the EG data through the use 
of named relationships connecting EG entities. In other words, the 
conversion process realizes limited semantic enrichment in 
addition to syntactic transformation. 

 

Figure 1. Overview of the integration method 

We selected the eXtensible Stylesheet Language Transformation 
(XSLT) [19] for converting the EG XML information into RDF, 
because this approach allows for a clean separation between the 
application (using Java API for XML Processing (JAXP)) and the 
conversion logic (using XSLT stylesheet). Once the stylesheet is 
created, it can serve as an auxiliary file for existing programs 
realizing the XML to RDF conversion. In other words, the major 
interest of this approach is that no specific code is required for the 
conversion, because the transformation logic resides entirely in 
the stylesheet. 



Loading the two resources into a single data store 

Some of the requirements for our RDF store include native 
support for the RDF graph data model, support for persistence and 
indexing of the RDF triples, support for extensive collections of 
triples, and availability of a query language for the RDF graph. 
After surveying available RDF storage solutions, we decided to 
use Oracle Spatial 10g [20] as the RDF storage system. However, 
since we do not use any features specific to this product, we 
believe other RDF storage systems could be easily substituted. 

The RDF file resulting from the XSLT conversion of the original 
XML file for EG and the RDF version of GO downloaded from 
the GO website are both loaded into a single RDF store. More 
precisely, the RDF resources are first converted to the NTriple 
format using the Jena API [21] and loaded into the RDF database 
using a loader provided by Oracle. 

Applying inference rules 

Unlike the Web Ontology language OWL, RDF provides no direct 
support for inference. However, inference rules can be 
implemented in the RDF store to make explicit the semantics of 
some predicates. For example, the relationships is_a and part_of 
used in GO are partial order relations, thus being reflexive, 
antisymmetric and transitive. The inference rules we created for 
implementing the transitivity and combination of these two 
relationships are shown in Table 1. The inference rules are stored 
in a rule base created in Oracle 10g. 

Table 1. Inference rules for is_a and part_of in GO 

Relation is_a part_of 

is_a 
IF <x is_a y> 
& <y is_a z> 

THEN <x is_a z>  

IF <x is_a y> 
& <y part_of z> 

THEN <x part_of z> 

part_of 
IF <x part_of y> 
& <y is_a z> 

THEN <x part_of z> 

IF <x part_of y> 
& <y part_of z> 

THEN <x part_of z> 

 

Querying the RDF graph with SPARQL 

SPARQL [22] is a query language for RDF graphs, equivalent to 
SQL, the Structured Query Language, for relational databases. 
Unlike SQL, SPARQL does not require users to be familiar with 
the data model (e.g., tables, foreign keys), but simply to indicate 
how entities of interest relate to each other. For example, the 
structure of the query: Find all the genes annotated with the GO 
molecular function glycosyltransferase (GO:0016757) or any of 
its descendants and associated with any form of congenital 
muscular dystrophy is represented in Figure 2. 

The query can be understood as finding a path in the RDF graph 
using a predetermined set of semantic relationships and would be 
formulated as follows. Because of the inference rules 
implementing the transitivity and reflexivity of the is_a 
relationship, the condition on the GO annotation 
“glycosyltransferase (GO:0016757) or any of its descendants” is 
easily expressed by ‘?t is_a GO:0016757’. The link between 
genes and GO terms is expressed by ‘?g has_molecular_function 
?t’. Similarly, the link between genes and OMIM diseases is 
expressed by ‘?g has_associated_phenotype ?b2’ (OMIM ID) and 

‘?b2 has_textual_description ?d’ (disease name). Finally, direct 
constraints are put on the GO term on the one hand (‘?t is_a 
GO:0016757’, to select glycosyltransferase (GO:0016757)) and 
on disease names on the other (where a regular expression is used 
to select disease names containing the strings “congenital”, 
“muscular” and “dystrophy”). The simplified SPARQL query is 
shown in Figure 3. The actual SPARQL query used in this study 
is displayed in Figure 7, along with thee output it produces. 

GO ID GO ID

Gene ID

is_a

has molecular function

OMIM ID OMIM name

has textual description

has assoc. phenotype

 

Figure 2. RDF graph corresponding to the query above 

SELECT distinct t,g,d
FROM TABLE(SDO_RDF_MATCH(
'(?t is_a GO:0016757)
(?g has molecular function ?t)
(?g has_associated_phenotype ?b2)
(?b2 has_textual_description ?d)',
SDO_RDF_Models('entrez_gene'),
SDO_RDF_Rulebases('entrez_gene_rb'),
SDO_RDF_Aliases(SDO_RDF_Alias('','')), null) )
where (

REGEXP_LIKE(LOWER(d), '((.)*(congenital)(.)*)')
AND REGEXP_LIKE(LOWER(d), '((.)*(muscular)(.)*)')
AND REGEXP_LIKE(LOWER(d), '((.)*(dystrophy)(.)*)'));

 

Figure 3. Example of SPARQL query (simplified) 

GO:0008375 GO: 0016757

EG:9215

is_a

has molecular function

MIM:608840 Muscular dystrophy, 
congenital, type 1D

has textual description

has assoc. phenotype

 

Figure 4. Instantiated RDF graph 

5. RESULTS 
One integrated RDF repository for Entrez Gene and GO  

The subset of Entrez Gene restricted to Homo sapiens (human) 
and Mus musculus (mouse) as biological sources comprises 
99,861 gene records. Once converted to RDF, it consists of 
772,530 triples. The RDF version of GO contains 293,798 triples. 
Overall, there are over one million triples in the store created for 
this experiment, which is relatively small in comparison to the 



411 million triples resulting from the conversion of the entire EG 
to RDF [23]. 

Biological query result 

The SPARQL query presented above returned one result, 
corresponding to one path in the graph between the GO term 
glycosyltransferase (GO:0016757) and OMIM disease names 
containing (variants of) the string “congenital muscular 
dystrophy”.  

This path involved the human gene LARGE like-
glycosyltransferase (EG:9215), annotated with the GO term 
acetylglucosaminyltransferase (GO:0008375), a descendant of 
glycosyltransferase (GO:0016757). Also involved in this path is 
the OMIM disease identified by MIM:608840. The name (textual 
description) of this disease is Muscular dystrophy, congenital, 
type 1D and contains the required substrings “congenital”, 
“muscular” and “dystrophy”. The instantiated RDF graph with 
path between glycosyltransferase (GO:0016757) and Muscular 
dystrophy, congenital, type 1D is shown in Figure 4. 

This simple SPARQL provides an easy way of testing the 
biological hypothesis under investigation, i.e., the existence of a 
possible link between glycosylation and congenital muscular 
dystrophy. On manual inspection of the Entrez Gene record 
shown in Figure 6, we also note that the given gene may be 
involved in the development and progression of meningioma 
through modification of ganglioside composition and other 
glycosylated molecules in tumor cells. 

6. DISCUSSION  
Significance 

In this study, we demonstrated the feasibility of integrating two 
biomedical knowledge resources through RDF. We also provided 
anecdotal evidence for the benefits of such integration by showing 
how glycosyltransferase can be linked to congenital muscular 
dystrophy. The integrated resource is greater than the sum of its 
parts as it supports complex queries that could typically not be 
handled otherwise without tedious manual intervention or 
customized software applications. 

Integrated resources based on a graph model are particularly 
important in an exploratory context where researchers need to 
“connect the dots” in order to validate a hypothesis. This 
approach also facilitates intuitive hypothesis formulation and 
refinement. For example, after verifying that glycosyltransferase is 
linked to congenital muscular dystrophy, our researchers may 
narrow the focus of their wet lab experiments to only 
hexosyltransferase out of the potential seven glycosyltransferases. 
Analogously, they can focus their research on Muscular 
dystrophy, congenital, type 1D, out of several other diseases. 

Arguably, the graph data model of RDF resources is more 
intuitive than the database schemas. In fact, the RDF data model 
enables us to model the inherent logical relations between entities 
that mirror the human cognitive model of the real world. In fact, 
users familiar with the conceptual structure of EG and GO should 
be able to query the RDF graph integrating these two resources. 
For example, users are only required to know that genes have 
molecular functions and are associated with diseases. This is why 
an important element of the RDF conversion is to create explicit 
relationship names reflecting the semantics of the links. 

Finally, from a technical perspective, the RDF data model offers 
more flexibility than database schemas for accommodating 
changes to the underlying model. 

Generalization 

The particular biological example presented here was suggested 
by colleagues from the Complex Carbohydrate Research Center at 
the University of Georgia, not involved with the development of 
our RDF integration project. Moreover, this example was 
identified after creating the integrated resource. In other words, 
the subset of EG was not tailored to support this particular query, 
which suggests it could support queries in many other biological 
subdomains. In fact, the only reason why EG was restricted to a 
subset is to limit the size of the store, for practical reasons. 

In this feasibility study, we were primarily interested in 
demonstrating how one particular hypothesis, i.e., the existence of 
an association between glycosyltransferase and congenital 
muscular dystrophy, could be refined through the existence of 
paths in the RDF graph. Another use of the graph would be to 
mine hypotheses, instead of refining them. For example, 
researchers could create SPARQL queries to identify all classes of 
enzymes involved with a given disease, or with an arbitrary list of 
diseases, thus generating hypotheses, not only refining ad hoc 
hypotheses. 

The resources integrated in our pilot system are currently limited 
to the Gene Ontology and a subset of Entrez Gene. However, as 
part of the Advanced Library Services project, we are also 
extracting relations from the biomedical literature. These 
relations, also represented in RDF, will soon be integrated in our 
Biomedical Knowledge Repository, together with information 
extracted from several structured knowledge resources. This 
repository will thus support a wider range of queries. For 
example, future projects include an analysis of the genes 
associated with tobacco smoking behavior, identified by the 
Genome Wide Association of Nicotine Dependence – NICSNP 
Project, in collaboration with the National Institute on Drug 
Abuse. 

Why RDF? 

We have used RDF as the representational format, in place of 
RDF/S or OWL, even though RDF/S and OWL allows more 
expressivity in capturing domain knowledge. For example, RDF/S 
supports property inheritance, and the expressive features of OWL 
include membership and numerical restrictions on concepts or 
relations. Importantly, these features are currently not present in 
the original data model of EG or GO. Adding such features to a 
resource is generally labor intensive and expensive, and therefore 
hardly suitable for the automated integration of existing data 
sources sought in this project. 

In contrast to OWL, the RDF data model is well suited for the 
representation of the original EG data along with (automated) 
incorporation of named relationships. Moreover, RDF allows us 
to use a powerful and scalable rule base to reason over the 
integrated knowledge source. Additionally, the reasoning services 
currently available for OWL-DL are limited in the volume and 
complexity of the data they can handle, and would typically be 
overwhelmed by the hundreds of thousands entities involved in 
our repository. 

The SPARQL query language for RDF is currently not 
customized for optimal performance in scenarios involving 



multiple traversals of named relationships to answer a query. 
Future work will involve the collection of empirical data to 
evaluate the performance of the SPARQL with respect to different 
categories of queries.  

 

Figure 5. A hierarchy of relationships among entities in Entrez 
Gene (partial representation) 

A formal model of relationships 

Meaningful relationships connecting biological entities play a 
critical role in the successful integration of data sources using a 
Semantic Web approach. The named relationships (or predicates), 
i.e., the links in the RDF graph, are first class objects in the RDF 
data model. The relationships are not only represented explicitly 
in the RDF store, but they are also an integral part of the queries. 

In our current effort we have tried to capture the original 
semantics of the EG schema when converting the original XML 
element tags into named relationships. The conversion of the 
element tags resulted on a list of over one hundred relationships. 
However, in order to take full advantage of the relationships in 
reasoning tasks, these relationships need to be organized not as a 
flat list, but into a formal, hierarchical model defining 
relationships among relationships. 

To our knowledge, there exists no such formal model of 
relationships comprehensive and fine-grained enough to 
accommodate the kinds of relationships encountered in Entrez 
Gene, for example. A small number of top-level relationships in 
biomedical ontologies have been defined and could provide a 
formal framework for defining finer-grained relationships [24]. 

The Semantic Network of the Unified Medical Language System 
(UMLS) defines, although less formally, a larger set of 54 
relationships, which could be used as a backbone for organizing 
the relationships in our system [25]. 

In addition to supporting reasoning, a detailed reference 
relationship ontology would also be useful in the conversion 
process in which XML element tags are converted into RDF 
relationships using an XSLT stylesheet mechanism. Attached to a 
given relationship in the ontology would be the list of XML 
element tags in the various information sources to be integrated, 
whose conversion should result in this relationship. Because the 
ontology contains both the relationships used in the RDF graph 
and the corresponding element tags found in the XML sources, an 
XSLT stylesheet generator can take advantage of the ontology to 
automate the generation of the XSLT, i.e., to map the XML 
element tags to RDF predicates. 

Our relationship ontology currently comprises the XML element 
tags in EG along with the named relationships we created for 
them. In its initial stage, the organization of the relationships 
simply reflects the tree-like structure of the EG XML schema. A 
portion of this relationship ontology is shown in Figure 5. The 
only relationships present in the GO are is_a and part_of. As we 
integrate additional resources, we will reorganize the relationships 
into a more expressive structure, aligning them with existing 
relationship ontologies, such as the UMLS Semantic Network’s.  

Unique Identifiers for biomedical entities 

Heterogeneous resources can interoperate in a RDF graph only if 
the entities shared by these resources are identified consistently. 
For example, the Gene Ontology can be used easily in conjunction 
with Entrez Gene, because Entrez Gene uses GO identifiers to 
refer to terms in the GO. This seamless integration allows us to 
relate genes not only to the GO terms to which these genes are 
annotated, but also to the ancestors of these terms. Similarly, we 
would like to be able to abstract away from specific diseases in 
OMIM and relate genes to higher-level disease categories (e.g., 
muscular dystrophy, as opposed to Muscular dystrophy, 
congenital, type 1D). However, in contrast to GO terms, OMIM 
diseases are not organized in a hierarchy, nor are they integrated 
in the hierarchical structure of the UMLS Metathesaurus, where 
such disease categories are represented. As a consequence, little 
reasoning can be performed on the side of diseases in our current 
RDF store. 

In order to identify biomedical entities, we plan to rely as much as 
possible on comprehensive and already integrated terminological 
resources. This is the case, for example, of the UMLS 
Metathesaurus, integrating the names of some 1.4 million 
biomedical entities, including diseases, drugs and organisms. The 
UMLS is a stable resource that has been developed and updated 
regularly for 20 years by the National Library of Medicine (NLM) 
[25]. In order to compensate for its limited coverage of genes, we 
also plan to use other resources of the NLM such as Entrez Gene. 
Because the UMLS and Entrez Gene already integrate names from 
several terminological resources, they provide a broader 
namespace compared to individual ontologies, thus reducing the 
need for mapping between namespaces. 

A distinct issue is that there is no universally accepted schema for 
identifying entities. The main contenders are the Life Science 
Identifier (LSID) [21] and solutions based on the HTTP protocol 
(i.e., URIs (Universal Resource Identifiers), URLs (Universal 



Resource Locators) and URNs (Universal Resource Names)). 
Differences between them include support for versioning and 
resolution (i.e., what information can be obtained from the 
identifier). As shown in Figure 7, until one schema is adopted, we 
decided to use the EG DTD URL as the namespace to create the 
identifier for gene entities in the RDF store. For GO terms, we 
temporarily use the URL of GO. These decisions can be changed 
with minimal effort, simply by modifying the XSLT stylesheet 
when a resource is loaded into the RDF store. 

7. CONCLUSION 
The integration approach demonstrated in this study takes 
advantage of technologies developed for the Semantic Web, such 
as RDF. We showed how two large biomedical knowledge 
resources can be integrated through RDF and we presented one 
application of the integrated RDF store to generating research 
hypotheses. At a time when biomedical knowledge is 
overabundant, heterogeneous and scattered, we believe that this 
approach can help researchers process it in a more efficient way. 
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Figure 6. Screenshot of the Entrez Gene website for the gene “LARGE like-glycosyltransferase” 



 
SELECT distinct t,g,d 

FROM TABLE(SDO_RDF_MATCH( 

'(?t <http://www.geneontology.org/dtds/go.dtd#is_a> 

                                              <http://www.geneontology.org/go#GO:0016757>) 

(?g <http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/has_GeneOntology_annotation> ?b1) 

(?b1 <http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/has_GO_ID> ?t) 

(?g <http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/has_OMIM_record> ?b2) 

(?b2 <http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/has_textual_description> ?d)', 

SDO_RDF_Models('entrez_gene'), 

SDO_RDF_Rulebases('entrez_gene_rb'), 

SDO_RDF_Aliases(SDO_RDF_Alias('','')), 

null) 

) where ( REGEXP_LIKE(LOWER(d), 

'((.)*(muscular)(.)*)')  AND REGEXP_LIKE(LOWER(d), 

'((.)*(dystrophy)(.)*)') AND REGEXP_LIKE(LOWER(d), 

'((.)*(congenital)(.)*)')); 

 

http://www.geneontology.org/go#GO:0008375 

http://www.ncbi.nlm.nih.gov/dtd/NCBI_Entrezgene.dtd/9215 

Muscular dystrophy, congenital, type 1D 

 

Figure 7. The actual SPARQL query (top) and output (bottom) used in our extended example 


