
 

  
Abstract— The Gene Ontology and annotations derived from 

the S. cerivisiae Genome Database were analyzed to calculate 
functional similarity of gene products. Three methods for 
measuring similarity (including a distance-based approach) were 
implemented. Significant, quantitative relationships between 
similarity and expression correlation of pairs of genes were 
detected. Using a known gene expression dataset in yeast, this 
study compared more than three million pairs of gene products 
on the basis of these functional properties. Highly correlated 
genes exhibit strong similarity based on information originating 
from the gene ontology taxonomies. Such a similarity is 
significantly stronger than that observed between weakly 
correlated genes. This study supports the feasibility of applying 
gene ontology-driven similarity methods to functional prediction 
tasks, such as the validation of gene expression analyses and the 
identification of false positives in protein interaction studies.  
 

Index Terms— Gene Ontology, functional similarity, gene 
expression correlation. 
 

I. INTRODUCTION 
N important goal in functional genomics is the automated 
incorporation of prior knowledge to support the 

generation and validation of hypotheses. Moreover, this 
process should facilitate integrative prediction strategies based 
on the analysis of diverse sources of genomic information, 
which provide incomplete and sometimes inconsistent views 
of a biological phenomenon. The Gene Ontology  (GO) 
represents an important knowledge resource to describe the 
function of genes [1]. The GO was designed to offer 
controlled vocabularies and shared hierarchies for aiding in 
the annotation of molecular attributes across model organisms. 
Initially, it facilitated the development of several organism-
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specific databases and the implementation of cross-database 
queries [1]. More recently, it has been used as a gold standard 
for functional prediction applications. It has supported 
functional assessment of gene products, including gene 
expression cluster interpretation [2]. 
 The GO has been proposed as a tool for measuring 
similarity between genes. This approach is referred to as 
semantic similarity, which may be based on statistical and 
topological information about GO terms and/or their inter-
relationships in the ontology. Previous research has shown 
significant relationships between semantic similarity of pairs 
of genes and their structural, sequence-based similarity [3]. 
Also initial studies have evaluated relevant associations 
between GO-driven similarity and other functional properties, 
such gene expression correlation and protein complex 
membership [4].  

This study focuses on the incorporation of ontology-based 
similarity for functional classification problems. It aims to 
expand our understanding of the relationships between GO-
driven gene similarity and expression correlation. Such an 
assessment may allow one to justify the design of annotation-
based predictive models and their integration with expression 
data models. It may provide the basis for novel methods to 
assess the predictive quality and reliability of functional 
genomics analyses involving gene expression or other types of 
related data. Moreover, this research may be seen as an 
analysis of the reliability and consistency of the information 
represented in the GO and resulting databases. 

The results are based on the GO annotations from the 
Saccharomyces Genome Database (SGD) [5]. Section 2 
introduces the GO and relevant applications. GO-based 
similarity assessment methods are introduced in Section 3. 
Section 4 describes the datasets and methods. Section 5 
summarizes results. Section 6 discusses the relevance of the 
results and ongoing research. 

 

II. THE GENE ONTOLOGY AND ITS APPLICATIONS IN 
FUNCTIONAL GENOMICS  

A.  Introduction to the Gene Ontology 
The GO defines a shared and structured vocabulary to 

annotate molecular attributes across models organisms [1]. It 
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allows scientists to access annotation information resulting 
from different model organisms. The terms defined by the GO 
have been used to develop several genomic databases, such as 
the SGD [5] and FlyBase [6].  The GO and resulting databases 
also provide information about the quality of the associations 
between GO terms and gene products. This information is 
represented by evidence codes, which are assigned to each 
gene annotation using the GO. The GO supports different 
types of evidence codes. For instance, the evidence codes 
TAS (Traceable Author Statement) and IEA (Inferred from 
Electronic Annotation). The TAS code refers to annotations 
supported by articles or books. In contrast, IEA annotations 
are based on results automatically derived from sequence 
similarity searches, which have not been reviewed by curators. 
Detailed information on databases and evidence codes 
supported is available at www.geneontology.org. 

The GO comprises three ontologies, sometimes referred to 
as taxonomies or hierarchies: Molecular function (MF), 
biological process (BP), and cellular component (CC). MF 
represents information on the role played by a gene product. 
BP refers to a biological objective to which a gene product 
contributes. CC represents the cellular localization of the gene 
product, including cellular structures and complexes. Fig. 1 
summarizes the organization of the GO and a partial view of 
the first level of terms included under BP. The design and 
implementation of the GO is reviewed in [1]. These 
vocabularies (one for each ontology) and their relationships 
are represented by directed acyclic graphs (DAGs). A 
hierarchy in the GO may be seen as a network in which each 
term may represent a “child node” of one or more “parent 
nodes”. There are two types of child-to-parent relationships in 
the GO: “is a” and “part of” types. The first type is defined 
when a child class is a subclass of a parent class. For example, 
from the BP ontology, “viral infectious cycle” is a child of 
“viral life cycle”. The second type is used when a parent has 
the child as its part. For instance, from the same ontology, 
“regulation of viral life cycle” is part of “viral life cycle”. Fig. 
1.a illustrates these examples and a partial view of a DAG in 
the GO.  

B. Gene Ontology Applications to Functional Genomics 
Ontologies have been traditionally used to improve 

database search applications. However, the significance of the 
GO goes beyond information search applications. The GO 
may facilitate large-scale applications for functional 
genomics. GO annotations have been recently integrated with 
relevant genomic resources, including gene expression data. 
One such application is the FatiGO tool, which is a Web-
based interface for analyzing groups of genes and their 
associations with GO terms [2]. FatiGO allows users to 
analyze differential distributions of GO terms for two sets of 
genes.  

King et al. [7] have predicted gene-phenotype associations 
in yeast. Their model processed phenotypic annotations 
extracted from the MIPS (Munich Information Center for 
Protein Sequences) database and GO annotations. Decision 

trees were implemented to infer these associations. Hvidsten 
et al. [8] have combined gene expression data with 
annotations originating from the GO biological process 
taxonomy. They applied rough set theory to assign biological 
process terms to genes represented by expression patterns. 
King et al. [9] implemented decision trees and Bayesian 
networks to predict new GO terms-gene associations based on 
existing annotations from the SGD and FlyBase. Lægreid et 
al. [10] also applied supervised learning methods to predict 
GO biological process annotation terms. Although these 
methods consist of the analysis of GO annotations, they are 
not based on semantic similarity approaches. Moreover, they 
do not apply information content models, which may 
significantly represent relevant patterns associated with the 
structure and relationships in the GO. By ignoring the 
semantic similarity between closely related GO terms (e.g., 
between a parent and a child), these methods may fail to 
identify the similarity between genes annotated with these 
closely related yet distinct terms. One of the contributions of 
this paper is to exploit term-term similarity in GO hierarchies 
for computing gene-gene similarity. 

 

 
Fig. 1 Different views of the GO. (a) Example of a DAG. (b) GO taxonomies. 
(c) Partial view of the first level of BP. […] indicates the presence of several 
terms not included here. 

III. SIMILARITY ASSESSMENT WITH THE GENE ONTOLOGY  
Before explaining the calculation of ontology-based 

similarity between gene products, it is first necessary to 
understand how to measure similarity between annotation 
terms in the ontology.  

Given a pair of terms, c1 and c2, a traditional method for 
measuring their similarity consists of calculating the distance 
–measured by the number of edges – between the nodes 
associated with these terms in the ontology. The shorter this 
distance, the higher the similarity. The shortest or the average 



 

distance may be used when there are multiple paths. This type 
of approaches is commonly known as edge counting methods. 
Variations may define weights for the links according to their 
position in the taxonomy [11]. One of the main limitations 
shown by these methods is that they assume that nodes and 
links are uniformly distributed in an ontology. This is not an 
accurate assumption in taxonomies exhibiting variable link 
densities. Information-theoretic models [12] offer alternative 
approaches to measuring similarity in an ontology. Previous 
research has shown that this type of approaches may be 
significantly less sensitive to link density variability [13], 
[14]. These methods traditionally consider only the “is a” 
links in a taxonomy.  However, it has been shown that other 
types of links may also be processed to perform similarity 
assessment [13]. The majority of the GO links are “is a” links 
[3]. Such a bias towards link type usage also justifies the 
application of this type of similarity assessment approaches. 
This research implemented and evaluated information-
theoretic techniques to measure similarity of GO terms. It 
considers the two types of GO links as equally important for 
estimating similarity. 

Let C be the set of terms in the GO.  An information-
theoretic approach to measuring similarity between 
terms, Cc ∈ , consists of determining the amount of 
information they share in common. In the GO this information 
may be represented by the set of parent nodes, which subsume 
the pairs of terms under analysis. For example, in Fig. 1.a the 
terms “regulation of viral life cycle” and “viral infectious 
cycle” are subsumed by the terms “viral life cycle” and 
“biological_process”. This indicates that the terms “regulation 
of viral life cycle” and “viral infectious cycle” shared those 
attributes (parents) in common.  For each term, Cc ∈ , p(c) is 
the probability of finding a child of c in the annotation 
database being analyzed, in this case the SGD. Thus, as one 
moves up to the root node of the GO (i.e. terms “molecular 
function”, “biological process” and “cellular component”), 
p(c) monotonically approaches a value equal to 1. The 
principle of information theory defines the information 
content of a term as equal to –log(p(c)).  

This type of methods exploits the assumption that the more 
information two terms share in common, the more similar 
they are. Thus, the information shared by two terms may be 
calculated using the information content of the terms 
subsuming them in the ontology. One such technique is 
known as the Resnik’s model, and calculates similarity 
between terms ci and cj as [13], [14]: 
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where ),( ji ccS represents the set of parent terms shared by 

both ci and cj , and ‘max’ represents the maximum operator. 
The value of this metric can vary between 0 and infinity. In 
Fig. 1.a, for example, if “regulation of viral life cycle” and 
“viral infectious cycle” represent c1 and c2 respectively, 

),( 21 ccS will then include “viral life cycle” and 

“biological_process”. Nevertheless, “viral life cycle”, which 
provides the minimum p(c) and the maximum ))(log( cp− , 
represents the most informative term. Thus, (1) provides the 
information content of the lowest common ancestor of two 
terms.  

An alternative information-theoretic technique was 
proposed by Lin [15]. This technique also estimates similarity 
on the basis of the parent commonality of two query terms. 
However, it also incorporates the information content of the 
query terms. Thus, given terms, ci and cj , their similarity may 
be calculated as:  
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where p(ci) and p(cj) are defined as above. The values 
generated by (2) vary between 0 and 1. Lin’s values also 
increase in relation to the degree of similarity shown by two 
terms, and decreases with their difference. This technique may 
be seen as a normalized version of (1).  

Similarity between terms may also be assessed using 
distance functions. In this case the resulting values will 
decrease with regard to their level of similarity. The more 
similar two terms are, the closer they would be in the distance 
space.  One such method is the Jiang’s distance [16], which is 
defined as: 
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where the variables are defined as above. The values 
generated by (3) can vary between 0 and infinity and they 
reflect the semantic dissimilarity between a pairs of terms, ci 

and cj. For additional information on these and related 
techniques the reader is referred to [14], [15]. 

Similarity and distance values for a pair of gene products 
described by GO terms may be calculated based on (1) to (3). 
Given a pair of gene products, gi and gj, which are annotated 
by a set of terms Ai and Aj respectively, where Ai and Aj 

comprise m and n terms respectively, the semantic similarity, 
SIM(gi , gj), may be defined as the average inter-set similarity 
between terms from Ai and Aj: 
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where sim(ck,cp) may calculated using either (1) or (2). 
Using (3) the semantic distance, D(gi , gj),  may be defined as: 
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These methods aggregate similarity and distance 
information originating from all of the terms used to describe 
gi and gj.  

Cao et al. [17] applied (1) to implement a genomic data 
warehouse search system. Given a query gene and its GO 
terms, this system allows users to search for similar genes. 
Cao et al. do not actually implement (4). In their system a 



 

reference term associated with the query gene is specified to 
search for genes containing similar terms.  

The relationship between semantic and sequence 
similarities has been investigated by Lord et al. [3]. They 
found significant correlations between (4), based on (1) and 
(2), and gene sequence similarity. Their results were based on 
the analysis of the Swiss-Prot-Human database and the 
application of the BLAST tool. More recently, Azuaje and 
Bodenreider [4] studied significant, quantitative associations 
between GO-driven similarity and gene expression 
correlation, and between similarity and protein complex 
membership. Based on a relatively small sample of genes 
involved in the yeast cell cycle, their study suggested that a 
high degree of semantic similarity may be associated with 
significant levels of expression correlation. They evaluated 
methods based on (1), (2) and (4).  The study reported in this 
paper builds on the research initiated by [4]. GO-driven 
similarity of pairs of genes is analyzed using the techniques 
introduced above. Significant relationships between such 
properties and gene expression correlation are established for 
a larger dataset. 

IV. DATA AND METHODS 
This investigation processed associations between GO 

terms and gene products included in the SGD. Results are 
based on the analysis of the February 2004 GO release. 
Experiments ignored IEA annotations due to their lack of 
reliability. Quantitative relationships between the semantic 
similarity of pairs of gene products and their expression 
correlation were studied.  This research incorporates a known 
dataset taken from Eisen et al. study [18], which contains 
expression responses to several perturbations in S. cerevisiae. 
Our analyses included 2460 ORFs with available GO 
annotations. The importance of this dataset, which reflects 
fundamental cellular states of this organism, has been widely 
reported elsewhere. Each gene is described by 79 expression 
values, which are associated with 79 separate time courses 
during the following processes: the diauxic shift, the mitotic 

cell division cycle, sporulation, and temperature and reducing 
shocks. A detailed description of the dataset is given in [18]. 
More than 3 million gene pairs were derived from this dataset. 
For each pair of genes, the similarity and the distance in each 
ontology was compared to the absolute expression correlation 
value. Expression correlation was calculated using the well-
known Pearson correlation coefficient. We split the gene 
pairs into five groups with respect to absolute correlation 
values and computed information content-based similarity and 
distance values in each group. Our hypothesis is that pairs of 
genes exhibiting similar expression levels (as measures by the 
absolute correlation values) also tend to have high similarity 
or short distance (as measured by the information content-
based methods). Additionally, this study was done separately 
on the three hierarchies of the GO in order to evaluate whether 
this hypothesis holds for CC and BP annotations as well as for 
MF annotations. 

 
Fig. 2.  Expression correlation and GO-based similarity based on (1) for MF 
ontology. The axis of ordinates shows the mean Resnik’s similarity values for 
each correlation interval and their 95% confidence intervals.  
 

 
Fig. 3.  Expression correlation and GO-based similarity based on (2) for MF 
ontology. The axis of ordinates shows the mean Lin’s similarity values for 
each correlation interval and their 95% confidence intervals. 
 

 
Fig. 4.  Expression correlation and GO-based distance based on (3) for MF 
ontology. The axis of ordinates shows the mean Jiang’s distance values for 
each correlation interval and their 95% confidence intervals. 



 

 
Fig. 5.  Expression correlation and GO-based similarity based on (1) for BP 
ontology. The axis of ordinates shows the mean Resnik’s similarity values for 
each correlation interval and their 95% confidence intervals. 

 

 

Fig. 6.  Expression correlation and GO-based similarity based on (2) for BP 
ontology. The axis of ordinates shows the mean Lin’s similarity values for 
each correlation interval and their 95% confidence intervals. 

 

 
Fig. 7.  Expression correlation and GO-based distance based on (3) for BP 
ontology. The axis of ordinates shows the mean Jiang’s distance values for 
each correlation interval and their 95% confidence intervals. 

 

Fig. 8.  Expression correlation and GO-based similarity based on (1) for CC 
ontology. The axis of ordinates shows the mean Resnik’s similarity values for 
each correlation interval and their 95% confidence intervals. 

 

 
Fig. 9.  Expression correlation and GO-based similarity based on (2) for CC 
ontology. The axis of ordinates shows the mean Lin’s similarity values for 
each correlation interval and their 95% confidence intervals. 

 

 
Fig. 10.  Expression correlation and GO-based distance based on (3) for CC 
ontology. The axis of ordinates shows the mean Jiang’s distance values for 
each correlation interval and their 95% confidence intervals. 



 

V. RESULTS 
Figs. 2 to 4 summarize Renisk’s similarity, Lin’s similarity 

and Jiang’s distance against absolute expression correlation 
values between pairs of gene products respectively. Similarity 
and distance information was derived from the MF hierarchy. 
For these and all of the subsequent figures the axis of 
abscissas is divided into a number of absolute correlation 
intervals, and the axis of ordinates shows the mean similarity 
(or distance) values detected in these intervals and their 95% 
confidence intervals. Similar trends, but with different levels 
of resolution, were obtained for other numbers of intervals. 
High similarity and short distance values are significantly 
associated with strong expression correlation values. Weak 
similarity and long distance are significantly related to low 
expression correlation values. This trend is significantly 
stronger in the case of the highest expression correlation 
values. For instance, among more than 3 million gene pairs, 
there are 1798 pairs from the BP hierarchy whose correlation 
values are greater than 0.9, in which more than 97.5% has 
Jiang’s distances smaller than 5. 

Similar patterns were obtained from the analyses based on 
the BP and CC ontologies.  These results are illustrated in 
Figs. 5 to 10, depicting significant associations between 
similarity, distance and correlation. Similar results were 
obtained for different number of intervals. 

 

VI. CONCLUSIONS 
This study confirms that the GO-driven similarity and 

expression correlation of pairs of gene products are 
significantly interrelated. This property is consistently valid 
for similarity information originating from all of the GO 
hierarchies. Significant associations between a distance-based 
approach and expression correlation were also investigated in 
connection to all three ontologies. Such a distance model is 
also based on an information content approach. 

This investigation expands and confirms the ideas reported 
in [4]. Our results indicate stronger connections between 
expression correlation and functional similarity knowledge 
extracted from the GO. We determined significant 
associations between high GO-driven similarity and high 
absolute expression correlation using a much larger sample of 
genes. Significant relationships between low correlation and 
similarity levels were also identified. Analyses on Jiang’s 
results suggest that such an approach may generate relevant 
indicators of dissimilarity, which are in general consistent 
with the outcomes derived from Resnik’s and Lin’s methods.  

The results support the idea of applying GO-driven 
similarity assessment techniques for validating gene 
expression correlation. Similarity values may provide 
indicators to detect irrelevant expression correlations between 
pairs of genes. Moreover, these tools may be used to support 
expression cluster analysis and evaluation. The authors and 
collaborators are currently investigating the application of 
these methods for defining semantic cluster validity indices. 

Such indices together with data-driven cluster validity indices 
[19], [20], may be useful to aid in the prediction of the correct 
number of clusters. We are also designing hierarchical 
clustering strategies that combine expression correlation and 
semantic similarity information.  

The authors will analyze other gene expression data sets in 
S. cerevisiae and C. elegans. Alternative ontology-driven 
similarity assessment methods will be implemented. 
Differences between the three GO hierarchies in terms of 
semantic similarity will be further assessed. One important 
next step is to implement methods to integrate similarity 
information from all of the GO hierarchies. One basic 
approach is to calculate the average of the similarity values 
obtained from each hierarchy. Initial results have been 
consistent with the relationships summarized in this paper.  

Ontology-driven similarity assessment techniques may be 
useful to support annotation tasks. In one possible application, 
groups of gene products could be annotated using their lowest 
common ancestor rather than multiple annotations. These 
models may also be applied to analyze differences in 
annotations across genes across multiple organisms. 

GO-driven similarity assessment methods may also be 
incorporated into models for predicting new annotations for 
partially characterized genes. Machine learning models have 
been previously reported to address this problem. However, 
they measure similarity between sets of annotations based 
solely on the presence or absence of GO terms [9]. Thus, the 
information-theoretic tools evaluated in this paper may be 
useful to support the development of more meaningful and 
reliable prediction models.  

GO-driven similarity assessment techniques may become 
reliable tools for helping scientists to validate hypothesis in 
functional genomics. For example, they may significantly 
contribute to the detection of false-positives interactions. 
These tools may indicate when two potentially-interacting 
proteins are not functionally associated. Such a functional 
dissimilarity is an important sign of false-positive interactions 
[21]. 

This study contributes to the automated integration of prior, 
background knowledge into large-scale, integrative biological 
data mining.  
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