U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES

National Institutes of Health

Exploiting Interactions for Enhanced Detection of Genetic and Environmental Risk-Factors for Complex Diseases

Nilanjan Chatterjee, PhD

Biostatistics Branch Division of Cancer Epidemiology and Genetics

chattern@mail.nih.gov

Value of Assessing Statistical Interaction (Thompson, 1991)

- Understanding biology?
- Enhanced detection of effects

Characterization of joint effects

Targeting intervention

Outline

• Omnibus tests

• Strategies for improving power

 Selecting SNPs for replication following GWAS

Test for G in Presence of a Known Risk Factor E (G)

- G would be considered of "interest" if it is associated with D in any sub-group defined by E
- Null hypothesis of interest

 \mathbf{H}_0 : $\beta_{\mathbf{G}|\mathbf{E}=\mathbf{0}} = \mathbf{0}$ and $\beta_{\mathbf{G}|\mathbf{E}=\mathbf{1}} = \mathbf{0}$

• Alternatively

 $H_0: \beta_{G|E=0} = 0$ and $\theta = \beta_{G|E=1} - \beta_{G|E=0} = 0$

 Simultaneous test for main- and interaction- effect of G in a logistic model that includes a main effect of E

Three Tests for Detecting G

- G-only

 β_G^{*}=0
 1 d.f
- Subgroup specific – $\beta_{G|E=1}=0$ – 1 d.f
- Omnibus test
 - $\beta_{G|E=0}$ =0 and $\beta_{G|E=1}$ =0 - 2 d.f

Effect of NAT2 Acetylation and Smoking on Bladder Cancer (Garcia-Closas et al., Lancet, 2005)

	Controls	Cases	OR	Chi-square (df)	P-value
Overall					
Rapid	493	406			
Slow	637	728	1.39	14.44 (1)	1.45£ 10 ⁻⁴
Non- smokers					
Rapid	131	66			
Slow	199	91	0.91	0.24 (1)	6.23£ 10 ⁻¹
Smokers					
Rapid	362	340			
Slow	438	637	1.55	20.01 (1)	7.72£ 10 ⁻⁶
Omnibus				20.52(2)	401£ 10 ⁻⁵

 α =0.0001,P(G=1)=0.3,P(X=1)=0.2, OR(X)=1.3

α=0.0001,P(G=1)=0.3,P(X=1)=0.2, OR(G|X=1)=OR(G|X=0)=OR(G),OR(X)=1.3

OR(G|X=0)=1, but X is Misclassified

α=10⁻⁴, P(G=1)=0.3, P(X=1)=0.2, OR(X)=1.3, OR(G)=1.3, OR(G|X=1)=2.7

Increasing Power

- Power of omnibus test can be improved by increasing the precision of the interaction parameter
- Strategies for efficiency gain
 - Stratified sampling
 - If E is already available in a cohort, one can collect G on a case-control sample selected based on E
 - Reducing d.f.
 - Chatterjee et al., AJHG, 2006
 - Chapman and Clayton, Genetic Epi, 2007

Exploiting assumption of G-E independence

Exploiting Independence: The Case-Only Estimator and Extensions

• Piegorsch et al., Stat Med, 1994

$$\frac{OR(G, E|D=1)}{OR(G, E|D=0)} \approx OR(G, E|D=1)$$

- More efficient than that obtained from logistic regression analysis
- Inference for a general logistic regression model under the independence assumption
 - Umbach and Weinberg, *Stat Med* 1997; Chatterjee and Carroll, *Biometrika* 2005;
- Sensitivity to independence assumption

 $n_1 = n_0 = 500 \alpha = 0.05$

Interaction odds-ratio

 $n_1 = n_0 = 500 \alpha = 0.05$

EB Estimator

(Mukherjee and Chatterjee, Biometrics, 2008)

where

 $\hat{\beta}_{CC} = \text{Case-control estimator}$ $\hat{\beta}_{CO} = \text{Case-only estimator}$ $\hat{\tau} = \hat{\beta}_{CC} - \hat{\beta}_{CO}$ $\hat{\sigma}_{CC}^2 = \text{Var}(\hat{\beta}_{CC})$

Variance Estimation

$$\widehat{V}_A(\widehat{\beta}_{EB}) \approx \widehat{\sigma}_{CO}^2 + \left(\frac{\widehat{\tau}^2(\widehat{\tau}^2 + 3\widehat{\sigma}_{CC}^2)}{(\widehat{\sigma}_{CC}^2 + \widehat{\tau}^2)^2}\right)^2 \widehat{\sigma}_{\widehat{\tau}}^2.$$

Mukherjee and Chatterjee, Biometrics, 2008 Chen, Chatterjee and Carroll, Submitted

Integrated Type-I Error/Power

		Case- Control	Case- Only	Two- stage	EB
®=0.05, N1=N0=500	Type-I Error	0.050	0.070	0.072	0.042
	Power (MI=1.5)	0.289	0.528	0.522	0.408
®=0.005, N1=N0=1000	Type-I Error	0.004	0.021	0.013	0.004
	Power (MI=1.5)	0.204	0.524	0.510	0.356

Mukherjee et al., Genetic Epidemiol, 2008

General Strategy for Prostate GWAS

Initial Study 1150 cases/1150 controls	→ 5	540,00	0 Tag SNF	PLCO
Follow-up Study #1 3900 cases/ 3900 contro	ls	>28	,000 SNPs	ACS/ATBC/ HPFS/FrCC/ PHS
Follow-up Study #2 5500 cases/ 5500 contro	ls	→ at l	east 7,600 SNPs	MEC/EPIC/ JHU/SwCaP
Fine Mapping		→	10 ±5 loci	
	Genotype	e, Haj	p <mark>lot</mark> ype,	Sequence
				1
	Determ	ine C	Causal V	ariant(s)

Conditional Search

 Searching for association conditional on known genetic or/and environmental risk factors of a disease

- Conditioning factors
 - Known (or strongly suspected) candidate genes
 - Initial hits from a GWAS
 - Established environmental risk-factors such as smoking

Search for Susceptibility SNPs for PrCA conditional on "Confirmed" Genes

"Confirmed Genes"

Gene/Region,	Near or	Biology
Chr	In Gene?	
8q24, 8	Neither	
CTBP2	In	Two protein products; One is a transcription repressor;
10		Associated with decreased PTEN (tumor suppressor)
DAB2IP	In	Tumor suppressor gene; Inactivated in multiple cancers;
9		Association seen with aggressive cases
EHBP1, 2	In	Endocytic trafficking
HNF1B,17	In	Transcription factor; Marker for epithelial ovarian cancer
JAZF1	In	Zinc finger protein is transcription repressor;
7		Associated with endometrial stromal tumors
KLK-2&3, 19	Near	Serine proteases; Strong association with PSA levels
MSMB	Near	Immunoglobulin binding protein;
10		Synthesized by prostate epithelial cells
MYEOV	Near	Normal levels barely detectable;
11		Over-expressed in cancers (myeloma)

7 associated loci in CGEMS Prostate Cancer

	Risk Allele	Odds ratios		
p-value	Freq.	Heterozygotes	Homozygotes	
6.7 10 ⁻¹⁶	0.1	1.49 (1.34-1.64)	1.83 (1.32-2.53)	
8.7 10 ⁻¹⁴	0.38	1.20 (1.10-1.31)	1.61 (1.42-1.81)	
4.7 10 ⁻¹³	0.50	1.13 (1.02-1.26)	1.46 (1.30-1.64)	
1.5 10 ⁻¹⁰	0.52	1.25 (1.13-1.34)	1.47 (1.31-1.65)	
4.1 10 ⁻¹⁰	0.50	1.18 (1.08-1.28)	1.48 (1.27-1.74)	
1.7 10 ⁻⁷	0.25	1.14 (0.94-1.38)	1.40 (1.16-1.69)	
3.2 10 ⁻⁷	0.76	1.18 (1.07-1.31)	1.54 (1.37-1.73)	
	p-value 6.7 10 ⁻¹⁶ 8.7 10 ⁻¹⁴ 4.7 10 ⁻¹³ 1.5 10 ⁻¹⁰ 4.1 10 ⁻¹⁰ 1.7 10 ⁻⁷ 3.2 10 ⁻⁷	Risk Allele Freq.p-valueFreq. $6.7 \ 10^{-16}$ 0.1 $8.7 \ 10^{-14}$ 0.38 $4.7 \ 10^{-13}$ 0.50 $1.5 \ 10^{-10}$ 0.52 $4.1 \ 10^{-10}$ 0.50 $1.7 \ 10^{-7}$ 0.25 $3.2 \ 10^{-7}$ 0.76	Risk AlleleOddsp-valueFreq.Heterozygotes $6.7 \ 10^{-16}$ 0.1 $1.49 \ (1.34-1.64)$ $8.7 \ 10^{-14}$ 0.38 $1.20 \ (1.10-1.31)$ $4.7 \ 10^{-13}$ 0.50 $1.13 \ (1.02-1.26)$ $1.5 \ 10^{-10}$ 0.52 $1.25 \ (1.13-1.34)$ $4.1 \ 10^{-10}$ 0.50 $1.18 \ (1.08-1.28)$ $1.7 \ 10^{-7}$ 0.25 $1.14 \ (0.94-1.38)$ $3.2 \ 10^{-7}$ 0.76 $1.18 \ (1.07-1.31)$	

MSMB: Omnibus Wald Test Results exclude SNPs within 500k base pairs of MSMB locus

MSMB: Wald Test for Interaction Results exclude SNPs within 500k base pairs of MSMB locus

MSMB: Wald Test for Interaction Results exclude SNPs on MSMB chromosome

Summary Statistics

Genome Scan	Wald Test P-values		
Conditional	Omnibus, Interaction		
Main Effects	Marginal		

- "Interaction Hit" criteria
 - Omnibus p-value ≤1.0E-3
 - Marginal p-value ≥1.0E-2

Scientific Results I

Table 1: Interaction hits identified through nine conditional genome scans of ~27k SNPs.

Summary

- So far the world looks very flat - multiplicative/additive
- Possible reasons
 - The world is multiplicative
 - Sample size is not large enough and effects are modest
 - Not accounting for more complex interactions
- Simple approaches to exploring interaction using pathways and network information is needed
- Replication is must

Summary

- Incorporating interaction into test of association can substantially improve power of detecting underlying risk-factors with <u>non-</u> <u>multiplicative</u> effects, but
- Tests need to be carefully constructed so that they have robust power under multiplicative effects
- Low R² between the measured and causal factors can negate advantage of interaction-based tests
 - Effects "look" close to multiplicative
- Exploiting natural assumptions of gene-gene and gene-environment independence can give a big boost in power
 - Caution is needed to protect against large-scale false positives
 - EB is a promising solution

Thanks

- CGEMS team
- Raymond Carroll, *Texas A&M University*
- Julia Ciampa, NCI and Oxford
- Yi-Hau Chen, Academia Sinica
- Bhramar Mukherjee, University of Michigaan
- Sholom Wacholder, NCI
- Bill Wheeler, Information Management System

Why Model Multiplicative Interaction?

 Under multiplicative model there is no benefit of using E to study G and vice versa (assuming G-E independence)

$$L = \prod_{dge} p_{dge}^{n_{dge}}$$
$$= \prod_{dg} p_{dg+}^{n_{dg+}} \times \prod_{de} p_{d+e}^{n_{d+e}}$$

• Dupis et al, *Genetics* 1995

Type-I Error/Power

	OR_{GE}	Case- Control	Case-Only	Two- stage	EB
Type-I Error	1.0	0.05	0.05	0.07	0.04
	1.1	0.05	0.08	0.09	0.05
	1.2	0.05	0.14	0.15	0.07
	1.5	0.04	0.50	0.28	0.08
	2.0	0.05	0.91	0.11	0.06
Power (MI=1.5)	1.0	0.29	0.53	0.52	0.41
	1.1	0.30	0.70	0.66	0.50
	1.2	0.29	0.84	0.72	0.51
	1.5	0.29	0.98	0.54	0.45
	2.0	0.30	1.00	0.32	0.40

Mukherjee et al., Genetic Epidemiol, In revision

Setting - I

- Pr(G=1)=0.3
- Pr(E=1)=0.3
- OR_{GE}= Odds-ratio between G and E in disease-free subjects
- $N_1 = N_0 = 500$
- ®=0.05
- Power evaluate at the alternative MI=1.5

Setting - II

- Large scale association studies involve many possible G-E combinations
 - Independence assumption will be satisfied for most
 - but not all
- Assume
 - $OR_{GE} = 1$ for 80% of the combinations
 - Distributed as $LN(0, \{log(1.5)/2\}^2)$ for the rest
- Evaluate average Type-I error/Power

 $n_1 = n_0 = 500 \alpha = 0.05$

Interaction odds-ratio

 $n_1 = n_0 = 500 \alpha = 0.05$

Operationally...

- CGEMS conditional Scan based on 1 d.f model for interaction for 8q24
 - Multiple (up to seven reported) susceptibility SNPs in the same region
 - Define a score for the 8q24 region based on the linear predictor from a logistic regression fit that only includes the main effects of the susceptibility SNPs
 - Model interaction of each SNP in the genome with the 8q24 score instead of the individual SNPs
- Asymptotic null distribution is non-standard, but can be generated using simple re-sampling method
- Permutation-based re-sampling can be also used under the assumption of G-E independence

Reducing degrees-of-freedom

A Conceptual Framework

Tests of Association in Tukey's model

$$\begin{aligned} \text{logit} \left\{ \Pr(\mathbf{D} = 1 | \mathbf{X}_1, \mathbf{X}_2) \right\} \\ \approx & \alpha + \sum_{k_1 = 1}^{K_1} \beta_{1k_1} \mathbf{X}_{1k_1} + \sum_{k_2 = 1}^{K_2} \beta_{2k_2} \mathbf{X}_{2k_2} + \theta \sum_{k_1 = 1}^{K_1} \sum_{k_2 = 1}^{K_2} \beta_{1k_1} \beta_{2k_2} \mathbf{X}_{1k_1} \mathbf{X}_{2k_2}, \end{aligned}$$

$$H_{01}$$
: $\beta_1 \equiv (\beta_{11}, \beta_{12}, ..., \beta_{1K_1}) = 0$

- Captures both main and interaction effects
- Score test
 - Chatterjee et al., AJHG, 2006
 - Chapman and Clayton, Genetic Epi, 2007