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SUMMARY

Smoothed data maps permit the reader to identify general spatial trends by removing the background noise
of random variability often present in raw data. To smooth mortality data from 798 small areas comprising
the contiguous United States, we extended the head-banging algorithm to allow for differential weighting of
the values to be smoothed. Actual and simulated data sets were used to determine how head-banging
smoothed spike and edge features in the data, and to observe the degree to which weighting affected the
results. As expected, spikes were generally removed while edges and clusters of high rates near the U.S.
borders were maintained by the unweighted head-banging algorithm. Incorporating weights inversely
proportional to standard errors had a substantial effect on smoothed data, for example determining whether
observed spikes were retained or removed. The process used to obtain the smoothed data, including the
choice of head-banging parameters, is discussed. Results are considered in the context of general spatial
trends. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. Government work and is in the
public domain in the United States.

1. INTRODUCTION

When looking at mortality data maps, the reader is often unable to discern any spatial trends,
either because no particular patterns exist in the data, or because a substantial amount of noise
(that is, spatial variability) masks the patterns that are present. For example, Lewandowsky and
Behrens! found that the consistency of detection of high rate clusters on a simulated map was
hampered as an increasing amount of noise was added to the data. Statistical smoothing
algorithms can be used to enhance hidden patterns in noisy data. This is accomplished by
removing local small-scale variations while maintaining larger-scale regional trends.

Two types of features that may influence one’s ability to recognize broad trends in spatial data
are spikes and edges. A spike represents an isolated extreme value (peak or depression) that
contrasts greatly with other nearby data points. Spikes may be caused by measurement error and
represent inherent noise in the mapped variable or they may be legitimate values, for example,
a high rate for a city that is surrounded by suburbs with lower rates. Edges are zones of rapid
transition in the variable of interest. They may appear as ramps, valleys, or ridges and generally
represent legitimate structure in the data. In fact, edges can be particularly valuable in helping the
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reader to identify spatial regions that are distinct from one another in terms of the mapped
variable.

In applications such as the various geologic examples discussed in Hansen?, spikes are
physically unlikely and it is thus desirable for smoothers to remove all spikes while retaining the
edges. When working with mapped statistical data, however, we can often distinguish between
spikes that are credible (for example, rates in cities with large populations) and those that are of
suspect origin (likely due to random noise). We would like our smoother to retain the former (and
the edges as well) while removing the latter.

Many authors have observed that the use of mean-based smoothers results in the blurring of both
the spikes and edges for one-dimensional time series data® and for spatial data.?*> Median-based
approaches often represent a reasonable alternative, removing spikes while preserving the sharp-
ness of edges. Tukey® and Velleman® propose a variety of median-based smoothers for time series
data, while Jain* discusses non-linear filters for two-dimensional lattices.

The problem of smoothing non-gridded spatial data has received attention from a variety of
authors. Kafadar?® discusses a number of the techniques that have been proposed, and evaluates
their performance on several constructed data sets using an overall mean squared error statistic.
The results of this comparative study suggest that the weighted average (based on inverse squared
distance) and the median-based head-banging smoother, proposed by Tukey and Tukey,” and
implemented as in Hansen,? perform well. However, the weighted average and most other
smoothers included in the comparison tended to oversmooth in the presence of edges, whereas
head-banging was able to preserve their steep structure.

To utilize the best features of these smoothers, we decided to use a modified head-banging
approach in smoothing mortality data for an atlas of maps of numerous small areas in the
contiguous United States.® Because the original implementation of head-banging? 7 does not allow
for the use of reliability estimates during the smoothing process, we have developed an enhanced
version, in which the user may provide a set of weights along with the mapped data. We refer to this
new technique as weighted head-banging (a copy of the weighted head-banging code, written in the
C language, is available from K. Simonson), and demonstrate its application to mortality data.

2. METHODS
2.1. Notation: Weighted Medians

Suppose that a mapped data set contains a total of n data points. Each point, i, consists of
a location in the plane, X; = (x;1, X;»), which is assumed to be known without error, along with
a (possibly noisy) observation, y;, and a weight, w;, which measures the reliability of y;. The goal is
to smooth the mapped values {y;, i = 1, ..., n}, accounting for both location and reliability. Our
approach assigns a smoothed value at location x; that is based on weighted medians of the
observations at neighbouring locations and the observation y; itself.

Given m values {y, ys, ..., Vm}, With corresponding weights {wy, w,, ..., w,}, the weighted
median of the y’s is found as follows. First, sort the observations, so that y, < yo) < ... < V)
The weights, which remain with their original observations, are re-ordered such that wy; corres-
ponds to the sorted observation y ;. Now compute the cumulative sums of the re-ordered
weights:

k
Sk: Z Wiy k=1,...,m. (1)

j=1
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Figure 1. Three nearly collinear triples are used for smoothing at this centre point. Observed values are printed at each

data location, with corresponding weights given in parentheses. The low screen is weighted median (2, 4, 5) = 4. The high

screen is weighted median (7, 8, 9) = 7. The observed value at the centre point lies below the low screen, so the weights are

used to determine whether adjustment is needed. Because the sum of endpoint weights (10) exceeds the number of triples
times the centre point weight (3 x 2 = 6), the smoothed value at the centre point is set to the low screen

The index location, r, of the weighted median is the smallest value of k such that Sy is at least half
of the total sum of the weights:

r = min {k|S; > S,/2}. (2)

If S, is strictly greater than S,,/2, then the weighted median value is given by y,. If S, is equal to
S./2, then the weighted median value is taken to be the average of y,, and y, 4 1)

2.2. The Weighted Head-Banging Smoother

In one-dimensional running median smoothers, the output value at a given point is the median of
the observed value at that point, and a specified number of neighbouring points on both the left
and right sides. Head-banging attempts to bring the simplicity of this approach to spatial data,
where left and right neighbours are not well defined. Triples of nearby data points are used in
their place.

For each point in the data set, a collection of nearly collinear triples is defined. Every triple in
the collection consists of three data points in the same region of the plane, and is centred at the
location of the point to be smoothed. A method for identifying such collections is discussed in the
next section; for now assume that at least one triple has been chosen for each point in the data set.
The iterative weighted head-banging smoother is carried out as illustrated in Figure 1.

For each i, set the initial estimate for location x; at its observed value. Let T; represent the
collection of triples centred at x;. Now for the jth triple in T}, let low;; represent the smaller of the
two endpoint values, and let high;; represent the larger. Define the following two quantities:

high screen (i) = weighted median; (high;;)

low screen (i) = weighted median; (low;;).
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Figure 2. Extrapolating triples for an edge or corner point. If no qualifying triples are centred at point x;, new triples are
formed by extrapolating the y-values from two neighbouring locations, x; and x,. These values are linearly extrapolated to
a point lying along the line determined by x; and x,, such that x; is equidistant from x; and the new point [after Hansen*]

The low screen is an estimate of the lowest value that is consistent with the data in the
neighbourhood of the centre point, and the high screen is an estimate of the highest such value.

If the current centre value lies between these screens, it is left unchanged at this iteration. If the
current centre value is smaller than the low screen, the weights are used to determine whether it
will be adjusted. Specifically, if the sum of the weights of all endpoints of the triples exceeds the
number of triples times the weight of the centre point, then the smoothed value at the centre point
takes the value of the low screen. Similarly, if the current centre value is larger than the high
screen, and the summed endpoint weights exceed the number of triples times the centre weight,
the smoothed centre value is set equal to the high screen. Even if the current centre value is
changed to the low or high screen, it still retains its original weight.

This process is carried out for each point in the data set and all data points are updated
simultaneously at the end of each iteration. Thus, the order in which points are smoothed does
not influence the values resulting from a particular iteration. The procedure is repeated for a fixed
number of iterations, or until no further changes take place. When equal weights are assigned to
each data point, this procedure is identical to that outlined in Tukey and Tukey.”

2.3. Selection of Triples

Two general criteria for selecting triples are as follows: the three points should be located close to
one another, so that smoothing takes place on a local or regional rather than a global scale; and
the three points should be roughly collinear, so that directional trends can be recognized and
enhanced. An algorithm for identifying collections of triples meeting these criteria is described in
Hansen? and has been adopted here.

The regional criterion is satisfied by requiring that each of the endpoints of a candidate triple be
among the NN nearest neighbours of the centre point. The scalar NN is a parameter chosen by
the user; increasing NN will increase the degree of smoothness in the final map. The directional
criterion is specified in terms of 6, the centre angle. The user selects a threshold, 6*, and those
triples for which 0 > 0* are considered candidates. We have always set 0* = 135°; this gives good
results over a variety of applications.

For many centre points, the collection of triples eligible under these two criteria is sizable, and
can be reduced by placing a limit, NTRIP, on the total number of selected triples. From the
eligible set, the NTRIP thinnest (defined in terms of the perpendicular distance from the centre
point to the line passing through the two endpoints) are retained. The use of NTRIP imposes an
additional collinearity constraint on triples, which becomes more restrictive as the endpoints
move away from the centre point. It also reduces the run-time of the full smoothing procedure.

The method discussed above may not identify any eligible triples for data points located at the
edges and corners (perimeter) of a map. For such points, triples can be formed by extrapolation
from pairs of neighbouring points, as illustrated in Figure 2. Suppose that the observation at x; is
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to be smoothed, and that locations x; and x, (with observed values y; and yj, respectively) are
among its NN nearest neighbours. Consider the triangle with vertices at x;, x; and x,., and let y be
the angle at x;. If y > 90° + 0*/2, then a new triple is formed by linearly extrapolating the trend
from yj through y; to a new location such that x; is equidistant from the new location and x;. This
new location is one endpoint of the created triple, and x; is the other. The restriction on y ensures
that the created triple has a centre angle that is greater than or equal to 6*.

The weight assigned to the extrapolated point is equal to the smaller of the two weights, w; and
wi. Once a collection of extrapolated triples has been identified for each edge and corner location,
smoothing proceeds in the same manner as previously described.

2.4. Data Sets

The data used to illustrate the technique are mortality for lung and prostate cancer for
1988-1992 among White males from the recently-published NCHS Atlas of United States
Mortality.® These causes were chosen because lung cancer has a pronounced ridge whereas
prostate cancer rates exhibited a high degree of scatter across the small areas. These data
consisted of directly age-adjusted death rates® and their variances for 798 geographic units in the
contiguous U.S. The geographic unit that was mapped, health service areas (HSA), represents
aggregates of counties based on where residents obtain their routine hospital care.'® All data were
mapped as classed choropleth (area shaded) maps using a monochromatic colour scheme; rates
were classified into five categories according to quintiles of the presmoothed distribution. We
considered the inverse of standard error of the rates as weights when smoothing the mortality
data. In addition, simulated data which included edge and spike effects were provided by
K. Kafadar for comparison.’

3. RESULTS
3.1. Lung Cancer Mortality Data

Plate 1 illustrates how weighted and unweighted head-banging differ in their smoothing charac-
teristics. Each of the maps shown contain the same ranges (cutpoints) for all five classes to allow
valid map comparisons. Plate 1(a) represents the original lung cancer mortality rate data (prior to
smoothing); Plates 1(b) and 1(c) show the results of smoothing with the unweighted and weighted
algorithms, respectively, using parameter values of NN = 12 and NTRIP = 8. An important
requirement in smoothing mortality maps, as previously mentioned, is retaining the edges that
represent valid data. The pronounced ridge running along the Ohio valley in a northeast-to-
southwest direction on the original map (Plate 1(a)), is maintained as the map data is smoothed
using both the weighted and unweighted head-banging algorithms.

Another feature of both algorithms is a narrowing of the distribution of mortality rates, due to
the attenuation of outliers which are typically based on sparse data. Evidence of this distribu-
tional change in the lung cancer maps is the smaller range of rates seen for the smoothed maps as
compared to the raw data map. Because none of the lung cancer outlier rates is based on large
populations, the resulting ranges from both smoothing algorithms are very similar.

While it may not be apparent when viewing a small map of the contiguous U.S., one region that
exhibits a difference between weighted and unweighted smoothing is north central Tennessee
(Plate 2), which includes the Nashville metropolitan area. This densely-populated region has
a small standard error and, hence, a large weight. Without weighting, the Nashville rate is
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smoothed from the second into the highest (darkest) class because of the influence of high rates in
the surrounding areas. With weighting, the Nashville rates remain closer to the original data
values because of their relatively high weights as compared to surrounding areas.

A comparison of the perimeter of the U.S. on the original map (Plate 1(a)) with either of the
smoothed maps (Plates 1(b) or 1(c)) indicates the moderate changes in the values for each HSA
after being smoothed. Thus, unlike many other smoothers that may cause undesirable effects on
the edges, head-banging results in areas near the edges retaining their original values to a large
extent.

To compare the effects of the degree of smoothing, we applied the unweighted algorithm to the
lung cancer mortality data (Plate 3), varying the number of nearest neighbours (NN) and the
maximum number of triples (NTRIP) while the minimum triple angle (135°) and the number of
iterations (10) were kept constant. Use of the unweighted algorithm allows one to observe the
effects of smoothing parameters without the potential confounding effects of different weights.
Although there are not major differences between these two smoothed maps, closer inspection in
the southeastern U.S. indicates at least three areas where distinctions do exist: east-central Texas,
the eastern border between Florida and Georgia, and part of the border between North and
South Carolina. These areas remain in the highest class (darkest saturation) when a small number
of nearest neighbours (8) and maximum triples (5) are used but move into the second highest class
when NN and NTRIP are increased to values of 16 and 11, respectively. Because a majority of the
additional HSAs used for this greater degree of smoothing also happen to be in the second highest
class, they reduce the three indicated areas into this class.

3.2. Prostate Cancer Mortality Data

In an effort to determine how weighted head-banging smooths data containing a significant
amount of noise, we applied the weighted algorithm to prostate cancer data (Plate 4). The raw
data indicates the large number of spikes (peaks), which are primarily located in the central part
of the U.S. These isolated high rates (spikes) in rural HSAs that are surrounded by lower rate
HSAs are often smoothed out when weighted head-banging is applied. This is a good example of
the head-banging algorithm drawing a more apparent spatial pattern from scattered raw data.

3.3. Simulated Structure Data

We also examined simulated data to extend the results of Kafadar> using the weighted algorithm.
The height of a predetermined structure (Figure 3), representing the measured value, y, was
generated and shown on a three-dimensional perspective graph. This structure includes a ridge,
peak, and depression in known locations of an area representing 86 western U.S. counties.
Gaussian error of 10 per cent (normalized by the weight for each respective county) was added to
the structure (Plate 5(a)) and the result was smoothed using parameter values of 10 and 7 for NN
and NTRIP, respectively, for the unweighted (Plate 5(b)) and weighted (Plate 5(c)) head-banging
algorithms. Because standard errors were not available, the weights (Plate 5(d)) were approxi-
mated by the square root of county population. The unweighted algorithm (Plate 5(b)) retains the
height of the region towards the back of the ridge, a ‘compromise’ between values at the front of
the ridge and values on either side of the back of the ridge. However, weighting reduces the height
of this low-weighted region to a level similar to nearby low-weighted areas (Plate 5(c)) because the
low weights (Plate 5(d)) are nearly equal for counties along and on either side of the back portion
of the ridge (Figure 3). Another difference between the weighted and unweighted head-banging
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structure

Figure 3. Simulated structure containing a ridge, peak and depression

Table I. Mean squared errors (and SE) between structure and structure plus

noise (unsmoothed) and between structure and smoothed structure plus

noise for unweighted and weighted head-banging. Results are given at three
different noise levels

Condition Noise level
10% 25% 50%
Unsmoothed 12.13 75.80 303.2
(0.412) (2.573) (10.29)
Unweighted head-banging 2.994 6.687 17.66
(0.0536) (0.178) (0.715)
Weighted head-banging 2.931 6.129 13.74
(0.0551) (0.159) (0.584)

results is that the peak is retained to a greater degree (that is, less height reduction) for the
weighted algorithm due to the influence of the weights in this region.

The perspective graphs (Plates 5(a), (b), (¢) and (d)) are also shown as choropleth maps
(Plates 5(e), ( f), (9) and (h), respectively), with the same orientation as the graphs. For comparison,
the three maps of structure height have the same colours and cutpoint values for each of the five
classes. Categorization of the structure height into five classes masks differences between the
unweighted and weighted smoothed maps that are apparent in perspective graphs.

The performance of the unweighted and weighted head-banging smoothing of the structure
plus noise were compared by calculating a mean squared error (MSE) between the original
structure and the smoothed results, similar to the methods employed by Kafadar.? These results,
for three different levels of noise, are given in Table 1. For comparison, the MSE between the
structure and structure plus noise are also included in this table. The weighted algorithm captures
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Plate 1. Comparison of weighted and unweighted algorithms for lung cancer
mortality data
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Plate 2. Comparison of the degree of smoothing between weighted and
unweighted algorithms for a highly populated area in the vicinity of less
populated areas
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Plate 3. Influence of smoothing parameters for lung cancer mortality data, using
unweighted head-banging
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Plate 4. Effect of the weighted algorithm on ‘noisy’ prostate cancer mortality data
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Plate 5. Effect of weighted and unweighted head-banging algorithms when used to smooth a simulated structure with added noise
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the original structure better for the highest level of noise, while there is little difference between
weighted and unweighted head-banging for the two lower levels of noise.

4. DISCUSSION

These results demonstrate the utility of using the head-banging smoothing algorithm for mortal-
ity rate maps, but the conclusions should apply to any choropleth maps of statistical data which
are of varying reliability. Application of this algorithm to maps of lung cancer mortality and
simulated data suggests that this technique retains edge effects both within the map and along its
perimeter. Furthermore, the addition of weighting to the algorithm allows the degree of smooth-
ing to depend on the variability of the mapped statistic. This feature produces greater smoothing
of data that are less reliable, while retaining nearly original values of statistics based on large
sample sizes.

For the prostate cancer mortality data, the head-banging smoother highlighted existing
geographic patterns that were somewhat masked due to the high degree of variability of the rates.
Both the weighted and unweighted algorithms removed the spikes of the many high rate HSAs in
less populous areas. In contrast, high rates of HIV mortality nearly always occur in urban areas,
where the population is large. Unpublished results indicate that these values are maintained with
the weighted algorithm while they are often smoothed away for the unweighted case.

The weighted head-banging algorithm was better at recovering the structure from simulated
data than the unweighted procedure, due to the reduced influence of the low-weighted counties
when smoothing using the weighted algorithm. The improvement of the weighted algorithm
ranged from a 22.2 per cent reduction in the MSE with 50 per cent noise, to slightly greater than
a 2 per cent reduction for the 10 per cent noise level.

Selection of the appropriate parameters for smoothing these mortality and simulated data was
subjective. It should be noted that the optimal parameters for other data sets may deviate from
the values we selected and would be based on such factors as the number of data values to be
smoothed, the noisiness in the data, and the distribution of the weights. Users should experiment
with a number of parameter values to determine the effect of the weighted head-banging
smoother on their data. Further research needs to be conducted to obtain general guidelines for
choosing optimal parameter values.

In summary, results of applying the weighted head-banging algorithm to both actual and
simulated statistical data for small geographic areas indicate its superiority for revealing underly-
ing spatial patterns in the data. Unlike many other proposed smoothers, important features such
as edges and spikes based on adequate data are retained, but unreliable data points are smoothed
toward adjacent, more reliable values. The addition of weights extends the head-banging
algorithm beyond applications where homogeneity of variance may be assumed, such as for maps
of death rates. The modified algorithm should prove to be a useful tool for examining mapped
data where statistical variability may mask important spatial structure.
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