1: Med Phys. 2008 Apr;35(4):1377-86.Links

Improved classifier for computer-aided polyp detection in CT colonography by nonlinear dimensionality reduction.

Diagnostic Radiology Department, National Institutes of Health Clinical Center, Building 10, Bethesda, Maryland 20892-1182, USA.

Computer-aided detection (CAD) has been shown to be feasible for polyp detection on computed tomography (CT) scans. After initial detection, the dataset of colonic polyp candidates has large-scale and high dimensional characteristics. In this article, we propose a nonlinear dimensionality reduction method based on diffusion map and locally linear embedding (DMLLE) for large-scale datasets. By selecting partial data as landmarks, we first map these points into a low dimensional embedding space using the diffusion map. The embedded landmarks can be viewed as a skeleton of whole data in the low dimensional space. Then by using the locally linear embedding algorithm, nonlandmark samples are mapped into the same low dimensional space according to their nearest landmark samples. The local geometry is preserved in both the original high dimensional space and the embedding space. In addition, DMLLE provides a faithful representation of the original high dimensional data at coarse and fine scales. Thus, it can capture the intrinsic distance relationship between samples and reduce the influence of noisy features, two aspects that are crucial to achieving high classifier performance. We applied the proposed DMLLE method to a colonic polyp dataset of 175 269 polyp candidates with 155 features. Visual inspection shows that true polyps with similar shapes are mapped to close vicinity in the low dimensional space. We compared the performance of a support vector machine (SVM) classifier in the low dimensional embedding space with that in the original high dimensional space, SVM with principal component analysis dimensionality reduction and SVM committee using feature selection technology. Free-response receiver operating characteristic analysis shows that by using our DMLLE dimensionality reduction method, SVM achieves higher sensitivity with a lower false positive rate compared with other methods. For 6-9 mm polyps (193 true polyps contained in test set), when the number of false positives per patient is 9, SVM with DMLLE improves the average sensitivity from 70% to 83% compared with that of an SVM committee classifier which is a state-of-the-art method for colonic polyp detection (p<0.001).

PMID: 18491532 [PubMed - indexed for MEDLINE]