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PREFACE

The National Toxicology Program (NTP) and the National Institute of Environmental Health Sciences
(NIEHS) established the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR) in June
1998. The purpose of the CERHR is to provide timely, unbiased, scientifically sound evaluations of human
and experimental evidence for adverse effects on reproduction, including development, caused by agents to
which humans may be exposed.

2-Bromopropane (2-BP) was nominated by NIOSH and selected for evaluation by the CERHR based
primarly on documented evidence of worker exposures and published evidence of reproductive toxicity in both
rodents and humans. In the U.S., 2-BP is a contaminant (<0.1%) of 1-bromopropane which is used in spray
adhesives and as a precision cleaner and degreaser. 2-BP may also be used as an intermediate in the synthesis
of pharmaceutical dyes and other organic chemicals. In Asia 2-BP has been used as a replacement for
chlorofluorocarbons and 1,1,1-trichloroethane.

The evaluation of 2-BP was a 4-month effort by a 10-member panel of academic, private, and government
scientists that culminated in a public meeting in December 2001. At that meeting, the expert panel reviewed
the scientific evidence on 2-BP and reached conclusions regarding its potential effects on human reproduction.
The background information on 2-BP and findings of the expert panel are contained within this report. The
Expert Panel Report on 2-Bromopropane is intended to (1) interpret the strength of scientific evidence that a
given exposure or exposure circumstance may pose a hazard to reproduction and the health and welfare of
children; (2) provide objective and scientifically thorough assessments of the scientific evidence that adverse
reproductive/developmental health effects are associated with exposure to specific chemicals or classes of
chemicals, including descriptions of any uncertainties that would diminish confidence in assessment of risks;
and (3) identify knowledge gaps to help establish research and testing priorities.  Staff scientists from the
CERHR and members of the CERHR Core Committee (oversight committee to the CERHR whose members
include NTP participating agencies) have reviewed the report and the CERHR will seek public review and
comment through a Federal Register notice.

Subsequent to this comment period, the NTP will prepare the NTP-CERHR Report on 2-Bromopropane that
contains NTP's conclusions regarding the potential for 2-BP to adversely affect human reproduction.  The NTP
will base its conclusions on the Expert Panel Report on 2-Bromopropane, any public comments received on
that report, and any relevant information available since the expert panel meeting.  The NTP-CERHR report
will include the public comments and the expert panel report as appendices. The NTP-CERHR Report on 2-
Bromopropane will be made publicly available and transmitted to health and regulatory agencies.

The NTP and the CERHR wish to thank the members of the Bromopropanes Expert Panel for their
contributions to the evaluation of 2-BP.  We greatly appreciate their time, effort, and objectivity during this
evaluation process. We also wish to thank the contract staff  for their support in convening the expert panel and
preparing the expert panel report.

The NTP-CERHR is headquartered at NIEHS, Research Triangle Park, NC and is staffed and administered by
scientists and support personnel at NIEHS and at Sciences International, Inc., Alexandria, Virginia.

Reports can be obtained from the website (http://cerhr.niehs.nih.gov) or from:
Michael D. Shelby, Ph.D.
NIEHS EC-32
PO Box 12233
Research Triangle Park, NC 27709
919-541-3455
shelby@niehs.nih.gov
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Note to Reader:

This report is prepared according to the Guidelines for CERHR Panel Members established by
NTP/NIEHS.  The guidelines are available from the CERHR web site (http://cerhr.niehs.nih.gov/).  The
format for Expert Panel Reports includes synopses of studies reviewed, followed by an evaluation of the
Strengths/Weaknesses and Utility (Adequacy) of the study for a CERHR evaluation.  Statements and
conclusions made under Strengths/Weaknesses and Utility evaluations are those of the Expert Panel and
are prepared according to the NTP/NIEHS guidelines.  In addition, the Panel often makes comments or
notes limitations in the synopses of the study.  Bold, square brackets are used to enclose such statements.
As discussed in the guidelines, square brackets are used to enclose key items of information not provided
in a publication, limitations noted in the study, conclusions that differ from authors, and conversions or
analyses of data conducted by the Panel.
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Abbreviations

ANOVA analysis of variance
ASTM American Society for Testing and Materials
1-BP 1-Bromopropane
2-BP 2-Bromopropane
bw bodyweight
C Celsius
CAS RN Chemical Abstract Service Registry Number
CERHR Center for the Evaluation of Risks to Human Reproduction
CFC chlorofluorocarbon
CHL Chinese hamster lung
cm2 centimeters squared
CNS central nervous system
d day
DL distal latency
DMSO dimethyl sulfoxide
EKG electrocardiograph
EPA Environmental Protection Agency
F female
fmol femtomole
FSH follicle stimulating hormone
g gram
GC gas chromatography
gd gestation day
GST glutathione transferase
h hour
Hb hemoglobin
hCG human chorionic gonadotropin
2,5-HD 2,5-hexanedione
HSDB Hazardous Substances Data Bank
Ht hematocrit
ip intraperitoneal
kg kilogram
Km Michaelis constant
Kow octanol-water partition coefficient
L liter
LC50 lethal concentration, 50% mortality
LC100 lethal concentration, 100% mortality
LH luteinizing hormone
LOAEC lowest observed adverse effect concentration; synonymous with lowest observed

adverse level (LOAEL)
M male
m3 meters cubed
MCV motor nerve conduction velocity
mg milligram
ML motor latency
mL milliliter
mm Hg millimeters mercury
mmol millimole
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mRNA messenger RNA
MSDS Material Safety Data Sheet
mw molecular weight
n number
ng nanogram
NIEHS National Institute of Environmental Health Sciences
NIOSH National Institute of Occupational Safety and Health
NOAEC no observed adverse effect concentration; synonymous with no observed adverse

effect level (NOAEL)
NOEC no observed effect concentration; synonymous with no observed effect

level (NOEL)
NTP National Toxicology Program
OECD Organization for Economic Co-operations and Development
OSHA Occupational Safety and Health Administration
PCNA proliferating cell nuclear antigen
pg picogram
ppm parts per million
RBC red blood cell
S Sulfur
sc subcutaneous
TUNEL in situ analysis of DNA fragmentation
TWA time-weighted average
U unit
Vmax maximal velocity of metabolism
WBC white blood cell
WHO World Health Organization
wk week
w/v weight per volume
YAR yeast expressing human androgen receptor
µg microgram
µmol micromole
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CHEMISTRY, USAGE, AND EXPOSURE

1.1 Chemistry

1.1.1     Nomenclature
2-Bromopropane (2-BP):  CAS RN=75-26-3

Synonym: Isopropyl Bromide

1.1.2 Formula and Molecular Mass

Figure 1-1.  Chemical Structure of 2-BP

Br

CH3—CH—CH3

C3H7Br  mw=123

1.1.3     Chemical and Physical Properties
Conversion Factors: 1ppm≅5.03 mg/m3; 1 mg/m3≅0.198 ppm

Table 1-1.  Chemical and Physical Properties of 2-BP.

Property Value
Boiling Point 59.38°C at 760 mm Hg
Melting Point -89°C
Specific Gravity 1.31 at 20°C
Solubility in Water 3,180  mg/L at 20°C
Vapor Pressure 216.47 mm Hg at 25°C
Stability Stable with normal use and storage*
Reactivity Incompatible with oxidizing agents*
Log Kow 2.14
Reviewed in HSDB (1), *Mallinckrodt Baker (2)

1.1.4     Technical Products and Impurities
Two studies describe the composition of 2-BP that was used at plants in Asia.  In a Korean plant, the
purity of 2-BP used was 97.4% and contaminants included n-heptane (0.33%), 1,2-dibromopropane
(0.2%), and 1,1,1-trichloroethane (0.01%) (3-5).  The reported purity of 2-BP used in a Chinese plant was
98.08% and contaminants consisted of 2-propanol (1.76%), dibromopropane (0.085%), benzene
(0.055%), and trichloroethylene (0.10%)  (6).

2-BP is a contaminant that may be present in 1-BP at 0.1% (7).  In the U.S., exposure to 2-BP has
occurred through the use of 1-BP-containing spray adhesives.  The composition of the spray adhesive was
described as 55% 1-BP, 8% VM&P Naphtha, and 2% ethyl acetate in one case (8); in another case the
spray adhesive contained 60–70% 1-BP (9).

In the majority of animal studies described in Sections 2, 3, and 4, the purity of 2-BP was at least 99%.
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1.2 Use and Human Exposure

1.2.1     Production
2-BP is manufactured by heating isopropyl alcohol together with hydrogen bromide (1).  The various
sources of information about U.S production of 2-BP are inconsistent.  HSDB (1) reported that Great
Lakes Chemical is a producer of 2-BP.  However, an OSHA (10) report, stated that 2-BP is not
intentionally produced for commercial use in the U.S., but is a contaminant of 1-BP at concentrations of
0.1–0.2%.  ASTM Standards for vapor-degreasing and general grade 1-BP list 2-BP as a contaminant at a
maximum of 0.1% by weight (7).

1.2.2     Use
It has been reported by HSDB (1) that 2-BP is used as an intermediate in the synthesis of
pharmaceuticals, dyes, and other organics.  The extent of these uses and associated human exposures is
unknown.  In Asia 2-BP has been used as a replacement for chlorofluorocarbons and 1,1,1-trichloroethane
(3-6).  Since it is a contaminant in 1-BP, exposure to 2-BP may occur when 1-BP is used.

1.2.3     Occurrence
Information on the possible exposure of the public to 2-BP through contact with air, drinking water, food,
or consumer products does not exist.

Schwarzenbach et al. (11) reported on an investigation of leaks from a wastewater tank at a Swiss alkyl
halide factory at which 2-BP was manufactured (>5 tons/year).  After the plant ceased operation, the
underlying aquifer was found to be heavily polluted.  Following soil excavation and continuous
groundwater pumping for 7 years, substantial concentrations of bromobenzene and chlorobenzene were
found, but neither 1- nor 2-BP nor their corresponding alcohol metabolites could be detected in
groundwater.  In vitro studies by Schwarzenbach et al. (11) confirmed the rapid hydrolysis of 2-BP (half
life of 2 days) under anaerobic conditions.

1.2.4     Human Exposure
In a Chinese chemical plant where 2-BP was manufactured, full workshift personal exposures to 2-BP
were measured.  Because sampling was only done during the winter, exposure measurements may not
reflect the influence of summer temperatures on the highly volatile 2-BP.  Ten men were sampled, of
which one directly worked in the process (mixer) and two were plant repairmen.  These workers had
exposures of (0.95–5.84 ppm).  The remaining men worked in the boiler area outside the plant or had
office jobs (salesman, manager, engineer); only one of these seven workers had exposures that exceeded
the detection limit (0.2 ppm).  Among the 14 women sampled in the study, 11 had direct contact with
2-BP in the manufacturing process and their exposures ranged from 2.87 to 16.18 ppm.  Of the three
women who were accountants, one had an exposure of 0.88 ppm and the other two had exposures below
the detection limit (0.2 ppm).  Peak exposures in the manufacturing operations were measured by detector
tube and reported to be 2.5–110.8 ppm (6).

In a Korean plant where 2-BP was used to clean electronic parts, the cleaning solution contained 97.4%
2-BP as well as n-heptane (0.33%), 1,2-dibromopropane (0.2%), and 1,1,1-trichloroethane (0.01%) (3-5).
Since the process using that solution was no longer functioning, exposures to 2-BP were simulated to
represent the seven assembly lines, each with a cleaning bath in a hood and the three or four automatic
assembly lines.  Area samples collected for 3 hours near the cleaning baths measured 2-BP exposures of
9.2−19.6 ppm (mean 12.4 ppm).  Since workers put their heads inside the hoods several times a day when
cleaning parts, a 15-minute sample was taken inside the hood.  That measurement found a 2-BP level of
4,140.7 ppm, as well as 29.8 ppm of n-hexane and < 1 ppm of 1,1,1 trichloroethane.  Unaccounted for in
this exposure assessment were the two uncovered and unventilated temporary cleaning baths that were
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present for about 6 months, and which were believed to contribute significantly to worker exposures.  No
exposure information was collected for the “control” group.  Also, no characterization of dermal exposure
was done for this study (3-5).

In a series of investigations, NIOSH measured 2-BP levels at spray adhesive and vapor degreasing
operations using 1-BP formulations that may contain 2-BP at 0.1–0.2% (7, 10).

NIOSH measured 2-BP levels in the breathing zones of workers in a plant where a 1-BP-containing spray
adhesive was used in the manufacture of furniture seat cushions (12).  Time-weighted average (TWA) full
workshift personal exposures to 2-BP in 16 workers ranged from 0.08 to 0.68 ppm with a mean of 0.28
ppm.  No local exhaust was present on the process.

NIOSH also measured 2-BP in a plant that used a 1-BP-containing spray adhesive to manufacture aircraft
seat cushions (9).  The 2-BP measurements were made after the introduction of  local exhaust systems for
spray operations.  The full workshift personal TWA 2-BP exposures in 30 workers ranged from <0.01 to
0.55 ppm with a mean of 0.14 ppm.  Short-term (15 minute) exposures of 12 adhesive spray workers
ranged from <0.1 to 0.4 ppm.

At a third plant where a spray adhesive containing 1-BP was used in the manufacture of furniture
cushions, NIOSH measured TWA 2-BP exposures before and after improvements were made in
engineering controls at spray stations.  At the time of the first survey, engineering controls consisted of a
slotted exhaust system at each spray table (8).  Full workshift TWA personal 2-BP exposures of the 12
sprayers ranged from 0.33 to 1.35 ppm (mean 0.66 ppm).  Short term (15 minute) samples of 2-BP
sprayers varied from 0.3 to 1.56 ppm.  2-BP levels in adjacent area samples were 0.05–0.20 ppm.  The
second survey was conducted after locally-exhausted spray tables were enclosed on four sides to create
spray booths (13).  The 12 spray stations were re-sampled on 3 days (n=33 samples) and personal TWA
full shift exposures were reduced by about 60% (0.1–0.4 ppm, mean 0.1–0.2 ppm).  Short term exposures
(15 minutes) of sprayers varied from < 0.13 to 0.4.  Personal full shift TWA 2-BP exposures in non-
sprayers varied from <0.01 to 0.1ppm.

NIOSH also measured personal exposure to 2-BP in a plant where 1-BP was used as a cold vapor
degreaser in the presence of a local exhaust system.  Full workshift personal 2-BP exposures for
20 employees were all below the minimum detectable concentration of 0.004 ppm as were the short
(13–14 minute) task samples taken while an assembler used the degreaser (14).

1.3 Utility of Data

The exposure data reviewed by the Expert Panel are of limited utility for risk assessment.  There are no
data available on consumer or general population exposures to 2-BP.  There are limited data on current
2-BP exposures in the United States based on exposure surveys of four spray adhesive and vapor
degreasing operations that used 1-BP contaminated with 2-BP.  These surveys do not represent a cross-
section of potential exposures since these investigations are prompted by request and require the
cooperation of the companies involved.  There is no information on the volume of usage or number of
U.S. workers exposed to 2-BP.  None of the exposure evaluations to date have characterized the potential
contribution of dermal exposures to the worker.

1.4 Summary of Human Exposure Data

In Asia, 2-BP was used as a cleaning solvent in the electronics industry (3-5).  Data on 2-BP exposures in
Korea and China were collected in conjunction with health effect studies.  These data provide a very
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limited description of occupational exposures in the manufacturing of 2-BP and its use as a cleaning
solvent.  The Korean study relied on simulated exposures using area sampling exposure information
(9.2−19.6 ppm) and did not collect any samples to represent the “control” group exposures.  In addition,
personal exposures may have been higher than indicated by the area sampling, since two open
unventilated baths were not included in the simulation.  The study conducted in a Chinese 2-BP
manufacturing plant reported personal exposure measures for a single winter day (6).  Only 14 of the 24
workers in the study had direct contact with 2-BP (0.95–16.18 ppm).  Neither the Korean nor Chinese
study characterized the dermal exposures of workers.

It has been reported by HSDB (1) that in the U.S. 2-BP is used as an intermediate in the synthesis of
pharmaceuticals, dyes, and other organics.  The extent of this use is unknown.  Currently in the U.S.,
2-BP exposures most commonly occur because it is a contaminant in 1-BP at 0.1% (7).  Many of the U.S.
workplace operations involve hand contact with 1-BP, yet none of the 1-BP exposure evaluations have
characterized the 2-BP exposure as a result of these dermal exposures.  No information was found that
documents exposure of the public to 2-BP through contact with air, drinking water, food, or consumer
products.

In the U.S., current 2-BP levels were measured in a limited number of occupational settings where it was
present in spray adhesive and vapor degreasing operations that use 1-BP in their operations.  In the spray
adhesive operations, NIOSH collected personal full shift TWA samples of adhesive sprayers prior to
installation of or improvements to local exhaust controls that ranged from 0.08 to 1.35 ppm (8, 12).
Personal full-shift TWA 2-BP samples of operations with local exhaust ranged from <0.01 to 0.55 ppm
(9, 13).  The 20 personal full-shift TWA samples taken from a plant where 1-BP was used in a vapor
degreaser were all below the minimum detectable concentration of 0.004 ppm for 2-BP (14).
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2.0 GENERAL TOXICOLOGY AND BIOLOGICAL PARAMETERS

2.1 Toxicokinetics

Human Data

Studies providing quantitative information on absorption and distribution after 2-BP inhalation or
ingestion of 2-BP were not identified.  One study by Kawai et al. (15) may provide limited information
about the metabolism and elimination of 2-BP in humans.

Kawai et al. (15) attempted to develop a system of biomonitoring for 2-BP based on a postulated
metabolic pathway for 2-BP.  They noted studies demonstrating that methyl bromide can by hydrolyzed
to bromide ion and methanol in vivo and that a similar reaction takes place with ethylene dibromide.  It
was therefore postulated that 2-BP would be hydrolyzed to isopropyl alcohol, which is known to be
oxidized to acetone.  Urinary levels of 2-BP, bromide ion, acetone, and isopropyl alcohol were measured
in 5 male Japanese workers exposed to 2-BP (mean area concentration of 3 mg/m3 [0.6  ppm]) and the
values were compared to 20 unexposed males.  Only the foreman, who was thought to be exposed to the
highest level of 2-BP, had urinary levels of acetone and bromide that exceeded concentrations found in
unexposed controls.  2-BP and isopropyl alcohol were not detected in the urine of workers or non-
exposed controls.  Kawai et al. (15) also examined the metabolism of 2-BP in rats; that portion of the
study is described below under the animal data section.

Strength/Weaknesses: The analytical method for trapping and measuring 2-BP vapor concentrations,
and for measuring 2-BP metabolite concentrations (isopropanol, acetone, bromide, parent) in urine was
found to be linear over a reasonably wide dynamic range.  The rat experiment used to establish the
linearity of the urinary assay indicated that parent and isopropanol are not detectable in urine, suggesting
that metabolism of parent is complete, as is oxidation of isopropanol to acetone.  The biomonitoring of
five workers exposed to a mean concentration of 3 mg/m3 suggests that this concentration did not increase
the urinary bromide or acetone level above background except in the one worker believed to be most
highly exposed.  It should be noted however, that when these metabolite concentrations were normalized
to urinary creatinine, the values were within the range of unexposed controls.  The strengths of the study
are that the methods are reliable and the urinary monitoring permits an estimation of exposure from
multiple routes.

Utility (Adequacy) for CERHR Evaluation Process: The utility of this paper is that it provides
confirmation of a metabolic pathway for 2-BP.  Unfortunately, there are too few data to be able to link the
metabolite biomarkers to exposure levels.  The exposure level in the study is considerably lower than the
vapor concentration associated with adverse effects in humans.

Animal Data

Studies examining the quantitative absorption and distribution after 2-BP inhalation in animals were not
identified.

Application of 2-BP to the intact occluded skin of Crl: SKH-hrBr nude mice found uptake at 3.1
mg/cm2/hour (16).  This in vivo percutaneous absorption rate was ~75% of that measured using an in vitro
Frantz assay system for excised mouse skin.



       6

Strengths/Weaknesses:  The Kim et al. (16) investigation is the only study available with which to
evaluate the percutaneous absorption of 2-BP.  The protocol utilized a gas chromatographic (GC) method
to quantify 2-BP.  Limitations are that the text of the study was in Korean, therefore a complete
evaluation was not possible.  Further, the data are only presented as histograms rather than specific data.

Utility (Adequacy) for CERHR Evaluation Process:  The utility of the paper lies in verification of the
rapid dermal absorption of 2-BP.  The rapid systemic absorption is important in consideration of the total
absorbed dose received by workers described in the Kim et al. (3, 4), Park et al. (5), Koh et al. (17), and
Ichihara et al. (6) reports.

One inhalation, one parenteral, and one in vitro study provide some information on the metabolism and
elimination of 2-BP.

A study by Kawai et al. (15) to develop biological monitoring for 2-BP exposure provides some
information about the metabolism of 2-BP.  Sixteen female Wistar rats/group [200 g, age not specified]
were exposed to 0, 500, 1,000, or 1,500 mg/m3 [99, 199, or 298  ppm] 2-BP [purity not specified] for 4
hours.  2-BP concentrations in exposure chambers were monitored.  Urine samples were collected during
the 4 hours of exposure and during the 4 hours following exposure.  GC was used to analyze urine for
2-BP, acetone, isopropyl alcohol, and bromide ion.  Data were analyzed by Student’s unpaired t-test.
Dose-related and statistically significant increases were observed for 2-BP during exposure
(≥500 mg/m3), acetone during (≥500 mg/m3) and after exposure (≥1,000 mg/m3), and bromide ion after
exposure (≥1,000 mg/m3).  The authors could not exclude the possibility that 2-BP found in urine during
exposure resulted from direct contact of urine with the 2-BP vapors in air.  The results of the experiment
supported the theory that 2-BP is hydrolyzed to isopropyl alcohol and bromide ion, followed by oxidation
of isopropyl alcohol to acetone and excretion of acetone and bromide ion through urine.

Strength/Weaknesses:  The analytical method for trapping and measuring 2-BP vapor concentrations,
and for measuring 2-BP metabolite concentrations (isopropanol, acetone, bromide, parent) in urine was
found to be linear over a reasonably wide dynamic range.  The rat experiment used to establish the
linearity of the urinary assay indicated that 2-BP and isopropanol are not detectable in urine, suggesting
that metabolism of 2-BP is complete, as is oxidation of isopropanol to acetone.  The strengths of the study
are that the methods are reliable and the urinary monitoring permits an estimation of exposure from
multiple routes.

Utility (Adequacy) for CERHR Evaluation Process:  The utility of this paper is that it provides
confirmation of a metabolic pathway for 2-BP.  Unfortunately, there are too little data to be able to link
the metabolite biomarkers to exposure levels.

Barnsley et al. (18) fed 2 male rats [age and strain unspecified] a diet containing 35S-labelled yeast for
3 days, injected 2 of the rats subcutaneously with 0.7 mL of 40% w/v solution of 2-BP [purity not
specified] in arachis oil on the fourth day, collected urine for 24 hours following treatment, and measured
metabolites in urine by radiochromatography.  No significant levels of sulfur-containing metabolites were
present in the urine at detectable levels.

Strength/Weaknesses:  This paper may represent the state of the art in studying glutathione conjugation
reactions in the early 1960s, but is of little use for risk assessment.  One tentative conclusion is that no
mercapturic acid or other S-containing conjugates of 2-BP were present in the urine of two rats dosed
with 2-BP and fed a diet containing 35S-labeled yeast.
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Utility (Adequacy) for CERHR Evaluation Process:  This study is not of use for evaluating 2-BP.
Because this study is limited due to the methodology available to the investigators, the Panel does not
have high confidence in its conclusions.

Kaneko et al. (19) studied the in vitro metabolism of 2-BP in hepatic microsomes of male Wistar rats by
measuring the rate of substrate disappearance and rate of product (isopropyl alcohol) formation.  The
authors demonstrated that there were more than two sets of Vmax and Km metabolic constants.  According
to the authors, differences in rates between substance disappearance and isopropyl alcohol formation
suggested the possibility of alternate pathways besides metabolism of 2-BP to isopropyl alcohol or that
isopropyl alcohol is further metabolized.  The procedures and results for this experiment were reported in
the form of a short communication.

Strength/Weaknesses:  This paper provides partition coefficients that may be useful in the eventual
construction of a PBPK model for 2-BP.  The limited metabolism data in rat microsomes suggest multiple
metabolic routes, but metabolism is not otherwise characterized.

Utility (Adequacy) for CERHR Evaluation Process:  This work will only have utility as the source of
data for constructing PBPK models.

2.2 General Toxicity

2.2.1     Human Data
In 1995, the National Institute of Occupational Health, Korea Industrial Safety Corporation conducted an
investigation in the tactile switch assembly section of a plant where a cluster of secondary amenorrhea
was reported (3-5).  Twenty-five women and 8 men, aged 20–44 years, were employed in that part of the
plant and worked 12-hour shifts.  The workers were involved in a process where tactile switch parts were
dipped in baths of cleaning solution located within ventilation hoods.  Prior to 1994, there were
two temporary baths without ventilation hoods.  In addition to inhalation exposures, some workers were
exposed dermally when they occasionally dipped their bare hands into the cleaning solution.  No personal
protective equipment was used by workers.  A limited number of female workers were subjected to short
term exposure as they fixed problems occurring underneath the hood.  Eighteen months prior to the
investigation, a CFC-based cleaning solution was replaced with a solution consisting of 97.4% 2-
bromopropane (2-BP) with smaller percentages of n-heptane (0.33%), 1,2-dibromopropane (0.2%), and
1,1,1-trichloroethane (0.01%).  Solvent concentrations in air were not measured during actual plant
operations, so exposures were estimated by obtaining 14 area samples under a simulated manufacturing
scenario.  2-BP levels outside the hood ranged from 9.2–19.6 ppm with a mean of 12.4 ppm.  The short-
term concentration of 2-BP inside the hood was measured at 4,140.7 ppm and the n-heptane level was
29.8 ppm.

Effects in the 2-BP exposed group were compared to a control group of 65 females and 12 males who
worked in another room of the same plant.  Reproductive effects were a dominant finding in the 2-BP-
exposed group and are discussed in Section 4.  Eight women who were suffering from amenorrhea also
experienced pancytopenia.  Mild anemia or leukopenia were observed in the other women.  A bone
marrow biopsy conducted in two women with marked pancytopenia revealed hypoplastic marrow.  Those
two women complained that they bruised easily.  Mild pancytopenia was reported in one male worker
who was also azoospermic but was not reported in males with oligospermia.  Blood disorders were
subsequently reported to be transient (4).  Symptoms such as headache, dizziness, or weakness were
reported by many workers.  In males and females, clinical tests revealed no effects on blood clotting,
kidney and liver function (except for one male), or thyroid function.  Chest x-rays, urinalysis, and
electrocardiographs (EKG) were also normal.  Numbness and paralysis of hand muscles were
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subsequently reported by the workers (20).  Additional details are not available in a report written in
English.

Strength/Weaknesses: These papers describe the cluster of health effects associated with 2-BP exposure.
They do a good job of narrowing down the type of work associated with the adverse effect cluster and
provide good circumstantial evidence of the involvement of 2-BP in the toxicity.  Clinical evaluations of
reproductive and hematological effects are adequate and provide some clues about mode of action.  The
vapor concentrations of 2-BP in the work area were simulated, but a detailed exposure scenario is not
available.  Only area samples were measured and the duration of short-term exposures is not known.
More importantly the simulated conditions may not have replicated actual exposures that occurred when
two unventilated cleaning tanks were present in the area prior to February through November 1994.
Qualitative information about dermal exposure is given in that some workers occasionally (frequency and
duration not specified) dipped bare hands into 97% 2-BP.

Utility (Adequacy) for CERHR Evaluation Process: These papers provide a good description of the
human hazard potential of dermal/inhalation exposure to relatively high levels of 2-BP in an occupational
setting.  There is insufficient data for dose-response assessment.

Ichihara et al. (6) examined reproductive and hematological effects in workers of a Chinese 2-BP plant in
order to obtain information about dose-response relationships.  Reproductive findings and complete study
details are provided in Section 4.  Personal air samples were collected in 14 women (age 24–54 years) and
11 males (age 31–56 years) who worked 8 hours/day, 5 days/week and were employed at the plant for 5–
69 months.  Personal TWA exposures of 2-BP exceeded the detection limit (0.2 ppm) in 3 men and 11
women directly exposed to 2-BP; levels ranged from 0.95 to 5.84 ppm and 2.87 to 16.18 ppm in men and
women, respectively.  Accountants, boilers, salesman, and the assistant manager rarely entered the factory
floor and served as referents.  Exposures according to job category are listed in Section 4.  No information
was provided about use of personal protective equipment.  Five female operators, who prepare 2-BP then
pour it into containers, had slight anemia as indicated by red blood cell (RBC), hemoglobin (Hb), or
hematocrit (Ht) values; exposures in those operators ranged from 5.80 to 10.74 ppm.  In a comparison of
accountants with normal menstrual cycles (exposure=<0.2–0.88 ppm; age 26–34 years), operators with
normal menstrual cycles (exposure=4.09–8.60 ppm; age 25–40 years) and operators with amenorrhea or
polymenorrhea (exposure=4.14–16.18 ppm; age 39–54 years), it was found that Hb, Ht, and white blood
cell (WBC) levels were lower in operators with normal cycles compared to accountants.  However, levels
of Hb, Ht, and WBC levels in operators with amenorrhea or polymenorrhea did not differ from those of
accountants but were significantly higher than levels in female operators with normal menstrual cycles.
Regression analysis revealed significant relationships between TWA exposure and RBC, Ht, and Hb
levels in women.  A significant inverse relationship between TWA exposure x duration of employment
and Hb and Ht levels was observed.  Lower concentrations of RBCs, Hb, and Ht were observed in two
males exposed to the highest concentrations of 2-BP (1.20 and 5.84 ppm).  However, regression analysis
revealed no significant relationship between male hematological indices and TWA or TWA x duration of
employment.  The authors concluded that severe hematopoietic disorders were not observed but that a
possible adverse effect on hematopoiesis following exposure to less than 10 ppm 2-BP could not be
disproved.  Authors stated that additional studies are needed to characterize the toxicity of 2-BP.

Strength/Weaknesses:  Appropriate hematological and reproductive clinical measurements were made of
workers in a 2-BP production plant.  Vapor concentrations associated with each task in the synthesis,
processing, and storage of the 2-BP were measured.  The authors expressed concern that these
concentrations, measured in December in a plant that did not have an air-handling system, may not have
been representative of concentrations of the volatile material in warmer months.  In the results section, the
authors describe 2-BP concentrations for workers doing various tasks and many of the concentrations are
higher than the TWA concentrations that are listed in the tables of the study.  However, the authors do not
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describe how those values were obtained; for example, it is not known if those values represent short term
measurements for a particular task.  Hematological effects were correlated with higher exposures to 2-BP.
There did not appear to be effects at concentrations lower than 10 ppm, but the small size of the study
makes it difficult to draw definitive conclusions.

Utility (Adequacy) for CERHR Evaluation Process: The report supports the Korean reports of adverse
hematological effects of 2-BP.  The demographics of the workforce, particularly the fact that only older
women (ages 40–50) had menstrual disturbances makes this study less useful in confirming ovarian
dysfunction.  The airborne concentration measurements of 2-BP support an exposure-response
relationship, but the data are inadequate to support the dose-response analysis phase of risk assessment.
In addition, the results of regression analyses with such small number of subjects, few exposure
measurements, and narrow range of mean exposure concentrations (0.9–16 ppm) is misleading.  Lastly,
there is no mention of short-term exposure monitoring.  Quantitative data describing the frequency and
duration of short-term, high exposure would have been useful for determining if adverse effects are
related to peak exposures.

2.2.2     Animal Data
Kim et al. (21) conducted an acute LC50 study of 2-BP (Solvent 5200; 99.01% purity) in 8−9-week-old
ICR mice (from Daehan Experimental Animal Center).  Three mice/sex/group inhaled 0, 26,604, 30,771,
31,864, 32,492, or 34,651 ppm 2-BP [0, 133,818, 154,778, 160,276, 163,435, or 174,295 mg/m3]
(chamber concentrations monitored) for 4 hours and were observed for 14 days.  Male and female mice
exposed to 32,492 or 34,651 ppm usually died during exposure, while mice exposed to 30,771 or 31,864
ppm lived until the end of the exposure day.  No obvious lesions were observed at necropsy in the
respiratory, reproductive, or hepatic organs. An LC50 of 31,171 ppm was estimated using a dose-mortality
curve at a 95% confidence level.  The LC100 was >32,905 ppm and the lowest lethal concentration was
<29,528 ppm.

Strength/Weaknesses: The report describes an LC50 determination in mice.  The work was adequately
done and the calculated LC50 appears reliable.

Utility (Adequacy) for CERHR Evaluation Process: This study provides hazard data for acute toxicity
of 2-BP.

Ichihara et al. (22) conducted a study to determine the testicular and hematopoietic toxicity of 2-BP in 13-
week-old Wistar rats (from Shizuoka Laboratory Animal Center).  Additional details about the
examination of bone marrow in this study were reported by Nakajima et al. (23, 24).  This section covers
systemic parameters while reproductive findings and complete study details are discussed in Section 4.
The experimental protocol had 9 male rats/group exposed by inhalation to 0, 300, 1,000, or 3,000 ppm
[1,509, 5,031, or 15,092  mg/m3] 2-BP for 8 hours/day, 7 days/week for 9 weeks.  Excessive toxicity in
the high-dose group led to termination of exposure after 9–11 days.  Three rats in this high- dose group
were sacrificed immediately after exposure; the remaining 6 rats were exposed to filtered air for the
remainder of the 9-week study.  Non-reproductive organs that were weighed and preserved in 10%
formalin included the liver and kidneys.  All treated rats experienced a dose-dependent reduction in
bodyweight gain.  Rats in the 3,000 ppm group began to recover bodyweight after 2-BP exposure ended
and bodyweights at the end of the study were equivalent to the 300 ppm group.  Absolute kidney weight
was reduced at 300 and 1,000 ppm while absolute liver weight was reduced at 1,000 ppm.  There were no
histopathological findings or effects on relative liver and kidney weights at 300 and 1,000 ppm.  Changes
in RBC numbers were indicative of macrocytic anemia according to the study authors.  Significant
changes in hematological parameters included reductions in erythrocyte numbers (≥300 ppm), Hb (1,000
ppm), platelets (300 and 1,000 ppm), and leukocytes (1,000 ppm).  Histological examinations revealed
hypocellular and fatty bone marrow in rats exposed to 1,000 or 3,000 ppm that was characterized by dose-
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related increases in adipose cells and reductions in megakaryocytes (23, 24).  There was only slight
recovery of adipose cell and megakaryocyte numbers in the 6 rats of the 3,000 ppm group that were
exposed to air for about 7 weeks of the study; the cell numbers did not reach levels equivalent to those
observed in lower dose groups.  There were no changes in the ratio of granulocytes to erythrocytes at any
dose.

Strength/Weaknesses: The study was a subchronic inhalation study in male rats, with exposures
conducted for 8 hours/day, 7 days/week for 9 weeks.  The number of animals per group, nine, was close
to the expected number of ten for a guideline study.  There were three treatment groups, but the highest
concentration was excessively toxic; therefore, three of these animals were sacrificed in extremis 11 days
into the dosing period and the other six were taken off treatment for the remainder of the 9 weeks.  The
results demonstrate the toxicity of 2-BP to hematological and male reproductive systems, without a No
Observed Adverse Effect Concentration (NOAEC) identified.  While this study is not a complete
subchronic toxicity protocol, the examination of the male reproductive systems and hematological
parameters was as or more thorough than the typical subchronic study.

Utility (Adequacy) for CERHR Evaluation Process: This study helps characterize the hazard potential
of 2-BP to the blood and male reproductive system.  It provides support that the effects observed in the
human cluster studies are indeed attributable to 2-BP exposure.  The data are useful for dose-response
assessment, although the lack of NOAEC should be compensated for by the calculation of a benchmark
concentration.

Yu et al. (25) conducted a 2-BP toxicity study in rats to verify that adverse effects in the hematopoietic
and reproductive systems of workers of a Korean electronics plant were due to 2-BP exposure (3).  Ten
male Sprague-Dawley rats/group (∼12 weeks old; from Daehan Animal Center) were injected
intraperitoneally (ip) with 0, 125, 250, or 500 mg/kg bw 2-BP in olive oil, 6 times/week for 4 weeks.  The
authors acknowledged that the administration route does not pertain to occupational exposures, but stated
that inhalation tests are required only if negative results are obtained with ip exposure.  Data were
evaluated by 2-way ANOVA and Duncan’s multiple range test.  This summary describes the findings
other than reproductive effects while reproductive findings and complete study details are discussed in
Section 4.  Clinical signs included dizziness and lethargy 15 minutes after dosing in all treated animals.
Bodyweight gain and terminal bodyweight were significantly lower in rats exposed to 250 and 500 mg/kg
bw.  Significant dose-related increases in relative organ weights were observed for the adrenals of rats
exposed to 250 mg/kg bw and higher and for the lungs, spleen, liver, and brain at the highest dose (500
mg/kg bw).  A histological evaluation of kidneys, liver, and pituitary revealed no distinct histopathology.
Hematological evaluation demonstrated significant reductions in WBC count, lymphocyte count, Hb
concentration, and mean platelet volume in the 500 mg/kg bw group.  Authors also noted a dose-related
trend for reductions in granulocytes and monocytes.  The only significant dose-related effects observed in
the blood chemistry analysis were reduced alkaline phosphatase activity and increased cholesterol in the
500 mg/kg bw/day group.

Strength/Weaknesses: This study was a 28-day subchronic toxicity study in male rats, with 2-BP being
given ip 6 days per week.  The analysis included bodyweights, organ weights, hematologic and
reproductive parameters.  The results confirm the hematological and male reproductive effects.  The route
of administration makes these data dubious for anything other than qualitative support of hazard.  One
potential concern is the high hematocrit and red cell volumes in the lowest dose 2-BP group.  The values
are unusually high and may signify a possible methodological problem.

Utility (Adequacy) for CERHR Evaluation Process: The study is useful as part of the weight of the
evidence of hazard to male reproductive and hematopoietic systems.  The use of an ip route limits further
use in risk assessment.



       11

Because Korean workers exposed to 2-BP complained of numbness and paralysis in hand muscles, Yu et
al. (20, 26) studied the neurological effects of 2-BP in rats.  Nine, 10-week-old male Wistar rats/group
(from Shizuoka Laboratory Animal Center) were exposed to filtered air or 100 or 1,000 ppm [503 or
5,031  mg/m3] 2-BP vapors (99.4% purity) for 8 hours/day, 7 days/week, for 12 weeks.  [No rationale
was provided for dose selection.]  Chamber concentrations were monitored.  Neurological function was
tested at weeks 0, 4, 8, and 12 by measuring motor nerve conduction velocity (MCV) and distal latency
(DL).  Parameters evaluated at sacrifice included blood chemistry, organ weight measurement, and
histopathology in an unspecified number of rats.  Hematological analysis were conducted in 8 rats/group
and the nervous system of 1 rat/group was examined histologically.  Data were analyzed by ANOVA
followed by the Tukey-Kramer multiple comparison method.  None of the parameters examined were
affected at 100 ppm.  Clinical signs of neurotoxicity, such as changes in lacrimation, salivation, pupillary
response, reaction to stimuli, alertness, or pain perception, convulsions, tremors, or abnormal movements,
were not observed.  However, MCV was significantly reduced at week 8, and DL was significantly
prolonged at weeks 8 and 12 in the 1,000 ppm group.  Histological examination revealed a scattered ball-
like swelling in the myelin sheath of the common peroneal nerves of the tibia, but no effects were noted in
spinal cord or brain.  Bodyweight gain and absolute weight of brain, liver, and kidney were significantly
reduced in rats of the 1,000 ppm group.  Histological findings for liver and kidney were not reported.
Testicular histopathology is discussed in section 4.2.2.  Hematological effects included significant
reductions in erythrocytes, platelets, and leukocytes.  Blood chemistry parameters (liver enzymes,
glucose, protein, blood urea nitrogen, lipids, and electrolytes) were not affected.  Authors concluded that
long-term exposure to 1,000 ppm 2-BP could lead to peripheral neuropathy.

Strength/Weaknesses: This study involved inhalation exposure of male rats for 8 hours/day, 7 day/week,
for 12 weeks to 100 or 1,000 ppm 2-BP.  The number of animals per group was 9, reasonable for this type
of experiment, and the inhalation exposures were controlled adequately.  There were progressive effects
on peripheral nerve function, evaluated by repeated measures of the same animals.  There was some
histological evidence of myelin irregularities of peripheral nerves.  The No Observed Adverse Effect
Concentration (NOAEC) was 100 ppm.  There were no apparent central nervous system (CNS) effects.  It
was not clear whether the data presented in Yu et al. (26) is from the same experiment as Yu et al. (20) or
is a replicate experiment.  The means and standard deviations for the achieved air concentrations of 2-BP
are identical for the two reports, with the exception that the earlier paper reports two decimal places, the
latter, one.

Utility (Adequacy) for CERHR Evaluation Process: This study identifies another potential toxic effect
of 2-BP and provides data that could be used in dose-response assessment.

Zhao et al. (27) conducted a study to compare the neurotoxicity of 2-BP, 1-BP, and 2,5-hexanedione (2,5-
HD).  Seven to nine, male Wistar rats/group (age not specified; from Seiwa Experimental Animal
Institute) were injected subcutaneously (sc) with each chemical in olive oil 1 time/day, 5 days/week, for 4
weeks.  Doses administered were 1.1, 3.7, or 11.0 mmol/kg bw 2-BP; 3.7 or 11 mmol/kg bw 1-BP; and
2.6 mmol/kg bw 2,5-HD.  Purity of all chemicals was >97%.  A control group of nine rats was injected
with the olive oil vehicle.  According to the study authors, doses of 1.1, 3.7, and 11 mmol/kg bw are
equivalent to doses received by inhalation of 100, 300, and 1,000 ppm BP.  Bodyweights were measured
weekly and maximum motor nerve conduction velocities (MCV) and motor latency (ML) were measured
every 2 weeks.  Data were analyzed by one-way ANOVA followed by Duncan’s multiple range test.
Bodyweight gain in the 11 mmol 2-BP/kg bw group was lower compared to the control group.  By 2
weeks of exposure, the MCV began decreasing in treated rats and reached statistical significance in the
3.7 and 11 mmol 2-BP/kg bw groups at week 4.  Dose-and time-related increases in ML occurred but
were not statistically significant.  All three compounds, 2-BP, 1-BP, and 2,5-hexanedione, produced
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qualitatively similar responses in MCV and ML.  The authors concluded that 2-BP and 1-BP were equally
potent and that both compounds were less potent than 2,5-hexanedione.

Strength/Weaknesses:  This study evaluated peripheral nerve function in rats given 2-BP by sc injection
on a 5 day/week basis for 4 weeks.  It reported effects on MCV.  These results appear to support those of
Yu et al. (20), but use of the sc route and the limited number of animals per group (7 for all but the high
dose of 2-BP) limit the usefulness of this study.

Utility (Adequacy) for CERHR Evaluation Process: This study confirms the hazard of 2-BP to the
peripheral nervous system.  The sc route of exposure, small sample size, and limited measurements limit
its usefulness for risk assessment.

2.3 Genetic Toxicity

Maeng and Yu (28) examined the mutagenicity and clastogenicity of 2-BP.  A reverse mutation assay was
conducted in S. typhimurium strains TA98, TA100, TA1535, TA1537 and E. coli strain WP2 uvrA.  Five
different 2-BP concentrations were tested in duplicate in a preliminary (50–5,000 µg/plate) and second
(313–5,000 µg/plate) assay with and without S9 metabolic activation.  Dimethyl sulfoxide (DMSO) was
used as a negative control and positive controls included 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide,
sodium azide, 9-aminoacridine, and 2-aminoanthracene.  A dose-related increase in mutations was noted
with 2-BP treatment in strain TA100 with S9 activation and in TA1535 with and without activation.
Results in E. coli and the other Salmonella strains were negative.  The authors stated that mutation in
strains TA100 and TA1535 indicate base-pair substitutions. [The Expert Panel notes that strains
TA100 and TA1535 are known to possess nascent GST activity (29, 30) which may be linked to the
mutations observed.]

For the in vitro chromosomal assay, Maeng and Yu (28) treated Chinese hamster lung (CHL) cells in
duplicate for 24 hours with 6 concentrations of 2-BP ranging from 0.077 to 2.46 mg/mL without
metabolic activation and for 6 hours with S9 metabolic activation.  Doses were based on a preliminary
study that demonstrated growth inhibition with 2-BP treatment at 4.92 mg/mL.  The negative control was
DMSO and positive controls were mitomycin C and cyclophosphamide.  2-BP treatment did not produce
chromosomal aberrations in the presence or absence of metabolic activation.

Maeng and Yu (28) conducted a micronucleus assay by injecting 10 Sprague-Dawley rats/sex/group
(from Dae-Han Experimental animal Center) ip with 0, 125, 250, or 500 mg/kg bw/day 2-BP in olive oil
for 28 days.  On the day after treatment was completed, the rats were sacrificed and the bone marrow was
stained to check for the frequency of micronucleated polychromatic erythrocytes.  2-BP treatment did not
increase the frequency of micronucleated erythrocytes.  Doses were sufficient to produce toxicity in rats
as suggested by decreased weight gain in all treated females and males exposed to ≥250 mg/kg bw/day.
According to the authors, a dose-related reduction in polychromatic erythrocytes in all treated rats may
indicate 2-BP-induced hematopoietic inhibition in the bone marrow.

Ishikawa et al. (31) examined cytogenetic effects in embryos recovered from 15 Jcl:ICR strain
mice/group (Clea Japan Co.) injected intraperitoneally (ip) with a single dose of olive oil or 300, 600,
900, or 1,800 mg/kg bw 2-BP [purity not specified] during the early preimplantation period [specific
gestation day (gd) not specified].  The highest dose was based upon Organization for Economic Co-
operations and Development (OECD) and UK Environmental Mutagen Society guidelines and the ip
route was selected because the authors claim it is more effective than the oral route for detecting
clastogenic effects.  The dams were sacrificed on gd 3 and viable embryos were examined for micronuclei
frequency.  The litter was considered the unit for statistical analyses which included arcsine
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transformation followed by one-way ANOVA and Games-Howell’s multiple comparison test.  Dams
experienced no changes in weight gain or other signs of toxicity.  Treatment did not result in increased
numbers of degenerated embryos.  There was a significant, dose-related increase in the number of
micronuclei/embryo and the percentages of embryos with micronuclei in the 900 and 1,800 mg/kg bw
dose groups.  The authors also reported a 2-BP-induced reduction in cell numbers but it is not clear at
which dose the effect becomes statistically significant.  The authors concluded that maternal exposure to
2-BP may result in a “developmental disadvantage”.

Strength/Weaknesses: These studies used established in vitro methods to evaluate mutagenic potential,
and in vitro and in vivo techniques to evaluate cytogenetic effects.  There was a mutagenic effect in two
strains of Salmonella, one only with metabolic activation, one with and without metabolic activation.  The
two strains both detect base-pair substitutions, raising the likelihood that 2-BP, at least under some
circumstances, is mutagenic.  The bone marrow cytogenetics assays were both negative.  There was a
reported increase in micronuclei in mouse embryos after maternal ip exposure.  There is no clear
explanation why the bone marrow assays were negative but the embryo assay was positive, although one
could surmise that the ip treatment regimen exposed the embryos to much higher concentrations of 2-BP.
These assays conform to accepted regulatory practices.

Utility (Adequacy) for CERHR Evaluation Process: The results of these studies are directly useful in
characterizing the genotoxic potential of 2-BP.

2.4 Carcinogenicity

No carcinogenicity studies were located.

2.5 Potentially Sensitive Subpopulations

There are limited data available to distinguish subpopulations that may be particularly sensitive to
exposure to 2-BP.  However, the epidemiological study by Ichihara et al. (6) suggests that women nearing
the end of their reproductive years may be more sensitive to the follicle-depleting effects of 2-BP due to
the smaller number of follicles present in their ovaries compared to younger women.  This phenomenon
has been observed with other follicle-depleting toxicants such as the chemotherapeutic drug
cyclophosphamide.

2.6 Summary of General Toxicology and Biological Effects

Toxicokinetics

Evidence from occupationally exposed humans and animal toxicity studies indicate that 2-BP is absorbed
following inhalation exposure.  There is some evidence that 2-BP is readily absorbed across the skin of
nude mice (16).  Limited information is available on the metabolism of 2-BP.  Measurement of urinary
metabolites in humans and rats exposed to 2-BP by inhalation suggests that 2-BP is hydrolyzed to
isopropyl alcohol and bromide ion, followed by oxidation of the alcohol to acetone and excretion of
bromide and acetone through urine (15).  In vitro experiments with rat hepatic microsomes suggests there
are multiple pathways for metabolism of 2-BP (19).  A study in rats tentatively demonstrates that 2-BP is
not excreted in urine in the form of mercapturic acid or other sulfur containing conjugates (18); however
this study is limited due to the methodology available to the investigators and the Panel does not have
high confidence in its conclusions.
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General Toxicity

Toxicity was noted in occupationally exposed humans.  Blood disorders ranging from mild anemia and
leukopenia to pancytopenia with hypoplastic bone marrow were observed in male and female workers
exposed to 2-BP in a Korean plant at estimated exposure levels of 9.2–19.6 ppm with possible short term
exposures of 4,140.7 ppm (3-5).  Other symptoms reported by workers included headache, dizziness, and
numbness and paralysis of hand muscles.  In 11 female Chinese workers who were directly exposed to
2-BP at 2.87–16.18 ppm, there were significant inverse relationships between TWA 2-BP exposure and
RBC, Ht, and Hb levels and TWA 2-BP exposure x duration of employment and Ht and Hb levels (6).
No relationship was found between hematological parameters and 2-BP exposure in 3 male
manufacturing workers exposed to 0.95–5.84 ppm.  Reproductive disorders were reported in both sexes of
workers in the Korean and Chinese studies, these are discussed in Section 4.  Concerns regarding
exposure assessment and small study sizes limit the ability of these studies to quantify dose-response
relationships for risk assessment.

An LC50 of 31,171 ppm was determined for mice exposed to 2-BP by inhalation for 4 hours (21).  In male
rats, repeat-dose inhalation toxicity studies conducted for 9–12 weeks demonstrated that 2-BP targets the
hematopoietic system at concentrations ≥300 ppm (1,509 mg/m3) and the nervous system at
concentrations ≥1,000 ppm (5,031 mg/m3)  (20, 22, 26).  Table 2-1 illustrates the major general toxicity
findings in the inhalation studies.  Hematological effects included decreased numbers of erythrocytes, Hb,
platelets, and/or leukocytes (20, 22, 26), while histopathological evaluation revealed hypocellular and
fatty bone marrow (22, 23).  Neurotoxicity was characterized by reduced MCV, increased distal latency,
and swelling of the myelin sheath of the common peroneal nerves of the tibia (20, 26).  No histological
effects were noted in brain or spinal cord.  There were no clinical signs of neurotoxicity such as changes
in lacrimation, salivation, pupillary response, reaction to stimuli, alertness, or pain perception,
convulsions, tremors, or abnormal movements.  No effects on blood chemistry parameters were observed.
Reproductive effects were observed and are discussed under Section 4.  Two additional studies were
conducted in male rats exposed ip.  Though the route is not relevant to human exposure scenarios, the
studies demonstrated adverse affects on the hematopoietic system (25) and nervous system (27) that were
qualitatively consistent to those observed in the inhalation studies.

Effects on the hematopoietic and nervous system were not determined for female rats exposed through
any route.  One reproductive study in female rats found decreased weight gain, activity, and muscle tonus
following exposure to 1,000 ppm (5,031 mg/m3) 2-BP vapors for 8 hours/day for 9 weeks (32).  Organ
weight changes included increased relative liver weight and decreased absolute spleen and absolute and
relative thymus weight; no histopathological changes were noted in the organs.  Reproductive effects in
female rats are addressed in Section 4.

Genetic Toxicity

2-BP was mutagenic in Salmonella strains TA100 with metabolic activation and in TA1535 with and
without activation but was negative in strains TA98 and TA1537 and in E. coli (28).  Strains TA100 and
TA1535 are known to possess nascent GST activity (29, 30) which may be linked to the mutations
observed.

2-BP did not induce chromosomal aberrations in an in vitro assay with Chinese hamster lung cells or bone
marrow micronuclei formation in Sprague Dawley rats (28).  There was a reported increase in
micronuclei in mouse embryos after maternal ip exposure (31).  There is no clear explanation why the
bone marrow assays were negative but the embryo assay was positive, although one could surmise that
the ip treatment regimen exposed the embryos to much higher concentrations of 2-BP.
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Carcinogenicity

No carcinogenicity data was identified.

Table 2-1.  Summary of General Toxicity Inhalation Studies in Male Rats

Concentration
in ppm
(mg/m3)

Exposure
Regimen

Sex/
Species/
Strain

Dose:  Effecta Reference

300 (1,509)
1,000 (5,031)
15,092 (15,092)

8h/7d/9wk;
whole body
(9–11 d
exposure
period in
high dose)

Male
Wistar
Rat

300 ppm (1,509 mg/m3):  ↓ Bodyweight
gain; ↓ absolute kidney weight; ↓erythrocytes
and platelets.

1,000 ppm (5,031 mg/m3):  ↓ Bodyweight
gain; ↓ absolute kidney and liver weight
↓erythrocytes, hemoglobin, platelets,
hematocrit and leukocytes; hypocellular
marrow.

15,092 ppm (15,092 mg/m3): ↓ Bodyweight
gain; ↓erythrocytes; hypocellular marrow.

Ichihara et al.
(22)

100 (503)
1,000 (5,031)

8h/7d/12
wk;
whole body

Male
Wistar
Rat

NOAEC=100 ppm (503 mg/m3)

1,000 ppm (5,031 mg/m3):  ↓ bodyweight; ↓
absolute brain, liver, and kidney weight, ; ↓
erythrocytes, platelets and leukocytes; ↓
motor nerve conduction velocity and ↑distal
latency; lesions in myelin sheath of tibial
peroneal nerves

Yu et al. (20,
26)

aReproductive Effects are Summarized in Section 4.
↑=Increased Effect; ↓=Decreased Effect
d=day
h=hour
wk=week
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3.0 DEVELOPMENTAL TOXICITY DATA

3.1 Human Data

A 26-year-old woman who suffered ovarian failure after a 16 month-exposure to 2-BP in a Korean
electronics plant never regained menstrual cycles but later became pregnant and gave birth to a normal
full term infant (17).  A 6-month check-up revealed that the infant was healthy.  Additional details of the
study are included in Section 4 (3, 17).

3.2 Experimental Animal Toxicity

Litter size was reduced in Sprague Dawley rats treated ip with 2-BP at 300 mg/kg bw/day and higher for
14 days prior to mating and during a 7-day mating period; there were no gross abnormalities observed at
doses up to 900 mg/kg bw (33).  Additional details of this study are included in Section 4.

3.3 Utility of Data

Although the case report is interesting, it is of no real usefulness for risk assessment in that 1) it is a single
instance, and it is very hard to infer anything from a single case, and 2) the exposure to 2-BP ceased prior
to conception.  Therefore, the embryo was not exposed to the agent of interest.  In the animal study, the
period of treatment does not include the period of embryogenesis, during which the organs develop and
the embryo is most susceptible to agents that cause structural malformations.  Therefore, the study was
inadequate to assess the potential of 2-BP to cause structural abnormalities.  The decreased litter size is an
interesting observation, but because of the treatment schedule it is not possible to determine whether it is
attributable to effects on the embryo or one or both of the parents.  Finally, the ip route of administration
renders the study of no utility for quantitative risk assessment as this is not a relevant route of exposure.

3.4 Summary of Developmental Toxicity

There are insufficient data upon which to evaluate the developmental toxicity of 2-BP in either humans or
experimental animals.

In one case report, a healthy, full-term infant was born to a 26-year-old woman who suffered ovarian
failure after a 16-month exposure to 2-BP prior to the pregnancy (17).  In a limited animal study, a lack of
gross abnormalities was noted in the offspring of rats treated ip with up to 900 mg/kg bw 2-BP for 2–3
weeks prior to conception (33).
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4.0 REPRODUCTIVE TOXICITY

4.1 Human Data

In 1995, the National Institute of Occupational Health, Korea Industrial Safety Corporation conducted an
investigation in the tactile switch assembly section of a plant where a cluster of secondary amenorrhea
was reported (3-5).  Twenty-five women and 8 men, aged 20–44 years, were employed in that part of the
plant and worked 12 hour shifts.  The workers were involved in a process where tactile switch parts were
dipped in baths of cleaning solution located within ventilation hoods.  Prior to November 1994,
two temporary baths without ventilation hoods were used in the plant.  In addition to inhalation
exposures, some workers were exposed dermally when they occasionally dipped their bare hands into the
cleaning solution.  No personal protective equipment was used.  A limited number of female workers
were subjected to short term exposure as they fixed problems occurring underneath the hood.  Eighteen
months prior to the investigation, in February 1994, a CFC-based cleaning solution was replaced with a
solution consisting of 97.4% 2-BP with smaller percentages of n-heptane (0.33%), 1,2-dibromopropane
(0.2%), and 1,1,1-trichloroethane (0.01%).  Solvent concentrations in air were not measured during actual
plant operations so exposures were subsequently estimated by obtaining 14 area samples under a
simulated manufacturing scenario.  2-BP levels outside the hoods ranged from 9.2 to 19.6 ppm with a
mean of 12.4 ppm.  The short-term concentration of 2-BP inside the hood was measured at 4,140.7 ppm
and the n-heptane level was 29.8 ppm.  Effects in the 2-BP-exposed group were compared to a control
group of 65 females and 12 males who worked in another room of the same plant.  Medical histories
revealed that 16 of the women exposed to 2-BP for 4–16 months were experiencing secondary
amenorrhea.  Normal menstrual cycles were reported prior to exposure.  The women also had elevated
follicle stimulating hormone (FSH) and luteinizing hormone (LH) levels, but normal prolactin levels.
Blood estradiol levels were measured in 3 women and found to be below the detection limit of 13.6
pg/mL.  Progesterone withdrawal bleedings were not observed.  Ten of the women complained of hot
flashes.  Based on symptoms and reproductive hormone levels, the authors diagnosed the 16 women with
ovarian failure.  None of 66 women who worked in 2 other departments in the same plant had amenorrhea
(5).  Semen analysis revealed azoospermia in 2 men and oligospermia (<20 million sperm/mL or <50%
motile) in 4 men who were exposed for a period of 16–19 months.  FSH levels were near the upper
normal range and testosterone levels were in the normal range.  None of the men reported a loss of libido.
Based on hormonal analysis, the authors concluded that germ cells and not Leydig cells were the target
tissue in the affected men.  None of 12 men who worked in two other departments in the same plant
developed azoospermia or oligospermia (5).  Blood disorders and other systemic effects were observed in
the workers and are described in detail in Section 2.  Onset of the majority of reproductive dysfunction
cases in both men and women occurred during the period when two open cleaning baths without exhaust
ventilation containing 2-BP were in use (5).  None of the cases had onset of reproductive dysfunction
prior to the switch to the 2-BP based solvent.  The authors concluded that 2-BP was the most likely cause
of health problems.  Previous monitoring programs ruled out involvement by other toxic agents such as
ionizing radiation, lead, formaldehyde, ethylene glycol, ether and its acetates, benzene, dinitrobenzene,
and dibromochloropropane.  Other confounding factors that were considered included use of oral
contraceptives or any other special medications, smoking, and alcohol consumption.

Strength/Weaknesses:  A strength of this study is that reproductive problems were verified by clinical
measures of semen quality and ovarian ultrasound, along with serum hormones.  The discussion
integrates the findings and compares them with the animal toxicology data available at the time – results
are consistent across species.  The higher than expected incidence of reproductive effects in this cluster of
cases, as well as the absence of reproductive abnormalities in the unexposed workers in the same plant,
provides evidence that 2-BP is likely to be a human reproductive toxicant.
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These three papers report on the same cluster of cases.  Park et al. (5) is the most thorough of the three
reports and it still suffers from lack of epidemiologic and laboratory rigor.  None of the laboratory test
methods are described or referenced in sufficient detail.  Therefore, it is not possible to judge the quality
of these data.  However, methodological details for tests are not typically provided in many clinical
papers when the tests are considered to be standard tests.  Reporting of the test results was incomplete
because the data were not presented in a table with mean values and standard deviations for measures that
differed between groups.  The scope of information collected by questionnaire appears to be very limited.
Statistical analysis is rudimentary with no evidence that potential confounding factors such as age
(especially for peri-menopausal women), sexual abstinence (for the men), medical history or lifestyle
factors that may affect reproductive function and may be associated with exposure groups were
appropriately controlled for.  For example, it appears that no adjustments were made to control for greater
numbers of smokers in the exposed versus the control group. Regression analysis could have been
conducted using several different exposure (duration of employment or exposed versus unexposed, for
example) and outcome measures (hormone concentrations, presence or absence of amenorrhea,
azoo/oligospermia) with adjustment for age, smoking, and other potential confounders.  Even more
simply, bivariate analyses such as t-tests or chi square tests could have been used to compare the various
outcomes in the exposed and unexposed groups.  The study was relatively small and may have had
limited power to precisely estimate the association with some outcomes.  Incidence of the endpoints was
considered by time of employment, but severity of effect was not related to exposure.  It is noted that
severity of effect appeared to be greatest in employees working during the period when unventilated tanks
were present (February-November 1994).  Table 4 of the Park et al. (5) study shows that 17 of 18 women
who started work between February and July of 1994 developed disorders, while none of those
(admittedly smaller groups) who started after August 1994 developed disorders.  In this regard, it would
have been most useful to use November 1994 as the cut-off date for data analysis.  Incidence data
expressed per 100 workers is misleading since the number of cases in each exposure group was very
small.  The “control” population appears to have been selected after the fact, which may have been
problematic because the laboratory testing would then have been conducted at a different time than for the
exposed group.  On the other hand, a strength of the control groups is that they were employed in the
same firm, presumably in similar jobs, except for the 2-BP exposure.  There is no evidence that informed
consent was obtained, or that the study protocol was reviewed by an Institutional Review Board.  There is
no attempt to report participation rates and other factors indicative of potential selection bias.  For
example, it is not stated if the 33 workers comprised the entire group of workers in the tactile switch
assembly section or a selected sample.

Utility (Adequacy) for CERHR Evaluation Process:  The findings in these papers are compelling, but
the experimental design and analysis are questionable.  Park et al. (5) provides the most complete details
of the three reports of the same cluster, but it is still a descriptive paper.  The utility of the papers for
quantitative evaluation is limited because of the uncertainty in the exposure estimates, small sample size,
and inadequate statistics.  Because of these limitations, it is not possible to estimate human risk from a
given exposure.

Koh et al. (17) conducted a pathological examination and 24-month follow-up study on the 16 Korean
women who suffered 2-BP-induced ovarian failure (3).  Six of the women underwent a laparoscopic
examination and ovarian biopsies were conducted in four of those women.  Results of the laparoscopic
examination were varied and revealed ovaries that were either atrophied, small in size, or near normal in
appearance.  Biopsy results were consistent with and were similar to those noted with ovarian damage
from radiation or chemotherapy treatment.  Findings of the biopsies included focal or diffuse fibrosis in
the ovarian cortex, atrophied follicles lacking oocytes or granulosa cells, follicular developmental arrest,
reduced numbers of primary follicles and corpora albicans, and hyalinization of blood vessels in the
medulla.  The majority of women were given estrogen-progesterone replacement therapy for 24 months.
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Every 6 months, the therapy was discontinued for 2–3 months to see if menstruation resumed.  After 12
months of replacement therapy, consistent menstrual cycles and normal serum levels of estradiol, LH, and
FSH were observed in a 24-year-old woman who was exposed to 2-BP for 5 months.  One 26-year-old
woman who was exposed to 2-BP for 16 months did not receive estrogen-progesterone replacement and
did not resume menstruation.  However, 7 months into the study she was found to be 6-weeks pregnant.
Although serum estradiol levels were low for gestational stage, low serum LH and FSH levels suggested
recovery of ovarian function.  The woman delivered a normal full term infant and was able to breast feed.
At 6 months of age, the infant was healthy and there were no problems with maternal lactation.

Strength/Weaknesses:  This case study is a follow up on the women identified with secondary
amenorrhea in Kim et al. (3, 4) and Park et al. (5) studies.  Ovarian biopsies from six women showed
fibrosis and lack of early follicles (primary and pre-antral), a histologic picture consistent with their
clinical symptoms; however, in the absence of age-matched controls, conclusions of causality cannot be
drawn.  Hormone data shown in Table 1 of the study report is apparently the same as is shown (without
statistical analysis) in Kim et al., (3) but follow-up hormone data is reported only for two individuals who
showed spontaneous recovery of ovarian function.  Again, without a second hormone assessment for the
other women, lack of "recovery" of endocrine status in the other women is an assumption only.

Utility (Adequacy) for CERHR Evaluation Process:  The utility of this paper is that it histologically
confirms the diagnosis of ovarian failure in six of the women with amenorrhea in the Kim et al. (3, 4) and
Park et al. (5) studies.  The paper is not useful for risk assessment because no conclusions about the
toxicity of 2-BP can be made due to a lack of similar measures in a comparison group.  However, it would
be unethical to subject healthy controls to an ovarian biopsy given the invasiveness of the procedure.

In 1996, Ichihara et al. (6) conducted a study in a 2-BP production plant in China to obtain information
about dose-response for reproductive and hematopoietic effects.  Personal air samples were obtained from
14 women (ages 24–54 years) and 11 men (ages 31–56 years) who worked 8 hours/day, 5 days/week.
Personal TWA exposures of 2-BP exceeded the detection limit of 0.2 ppm in 3 men and 11 women who
were directly exposed to 2-BP and ranged from 0.95 to 5.84 ppm and 2.87 to 16.18 ppm in men and
women, respectively.  Those men were employed at the plant for 15–69 months, while the women were
employed for 6–69 months.  None of the personal air samples contained detectable levels of 2-BP
impurities, including 2-propanol (1.76%), dibromopropane (0.085%), benzene (0.055%), or
trichloroethylene (0.10%).  Exposures according to job category are listed in Table 4-1.  Accountants,
boilers, salesman, and the assistant manager rarely entered the factory floor and served as referents.  No
information was provided about use of personal protective equipment.  Additional chemicals used in the
manufacturing process included 2-propanol, hydrogen bromide, sulfuric acid, and sodium hydrogen-
carbonate.  All females were non-smokers, but 10 males smoked 3–20 cigarettes/day.  None of the
employees were exposed to known reproductive or hematopoietic hazards prior to working at the 2-BP
factory.  Interviews revealed amenorrhea in subjects aged 46, 47, and 54 years and polymenorrhea in 2
women aged 39 and 43 years.  All of these women were employed as operators, who prepare and then
pour 2-BP into containers, and were exposed to 2-BP at levels of 4.14–16.18 ppm.  Blood levels of LH,
FSH, and estradiol were measured and they tended to be higher in females with amenorrhea or
polymenorrhea, but only the LH levels reached statistical significance when compared to female
accountants and operators with normal menstrual cycles and exposure to <0.2–0.88 ppm and 4.09–8.60
ppm 2-BP, respectively.  A regression analysis revealed no significant relationship between female
hormonal concentrations and TWA or TWA x employment duration.  A male engineer with
oligoasthenozoospermia was not currently exposed to detectable 2-BP concentrations but was presumed
by authors to have been exposed to high 2-BP concentrations when he set up the manufacturing process.
Two males with detectable exposures to 2-BP (0.80–1.20 ppm) and 2 with non-detectable exposures had
<50% sperm motility; one subject in each of those groups reported a shorter abstinence period compared
to the other men in the study (1 vs. ≥ 3 days).  Sperm from all workers met the World Health Organiza-
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tion (WHO) criteria for normal morphology and sperm count.  Blood levels of LH, FSH, and testosterone
were measured in men.  The majority of men had LH and FSH values that were within the reference
ranges and testosterone levels were within the reference range in all men.  A regression analysis revealed
no significant relationship between male hormonal concentrations or sperm indices and TWA or TWA x
employment duration.  Possible confounding factors such as past occupational exposures, oral
contraception, medication history, nutritional status, and smoking were mentioned, but it is not clear if
they were addressed in the analysis.  Hematological parameters were also measured in the workers and
are discussed in Section 2.  The authors concluded that this study did not demonstrate severe reproductive
toxicity from exposure to less than 10 ppm 2-BP but noted that further studies are needed.

Strength/Weaknesses:  A strength of this occupational health study was that it was conducted in a
thorough manner.  Informed consent was obtained; questionnaire data on work (past exposures) and
medical history, reproductive history, and menstrual status (women) was obtained, although these were
not adjusted for in the analyses.  Sufficient details on laboratory analyses are provided and standard WHO
methods were used for semen analyses.  Exposure was monitored personally and TWA exposures were
calculated and used in regression analyses.  Female age (>30 years) was controlled in the analysis.

The study had several weaknesses.  First,  the number of subjects is very small, only three male workers
directly exposed to 2-BP had detectable exposures.  Second, exposures were low (<10 ppm) since the
study was done in winter; exposures are expected to be higher in the summer since 2-BP is volatile.
Finally, there was no indication that abstinence interval was controlled/standardized in men.  This could
have led to misclassification of sperm parameters.  Misclassification is unlikely to have been differential
by exposure status, thus the effect of such misclassification would likely have biased the exposure
parameters towards the null value.

Utility (Adequacy) for CERHR Evaluation Process:  This study is useful since it was well designed
and reported, and exposure was characterized.  One Panel member suggested that the study may be useful
in defining a NOEC for humans, but was not definitive due to small sample size and low exposures.
However, a second Panel member suggested that the limitations of this study make it inadequate to
establish a human NOEC.

Table 4-1.  Summary of Exposure Information Per Job Category in Ichihara et al. (6)

Job Category Number of Workers Direct 2-BP Exposure
(yes/no)

TWA Exposure Level
(ppm)

Females
Operators 9 Yes 4.1–16.18
Mixer 1 Yes 6.76
GC Analyzer 1 Yes 2.87
Accountants 3 No <0.2–0.88
Males
Mixer 1 Yes 5.84
Repairmen 2 Yes 0.95
Boiler 4 No <0.2–0.8
Engineer 1 No <0.2
Salesmen and
Assistant Manager

3 No <0.2
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4.2 Experimental Animal Toxicity

4.2.1 Female Reproductive Toxicity
Kamijima et al. (32) conducted a study in rats to clarify the effects of 2-BP-induced ovarian toxicity.
Seven to nine 15-week-old female slc: Wistar/ST rats/group (from Shizuoka Laboratory Animal Center)
inhaled air, 100, 300, or 1,000 ppm [503, 1,509, 5,031  mg/m3] 2-BP (99.4% purity) for 8 hours/day for 9
weeks.  Doses were based on a previous study in male rats that demonstrated impairment of spermato-
genesis at 300 ppm and serious illness at 3,000 ppm.  Concentrations were monitored inside inhalation
chambers.  Estrous cycles were monitored for 3 weeks prior to treatment and during treatment.  After
exposure ended, rats with regular estrous cycles were sacrificed on the first day of diestrus.  Rats
experiencing prolonged estrous or diestrus stages were sacrificed following treatment [the time period
between the last treatment and sacrifice is not clear].  Estrous cycle data were analyzed by the
Kruskal-Wallis test and bodyweight, organ weight, and hormonal data were analyzed by analysis of
variance (ANOVA); both analyses were followed by the Dunnet-type multiple comparison method.
Study results are outlined in Table 4-2.  Activity, muscle tonus, and bodyweight gain were reduced in rats
exposed to 1,000 ppm.  Irregular estrous cycles were first observed around week 2 of treatment in rats of
the 1000 ppm group.  Five rats in the group were in continual diestrus with occasional estrous while the
remaining four rats had continual estrous with occasional diestrus.  In the 300 ppm group, a gradual
prolongation of the diestrus stage was first observed at week 7 of treatment.  By the end of the treatment
period, all rats in the 300 ppm group had cycles consisting of continual diestrus with occasional estrus.
One animal in the 100 ppm group became acyclic following 7–9 weeks of treatment, but statistical
significance was not obtained.  Changes in estrous cycles were accompanied by significantly reduced
absolute right ovary weight in the 1,000 ppm group.  A histological evaluation was conducted in ovaries
fixed in 10% formalin and stained with hematoxylin-eosin.  Rats experiencing persistent estrous in the
1,000 ppm group had ovaries with mostly atretic follicles, very few remaining viable oocytes, thin layers
of granulosa cells in cystic follicles, and no newly formed corpora lutea.  The ovaries of rats in continual
diestrus in the 1,000 and 300 ppm groups had reduced numbers of normal antral and growing antral
follicles.  Absolute and relative uterus weights were significantly decreased only in rats of the 300 and
1,000 ppm group experiencing continual diestrus.  Serum LH and FSH were measured, and there were no
significant differences in treated rats.  Organ weight effects on non-reproductive organs were only
observed in the 1,000 ppm group and included significantly increased relative liver weight and decreased
absolute spleen and absolute and relative thymus weight with no abnormal histological findings.  The
authors concluded that 2-BP was the likely cause of amenorrhea in the Korean workers exposed to 2-BP.

Strength/Weaknesses:  This study and that of Yu et al., (34) which is apparently based on the same
animals, could be criticized for using a small number of rats per group (7–9); however, variability for
estrous cycle length was minimized by using only those animals with a regular 4-day cycle (according to
recommendations of Cooper et al. (35).  The number of cycles in each 3-week interval of treatment was
analyzed with routine statistics.  Since this is actually a repeated-measures design, a more appropriate
statistical analysis would be that for repeated measures, using each animal as its own baseline.  Hormone
data did not reveal significant differences with treatment, which is surprising since LH would be expected
to be high in an animal with severely damaged ovaries.  This discrepancy is not adequately explained
since it could indicate a second target for 2-BP, namely the brain.  It would have been helpful to have
estradiol and progesterone measurements in order to better interpret the meaning of the LH and FSH
concentrations.  Nevertheless, the study findings are convincing.  The arrest of cyclicity was both time
and dose-dependent.  A strength is that the study was conducted for a period of time sufficient to reveal
the delayed impact at the 300 ppm dose.  It would be of interest to analyze paired ovarian weights since
there is biological variability between ovaries (due to different number of large follicles or corpora lutea
in each).  It appears that paired ovarian weight would be significantly lower in the animals exposed to
1,000 ppm (Table 2 of the study).  Significant effects on estrous cyclicity occurred at a dose (300 ppm)
lower than that producing significant effects on bodyweight (1,000 ppm).  A weakness was that ovarian
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histology was reported only in a qualitative manner;  however, the Yu et al. (34) paper dealt with
quantification of variously staged follicles; together, the papers provide strong evidence for ovarian
toxicity to primordial and small follicles.

Utility (Adequacy) for CERHR Evaluation Process:  This study is adequate for use in risk assessment.
Data show clear dose- and time-dependent effects on estrous cyclicity which provides evidence of adverse
effects on reproductive organ (ovarian) function, even in the absence of fertility data.  Lack of effect on
serum LH/FSH is inconsistent with the cyclicity effect, however.

Table 4-2.  Major Effects in Wistar Rats in Reproductive Toxicity Study by Kamijima et al. (32)

Number Dose in ppm
(mg/m3)

Effects

7 0
8 100 (503) No statistically significant effects.

7 300 (1,509) ↑ Irregular estrous cycles.
↓ Absolute and relative uterus weight.
↑ Ovarian histopathology.

9 1,000 (5,031) ↑ Irregular estrous cycles.
↓ Absolute right ovary weight and absolute and relative uterus weight.
↑ Ovarian histopathology.
↓ Bodyweight gain.
↓ Activity and muscle tonus.
↑ Relative liver weight.
↓Absolute spleen and absolute and relative thymus weight.

No effect on serum LH or FSH.
Protocol:  Female rats exposed to 2-BP vapors for 8 hours/day for 9 weeks.
Notes:  ↑,↓=Statistically significant increase, decrease.

Yu et al. (34) conducted a dose-response and a time-course experiment to identify the target cell and
define the mechanism of toxicity for 2-BP-induced ovarian toxicity.  Both studies used female Wistar rats
(from Shizuoka Laboratory Animal center) that were 12 weeks old at the start of exposure and monitored
estrous cycles for 3 weeks prior to and during treatment.  Animals were exposed in chambers to air or
2-BP (99.5%) and chamber concentrations were monitored.  Exposures were based on a previous study in
male rats that demonstrated impairment of spermatogenesis at 300 ppm and serious illness at 3,000 ppm.
At sacrifice, the right ovary was fixed in 10% neutral buffered formalin, stained with hematoxylin-eosin,
and examined histologically.  Follicular counts were analyzed by ANOVA followed by the Tukey-
Kramer multiple comparison test.  Results are outlined in Table 4-3.  In the dose-response experiment, 7–
9 rats/group were exposed to 2-BP vapors at 0, 100, 300, or 1,000 ppm [503, 1,509, 5,031  mg/m3] for 8
hours/day for 9 weeks.  Following the exposure period, the rats were sacrificed on the day of diestrus I.
Estrous cycles were disrupted after 7 weeks of treatment in the 300 and 1,000 ppm groups, while changes
in the ovary were seen at all dose levels.  The numbers of primordial and growing follicles were
significantly reduced in all dose groups (≥100 ppm) and numbers of antral follicles were significantly
reduced at the two highest doses (300 and 1,000 ppm).  Ovaries of rats from the mid- and high-dose
groups were hypoplastic and contained few or no corpora lutea.  For the time-course experiment, rats
were exposed to 0 or 3,000 ppm [15,090 mg/m3] 2-BP vapors for 8 hours on a single day and then
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sacrificed at 1, 3, 5, or 17 days following exposure.  Seven rats/group were sacrificed at each time period
while in estrous.  Commencement of exposure was timed according to the rat’s cycle to ensure that rats
would be in estrous at the time of sacrifice.  The right ovary was examined histologically as described
above for the dose-response experiment.  The left ovary was examined for apoptotic cells by labeling
DNA strand breaks through incorporation of digoxigenin-conjugated deoxyuridine 5’-triphosphate (d-
dUTP).  In the time-course experiment, there was no effect on estrous cycles.  Ovarian histopathology
consisted of oocytes with distorted symmetry and nuclei on day 5 and pyknotic cells and oocyte nuclei
shrinkage on day 17.  Numbers of primordial follicles began decreasing on day 5 and reached statistical
significance on day 17.  Apoptosis was noted in oocytes and granulosa cells of primordial follicles after 5
days of exposure.  The authors concluded that 2-BP induced ovarian toxicity through the destruction of
primordial follicles and oocytes by apoptotic processes.  They postulated that estrous cycles were
subsequently disrupted when recruitment of growing and antral oocytes could no longer be supported.
Therefore, follicle counts were more sensitive than monitoring of estrous cycles for detecting 2-BP-
induced ovarian toxicity.

Strength/Weaknesses:  The first experiment described in this report appears to use the same animals
used by Kamijima et al. (32) to quantitatively evaluate folliculogenesis so as to identify the ovarian
target(s).  Differential follicle counts were made according to previously published, and widely accepted
methods.  Significant decreases in primordial, growing, and antral follicles seen at the higher doses are
consistent with irregular cycles and acyclicity in the Kamijima et al. (32) study.  However, differential
follicle counts showed that 100 ppm was also an effective dose.  The time-course study adds information
about targets since it shows that primordial follicles are the first to be affected by a single (1 day) high
dose.  This suggests that decreases in other follicle populations are mainly the result of maturation
depletion.

Utility (Adequacy) for CERHR Evaluation Process:  This study is adequate for use in risk assessment.
Differential follicle counts establish a LOAEC of 100 ppm which is below that determined for estrous
cyclicity.  The time-response study provides additional evidence that 2-BP is targeting primoridal follicles
selectively, and provides evidence that these follicles and/or the oocytes within them die by apoptosis.
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Table 4-3.  Major Effects in Reproductive Toxicity Study in Wistar Rats by Yu et al. (34)

Number
Dose in ppm
(mg/m3) Effects

7 0a

7 100a (503) ↓ Primordial follicles (55% of control).
↓ Growing follicles (55% of control).

8 300a (1,509) ↑ Irregular estrous cycles.
↓ Primordial follicles (55% of control).
↓ Growing follicles (50% of control).
↓ Antral follicles (50% of control).

9 1,000a (5,031) ↑ Irregular estrous cycles.
↓ Primordial follicles (20% of control).
↓ Growing follicles (25% of control).
↓ Antral follicles (20% of control).

7 0b

7/time point 3,000b (15,090) ↑ Oocyte distortions (day 5).
↑ Pyknotic cells and oocyte nuclei shrinkage
(day 17).
↓ Primordial follicles (day 5).
↑ Apoptosis in primordial follicles (day 5).
No effect on estrous cycle.

Protocol:  a12-week-old female Wistar rats exposed to 2-BP vapors for 8 hours/day for 9 weeks.
bFemale rats exposed to 2-BP vapors 8 hours for one day and then sacrificed at  1, 3, 5, or 17 days
following exposure.
Notes:  ↑,↓=Statistically significant increase, decrease.

Lim et al. (33) studied 2-BP toxicity in rats to clarify effects on female reproductive function.  Ten, 8-
week-old female Sprague-Dawley (Crj:CD) rats/group (from Daehan Animal Center) were injected ip
with 2-BP (99.0%) in olive oil at 0, 300, 600, or 900 mg/kg bw/day for 14 days prior to mating and during
a 7-day mating period to untreated rats at a ratio of 1 male to each female.  [The rationale for dose
selection was not discussed.]  Estrous cycles were monitored 2 weeks prior to and during treatment.
Dams that had pups were sacrificed 1 day after giving birth and dams with no pups were sacrificed 28
days after mating.  [The evaluation of dams did not include counts of corpora lutea and implantation
sites.]  Bodyweight data were analyzed by two-way ANOVA and Duncan's multiple range test; fertility
data were analyzed by chi square test.  Results are outlined in Table 4-4.  Maternal weight gain was
reduced in all treated groups and terminal bodyweights were significantly lower in the 600 and 900 mg/kg
bw group.  [However, there were no corrections made for gravid uterine weight.]  One dam in the
600 mg/kg group died due to internal bleeding from the perforation of a blood vessel during injection.
One dam in the 300 mg/kg bw group and 3 dams in the 900 mg/kg bw group died of unknown causes
during the post-treatment period.  Narcosis was reported for rats in the 600 and 900 mg/kg groups.
Length of estrous cycles was increased in the 900 mg/kg bw group due to prolongation of the diestrus
stage.  Relative ovary weights were significantly reduced in the high dose rats but there were no effects
on relative kidney, spleen, or liver weight.  Histological evaluations were not conducted.  Effects on
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reproductive function were noted but the statistical significance was not discussed.  As discussed in
greater detail in Table 4-4, treatment with 2-BP resulted in dose related decreases in fertility, number of
dams giving birth, and number of pups born, but there were no abnormal pups observed.  Gestation length
was unaffected by 2-BP treatment.  Effects on pup bodyweight could not be determined.  The authors
concluded that their study indicated 2-BP as the causative agent of amenorrhea in female workers
exposed to 2-BP, but noted that additional studies including measurements of gonadotropin levels are
needed.

Strength/Weaknesses:  No rationale for the dosages used was provided, nor were calculations made to
permit comparisons with doses in inhalation studies.  Dosages were apparently quite high as narcosis was
evident in the two higher exposure groups (600 and 900 mg/kg).  Importantly, narcosis can indicate
sufficient neurotoxicity to impair the LH surge and this could be another mechanism by which estrous
cyclicity is impaired.  It is difficult to attribute decreased weight gain (Figure 2 in study) to the exposure
since it could be due to lack of pregnancy.  Duration of exposure was short considering that significant
effects in inhalation studies described above were not seen until 5−7 weeks of exposure.  However, a non-
significant disruption in estrous cyclicity has been noted following exposure to 1,000 ppm 2-BP for 1–3
weeks (32).  Lack of effect on estrous cyclicity at 300 and 600 mg/kg could be due to the short exposure
period.  Irregular cycles seen only in the high-dose group don't explain the infertility seen in some rats at
300 and 600 mg/kg.  The paper states that chi square was used to evaluate reproductive effects related to
fertility indices, but Table 4 in the study does not indicate where statistically significant differences were
found.

Utility (Adequacy) for CERHR Evaluation Process:  This study is of limited utility since route of
exposure is not appropriate, dosages appear to be quite high, and duration of exposure was relatively
short.  Effects at high dose on estrous cyclicity are at least consistent with observations made in inhalation
studies.
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Table 4-4.  Major Effects in Reproductive Toxicity Study in Sprague-Dawley Rats by Lim et al. (33)

Numbera Dose (mg/kg bw) Effects
10/10 0
10/9 300 ↓ Weight gain.

Death in 1 dam.
↓ Fertility (78 vs. 90%)b.
↓ Dams with live pups (n=6 vs 9)b.
↓ Litter size (7.3 vs 9.8)b.

10/9 600 ↑ Narcosis.
↓ Weight gain.
Death in 1 dam.
↓ Terminal bodyweight (uncorrected).
↓ Fertility (33 vs. 90%)b.
↓ Dams with live pups (n=3 vs 9)b.
↓ Litter size (6.7 vs 9.8)b.

10/9 900 ↑ Narcosis.
↓ Weight gain.
↓ Terminal bodyweight (uncorrected).
Death in 3 dams.
↓ Relative ovary weight.
↑ Estrous cycle length from 4.6 days to 11.05 days
prior to and after treatment.
↓ Fertility (11 vs. 90%)b.
↓ Dams with live pups (n=1 vs 9)b.
↓ Litter size (1 vs 9.8)b.

No effect on gestation length and no pup abnormalities
at any dose.

Protocol:  Female, 8-week-old rats were injected ip with 2-BP from 14 days prior to mating and
during a 7-day mating period.
Notes:  ↑,↓ Statistically significant increase, decrease.
aNumber of rats at beginning of study/number of rats copulating with untreated males.
bStatistical significance is not known.

Sekiguchi and Honma (36) conducted a study to determine the effects of 2-BP on ovulation.  Four or five,
51–53-day-old female ICR mice/group (from Charles River, Japan) were injected ip with 2-BP [purity
not reported] in olive oil at 500, 1,000, or 2,000 mg/kg.  [Rational for dose selection was not
reported].  Mice were given 8 injections every 2–3 days over a period of 17 days.  Ovulation was
induced by ip injection with pregnant mare’s serum gonadotropin and human chorionic gonadotropin on
the fifteenth and seventeenth day of 2-BP treatment.  Mice were sacrificed and necropsied the day after
the last treatment and liver, uterus and oviduct were examined.  Data were analyzed by Dunnett’s multiple
comparison.  Results are outlined in Table 4-5.  Bodyweight gain was reduced in the 1,000 and 2,000
mg/kg bw groups with statistical significance achieved at 2,000 mg/kg bw.  However terminal
bodyweights did not differ from controls.  One mouse in the 2,000 mg/kg bw group died.  The number of



       27

ovulated ova was significantly reduced in the 1,000 and 2,000 mg/kg bw groups.  A non-significant
reduction in absolute and relative uterus weight was also observed in the 2,000 mg/kg  group.  There was
no mention of histopathological evaluation.  The authors concluded that results were consistent with
humans experiencing 2-BP induced effects.  It is noted that this study was published as a short
communication.

Strength/Weaknesses:  The rationale for using mice was not provided.  The assay evaluates the ability of
the ovary to respond to gonadotropins and is an indirect measure of the number of competent or
recruitable follicles in the ovary.  Results indicate that high levels of 2-BP (1,000 or 2,000 mg/kg) given
in 8 ip injections over 17 days, significantly reduce the number of oocytes ovulated after induction of
superovulation.  Other symptoms (e.g., narcosis) are not mentioned, so it is difficult to attribute effects to
ovarian toxicity per se.  The authors overinterpret their data, especially in relating it to the epidemiology
data.

Utility (Adequacy) for CERHR Evaluation Process:  There is not adequate data in this report to make
it useful for risk assessment.  The exposure route and systemically toxic doses also make this study of
limited utility for risk assessment.  The study provides indirect evidence for depletion of ovarian follicle
pools in mice, as has been reported in rats.

Table 4-5.  Reproductive Toxicity Study in ICR mice by Sekiguchi and Honma (36)

Number Dose (mg/kg bw) Effects
5 0
5 500 No effects.

5 1,000 ↓ Number of ova ovulated (23.8 vs 52.3).

4 2,000 ↓ Number of ova ovulated (6.0 vs 52.3).
↓ Bodyweight gain.
Death in 1 mouse.

Protocol:  51–53-day-old female ICR mice were injected ip with 2-BP a total of 8 times over 17
days.
Notes:  ↑,↓=Statistically significant increase, decrease.

4.2.2     Male Reproductive Toxicity
Ichihara et al. (22) conducted a study to determine the testicular and hematopoietic toxicity of 2-BP in 13-
week-old Wistar rats (from Shizuoka Laboratory Animal Center).  Reproductive parameters are addressed
in this section while hematological and other systemic effects are outlined in Table 4-6 and discussed in
detail in Section 2.  Nine male rats/group were exposed by inhalation to air or 300, 1,000, or 3,000 ppm
[1,509, 5,031, or 15,092  mg/m3] 2-BP (99.4% purity) for 8 hours/day, 7 days/week.  The maximum
concentration was about 10% of the LC50.  Concentrations were monitored inside inhalation chambers.
The controls and two lowest dose groups were exposed for 9 weeks.  However, exposure in the high-dose
group ended after 9–11 days due to excessive toxicity.  Three rats in the high-dose group were sacrificed
immediately after exposure and their testes and femur were examined histologically.  The remaining six
rats were exposed to filtered air for the remainder of the exposure period and evaluated for all parameters
in this study.  Reproductive organs were weighed at sacrifice.  The left testis and epididymis were
preserved in Bouin’s solution and the prostate and seminal vesicle in 10% neutral buffered formalin.
Testis and epididymis were stained with periodic acid-Schiff’s reagent and other tissue sections with
hematoxylin-eosin.  Abnormal sperm data were analyzed by Student’s t-test and all other data by
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ANOVA followed by Dunnett’s multiple comparison method.  Significant, dose-related effects first noted
at the low dose (300 ppm) included reductions in absolute and relative epididymides and testes weight,
and absolute prostate and seminal vesicles weight.  Significant dose-related sperm effects noted at 300
ppm and higher included reduced counts and motility and increases in tailless sperm.  An increase in
abnormal sperm (hooked or reflexed head) was noted at 300 ppm but could not be evaluated at higher
doses because there were very few intact sperm remaining.  Testicular lesions were observed at all dose
levels and included atrophy of seminiferous tubules, reductions in the number of germ cells, and
hyperplastic Leydig cells that increased in severity at higher doses.  Vacuolation of Sertoli cells was also
observed in 2 of the 3 rats sacrificed immediately after exposure to 3,000 ppm for 9–11 days.  Slight
atrophic changes were reported for seminal vesicles and prostate of treated rats.

Strength/Weaknesses:  Although there was a small number of male rats per group (nine), multiple
outcomes of reproductive effects were obtained, including good quality histology, and sperm measures
(counts, morphology, motility).  Treatment was of sufficient duration (9 weeks) to detect effects on all
stages of spermatogenesis.  Dose range included a toxic level (3,000 ppm), but not a no-effect level.  The
study would have been more informative if interim observations had been made.  Cessation of dosing
after 9–11 days in the high dose group resulted in the demonstration that severe testicular toxicity,
apparent at high doses, does not appear to be reversible, at least in the short term.

Utility (Adequacy) for CERHR Evaluation Process:  The study is useful for risk assessment in that it
provides convincing evidence for testicular toxicity of 2-BP in a dose responsive manner.  However, it
does not identify a NOAEC.  The study indicates lack of reversibility at the high dose within the
timeframe and conditions of this study.  It also suggests that effects appear to be specific for blood and
testes (vs. liver or kidneys), and that testes might be more sensitive than blood.  Results are consistent
with effects on Sertoli cells (alterations in sperm morphology and motility) and on spermatogonia
(depletion of sperm numbers).  Effects on accessory organs are indicative of low testosterone, although
serum hormones were not measured.  This could be secondary to direct effects on testis, but the design
does not rule out more direct endocrine effects.
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Table 4-6.  Reproductive Toxicity Study in Wistar Rats by Ichihara et al. (22)

Number Dose in ppm
(mg/m3)

Effects

9 0
9 300 (1,509) ↓ Absolute epididymides, testes, prostate, seminal vesicles, and kidney

weight.
↓ Relative epididymides and testes weight.
↓ Sperm count (358 vs. 569x106/g cauda).
↓ Sperm motility (16 vs 86%).
↑ Tailless sperm (56 vs. 10%).
↑ Abnormal sperm (21 vs. 7%).
↑ Testicular lesions.
↓ Erythrocytes and platelets.
↓ Bodyweight gain.

9 1,000 (5,031) ↓ Absolute epididymides, testes, prostate, seminal vesicles, liver and
kidney weight.
↓ Relative epididymides, testes, prostate and seminal vesicles weight.
↓ Sperm count (326 vs. 569x106/g cauda).
↓ Sperm motility (0 vs 86%).
↑ Tailless sperm (98 vs. 10%).
↑ Testicular lesions.
↓ Erythrocytes, hemoglobin, hematocrit, platelets, and leukocytes.
↑ Bone marrow lesions.
↓ Bodyweight gain.

6 3,000 (15,092) ↓ Absolute epididymides, testes, prostate, and seminal vesicles weight.
↓ Relative epididymides and testes weight.
↓ Sperm count (151 vs. 569x106/g cauda).
↓ Sperm motility (0 vs 86%).
↑ Tailless sperm (99 vs. 10%).
↑ Testicular lesions.
↓ Erythrocytes.
↑ Bone marrow lesions.
↓ Bodyweight gain.

Protocol:  13-week-old male Wistar rats inhaled 2-BP vapors for 8 hours/day, 7 days/week for 9 weeks
in 2 lowest dose groups and 9−11 days in highest dose group.
Notes:  ↑,↓=Statistically significant increase, decrease.

Yu et al. (26) noted atrophy of seminiferous tubules and loss of germ cells in the testes of 10-week-old
Wistar rats exposed to 1,000 ppm [5,031  mg/m3] 2-BP vapors for 8 hours/day, 7 days/week, for 12
weeks; no lesions were observed following exposure to 100 ppm [503 mg/m3] 2-BP.  Additional details
of this study are included in Section 2.

Strength/Weaknesses: This neurotoxicology study provides confirming evidence that exposure to 1,000
ppm 2-BP causes testicular atrophy after subchronic (10 weeks) exposure by inhalation, and adds
histologic evidence that 100 ppm may be a NOAEC for testicular toxicity.  Appropriate fixation of testes



       30

appears to have been conducted for testicular evaluation, so the observations though limited in scope,
appear reliable.

Utility (Adequacy) for CERHR Evaluation Process:  This study is adequate to suggest that 100 ppm
2-BP is a no effect level after subchronic inhalation exposure, and confirms testicular toxicity at 1,000
ppm (in presence of changes in hematological indices and peripheral neuropathology).  The study also
provides evidence that 1-BP did not cause the same hematological changes or testicular toxicity at 1,000
ppm (5–7 weeks), but was a more potent neurotoxicant than 2-BP.

Yu et al. (25) conducted a 2-BP toxicity study in rats to verify that adverse effects in the hematopoietic
and reproductive systems of workers of a Korean electronics plant were due to 2-BP exposure.  Ten male
Sprague-Dawley rats/group (∼12 weeks old; purchased from Daehan Animal Center) were injected ip
with 0, 125, 250, or 500 mg/kg bw 2-BP (99% purity) in olive oil, 6 times/week for 4 weeks.  The authors
acknowledged that the administration route does not pertain to occupational exposures, but stated that
inhalation tests are required only if negative results are obtained with ip exposure.  [The rationale for
dose selection was not discussed.]  This summary describes the reproductive effects while non-
reproductive findings are discussed in Section 2.  Results of the study are summarized in Table 4-7.  Rats
exposed to 2-BP at 250 and 500 mg/kg bw experienced a significant, dose-related reduction in relative
testicular weight.  Histological examination of testes (preserved in 10% formalin and stained with
hematoxylin-eosin) revealed severely atrophic tubules with necrosis of spermatogonia and spermatocytes,
vacuolized Sertoli cells, and hyperplasia and hypertrophy in Leydig cells in the 2 highest dose groups
(250 and 500 mg/kg bw).  Epididymal atrophy with vacuolization of the epithelium was also observed.
The dose at which this effect first occurred was not specified.

Strength/Weaknesses:  This neurotoxicity study of 1-BP and 2-BP included reproductive outcomes.
Results are limited by short exposure duration (28 days) which can miss effects on spermatogonia.
However, severity of effect allowed its detection.  The ip route of exposure is not relevant for humans.

Utility (Adequacy) for CERHR Evaluation Process:  This study is useful from a hazard identification
standpoint because it confirms toxicity by another route.  Dose-response data suggest that 125 mg/kg ip is
the NOAEC for testicular toxicity, although other toxicities are seen at this dosage.  The study also shows
that testicular atrophy can be produced with shorter exposures (28 days vs. 9–10 weeks) at high doses.
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Table 4-7.  Major Effects in Reproductive Toxicity Study in Sprague-Dawley Rats by Yu et al. (25)

Number Dose (mg/kg bw) Effects
10 0
10 125 Clinical signs.

10 250 Clinical signs.
↓ Bodyweight gain.
↓ Relative testes weight.
↑ Seminiferous tube atrophy with, germ cell necrosis, Sertoli cell
vacuolization, and Leydig cell hyperplasia.
↑ Relative adrenal weight.

10 500 Clinical signs.
↓ Bodyweight gain.
↓ Relative testes weight.
↑ Seminiferous tube atrophy with, germ cell necrosis, Sertoli cell
vacuolization, and Leydig cell hyperplasia.
↑ Relative adrenal, lung, spleen, liver and brain weight.
↓ White blood cell, lymphocyte, platelets, and hemoglobin.
↓ Blood alkaline phosphatase activity.
↑ Cholesterol.

Protocol:  12-week-old male Sprague-Dawley rats injected ip with 2-BP on 6 days/week for 4 weeks.
Notes:  ↑,↓ Statistically significant increase, decrease.

Wu et al. (37) conducted a reproductive toxicity study to obtain information about 2-BP toxicity in mature
(9-week-old) and immature (5-week-old) male Sprague Dawley rats (Sino-British SIPPR/BK Animal
Co.).  Six rats/dose/age group were injected sc with 0, 200, 600, or 1,800 mg/kg bw 2-BP (99.6% purity),
5 days/week with treatment lasting for 5 and 7 weeks in mature and immature rats, respectively.  [There
was no mention of vehicle.]  The authors stated that although exposure through the sc route does not
occur in occupational settings, sc injection was chosen to ensure complete and rapid absorption.  The
basis for dose selection was stated to be previous data and preliminary results.  After treatment,
reproductive performance was assessed in the mature rats by mating them 1:2 with untreated females for
7 days.  Sperm quality and testicular histology (fixed in 10% formalin and stained with hematoxylin-
eosin) were examined in both age groups.  Mature rats were sacrificed 4 days after mating to allow for
restoration of sperm levels.  Immature rats were sacrificed immediately after the treatment period.
Analysis of data included ANOVA and Dunnett’s test for weight effects, the Kruskal-Wallis or Mann-
Whitney test for sperm, fetal, and hormonal data, and the chi square test for reproductive function data.
Statistically significant results are listed in Table 4-8.  Several effects were noted in both mature and
immature rats at the lowest dose (200 mg/kg bw) and included dose-related reductions in sperm count and
viability, and increases in deformed sperm and testicular lesions.  Testicular lesions increased in severity
with dose and included atrophied seminiferous tubules with reductions in germ cell numbers.  Serum
testosterone levels were first reduced at 200 and 600 mg/kg bw in mature and immature rats, respectively.
A dose-related reduction in absolute and relative testicular weight was first noted in mature and immature
rats at the 600 mg/kg bw dose.  Bodyweight gain was significantly reduced in mature rats exposed to
≥600 mg/kg bw and immature rats at all dose levels.  Additional effects seen at the highest dose level
(1,800 mg/kg bw) in both age groups included reductions in absolute epididymis, prostate seminal
vesicle, and pituitary weight and relative epididymis weight.  Dose-related adverse effects on the
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reproductive performance of mature rats were first noted at 600 mg/kg bw and included reduced mating
and pregnancies and an increase in the number of days for pregnancy initiation to occur.  Effects also
noted in dams mated with the high dose group (1,800 mg/kg bw/day) included a reduced number of
implantation sites and increased fetal mortality.  Expression of β-luteinizing hormone gene was measured
in mature rats and was found to be increased in rats treated with 1,800 mg/kg bw.  Based on testicular and
sperm effects, the authors estimated that the NOAEC for 2-BP was below 200 mg/kg bw/day.

Strength/Weaknesses: Strengths of this study include assessment of sperm counts, viability and
morphology, as well as serum testosterone levels.  The small number of rats per group (six) limits the
power to detect effects.  The design does not truly evaluate immature rats.  Use of longer dosing time (7
weeks) in young rats (5 weeks of age) means that they were adult (84 days old) when evaluated (vs. 98
days old for "adult" group).  Therefore, they were exposed during adolescence and adulthood, and one
would expect effects to be similar in both groups.  The sc route is not directly relevant to human
inhalation exposures.  Another weakness is that the testosterone assay is not adequately described, and
fixation of testis for histology is not optimal.  Effects at two higher dosages were accompanied by severe
weight loss, so other effects are questionable as to their specificity.  Fertility indices should be calculated
and analyzed with the male as the unit of measure since only males were treated (see Table 5 of study).

Utility (Adequacy) for CERHR Evaluation Process:  This study is of limited value due to the
subcutaneous route of exposure.  Testicular toxicity at high doses is of questionable specificity since
bodyweight was down more than 10%.  The study demonstrates less severe effects at lower doses that do
not affect weight, therefore it confirms inhalation studies that demonstrate that 2-BP is a testicular
toxicant.  Hormone (or LH mRNA) changes are probably secondary to testicular and general toxicity at
the high dose and not a primary effect.
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Table 4-8.  Major Effects in Reproductive Toxicity Study in Sprague-Dawley Rats by Wu et al.  (37)

Number/
Age
Group

Dose
(mg/kg
bw/day)

Effects in Mature Rats Effects in Immature Rats

6 0
6 200 ↓ Sperm count (61.6 vs

140.6x106/mL) and viability (52.3 vs
70.8%).
↑ Deformed sperm (9.6 vs 2.1%).
↓ Serum testosterone (97.5 vs 272
fmol/mL).
↑ Testicular lesions.

↓ Bodyweight gain.
↓ Sperm count (61.5 vs
74.6x106/mL) and viability (51.6 vs
64.2%).
↑ Deformed sperm (8.5 vs 4.2%).
↑ Testicular lesions.

6 600 ↓ Bodyweight gain.
↓ Absolute and relative testis weight.
↓ Sperm count (54.6 vs
140.6x106/mL) and viability (25.4 vs
70.8%).
↑ Deformed sperm (12.6 vs 2.1%).
↓ Serum testosterone (82.2 vs 272
fmol/mL).
↑ Testicular lesions.
↓ Mating (75 vs100%).
↓ Pregnancies (78 vs 100%).
↑ Days to fertilization (3.9 vs 2.8).

↓ Bodyweight gain.
↓ Absolute and relative testis
weight.
↓ Sperm count (38.0 vs
74.6x106/mL) and viability (40.7 vs
64.2%).
↑ Deformed sperm (10.8 vs 4.2%).
↓ Serum testosterone (131 vs 153
fmol/mL).
↑ Testicular lesions.

6 1,800 ↓ Bodyweight gain.
↓ Absolute testis, epididymis,
prostate, seminal vesicle, and pituitary
weight.
↓ Relative testis and epididymis
weight.
↓ Sperm count (11.3 vs
140.6x106/mL) and viability (0 vs
70.8%).
↑ Deformed sperm (75.2 vs 2.1%).
↓ Serum testosterone (80.8 vs 272
fmol/mL).
↑ Testicular lesions.
↓ Mating (42 vs 100 %).
↓ Pregnancies (20 vs 100%).
↑ Days to fertilization (4.6 vs 2.8).
↓ Implantations/litter (7.4 vs 11.2).
↓ Viable fetuses/litter  (6.0 vs 10.2).
↑ Resorptions (5.8 vs 1.6%).
↑ β-LH gene expression in pituitary.

↓ Bodyweight gain.
↓ Absolute testis, epididymis,
prostate, seminal vesicle, and
pituitary weight.
↓ Relative testis and epididymis
weight.
↓ Sperm count (7.8 vs 74.6x106/mL)
and viability (0 vs 64.2%).
↑ Deformed sperm (93.6 vs 4.2%).
↓ Serum testosterone (129 vs 153
fmol/mL).
↑ Testicular lesions.

Protocol:  Mature (9-week-old) and immature (5-week-old) male rats were sc injected 5 days/week with
2-BP for 5 and 7 weeks, respectively.  Mature rats were mated 1:2 with untreated females.
Notes: ↑,↓=Statistically significant increase, decrease.
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Omura et al. (38-40) used quantitative histopathology to examine  mechanisms of 2-BP-induced testicular
toxicity.  They counted the numbers of different types of germs cells in seminiferous tubule cross sections
selected  to represent specific stages of spermatogenesis (41).  While this level of quantification is not
required by OECD or EPA test guidelines, it does allow detection of subtle changes in the testis.  Such
information may provide insights into cellular targets and mechanism of action of a toxicant, especially
after short term exposure (41), and can be used in risk assessment (42).

Omura et al. (38, 39) utilized this approach to determine the type(s) of testicular cells targeted by 2-BP
exposure.  Four, 11-week-old Kud: Wistar rats/group were injected sc with saline or 1,355 mg/kg bw
2-BP (>99% purity) for 5 days/week for 2 weeks.  This exposure duration was selected to cover one
spermatogenic cycle.  According to the study authors, that dosage is equivalent to inhalation of 1,000 ppm
for 8 hours at a respiratory minute volume of 215 mL/min/383 g bw.  Following treatment, reproductive
organs were weighed, testicular and epididymal sperm were counted, and sperm motility and morphology
were assessed.  Sperm data were evaluated by the Mann-Whitney test and other data by Student’s t-test.
Bodyweight gain was significantly reduced by 2-BP treatment (by 13%).  The treated group also had
significantly reduced absolute seminal vesicle weights and increased relative epididymides weights.
Sperm count per testis was significantly reduced in treated rats, but 2-BP treatment had no significant
effect on sperm count per gram testis weight, motility, or morphological abnormalities.  Histological
evaluation of the right testis (preserved in Bouin’s and stained with periodic acid schiff reagent) revealed
mild atrophy in only a few seminiferous tubules.  The number of germ cells and Sertoli cells in
seminiferous tubules at stages I, V, VII, X, and XII were determined.  Treatment with 2-BP significantly
reduced the numbers of spermatogonia and stage-specific spermatocytes, without affecting later cell types
(spermatids) (see Table 4-9).  Based on the changes in germ cell numbers during each stage of the cycle
evaluated, the authors estimated that spermatogonia were the target of 2-BP exposure.  Because
spermatogonia develop into spermatocytes, the authors believed the reductions in spermatocytes to be due
to depletion of spermatogonia.  However, they stated that further studies are needed to confirm these
effects of 2-BP toxicity.

Strength/Weaknesses:  Methods for fixation, histologic processing, staining, and staging of seminiferous
tubules were appropriate.  Timing of dosing and sacrifice are appropriate for distinguishing between
spermatogonial and spermatocyte toxicity.  The Panel notes that the author’s calculation of inhaled dose
equivalents needs to be qualified.  The sc dose may be equivalent to the delivered dose of 2-BP by
inhalation over the dosing period.  However, no conclusions can be made about the equivalence of the
absorbed dose or the kinetics of 2-BP by the different routes.

Utility (Adequacy) for CERHR Evaluation Process:  This study is  useful for identifying a target cell
(spermatogonia) following an acute exposure to a high dose of 2-BP at a dose equivalent to that causing
testicular atrophy in subchronic exposure studies.  If spermatogonia are also the target at lower,
inhalational exposures, this would be important to human risk assessment because depletion of all
testicular spermatogonia results in irreversible infertility.
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Table 4-9.  Effect on Germ Cells Numbers in Omura et al. (38) Study

Stage Effect on Germ Cell Numbers (% of control values)
VII ↓ Spermatogonia (45%)

↓ Preleptotene spermatocytes (5%)
X ↓ Spermatogonia (35%)

↓ Leptotene spermatocytes (5%)
XII ↓ Spermatogonia (65%)

↓ Zygotene spermatocytes (5%)
I ↓ Spermatogonia (20%)

↓ Pachytene spermatocytes (70%)
V ↓ Spermatogonia (5%)

↓ Pachytene spermatocytes (50%)
        ↓ = Decreased

Omura et al. (40) conducted a second study to confirm that spermatogonia are the target cells affected by
2-BP.  Eleven-week-old Kud: Wistar rats were injected sc with 1,355 mg/kg bw 2-BP (>99% purity)
without vehicle for 1–5 days.  Groups of 4 rats were sacrificed 6 hours after treatment on days 1, 2, 3, 4,
and 5.  Five control rats were killed after 5 days of saline injection.  Enumeration of spermatogenic cell
types was conducted in a stage-specific manner as described above in the Omura et al. (38) study.
Spermatogenic cell number data were analyzed by one-way ANOVA followed by Fisher’s least
significant difference procedure.  As noted in Table 4-10, 2-BP exposure significantly reduced
spermatogonia numbers in stages XII, I, II–III, and V.  In stage I, spermatogonia numbers were reduced
on each day with greater reductions occurring with increased time of treatment.  A delay in the division of
type B spermatogonia was also observed in rats treated for 5 days.  In contrast to the Omura et al. (38)
study with a 2-week exposure period, spermatocytes were generally unaffected.  Statistically significant
but slight reductions in pachytene spermatocyte numbers (90–95% of control values) were only observed
in stage I, but the numbers did not decrease with increased time of treatment.  The authors stated that the
reduction in pachytene spermatocytes had no biological significance and may have resulted from high
numbers in control rats.  The authors concluded that the early reduction in spermatogonia numbers
demonstrated that spermatogonia are the target cells affected by 2-BP.

Strength/Weaknesses:  This study was done according to proper methods for sample preparation and
evaluation (as with their 1997 study).  Shorter exposure periods help refine evaluation of sensitive cell
types and increase confidence that primary effect was to the spermatogonia.  The dosage used was high
and, therefore, the results do not necessarily define the primary target cell at lower doses.

Utility (Adequacy) for CERHR Evaluation Process:  This study is adequate for defining the cellular
targets of 2-BP at high doses, and results are consistent with the spectrum of effects seen after subchronic
exposure.  Knowledge about target cells is useful in comparing mechanisms of 1-BP and 2-BP and can be
used in risk assessment.
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Table 4-10.  Time-Dependent Reductions in Spermatogonia Numbers Observed by Omura et al.
(40)

Effect on Spermatogonia numbers on each day of treatment (% of control
values)

Stage

Day 1 Day 2 Day 3 Day 4 Day 5
VII - - - - -
X - - - - -
XII - - ↓ (80%) - ↓ (70%)
I ↓ (70%) ↓ (90%) ↓ (60%) ↓ (50%) ↓ (15%)
II–III - ↓ (65%) - ↓ (70%) ↓ (25%)
V - - - - ↓ (60%)

       ↓ = Decreased, - = No significant effect

To characterize testicular toxicity resulting from 2-BP exposure in rats, Son et al. (43) compared
histological observations of spermatogenic staging to quantitative spermatogenesis measurements.  Ten-
week-old Sprague-Dawley rats (from Screening and Toxicology Research Center) were gavaged with 0 or
3,500 mg/kg bw/day 2-BP [purity not reported] in corn oil for 3 days.  Three control and 5 treated
rats/day were sacrificed at 1, 3, 5, 7, 14, 28, 42, or 70 days following treatment.  Histological examination
of testes fixed in Bouin’s solution and stained with hematoxylin-eosin or periodic acid Schiff’s reagent
revealed that the sequence of toxicity was damage to spermatogonia, leading to depletion of
spermatocytes, spermatids, and spermatozoa that ultimately resulted in testicular atrophy (Table 4-11).
Leydig cell hyperplasia was also observed on the last observation day.  Immunohistochemical staining of
Leydig cells with proliferating cell nuclear antigen (PCNA), a marker of cell proliferation, confirmed the
histological observation.  Evidence of partial recovery was noted by some regeneration of germ cells and
spermatocytes towards the end of the observation period.  Electron microscopic examination of testes
from one rat/group/sacrifice day confirmed the histological effects.  Flow cytometry was used to quantify
spermatogenesis based on DNA ploidy of testicular cells.  The technique measured the percentages of
haploid (spermatozoa, spermatids), diploid (spermatogonia, secondary spermatocytes, and Sertoli,
Leydig, and connective tissue cells) and tetraploid (primary spermatocytes) cells.  Data were analyzed by
Dunnett’s test.  Results were consistent with histological findings as evidenced by time-related reductions
in the percentages of diploid (days 3–28) and tetraploid cells (days 5–28).  Percentages of diploid and
tetraploid cells increased on day 42 and then decreased on day 70.

Strength/Weaknesses:  This study design (acute exposure followed by serial observations) is ideal for
identifying the cellular target.  A specific cellular marker, PCNA, was used to confirm cell proliferation.
Morphological findings were confirmed at the ultrastructural level.  Flow cytometric analysis was used to
confirm relative changes in cell populations according to their ploidy.  A variety of histologic
characteristics were monitored (in Table 1 of study) including not just depletion of specific cell types but
also regeneration of germ cells, spermatid retention, Leydig cell hyperplasia, and changes in epididymal
contents (all as recommended by Creasy (41), and other experts in testicular histopathology).  Analysis
shows progression of the pathology such that spermatogonia are first depleted, followed by
spermatocytes, round spermatids and elongating spermatids.  Retained spermatids are not seen until a
week after treatment, about the same time that exfoliated germ cells are also seen in the epididymis.
Leydig cell hyperplasia is apparent only at day 70, post-exposure.  The proportion of haploid cells rises
and then falls in a manner consistent with the histological findings.

Utility (Adequacy) for CERHR Evaluation Process:  This study is adequate for tentatively identifying
the initial cellular target as the spermatogonia and ruling out direct, immediate effects on testosterone
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production or Leydig cells.  This helps interpret subchronic studies where some weight change in
testosterone-dependent accessory organs were probably due to general toxicity and bodyweight loss rather
than direct effects on pituitary, hypothalamus, or Leydig cells.

Table 4-11.  Histological Analysis in Son et al. (43) Study

Effect Days Adverse Effect Observed Days Recovery Observed

Degeneration of spermatogonia in stage
I–IV

1–3 and 7–70 -

Depletion of spermatogonia 3–28 42–70
Depletion of spermatocytes 5–28 42–70
Depletion of round spermatids 28–42 70
Depletion of elongate spermatids 42 70
Spermatid retention in stages IX–XII 7–28 42–70
Leydig cell hyperplasia 70 -
Oligospermia 14–70 -
Exfoliated germ cells in epididymis 7–70 -
Regeneration of germ cells - 28–70

- = Effect not observed

To obtain information about 2-BP-induced effects on spermatogenesis, Wu et al. (44) studied the effects
of 2-BP on cultured rat Leydig cells.  Leydig cells were obtained from 6-week-old Sprague-Dawley rats
(from Sino-British SIP-PR/BK Laboratory Animal Co.).  Three replicates of cells were treated with 0,
0.01, 0.1, or 1.0 mmol/L 2-BP [1.23, 12.3, or 123 mg/L] and 1 U human chorionic gonadotropin (hCG)
hormone for 6, 12, 18, or 24 hours.  A significant reduction in cell viability was noted after exposure to
1.0 mmol/L 2-BP for 12 hours and longer, and a non-significant reduction in viability occurred after
exposure to 0.01–0.1 mmol/L 2-BP for 24 hours.  Testosterone production decreased significantly in cells
treated with 1.0 mmol/L 2-BP for 12 hours or longer.  Authors concluded that 2-BP may be cytotoxic to
Leydig cells in vitro.  They noted that findings of this study were in contrast to those of Kim et al. (3)
who found no effects on testosterone levels in humans exposed to 2-BP and Ichihara et al. (22) who
observed hyperplastic Leydig cells in rats exposed to 2-BP.  The authors stated that differences between
the results of in vivo and in vitro studies could be related to differences between the parent compound
applied in vitro and metabolites of 2-BP that would result after in vivo exposure.  Furthermore, decreased
testosterone secretion in vivo could result in increased luteinizing hormone secretion and consequent
Leydig cell hyperplasia, effects that would not occur after in vitro exposures.  Differences in exposure
duration and effective concentrations may also explain the different results.

Strength/Weaknesses: The rationale for 2-BP concentrations used was not given.  The  relationship
between the concentrations in this study and expected levels in rats after specific in vivo exposures is
unknown.  No data were provided to explain how the in vitro concentrations compared to in vivo
concentrations associated with toxicity.  Therefore, there is no way of knowing whether the results from
this study have relevance to toxicity observed in vivo.  The discussion included reference to an
unpublished study by the authors that is not appropriate or relevant.

Utility (Adequacy) for CERHR Evaluation Process:  This in vitro study confirms that 2-BP does not
directly suppress hCG -induced testosterone production at concentrations that are non-toxic to the Leydig
cells.  As such, the study is useful but not critical for the CERHR evaluation process.
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Yu et al. (45) conducted a study to determine the role of apoptosis and the possible involvement of Bcl-2
family genes and the Fas signaling system in 2-BP-induced testicular toxicity.  The Bcl-2 family of genes
includes both pro- and anti-apoptotic proteins; the Fas signaling system transmits apoptotic signals.  Male
Wistar rats (12-weeks-old) were injected percutaneously with olive oil or 1,350 mg/kg 2-BP (99.5%
purity) in olive oil.  The dosage was similar to that used in the Omura et al. (40) study and the study
authors calculated that it was equivalent to inhaling 1,000 ppm for 8 hours.  Seven treated groups
containing 8 rats/evaluation period were injected daily for 1–5 days.  The treated rats were euthanized at
12 hours following a single treatment, 6 hours following the last treatment received for 1, 2, 3, or 5 days,
or at 2 or 9 days following a 5-day treatment period.  A control group of 8 rats was euthanized 6 hours
following the last day of a 5-day olive oil injection period.  Six rats/group/time period were prepared for
histological examination of the left testis (fixed in Bouin’s) while the other two rats/group/time period
were prepared for testicular examination by electron microscopy.  Protein was extracted from the right
testis for Western Blot analysis of BCL-2 and Fas proteins in 6 rats/group/time period.  Data were
analyzed by one-way ANOVA followed by the Tukey-Kramer multiple comparison test.  Examination of
stage I and stage VII seminiferous tubules revealed significant reductions in spermatogonia numbers
following 3–5 days of treatment; no spermatogonia were detected at 2 and 9 days following the 5-day
treatment period.  A secondary reduction in pachytene spermatocyte numbers in stage I occurred at 9 days
following treatment.  In situ analysis of DNA fragmentation (TUNEL) conducted in three animals/group/
time period revealed that spermatogonia were undergoing apoptosis during 2-BP treatment and pachytene
spermatocytes were undergoing apoptosis 9 days after the last dose was administered.  DNA ladder
formation in gel electrophoresis, which is a hallmark of apoptosis, was conducted in one rat/group/time
period and verified the results of the TUNEL assay.  Significant reductions in the expression of Bcl-2 (an
anti-apoptotic protein) occurred during the first 2 days of treatment and at nine days following treatment.
Expression of Bax (a pro-apoptotic protein) was significantly increased during the first day of treatment
but significantly reduced 9 days following treatment.  Expression of Fas receptor was significantly
upregulated during days 1, 2, and 5 days of treatment and at 2 days following the last treatment.  In
contrast, significant reductions in Fas ligand expression were noted on the last day of treatment and 2
days following treatment.  The study authors concluded that 2-BP induces apoptosis of testicular germ
cells and that Bcl-2 family genes and Fas signaling system play a role in the process.

Strengths/Weaknesses:  This is a high-dose mechanistic study which identifies apoptosis as the process
of 2-BP-induced germ cell death.

Utility (Adequacy) for CERHR Evaluation Process:  This information is of limited use for human risk
assessment.

Park et al. (46) tested 2-BP for androgenic activity in recombinant yeast expressing a human androgen
receptor (YAR) linked to a β-galactosidase reporter gene.  Testosterone was used as a positive control and
DMSO was the negative control.  2-BP did not display androgenic activity.

Strength/Weaknesses:  While the utility of this recombinant yeast assay system as a universal screen for
androgens is debatable, this paper uses the method to compare a group of candidate compounds.  The
rationale for selecting 2-BP was apparently as an unknown that might have human exposure.  The authors
did not specify what solvent was used for specific treatment chemicals, other than to state that “an
appropriate” solvent was used.

Utility (Adequacy) for CERHR Evaluation Process:  Lack of response of 2-BP in YAR (i.e., lack of
androgenicity) provides indirect evidence that the mechanism of testicular toxicity of 2-BP does not
involve the androgen receptor.  This information is useful for risk assessment, even though none of the in
vivo 2-BP studies point to any androgenic or antiandrogenic activity.
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4.3 Utility of Data

The human epidemiological data are adequate to assess whether 2-BP is a human reproductive toxicant.
Taken together, the papers by Kim et al. (3, 4) and Park et al. (5) demonstrate a high prevalence of
amenorrhea and azoo-/oligospermia in 2-BP-exposed workers and no such abnormalities in their
unexposed coworkers.  However, the exposure data in these and the other human studies are not adequate
to permit a determination of a rigorous dose-response relationship in humans.  The available data were
limited by a narrow range of exposures, a small number of subjects, the absence of individual exposure
data, and/or the possibility of significant dermal absorption of 2-BP that was not taken into account.

The animal data sets include studies conducted in male and female rats that are adequate to assess
reproductive toxicity.  For female rats, the data were sufficient to evaluate effects on estrous cycling,
ovarian histology, ovarian follicle counts, and reproductive organ weights.  For male rats, the data were
sufficient to evaluate testicular histology, sperm measures, and accessory sex gland weights.

4.4 Summary of Reproductive Toxicity

Female Reproductive Toxicity

Adverse reproductive effects were reported in women occupationally exposed to 2-BP.  Secondary
amenorrhea and increased levels of FSH and LH were observed in 16 of 25 women aged 20−44 years
who were exposed to 2-BP in a Korean electronics plant for 4–16 months; actual exposures were not
measured but were estimated to be 9.2–19.6 ppm with potential peak exposures of up to 4,141 ppm (3-5).
Statistical analyses were not performed, but it was noted that none of the 65 women who worked in two
other departments in the same plant developed amenorrhea (5).  Ovarian biopsies revealed fibrosis in the
ovarian cortex and atrophied follicles lacking oocytes or granulosa cells, arrest of follicular development,
and reduced numbers of primary follicles and corpora albicans; however, the Expert Panel noted that a
comparison was not made with ovaries from control women of similar ages (17).  One 24-year-old
woman regained menstrual cycles following estrogen-progesterone replacement therapy.  A 26-year
woman, not on hormone therapy, never regained menstrual cycles but later became pregnant and gave
birth to a healthy infant.  In a study conducted at a Chinese 2-BP manufacturing plant, 11 women working
in jobs with direct contact to 2-BP had personal exposure levels of 2.87–16.8 ppm 2-BP (6).  Amenorrhea
was noted only in 3 older women (46–54 years) and polymenorrhea in 2 women (age 39–43 years).
Regression analyses found no significant relationships between concentrations of LH, FSH, or estradiol
levels and 2-BP TWA or TWA x duration of exposure.  These analyses were limited by the narrow range
of exposures and the small number of subjects.

Reproductive effects observed in animal studies are similar to those observed in occupationally exposed
women.  Major effects noted in animal inhalation studies are outlined in Table 4-12.  Nine-week
inhalation studies in Wistar rats demonstrated that 2-BP targets the ovary at concentrations of ≥100 ppm
(≥503 mg/m3)  and disrupts estrous cycles at concentrations ≥300 ppm (≥1,509 mg/m3)  (32, 34).  A
NOAEC was not identified, as effects occurred at the lowest exposure levels tested.  The primary estrous
cycle effect was continual diestrus with occasional estrus, while a smaller number of rats experienced
prolonged estrus with occasional diestrus.  2-BP exposure reduced the numbers of ovarian primordial,
antral, and growing follicles.  In the most severely affected rats, ovaries contained atretic follicles with
few viable oocytes and thin granulosa cell layers and no corpora lutea.  No changes in LH or FSH levels
were observed in these rats.  A mechanistic study suggested that 2-BP induces ovarian toxicity through
apoptotic destruction of primordial follicles and their oocytes (34).  Two additional studies demonstrated
reproductive toxicity in rodents, exposed to 2-BP ip (33, 36), but the Expert Panel noted that the route of
exposure and use of systemically toxic doses preclude their use in the evaluation process.



       40

Table 4-12.  Summary of Reproductive Toxicity in Inhalation Studies in Female Rats

Concentration
in ppm (mg/m3)

Exposure
Regimen

Sex/
Species/
Strain

Dose:  Effect Reference

100 (503)
300 (1,509)
1,000 (5,031)

8h/9wk;
whole
body

Female
Wistar
Rat

100 ppm (503 mg/m3):  ↓ Primordial and
growing follicles.

300 ppm (1,509 mg/m3):  Disrupted estrous
cycle; ↓ primordial, growing, and  antral
follicles; ↓absolute and relative uterus weight.

1000 ppm (5,031 mg/m3): Disrupted estrous
cycle; ↓ absolute ovary weight and absolute
and relative uterus weight; ↓ primordial,
growing, and antral follicles; ↑atretic and
cystic follicles and ↓viable oocytes, and no
corpora lutea.

Kamijima et
al. (32)
and Yu et al.
(34))

↑=Increased Effect; ↓=Decreased Effect

Male Reproductive Toxicity

Two studies examined reproductive effects in men occupationally exposed to 2-BP.  Azoospermia or
oligospermia were observed in 6 of 8 men exposed to 2-BP in an electronics plant in Korea for 16–19
months; exposures were estimated to be 9.2–19.6 ppm with daily short-term exposures up to 4,141 ppm
(3-5).  None of the 12 men employed in two other departments in the same plant developed azoo- or
oligospermia.  In a study conducted at a 2-BP plant in China, 3 men working in the manufacturing area
for 15−69 months had personal exposure levels of 0.95–5.84 ppm 2-BP (6).  Two of the exposed men had
less than 50% motile sperm, but all exposed men had normal morphology and sperm counts.  Regression
analyses revealed no significant relationships between sperm indices or LH, FSH, or testosterone levels
and 2-BP TWA or TWA x duration of exposure. The analyses were limited by the narrow range of
exposures and the small number of subjects.

Reproductive effects in male rats exposed to 2-BP were reported in two inhalation studies; major effects
in these studies are outlined in Table 4-13.  Inhalation exposure of rats to ≥300 ppm (1,509 mg/m3) for at
least 9 weeks resulted in atrophy of seminiferous tubules, reductions in germ cell numbers, and
hyperplastic Leydig cells (22, 26) in addition to reduced sperm counts and motility with increased
numbers of abnormal sperm (22).  Although inhalation is the primary route of human exposure, testicular
lesions, sperm effects, and/or Leydig cell hyperplasia were also observed in animal studies with ip, sc, or
oral exposure (25, 37, 43).  Although limited, a sc injection study in male rats treated with ≥600 mg/kg
bw 2-BP for 5 weeks demonstrated reductions in mating and fertility (37).  A series of studies
demonstrated that acute, high-dose, parenteral exposure to 2-BP causes apoptotic death of spermatogonia
within 3 days of exposure  (38, 40, 43, 45).  2-BP exposure also resulted in apoptosis in spermatocytes at
about 9 days after the end of a 5-day treatment (45).  2-BP did not display androgenic activity in an in
vitro assay (46).
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Table 4-13.  Summary of Reproductive Toxicity in Inhalation Studies in Male Rats

Concentration
in ppm
(mg/m3)

Exposure
Regimen

Sex/
Species/
Strain

Dose:  Effecta Reference

300 (1,509)
1,000 (5,031)
3,000 (15,092)

8h/7d/9wk;
whole body
(9–11 d
exposure
period in
high dose)

Male
Wistar
Rat

300 ppm (1,509 mg/m3): ↓ Absolute
and relative epididymides and testes
weight and ↓ absolute prostate and
seminal vesicles weight; ↓sperm
count and motility and ↑ abnormal
sperm; ↑seminiferous tubule atrophy
and hyperplastic Leydig cells, ↓
germ cells.

1,000 (5,031 mg/m3): ↓ Absolute
and relative epididymides and testes
weight and ↓ absolute prostate and
seminal vesicles weight; ↓sperm
count and motility, very few intact
sperm remaining; ↑seminiferous
tubule atrophy and hyperplastic
Leydig cells, ↓ germ cells.

3,000 (15,092 mg/m3): ↓ Absolute
and relative epididymides and testes
weight and ↓ absolute prostate and
seminal vesicles weight; ↓sperm
count and motility, ↑seminiferous
tubule atrophy, hyperplastic Leydig
cells and vacuolation of Leydig cells,
↓ germ cells.

Ichihara et al.
(22)

100 (503)
1,000 (5,031)

8h/7d/12
wk;
whole body

Male
Wistar
Rat

Reproductive NOAEC=100 ppm
(503 mg/m3)

1,000 ppm (5,031 mg/m3):
Seminiferous tubule atrophy and
↓ germ cells.

Yu et al. (26)

aNon-reproductive Effects for male rats are summarized in Section 4
↑=Increased Effect; ↓=Decreased Effect
h = hour, d = days; wk = week

Summary Statements

There is sufficient evidence in humans that exposure to 2-BP causes reproductive toxicity in both males
and females.  However, the small number of exposed individuals reported and uncertainties concerning
the route and dose of exposure limit the utility of this data set.
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There is sufficient evidence in female rats that exposure to 2-BP causes reproductive toxicity manifested
as ovarian dysfunction following inhalation at ≥100 ppm daily for 8 hours/day for 9 weeks.  The data are
assumed relevant to consideration of human risk.

There is sufficient evidence in male rats that exposure to 2-BP causes reproductive toxicity manifested as
decreased reproductive organ weights, poor sperm quality, and testicular histopathology following
inhalation at ≥300 ppm daily for 8 hours/day for 9 weeks.  The data are assumed relevant to consideration
of human risk.
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5.0 SUMMARIES, CONCLUSIONS, AND CRITICAL DATA NEEDS

5.1 Summary and Conclusions of Reproductive and Developmental Hazards

Information concerning risk of developmental toxicity associated with exposure to 2-BP is lacking in
humans. Data from standard animal developmental toxicity tests are lacking and ancillary data from a
study designed to assess female reproductive toxicity in rats were judged to be inadequate (33).

There are human and rat data for assessing reproductive toxicity.  Reproductive effects observed in
female rats are similar to those observed in occupationally exposed women.  Specifically, inhalation
exposure of female rats to 2-BP causes irregular estrous cycles, decreased ovarian and uterine weight, and
ovarian histopathology, all of which become more pronounced with increasing dose (32, 34).
Amenorrhea with associated ovarian pathology in selected women has been associated with occupational
exposure to 2-BP (3), although the inadequate exposure assessment and small sample size limit its use in
assessing human health risks.  Despite these limitations, the consistency and similarity of the animal and
human data support the contention that 2-BP is an ovarian toxicant in humans.  Detailed evaluation of
2-BP-induced effects on rat ovarian follicles indicates that 2-BP, at concentrations as low as 100 ppm
(503 mg/m3), destroys primordial and growing ovarian follicles; antral follicles were affected at the 300
ppm (1,509 mg/m3) dose (34).

2-BP is also a reproductive toxicant in male rats.  At concentrations as low as 300 ppm (1,509 mg/m3) (by
inhalation daily for 9 weeks) exposure to 2-BP resulted in decreased reproductive organ weights including
the testes, epididymides, and accessory sex organs, as well as decreases in epididymal sperm counts and
in the percentages of motile and morphologically normal sperm, and testicular pathology (22).  A
concentration of 100 ppm (503 mg/m3) appears to be a NOAEL for testicular toxicity (26).  Evaluations
conducted after ip (25) or sc (37) dosing provided evidence for altered Sertoli cell structure, Leydig cell
hyperplasia, and decreased serum testosterone.  Further histologic studies showed that 2-BP specifically
kills spermatogonia, at least after short-term exposure to high doses (38, 40).  This spectrum of effects is
similar to that seen in humans occupationally exposed to 2-BP (3).  Therefore the toxicology data from
male rats, as from female rats, provide support for the contention, based on limited epidemiological data,
that 2-BP is a reproductive hazard in humans.

5.2 Summary of Human Exposure

In Asia, 2-BP was used as a cleaning solvent in the electronics industry.  Data on 2-BP exposures in
Korea were collected in conjunction with health effects studies.  These data provide a very limited
description of occupational exposures during the use of 2-BP as a cleaning solvent because they were
based on area samples from a simulation of the cleaning operation (9.2−19.6 ppm).  Personal exposures
may have been higher than indicated since two open, unventilated baths were not included in the
simulation.  Further, peak exposures experienced by workers as they cleaned parts inside the bath hoods
were only partially simulated (3-5).  The Chinese study of 2-BP manufacturing had personal exposure
measures for a single day for each worker in the study (6).  However, only 14 of the 24 workers in the
study had direct contact with 2-BP (0.95–16.18 ppm).  Neither the Korean or Chinese study characterized
the dermal exposures of workers.

It has been reported by HSDB (1) that in the U.S., 2-BP is used as an intermediate in the synthesis of
pharmaceuticals, dyes, and other organic chemicals.  The extent of this use is unknown.  Currently in the
U.S., 2-BP exposures most commonly occur because it is a contaminant in 1-BP at ≤ 0.1% (7).  No
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information was found that documents exposure of the public to 2-BP through contact with air, drinking
water, food, or consumer products.

Current U.S. exposure data on 2-BP are limited to workplace surveys of three spray adhesive and one
cold bath degreasing operation (<0.004–1.35ppm) (8, 9, 12-14).  These data cannot be considered to
represent the full cross-section of potential exposures nationwide.  None of the exposure evaluations to
date have characterized the dermal exposures of the workers.

5.3 Overall Conclusions

The Expert Panel judged the human and animal evidence on the developmental toxicity of 2-BP to be
insufficient based upon lack of available data.

The evidence for human male and female reproductive toxicity based upon one human study in Korea
was considered sufficient.  The evidence was very suggestive that exposure to 2-BP was responsible for
an elevated risk of adverse female reproductive endpoints such as amenorrhea and adverse male
reproductive endpoints such as decreased sperm count and motility.  These effects occurred in an
occupational setting with potentially high short-term exposure levels.  A study conducted in China, with
lower estimated exposure levels, did not demonstrate a significant relationship between 2-BP exposure
measures and adverse reproductive endpoints in men or women.  Several methodological concerns
including the small sample sizes, a failure of investigators to fully integrate the analysis of exposure and
outcomes, and the very narrow range of exposures in the latter study diminish the value of these data in
estimating a dose-response gradient for potential use in risk assessment.

The Expert Panel judged that sufficient evidence exists to characterize 2-BP as a reproductive toxicant in
male and female rats.  The rat data were assumed relevant to assessing human reproductive hazard.  In
female rats, inhalation of 2-BP at doses greater than or equal to 100 ppm (503 mg/m3) caused reduced
follicle numbers, altered estrous cycle length, and decreased ovarian and uterine weight.  No NOAEC was
identified for female reproductive toxicity.  In male rats, inhalation of 2-BP at levels greater than or equal
to 300 ppm (1,509 mg/m3) caused decreased sex accessory gland weights, decreased sperm counts and
motility, increased abnormal sperm, and histological abnormalities in the testes.  A NOAEC of 100 ppm
(503 mg/m3) was identified for male rat reproductive toxicity.

The mechanisms by which 2-BP causes reproductive toxicity are unknown.  Several studies in male rats
using high, acute, parenteral doses showed that 2-BP specifically causes spermatogonia to die by
apoptosis.  However, the relevance of these findings to lower, non-systemically toxic doses of 2-BP is
unclear.  Female rat inhalation exposure to 2-BP resulted in the death of ovarian follicles of all classes.
Similar to the results in the testis, apoptosis was noted in the oocytes and granulosa cells of primordial
follicles following exposure to high concentrations of 2-BP.

Based upon the integration of findings from human and animal studies, the Panel concluded that there is
sufficient evidence that 2-BP is a reproductive hazard in men and women.  Current 2-BP exposures in the
United States are anticipated to be largely limited to the occupational setting by means of contamination
of 1-BP.  2-BP exposure measurements evaluated by the Panel ranged from <0.004 to 1.35 ppm from a
few selected locations and cannot be considered to represent the full cross-section of potential exposure
levels nationwide.

The Panel concluded that there is minimal concern for human reproduction at the low end of this
exposure range with an increase to some concern at the upper end of this range.
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5.4 Critical Data Needs

Critical data needs are defined as tests or experiments that could provide information to substantially
improve an assessment of human reproductive risks.  Although U.S. exposures to 2-BP are likely to be
low and largely restricted to exposures to 2-BP-contaminated 1-BP, the evidence of human reproductive
toxicity underscores the need for greater confidence in the exposure estimates and toxic effects.

• Exposure.  According to HSDB, 2-BP is used as an intermediate in chemical synthesis.  In addition,
2-BP may be present as a contaminant in 1-BP at levels up to 0.1%.  Limited data is available on
current occupational exposures.  The presence of 2-BP in the environment or consumer products is
unknown.  The extent of air and dermal exposure from these and other potential sources should be
determined to increase confidence in the levels of exposure.

• Effects.  Currently, there are no animal data which evaluate the developmental toxicity of 2-BP.  At a
minimum, a standard rodent developmental toxicity assay should be performed to improve our
understanding of the potential toxic effects.

Although not considered a critical data need, the following type of study would provide information that
would contribute to our understanding to the toxicity of 2-BP.

Basis of Toxicity.  Because 2-BP is structurally related to a group of haloalkanes with known
reproductive toxicity, mechanistic studies evaluating these compounds would be useful to identify
pathways of activation and targets.
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