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• Differentiating Variability from Uncertainty, 

and consequences of both.
• Uncertainty about parameter values

– Uncertainty of prior information
– Uncertainty after estimating using PK data

• Evaluating Model & Dose-Metric Uncertainty



• CV – coefficient of variation = standard 
deviation / mean

• MC – Monte Carlo
• MCMC – Markov Chain Monte Carlo
• ML – maximum likelihood
• PC – partition coefficient
• TCE – trichloroethylene

Abbreviations



Preface

• Level of treatment: overview of what needs to be 
considered, not a ‘how to’

• Methods need
– Objectivity: decisions are based on pre-specified criteria
– Transparency: decisions and computations are auditable
– Replicability: results can be reasonably replicated by a 

reasonably competent practitioner
– Verisimilitude: we can be reasonably confident that 

answers are at least approximately “right”
• Presumption: 

animal model � human model � human predictions



Path to Human Dosimetry Predictions

Animal Model Human Model Model for human variation

Data rich

Test model structure

Estimate parameters

Animal variability 
irrelevant to humans

Animal dose-response

Data (very) poor

Little ability to test 
structure

Generally based on 
independent understanding 
of the population 
distribution of critical 
characteristics.

Can be based on in vitro
measurements

Extrapolation

Human physiological parameters

Scale metabolism

PCs? (calculate or set to animal)
Predicted human distribution



Variability and Uncertainty



Variability

• Variability is a characteristic of a population of 
observations:
– Height, weight, IQ
– Clearance, liver blood flow
– Receptor or enzyme concentration
– Measurements

• Individuals in the population differ with respect to 
the characteristic in question

• We typically use the language of probability 
distributions and random variables to model 
variability (e.g., variance)



Practical Consequence: The Population 
Distribution of the Dose-Metric

• Variation among exposure scenarios

• Variation in characteristics of target 
population (pharmacokinetics):

• age

• sex

• body weight

• activity level

• metabolism

• cardiac output

• other biochemical (binding, etc.)
Dose Metric
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Practical Consequence:  Interindividual
Variation in Experimental PK Studies

Residuals from regression of log(liver) and log(kidney) on time, block, gender, and 
interactions, 10 mg/kg PFOA by gavage in mice.  Lou et al, in press

Tissue concentrations within
individuals may be correlated, 
which may affect parameter 
estimates and the way we 
should evaluate their uncertainties.



The Human Variability Model

• What varies?
– Physiology and anatomy

• Predictors
– Age
– Gender
– Body weight
– Disease state
– …

– Biochemical variability:
• Enzyme polymorphisms (but not all!)
• more complex variation of enzyme activity, like continuous 

variation due to induction, health status, etc.
• Transporters
• Binding proteins

• (Joint) Distributions?
• How do we know these values?



…How Do We Know these Values?

• Samples of convenience
• Measured in 9 healthy young male volunteers
• Collections of microsomes or other tissues
• Stratified random sample of the relevant target 

population with defined probability of inclusion 
(hah!)

• Uncertainty comes from: 
– Estimation from a sample
– Relevance of the sample to the target population
– Relevance of the estimate to the target parameter



Uncertainty
• Uncertainty is a characteristic of a single observation:

– Parameter estimates (model parameters, sample means)
– Predictions from models with uncertain components
– Individual samples from a population with variance

• E.g. cardiac output for an individual (rat or human) characterized by 
the population mean.

• Usually can reduce uncertainty with more data (at least 
when speaking of parameter uncertainty).

• Can be uncertain about variability: e.g., suppose we are 
uncertain about the precise value of the variance of a 
characteristic in a population.

• Usually use the language of probability for uncertainty, 
but can also be more qualitative: intervals, bounds.

• ‘Uncertainty’ also applies to more qualitative entities: 
model structure, mode of action, etc.



Expressing Uncertainty about Variability

Don’t know:

• variability of exposure details

• pharmacokinetic parameters

• population distribution of varying 
characteristics

• True pharmacokinetics

• …

So, characterize the uncertainty in the 
population distribution of the dose-metric
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Kinds of Uncertainty

• Uncertainty about model parameters
– Easiest to quantify, but often the smallest 

contribution.
• Uncertainty about mode of action

– What is the appropriate dose metric?
• Uncertainty about the biology

– What is the appropriate model structure?

(After Clewell, 2006)



Parameter Uncertainty



Parameter  Uncertainty is Tied to 
How the Parameter is Estimated

• “Assumed”, based on species-specific conventions
– Physiological parameters

• In vitro �in vivo
– PCs
– Metabolic parameters
– Protein binding
– Dermal absorption

• Computed 
– PCs
– Binding(?)

• Extrapolated
– Body weight scaling for metabolic parameters

• Estimated from PK data using model
• Directly measured



Uncertainty about Assumed 
Parameters

• The true value for an individual is unknown, 
but there are estimates of population “central 
tendency”, and the population variance is 
presumed “small”.

• The uncertainty is the population variance + 
uncertainty about the population mean

• Correlations – dependencies?
• Physiologically realistic bounds



in analysis of model for TCE:
Tissue blood flow is fraction of total (constrain so 

fractions always add to 1)
Ql, Qf, Qp ~ Bounded cosine distribution

Qr = 1 – (Ql + Qf + Qp)
Bounds are median plus or 
minus 20% (experimenters’
intuition)

(from Bois, et al. 1990)

Example



Computed

• For example, computed PCs as in, Pelekis, 
et al (1995), Poulin and Thiel (2000), Rogers 
and Rowland (2006), and Schmidt (2008)

• Uncertainty: compute mean squared error for 
prediction of (log) PC values, or, variance 
around regression of measured on predicted 
PC values.



Comparison to Observed Values

x = y

regression line



Distribution of Errors: Uncertainty 
Distribution for PCs

More Mature Distribution
• Joint distribution of errors?

• Shape of error distribution?

• Other predictors?

lognormal

Non-parametric density 
estimate



Estimated from PK Data Using a 
PBPK Model

• Several estimation methods are commonly used:
– Visual fit: no quantitative or objective measure of 

uncertainty
– (Weighted) least squares: standard errors, etc. only valid 

when observations are all independent (rare with PK 
data).

– Maximum likelihood: standard errors are valid if the 
model is (close to) correct, but assume non-estimated 
parameters are known exactly.

– Bayesian methods:  Can accommodate partial 
knowledge about all parameters.



PK and/or PD Model
Hierarchical Statistical 

Model Measurement Model

P(�)

Measurement Error �

Estimate all parameters simultaneously.

Models for full characterization of 
variability and uncertainty



The Likelihood Function

• Basis for all inference about models. 
• Combines model and data in a single 

expression.
• Depends on

– Experimental design
– Nature of variation

• Example (lognormal error model):
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Maximum Likelihood

• Construct a likelihood function for the data, based on the 
statistical model.

• Use iterative numerical methods to find the parameter values 
where the likelihood is a maximum.  ML requires 
optimization.

• Estimates are approximately normally distributed 
(transformation, like log, can improve the approximation).

• Covariances among the estimates can be estimated.
• Models of population variability are numerically challenging.
• Models with many estimated parameters are difficult.
• Parameters are either estimated, or fixed.



Example: ML Estimation for a 
Biologically Motivated PK Model

• Point was to compare 1 & 2 compartment 
models and 2 compartment model with 
saturable resorption.

• Individual data (no repeated measures), 
single doses of 1, 10, 60 mg/kg, 17 day 
repeated dose study at 20 mg/kg in mice.

• Serum concentrations
• Assume lognormal errors.
Lou et al. (2008)



PFOA Fits

Dashed lines indicate 
uncertainty in model 
predictions based on 
ML fit.



Bayesian Methods Combine Prior 
Information and Likelihood

• Baysian analysis allows information about uncertainly known 
values (e.g., partition coefficients, metabolic parameters) to 
be included as uncertain (in ML, we either estimate 
parameters, or treat them as known perfectly).

• Relatively simple treatment of population models (including 
designs with repeated observations of the same animals).

• The goal of Baysian analysis is to calculate the posterior
distribution for all the parameters
– Not an optimization problem
– The posterior distribution captures the uncertainty about parameter 

estimates.
• Generally must estimate the posterior by taking random 

samples from it using MCMC



Role of Prior in Bayesian Estimation

Little prior 
information
(e.g.,
metabolic
clearance)

Much prior 
information
(e.g.,
computed
PC)

Prior Likelihood (data) Posterior

X
Data dominates

Compromise

prior mean

data mean

X �



More PFOA

• Multiple studies with repeated observations of 
PFOA serum levels (rats) after gavage
dosing.

• Additional studies, with multiple dose levels, 
of urine and feces concentrations.

• Two-compartment classical PK models fit; 
only barely-informative priors.

Wambaugh et al. (2008)



PFOA Fits

Posterior distribution for 
AUC/dose.  From 2 cmpt
model, females

Square symbols and whiskers are means and 95% 
confidence intervals from model.
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Evaluating Model Uncertainty



Roles for Statistical Methods in 
PBPK Model Development

Hypothesis (Model 
Structure)

Fit Adequate?
(in vivo data)

Experimental
Inference
(Biology)

Experimental
Design

(Simulation)

yes
no

Estimate Parameters
(in vivo + in vitro data)

Fit to in vivo rodent data 
adequate for new chemicals?
(estimates from in vitro data)no

Fit to (sparse) in vivo human 
data adequate? (estimates 
from in vitro data?)

yes

no

Apply it!

yes



Model Evaluation

• Plots of scaled residuals (by compartment):  
– Distribution: correct error model? 
– relative to time, dose: deterministic model about right?
– predicted concentration: right scale for error?

• How different are posteriors from informative priors: 
– e.g., did we have to change a partition coefficient dramatically to fit the 

data?
– If very similar, no information in data about parameter

• Posterior correlations between/among parameters
– Are we estimating individual parameters, or, for example, ratios, as in 

Vmax / Km?



What’s the Right Model?  What’s the 
Right Dose Metric?

• Model uncertainties:
– Where is the metabolism?
– Transporters (presumably saturable) or partitioning?
– Diffusion or perfusion limited compartments?
– Complex fat?
– Inducible metabolism?
– …

• Can be constructed to give a tree of models
– Probabilities on branches from expert elicitation, fit to data

• Dose metric (mode of action)
– Again, can construct a decision tree, with branch 

probabilities from expert elicitation.



Species to
Human PD

Human PK Pathway
Unit
Risk

5.64e-5

1.45e-6

1.45e-6

3.48e-6

4.46e-6

1.15e-7

1.15e-7

2.75e-5

1.06e-5

5.55e-7

MFO: 0.2
GST: 0.8
DCM: 0.1

MFO: 0.2
GST: 0.8
DCM: 0.1

MFO: 0.2
GST: 0.8
DCM: 0.1

MFO: 0.2
GST: 0.8
DCM: 0.1

PB – PK 
0.7 Applied

0.3

6.38e-6
8.4e-7

4.38e-8

5.04e-7

PB – PK
0.7Applied

0.3

Body Surface

0.3

Body Surface
0.2 Body Weight0.8

Applied

0.2

PB – PK0.8

Body Weight0.7

Species PK

Methylene Chloride Decision Tree 
(Clewell, 2006)



Usually, estimates of unit risk are uncertain.  
If CV for uncertainty distribution is 40%, you get:

Probability Distribution of Unit Risk Implied by Methylene Chloride
Decision Tree:



Conclusions

• Variability and uncertainty are related but distinct 
concepts
– variability deals with populations
– uncertainty deals with single observations, concepts, 

parameter estimates.
• A target quantity of a risk assessment using PBPK 

modeling is often the distribution (“variability”) of a 
measure of dose, which we estimate (“uncertainty”)

• “Uncertainty” encompasses model uncertainty, 
uncertainty about the relevant dose metric, as well 
as uncertainty about model parameters.


