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The U.S. Environmental Protection Agency 
(EPA) is conducting a large scale research 
program called ToxCast™ to assess the 
potential toxicity to humans in vivo by 
collecting a large number of predictive assays 
in vitro. Cultures of primary human 
hepatocytes have been shown to be a viable in 
vitro model for human liver function.  
Traditional approaches such as microarrays 
allow researchers to assess a compound’s 
effect on hepatocytes by measuring changes 
in protein expression levels.  However, these 
approaches often neglect to incorporate full 
concentration and time related responses due 
to limitations in throughput and sensitivity.

We have developed a high throughput assay 
suite using primary human hepatocyte 
cultures as in vitro models that retain liver-
like functionality to generate more 
comprehensive data across time and 
concentration. Using the ToxCast™ 320 
chemical library, mRNA expression was 
determined using a quantitative nuclease 
protection assay using the Omix™ Imaging 
System (High Throughput Genomics, Inc., 
Tucson, AZ). Fourteen gene targets 
representing Phase I/II metabolism and 
transport were monitored based on their role 
in liver function and sensitivity to receptor 
pathways (AhR, CAR, PXR, PPARα, FXR).

Techniques from machine learning were used 
to cluster compounds by gene response 
profiles. Dose-responses were mathematically 
abstracted as vectors in multidimensional 
space (rather than classical scalar 
representations traditionally associated with 
standard microarray analyses) and used in 
algorithms such as K-means and algometric 
clustering to create representative chemical 
phylogenies. Unique to this approach is 
assessment of concentration-response 
changes over time (6, 24, 48 hr in culture) as 
well as correlation of gene targets with one 
another. From these analyses, inclusion of 
data from all time points resulted in more 
accurate clustering of the replicate ToxCast™
320 and reference chemicals that reduced 
donor-dependent variability. This approach 
has significant implications in standardizing 
primary hepatocyte data analysis across 
donors and profiling chemical response with 
in vivo endpoints.

Results and Conclusions

• A compound’s dose-response can be abstracted 
mathematically as a vector

• Gene to gene correlations can provide insights 
into previously unknown regulation as well as 
validating an assay by confirming correlations 
known in current literature. 

• Utilizing all of the information for a compound’s 
response, as opposed to a scalar statistic such 
Emax or EC50 , gives a more robust and accurate 
representation of a compound’s performance.

• The most accurate clustering, measured by the 
proximity of replicate compounds to each other, 
was achieved by using the vector representation 
and incorporating all three time points.

Figure 2: Gene to Gene CorrelationsFigure 1: Vector Abstraction Figure 3: Clustering and Dendrograms

A dendrogram of the ToxCast™ 320 chemical library created using the vector 
abstraction of each compound’s dose-response for all 14 gene targets across all 
three time points.  Different donors were Z-scored independently, to reduce both 
inter-donor variability and bias towards more efficacious genes.  Incorporating all 
three time points into a 210 dimensional space (70 dimensions per time point x 3 
time points = 210) resulted in more accurate clustering of EPA replicates that 
were blinded during the study as well as the positive controls. Z-scoring donors 
independently also drastically reduced donor dependence; without it the 
clustering results were greatly affected by the donor in which the compound was 
tested.  Corresponding replicates and positive controls are given the same color.
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<ABCB1x1, ABCB1x2, ABCB1x3, ABCB1x4, ... UGT1A1x3, UGT1A1x4, UGT1A1x5>

Each compound’s entire dose response for all gene 
targets across 3 time points was abstracted as 
vector in 70 dimensional space (14 genes x 5 
concentrations x 3 time points = 70 dimensions).  
By using this approach two compounds’ relative 
“dissimilarity” can be calculated by computing the 
Euclidean distance between their vector 
representations.  Each of the 70 dimensions may 
also be Z-scored (a.k.a. normal score) to reduce the 
effects of large responses (e.g. induction of CYP1A1 
vs. SUL2A1) and different donors may be Z-scored 
independently to reduce donor variability.  This 
approach also lends itself to adding new 
information later as new, independent dimensions 
may be concatenated to the original vector.

A heatmap representing the Pearson correlation between all 
14 gene targets across 3 time points.  The statistic used in 
calculating the correlation was the dynamic range (Emax –
Emin) of a gene’s response.  The table below contains the ten 
most correlated gene targets.

Gene 1 (hr) r Gene 2 (hr)

CYP1A1 (24) .9445 CYP1A2 (24)

ABCB11 (48) .9053 SLCO1B1 (48)

ABCG11 (48) .8859 ABCG2 (48)

ABCG2 (48) .8645 SLCO1B1 (48)

CYP1A1 (24) .8610 CYP1A2 (48)

ABCB1 (48) .8515 ABCG2 (48)

CYP1A1 (6) .8312 CYP1A2 (24)

CYP1A2 (24) .8220 CYP1A2 (48)

CYP1A1 (24) .8159 CYP1A1 (48)

CYP1A1 (6) .8009 CYP1A1 (48)

Ten Most Correlated Gene Targets


