

Modulation of Xenobiotic Metabolizing Enzyme and Transporter Gene Expression in Primary Cultures of Human Hepatocytes Modulated by ToxCast Chemicals

STATES ENVIRONMENTAI

Society of Toxicology annual meeting March 15-19, 2009 in Baltimore MD

Daniel Rotroff

http://www.epa.gov/ncct/toxcast Rotroff.Daniel@epa.gov

COMPU

Office of Research and Development National Center for Computational Toxicology This work was reviewed by EPA and approved for presentation but does not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation by EPA for use.

Objectives:

- What is ToxCast?
- How does this project fit in with the goals of ToxCast?
- How does the technology work?
- Experimental Design
- What were the results?
- What do the results mean?

Transforming Toxicology

TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND STRATEGY

Office of Research and Development

National Center for Computational Toxicology

U.S. National Academy of Sciences, 2007

POLICYFORUM

TOXICOLOGY

Transforming Environmental Health Protection

Francis S, Collins,1** George M, Grav,2* John R, Bucher3*

n 2005, the U.S. Environmental Protection funded a project at the National Research Council (NRC) to develop a long-range vision wanted future toxicity testing and assessment paradigms to meet evolving regulatory needs. Challenges include the large numbers of sub- predominantly predictive science focused stances that need to be tested and how to incornorate recent advances in molecular toxicology, computational sciences, and information technology; to rely increasingly on human as opposed to animal data; and to offer increased efficiency in design and costs (1-5). In response, the NRC Committee on Toxicity Testing and Assessment of Environmental Agents produced two reports that reviewed current toxicity testing, identified key issues, and developed a vision and implementation strategy to create a major shift in the assessment of chemical hazard and risk (6, 7) Although the NRC reports have laid out a solid theoretical rationale, comprehensive and rigorously gathered data (and comparisons with historical animal data) will determine whether the hypothesized improvements will be real-ized in practice. For this purpose, NTP, EPA, and the National Institutes of Health Chemical Genomics Center (NCGC) (organizations with expertise in experimental toxicology, computational toxicology, and high-throughput technologies, respectively) have established a collaborative research program.

EPA, NCGC, and NTP Joint Activities In 2004, the NTP released its vision and roadmap for the 21st century (1), which established initiatives to integrate high-

¹Director, National Human Genome Research Institute (NHGR), National Institutes of Health, Behosda, ND 20892; "Anistuta Administrator for Holfkirs of Research and Development, U.S. Environmental Protectino Agency, Washington, C. 2046; "Woosibe Detector, U.S. National Taxicology Program, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, USA. *The views expressed here are those of the individua

authors and do not necessarily reflect the views and policies of their respective agencies. †Author for correspondence, E-mail: francisc@mail.nih.gov

906

throughput screening (HTS) and other auto- tion, usually between 2 and $10\,\mu\text{M},$ and toler-Agency (EPA), with support from the U.S. National Toxicology Program (NTP), program. In 2005, the EPA established the National Center for Computational Toxicology (NCCT). Through these initiatives, for toxicity testing and a strategic plan for NTP and EPA, with the NCGC, are promot-implementing that vision. Both agencies ing the evolution of toxicology from a predominantly observational science at the level of disease-specific models in vivo to a

> on broad inclusion of target-specific, mechanism-based biological observations in vitro (1, 4) (see figure, below). Toxicity pathways. In vitro and in vivo tools are being used to identify cellular historical toxicologic NTP and EPA data responses after chemical exposure expected to result in adverse health effects (7). HTS methods are a primary means of discovery for drug development, and screening of >100,000 compounds per day is routine (8).

However, drug-discovery HTS methods tra-

ditionally test compounds at one concentra

ate high false-negative rates. In contrast, in the EPA, NCGC, and NTP combined effort, all compounds are tested at as many as 15 concentrations, generally ranging from ~5 nM to ~100 µM, to generate a concentrationresponse curve (9). This approach is highly reproducible, produces significantly lower false-positive and false-negative rates than the traditional HTS methods (9), and facilitates multiassay comparisons. Finally, an informatics platform has been built to compare results among HTS screens; this is being expanded to allow comparisons with (http://ncgc.nih.gov/pub/openhts). HTS data collected by EPA and NTP, as well as by

We propose a shift from primarily in vivo animal

studies to in vitro assays, in vivo assays with lower organisms, and computational modeling

for toxicity assessments

the NCGC and other Molecular Libraries Initiative centers (http://mli.nih.gov/), are being made publicly available through Webbased databases [e.g., PubChem (http:// pubchem.ncbi.nlm.nih.gov)]. In addition

15 FEBRUARY 2008 VOL 319 SCIENCE www.sciencemag.org

Science, Feb 15, 2008

$Chemicals \rightarrow NR \rightarrow Genes$

Experimental Design: Chemicals→NR→Genes

- ToxCast 320 Chemical Library
- Fresh Primary Human Hepatocytes
- 2 human donors
- 6 Reference Chemicals (Rif, PB, 3-MC, Fenofibric Acid, CDCA, CITCO)
- 5 receptors targets (AhR, CAR, PXR, PPARα, FXR)
- 2 endogenous control gene targets (GAPDH, Actin)
- 14 relevant gene targets
- 3 Time Points (6,24,48 hours)
- 5 Concentrations (.004, .04,0.4, 4, 40 μM)

Reference Chemical Decision Criteria

- High Efficacy
- Must have measurable EC50
- High Z-factor

Z-factor as defined by Zhang et al.

$$Z=1 - \frac{(3\sigma_s + 3\sigma_c)}{|\mu_s - \mu_c|}$$

Zhang J, Chung T, Oldenburg K. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. Journal of Biomedical Screening. Vol. 4, Num.2. 1999.

United States Environmental Protection Agency

Criteria for In Vitro-In Vivo Comparison

In Vitro Criteria

- Must be statistically significant
 p < .01/14 = .000714
- Must have an EC50 within the tested concentration range.
- Must not be cytotoxic at concentrations lower than the EC50.
- If cytotoxicity was observed at 48 hours, and compound met all criteria at 24 hours, then assume cytotoxicity confounded results at 48 hours

In Vivo Criteria

- Data came from DER entered into ToxRefDB
- Must have a lowest effect level (LEL)
- LEL assigned if statistically significant effect was observed, or if a clear dose response of effect was demonstrated.
- Described in detail:

Martin et al. *Profiling Chemicals Based on Chronic Toxicity Results from the U.S. EPA ToxRef Database.* Environ Health Perspect. Doi:10.1289/ehp.0800074.[Online 20 October 2008]

In Vitro – In Vivo

Analysis	Gene	Mouse Liver Apoptosis Necrosis	Rat Liver Apoptosis Necrosis	Rat Liver Hypertrophy	Rat Liver Tumors	Rat Proliferative Thyroid Lesions	Rat Thyroid Tumors
RR	CYP2B6	0.81	2.00	2.26	0.62	2.25	3.83
Sensitivity	CYP2B6	0.45	0.67	0.69	0.38	0.69	0.79
Specificity	CYP2B6	0.49	0.52	0.59	0.49	0.55	0.55
RR	ABCB11	2.20	0.79	1.39	1.49	1.23	1.51
Sensitivity	ABCB11	0.32	0.14	0.23	0.24	0.21	0.24
Specificity	ABCB11	0.86	0.82	0.85	0.83	0.83	0.84
RR	HMGCS2	1.27	1.10	1.00	1.65	1.19	1.35
Sensitivity	HMGCS2	0.61	0.57	0.55	0.67	0.59	0.62
Specificity	HMGCS2	0.47	0.46	0.45	0.47	0.46	0.47
RR	CYP1A1	1.12	1.51	1.44	2.01	1.04	1.36
Sensitivity	CYP1A1	0.27	0.33	0.32	0.40	0.26	0.31
Specificity	CYP1A1	0.76	0.76	0.79	0.77	0.75	0.76
RR	CYP3A4	1.10	0.87	1.41	0.87	1.06	1.52
Sensitivity	CYP3A4	0.35	0.30	0.41	0.30	0.34	0.43
Specificity	CYP3A4	0.68	0.67	0.71	0.67	0.67	0.69

Predicting Thyroid Tumorigenicity

United States Environmental Protection Agency

Analysis	Gene	Mouse Liver Apoptosis Necrosis	Rat Liver Apoptosis Necrosis	Rat Liver Hypertrophy	Rat Liver Tumors	Rat Proliferative Thyroid Lesions	Rat Thyroid Tumors
RR	CYP2B6	0.81	2.00	2.26	0.62	2.25	3.83
Sensitivity	CYP2B6	0.45	0.67	0.69	0.38	0.69	0.79
Specificity	CYP2B6	0.49	0.52	0.59	0.49	0.55	0.55

Chemical Class	Chemical	In Vitro CYP2B6 EC50 (μΜ)	In Vitro CYP2B6 EMAX (F/C)	In Vitro UGT1A1 EC50 (μΜ)	In Vitro UGT1A1 EMAX (F/C)	Rat Thyroid Tumors LEL (mg/kg/day)	Human CYP2B6 Oral Equivalent (mg/kg)	Human UGT1A1 Oral Equivalent (mg/kg)
amide	Oryzalin	5.64	57.48	х	2.99	112	х	х
amide	Propyzamide	18.92	42.91	Х	4.49	49	Х	Х
amide	Alachlor	8.98	11.33	5.11	3.05	126	X	X
amide	Boscalid	3.85	9.79	4.86	4.21	116	X	X
amide	Acetochlor	0.48	7.02	0.09	2.47	250	0.13	0.02
conazole	Triadimefon	22.19	57.70	34.87	4.02	114	7.61	11.97
conazole	Fenbuconazole	1.03	15.93	8.41	2.80	31	Х	Х
conazole	Imazalil	0.38	11.75	0.39	2.22	66	Х	Х
pyridine	Thiazopyr	0.91	55.20	0.20	2.38	44	0.26	0.06
pyridine	Fluazinam	0.16	5.89	0.44	2.04	4	х	х
pyridine	Fluroxypyr	0.02	4.17	0.01	0.97	500	Х	Х

• 23 True Positives; 7 False Negatives for CYP2B6 induction

• True Positives: 5 Amides, 3 Conazoles, 3 Pyridines

- Would the rat thyroid tumor MOA be relevant to humans?
- Although biologically plausible, are current exposures relevant for human risk?

Acknowledgements

The Hamner

Rusty Thomas Harvey Clewell Mel Andersen Frank Boellmann

<u>EPA</u>

Keith Houck Matt Martin Bob Kavlock Richard Judson David Dix

CellzDirect

Ed LeCluyse Stephen Ferguson Andrew Beam Kimberly Pott

Gene Target	Primary Receptor	Positive Control	Relavance			
CYP2C9	CAR/PXR/Others	Phenobarbital	Involved in the metabolism of many non-steroidal anti-inflammatory drugs (NSAIDs) and sulfonylureas and the anticoagulant warfarin			
CYP1A1	AhR	3-MC	Primarily involved in xenobiotic and drug metabolism and in the metabolic activation of aromatic hydrocarbons			
CYP1A2	AhR/Others	3-MC	Involved in the metabolism of many drugs, higher basal expression in the liver than CYP1A1			
CYP2C19	CAR/PXR/Others	Phenobarbital	P450 for metabolism of several groups of drugs including many proton pump inhibitors (omeprazole) and antiepileptics			
CYP3A4	CAR/PXR	Rifamipicin	Involved in the metabolism of xenobiotics and endogenous substrates			
CYP2B6	CAR/PXR	Phenobarbital	Principle CAR target gene involved in xenbiotic metabolism			
GSTA2	GSTA2 CAR/PXR/Others		Phase II conjugating enzyme involved in glutathione conjugation/metabolism			
SULT2A1	CAR/PXR/Others	Rifamipicin	Phase II conjugating enzyme involved in the sulfation of endogenous substrates and xenobiotics			
UGT1A1	CAR/AhR/PXR/Others	Phenobarbital	Phase II conjugating enzyme, an enzyme of the glucuronidation pathway that transforms small lipophilic molecules, such as steroids, bilirubin, and hormones into water-soluble compounds			
ABCB1	PXR/CAR/Others	Phenobarbital	ATP-dependent efflux pump with broad substrate specificity,and involved in the efflux of chemicals and endogenous substrates			
HMGCS2	PPARα/Others	Fenofibric Acid	Cholesterol metabolism enzyme and sentinel gene for human PPAR alpha nuclear receptor			
ABCB11 (BSEP)	FXR/Others	CDCA	Hepatic transporter involved in the efflux of bile acids from hepatocytes into the bile			
ABCG2 (BCRP)	CAR/PXR/PPARa/Others	Phenobarbital	Xenobiotic transporter which may play a major role in multi-drug resistance			
SLCO1B1 (OATP-C) PXR/Others		Rifamipicin	Solute carrier organic anion transporter family, mediates the Na(+)-independent transport of organic anions			

Transcription factor	Dimerization partner	Examples of ligands	Genes Regulated CYP1A, CYP1B GST, UGT, NQO		
AHR	ARNT	Dioxins, non- <i>ortho</i> PCBs, some PAHs, bilirubin, omeprazole, etc.			
CAR	RXR	Phenobarbital (PB), TCPOBOP, chlorinated pesticides, <i>ortho</i> -PCBs, androstanol/androstenol (inhibits)	CYP2B , CYP3A, CYP2C, GST, ABC transporters		
PXR	RXR	Rifampicin, PB, <i>ortho</i> -PCBs, hyperforin pesticides, dexamethasone, pregnenalone, corticosterone, bile acids (lithocholic acid)	CYP3A , CYP2B, CYP2C, CYP7A (repression) GST, ABC transporters		
PPAR	RXR	Fibrate drugs, phthalate esters, linoleic acid, arachidonic acid	CYP4A, CYP7A (repression) CYP8B, LX, HMGCS2		
LXR	RXR	Cholesterol; (24 S)- hydroxycholesterol	CYP7A, ABC transporters, LXR		
FXR	RXR	Bile acids, chenodeoxycholic acid	Represses CYP7A, CYP8B, CYP27A; Induces BSEP , BCRP		

			-					
CAS No.	Chemical	In Vitro CYP2B6 EC50 (µM)	In Vitro CYP2B6 EMAX (F/C)	In Vitro CYP2B6 Hit	In Vitro UGT1A1 Hit	Rat Thyroid Tumors LEL (mg/kg/day)	Chemical Class Tier 1	Chemical Class Tier 2
63-25-2	Carbaryl	18.75	71.01	1	0	350	carbamate	
43121-43-3	Triadimefon	22.19	57.70	1	1	114	conazole	triazole
19044-88-3	Oryzalin	5.64	57.48	1	0	112	amide	sulfonamide
29091-21-2	Prodiamine	16.63	56.88	1	1	151	dinitroaniline	
117718-60-2	Thiazopyr	0.91	55.20	1	1	44	pyridine	
40487-42-1	Pendimethalin	28.26	54.66	1	0	213	dinitroaniline	
82-68-8	Quintozene	5.32	43.37	1	0	150	aromatic	
23950-58-5	Propyzamide	18.92	42.91	1	0	49	amide	
74115-24-5	Clofentezine	4.84	41.63	1	1	17	tetrazine	
10453-86-8	Resmethrin	6.73	34.71	1	0	401	pyrethroid	pyrethroid ester
53112-28-0	Pyrimethanil	6.92	28.32	1	0	221	pyrimidine	
834-12-8	Ametryn	0.54	27.35	1	1	145	triazine	methylthiotriazine
114369-43-6	Fenbuconazole	1.03	15.93	1	1	31	conazole	triazole
148-79-8	Thiabendazole	5.61	13.67	1	0	30	benzimidazole	
87818-31-3	Cinmethylin	5.05	13.54	1	0	150	unclassified	herbicide
35554-44-0	Imazalil	0.38	11.75	1	1	66	conazole	imidazole
15972-60-8	Alachlor	8.98	11.33	1	1	126	amide	anilide
188425-85-6	Boscalid	3.85	9.79	1	1	116	amide	anilide
34256-82-1	Acetochlor	0.48	7.02	1	1	250	amide	anilide
79622-59-6	Fluazinam	0.16	5.89	1	1	4	pyridine	
361377-29-9	Fluoxastrobin	0.66	5.28	1	0	1083	antibiotic	strobilurin
69377-81-7	Fluroxypyr	0.02	4.17	1	0	500	pyridine	
8018-01-7	Mancozeb	0.33	2.62	1	1	31	dithiocarbamate	polymeric dithiocarbamate
113-48-4	MGK	NA	78.30	0	1	450	unclassified	insect repellent
111988-49-9	Thiacloprid	NA	24.29	0	1	3	nicotinoid	pyridylmethylamine
141112-29-0	Isoxaflutole	NA	13.15	0	0	500	cyclopropylisoxazole	
51338-27-3	Diclofop-methyl	NA	7.77	0	0	32	phenoxy	aryloxyphenoxypropionic
121-75-5	Malathion	NA	6.27	0	1	29	organophosphorus	organothiophosphate
133-07-3	Folpet	0.04	1.82	0	1	9	dicarboximide	phthalimide
104206-82-8	Mesotrione	0.00	0.88	0	0	189	benzoylcyclohexanedione	

Regulation of bile acid synthesis by an ileal bile acid sensing system Environmental Protection Agency

