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Preface

Each year the impact of hurricanes and
tornadoes take their toll of lives and of
whole communities. Despite the billions of

dollars in losses annually in the United States
alone, those losses are still less today than they
would have been a decade ago. That is because our
ability to forecast climatic events has become
increasingly more sophisticated and accurate. In
forecasting hurricanes, for example, the lead time
has become long enough to warn communities
about the need for precautions in protecting their
people and to alert them on whether or not they
need to evacuate threatened areas.

Unlike these seasonal disruptions in weather,
the El Niño Southern Oscillation is a climatic
cycle that has longer term implications on
weather patterns throughout the world. The 12-
to 18-month cycling between warm states (El
Niño) and cold states (La Niña) can alter tempera-
tures and rains to such an extent that they signifi-
cantly disrupt agriculture, commercial fishing,
tourism and many diverse businesses and indus-
tries. Over the last decade, we have improved the
forecasting of El Niño Southern Oscillation
(ENSO) so that we can now predict these events
and their expected climatic impacts on different
regions with some 70 to 80 percent accuracy a
year before they occur.

Such forecasts and potential improvements on
them have powerful new economic implications that
industry can turn to its advantage better than it has so
far. The papers in Improving El Niño Forecasting: The
Economic Benefits give different perspectives on just
how by examining the impacts of seasonal climate

variations, current forecasting capabilities, and the
potential economic benefits of further improving
them. They assess the economic impact of the 1997-
98 El Niño, arguably the major climate event of this
decade, and attempt to put a dollar amount on the
benefits of improved El Niño forecasts.

In “Assessing the Economic Impacts of El
Niño and the Benefits of Improved Forecasts,”
Rodney Weiher and Hauke Kite-Powell point out
that nearly 15 percent of GDP originates in climate
sensitive industries and that the economic impacts
of the 1997-98 El Niño likely exceeded $10 billion,
although, because of the many winners and losers,
it is not clear whether the net effect was positive or
negative. They provide snapshots of how producers
and consumers were impacted by El Niño and how
they can benefit from improved forecasts. In
surveying a number of commercial sectors, the
authors argue the cost effectiveness of stepping up
public investment in U.S. capabilities for improving
the acquisition of climatic data on which better
modeling and ENSO forecasting will depend.

Thomas Teisberg’s premise in “The Eco-
nomic Value of an Improved ENSO Forecast” is
that for climatic forecasts to have economic value,
businesses must be able to make better decisions
based on making use of them. He considers a
number of situations - among them, the preven-
tion of property damage, agriculture, space
heating and cooling systems, hydroelectric man-
agement, construction and outdoor recreation - to
assess how well they meet this criteria.

Agriculture is the most climate sensitive
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industry and climate is the primary determinant of
agricultural productivity. In “‘The Economic
Consequences of El Niño and La Niña for Agricul-
ture,” Richard Adams, Chi Chang Chen, Bruce
McCarl and Rodney Weiher present estimates of the
impacts on U.S. agriculture of the 1997-98 El Niño
and the 1998-99 La Niña; those losses range from
$1.5 to $1.7 billion from El Niño and $2.2 to $6.5
billion from La Niña.

El Niño can be a big factor in how much it
costs to heat homes and businesses. The “Effects
of 1997-1998 El Niño on Natural Gas and Distil-
late Fuel Oil Costs” by Thomas Teisberg summa-
rizes estimates of consumer fuel costs savings that
resulted from the warmer temperatures which El
Niño brought with it in 1997-98. According to
Teisberg, the total cost savings from reduced use
of natural gas in residential and commercial
sectors and for total distillate fuel use added up to
more than $2 billion. An accompanying case study
by Richard Nichols of Minnegasco, a large natural
gas distributor in Minnesota, evaluates the impact
of the extremely warm El Niño temperatures—
nearly 10 percent warmer than average—on
decision-making within the company and suggests
how business risks could be evaluated with better
long-term forecasts.

“The Value of Improved ENSO Prediction to
U.S. Agriculture” by Andrew Solow and a team of
collaborators reports on the first systematic effort
to estimate the economic value of more accurate
El Niño predictions on U.S. agriculture. In broad
terms, the economic effect of improved ENSO
prediction is the same as a technological improve-
ment that increases the supply of agricultural
products. Recognizing the limitations of such
empirical forecasting, the authors calculate the
value to consumers and producers of improved
forecast at $266 to $320 million annually. Put
another way, if these future annual benefits are
expressed in today’s dollars and appropriately
discounted, the value to the agricultural sector of
a high skill ENSO prediction operating over 10
years is around $2 billion.

In “The Value of El Niño Forecasts in Agricul-
tural Commodity Markets: The Case of U.S. Corn”
Kevin McNew focuses on potential savings in the

costs of stockpiling farm commodities with better
climate forecasts. He concludes that with perfect
predictions of El Niño events, U.S. corn stocks would
decline by some 9 percent on average, about a $240
million benefit annually to farmers and consumers.

Richard Adams and his colleagues in “The
Value of Improved ENSO Forecasts on Fisheries in
the Pacific Northwest” assess the economic value
of improved ocean and climatic forecasting on
ocean fisheries, in particular, the environmentally
sensitive but commercially small coho salmon
fishery. Based on preliminary assessments, the
authors employed two different models and
estimate annual returns between $250,000 and
$900,000 on the coho fishery, while pointing out
better management actions that can be taken in
the face of an accurate ENSO forecast.

Our ability to accurately forecast ENSO events
is the result of investments in ocean observing
systems and climate research. In the concluding
paper, “Cost Benefit Analysis of TOGA [Tropical
Ocean Global Atmosphere] and ENSO Observing
System,” the late Peter Sassone and Rodney Weiher
summarize a cost-benefit analysis of the TOGA
ocean observing program. Using benefits to US
agriculture alone, and depending upon forecast
accuracy and the degree to which farmers use the
forecast, they report that these investments return
at least 13 to 26 percent per annum, which is
considerably above the minimum seven percent
required for government investments in the U.S.

The summary papers in this volume all point
to one conclusion: improvements in climatic
forecasting of El Niño can have economic payoffs
for businesses and the U.S. population. The
overriding message is this: while we have im-
proved our climate forecasting considerably over
the last decade and have reaped social and eco-
nomic advantages, we have the opportunity for
making further improvements. With such im-
provements, the potential economic value to
different sectors throughout our national
economy could improve significantly as well.

Rodney Weiher
NOAA Chief Economist

Office of Policy and Strategic Planning
August 1999



3

Assessing the Economic Impacts of
El Niño and Benefits of Improved

Forecasts
Rodney Weiher and Hauke L. Kite-Powell

Variations in climate from one year to the
next can have significant economic conse
quences. For example, the El Niño of 1997/

98 brought a mild winter to the northern Midwest
and greater than average rainfall to the Southwest
and the west coast of the United States. As a
result, U.S. energy consumers spent $2.2 billion
less on oil and gas for heating than in an average
year,1 and losses in U.S. agricultural production
cost producers and consumers about $3 billion.2

Worldwide, effects associated with the El Niño/
Southern Oscillation (ENSO) climate phenom-
enon appear to account for over 20 percent of
commodity price inflation movements in recent
years.3 Today, ENSO events are well documented
and, increasingly, predicted with accuracy. Both
the events themselves, and more importantly their
forecasts, are being used as an input to important
economic decisions.

The magnitude of weather and climate effects
on economic activity has led to a rapidly growing
market for “weather hedges”—a form of insurance
against economic losses from weather and climate
swings. By some estimates, the market for weather
hedges may reach $70-100 billion in a few years.4

Hedges and insurance are one form of protection,
but they do not eliminate losses from climate
fluctuations: they merely spread the risk, and
reduce a particular firm’s exposure. To actually
reduce the economic impact of climate fluctua-
tions, we need better climate forecasts.

We are now able to forecast ENSO events one
year in advance with about 70 percent accuracy.
This is a big improvement over what was possible

just ten years ago, but important gaps remain in
the forecast of specific consequences. Take, for
example, the 1997/98 El Niño—probably the most
widely anticipated and publicized worldwide
climate event ever. It followed historical El Niño
patterns, but with some important variations.
Historically, El Niño winters produce cool, wet
conditions from the southern Plains eastward to
Florida and mild weather in the northern Plains
and New England. There is also some tendency for
dryness in the Ohio Valley and over the northern
Great Plains, and for enhanced storminess in
California. The U.S. National Weather Service
correctly forecast heavy winter precipitation
across California and the southern Plains/Gulf
Coast region at least six months ahead of time.
The warmth across the northern half of the
country was also correctly forecast, though it
extended further southward than anticipated.
While fall and winter forecasts were reasonably
good, the quality of forecasts for spring was poor
because a circulation pattern developed that did
not conform to historical El Niño events.

From the country’s perspective, some effects
of climate fluctuations are more significant than
others. For example, the reduced use of oil and
gas for heating during the winter of 1997/98
produced benefits for consumers (lower expendi-
tures) but resulted in costs for energy suppliers,
who were unable to sell as much product as they
expected. The net effect for the country is the
balance of these consumer and producer effects; in
this instance, it was probably a net positive. On
the other hand, the $3 billion loss in agriculture is
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a true loss in consumer and producer surplus –
the value consumers get from buying agricultural
produce at lower costs and the profits producers
make by growing it. Table 1 lists these and other
economic activities that are affected by climate
events (see Columns 2 and 4, page 6).

Among other effects, the 1997/98 El Niño
contributed to winter floods in California that
damaged strawberry and lettuce crops, a cool
spring in Arizona that delayed cotton planting,
and a drought in Texas that affected most crops.
Using data on crop yields from past ENSO event
years and economic models of the U.S. agricul-
tural sector, it is possible to estimate the eco-
nomic consequences of these effects. If the effects
of the past winter’s La Niña track those of the
1988 event, for instance, the economic losses in
U.S. agriculture will be in the range of  $2-6
billion.2 The pattern of these events is not uni-
form, and some regions, such as the Southeast
and Southwest, are affected more than others.

The economic effect on the U.S. economy as a
whole from the 1997/98 El Niño is not known
precisely; and it is not even clear whether the net
effect was positive or negative. Collectively, climate-
sensitive industries, such as agriculture, recreation,
construction, energy distribution, and water supply
management, account for nearly 15 percent of GDP.
Based on examples such as those in Column 3 of
Table 1, aggregate economic impacts of the recent
El Niño were likely in excess of $10 billion. The
important point, however, is that better forecasts
can help turn climate events to advantage.

How can forecasts help? Climate forecasts
are valuable if producers and consumers can use
them to make decisions that improve the outcome
of their economic activities (see Column 3 of Table
1). For example, farmers can use temperature and
precipitation forecasts with lead times of six to 12
months to make decisions about what crops to
plant. If their region is expected to be drier than
usual during the coming growing season, farmers
may choose to plant more drought-resistant
varieties, and thereby improve crop yields. Simi-
larly, energy distribution companies could in-
crease stockpiles of heating oil and gas if the
coming winter is forecast to be colder than usual,

thereby avoiding shortfalls that are costly to both
distributors and consumers. Even coat and
apparel manufacturers are using forecasts with up
to one-year lead times to anticipate demand for
their merchandise—and buying weather insur-
ance to cover potential losses.5

Benefits may also be realized in other indus-
tries that depend on weather, such as water reser-
voir management for hydroelectric power genera-
tion and irrigation, construction, and storm
damage mitigation and repair. For example, there is
evidence that extensive preparations by California
homeowners, businesses, and emergency manage-
ment officials in response to the ENSO forecast
paid off handsomely in reduced storm damage.
Property damage along the California coast was a
hefty $500 million in the first three months of
1998, but this was much lower than the $1.8 billion
losses recorded from the severe coastal storms in
both 1995 and 1997.6 Weather and climate forecasts
are increasingly being relied upon in industries
such as agribusiness, motor and rail freight,
recreation, and, of course, air transportation.

Several recent studies have focused on how
forecasts of climate events can be used in indus-
tries such as agriculture (see Column 5 of Table
1). One of these studies found that by incorporat-
ing NOAA’s ENSO forecasts into planting deci-
sions, farmers in the United States could increase
agricultural output and produce benefits to the
U.S. economy of up to $300 million per year,
depending on the accuracy of the forecast.7

Another study has estimated that the value to
society of ENSO forecasts on corn storage deci-
sions in certain years may be as high as $240
million—or one to two percent of the value of
production.8 Interestingly, the corn storage study
suggests that in certain cases, the value to society
of improving the forecast is greater when the
forecast is more accurate to begin with.

Like agriculture, segments of the fishing
industry can gain by incorporating climate forecasts
into management and harvest decisions. For example,
using ENSO forecasts in a small northwestern coho
salmon fishery has been estimated to produce net
benefits of nearly $1 million per year, nearly 10
percent of the landed value produced by this fishery.9
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There are no quantitative estimates of the
value of climate forecasts to the heating energy
distribution business. Compared to agriculture, it
is difficult to make year-by-year adjustments in oil
and gas distribution because the energy business
relies on expensive infrastructure and because the
cost of running short in a cold winter is great for
both suppliers and consumers. However, it is likely
that suppliers could make economic use of climate
forecasts by building additional stores when a
colder winter is expected and by timing drawdowns
to minimize storage-related costs. The resulting
lower prices would benefit consumers as well.

When farmers and others make plans based
on “average weather,” disruptions in climate can
lead to economic losses. The ability to forecast
climate variations allows people to tailor their
decisions and reduce these losses. A long-term
strategy of following the climate forecasts should
result in increased benefits to society. However,
this requires confidence on the part of decision
makers in the quality of the forecasts. By some
measures, present ENSO prediction is about 70
percent accurate one year in advance, but the
predictions of associated climate events are not
yet perfect. For example, the 1997/98 El Niño was
expected to bring a relatively wet fall and a dry
spring to the Tennessee Valley Authority’s reser-
voir recharge areas—but the opposite pattern
materialized, in part because of nontypical circu-
lation patterns. Further, in agriculture, changes in
crop yields are only one factor determining
economic consequences to farmers and consum-
ers; local and international economic conditions
also play an important role.

What is needed to produce better forecasts? In
short: better models and better data. Climate models
produce temperature and precipitation forecasts
from data on ocean temperature, atmospheric
pressure, and other factors. In the United States, the
public and the private sectors share in the effort to
produce and make use of climate forecasts. Several
private weather forecasting companies produce
tailored products for clients in many industries.
These forecasters rely on base data and fundamental
models provided by the government. This division of
responsibility is sensible. The oceanic and atmo-
spheric observations on which weather and climate

forecasts depend are a classic public good, most
efficiently provided by a public organization like
NOAA.

Improving climate forecasts now will require
some new investment in the public sector part of
this system. The cost-effectiveness of earlier
investments in ocean observation has been amply
demonstrated. The buoys arrayed in the tropical
Pacific to measure ocean temperature and other
conditions are the basis for our ENSO predictions.
Better ocean observations are on the critical path
to improved forecasts; efforts are now underway to
produce more extensive and consistent observa-
tion of ocean conditions through a Global Ocean
Observing System (GOOS). And recently, the
National Research Council called for better
coordination among U.S. efforts to improve
climate models. These initiatives are important if
we are to continue to make progress in the age-
old human endeavor to anticipate and guard
against fluctuations in climate and weather. 
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economic
activity

Column 1

economic scale of
activity

Column 2

effect of long term weather
fluctuations

Column 3

how forecasts can be
used

Column 4

effects of the 1997/98
ENSO event

Column 5

estimates of
forecast value

(perfect forecast)

Crop
agriculture

$109 billion (1996
cash receipts, all
U.S.)

temperature and rainfall
affect crop yields

farmers can select crop
varieties appropriate to
expected temperature
and rainfall conditions;
distributors can reduce
commodity storage if
uncertainty about future
yields is reduced

$3 billion losses to
producers and
consumers

$300 million/year
for U.S.
agriculture

$240 million/year
for corn storage
industry

Fisheries $3.5 billion (1996
landings, all U.S.)

water temperature and
streamflow affect fish
abundance and reproductive
behavior

fishery managers can
adjust harvesting to
ensure adequate
spawning

decreased output of
fishmeal in South
America

$1 million/year
for one
northwestern coho
salmon fishery

Oil and gas
distribution

$76 billion (1992
natural gas
production and
distribution)

$7 billion
(residential and
commercial
heating gas and
fuel oil, average)

temperature affects demand
for heating fuels

energy suppliers can
adjust fuel stores and
better time drawdown of
stored fuel

$2 billion reduced
expenditures for heating
fuels due to mild winter

?

Water
supply
management

? precipitation affects the
amount of water entering
reservoirs and the demand for
irrigation

water supply managers
can improve reservoir
management by
anticipating future
inflows

fall precipitation was
late, but spring flows
tracked forecast

?

Storm
damage
mitigation
and repair

$16.7 billion
(1992 value of
roofing/siding
construction
work)

storms (wind and
precipitation) cause damage
to buildings and other
infrastructure

homeowners can take
measures to minimize
storm damage
(preemptive repairs);
municipalities can
prepare for possible
floods (clearing
drainage canals, etc.)

$500 million in property
damage in California

$275 million FEMA
obligations for storm
and flooding damage

sales of roofing material
etc. up 20% in CA

?

Table 1
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Recreation $100 billion (1992
hotels and recreational
amusement centers)

temperature and snowfall affect
winter sports conditions; rainfall
affects other outdoor recreation

vacationers can improve
their vacation
experience by better
planning their travel and
sports activities

better than average
recreational fishing in
California, Florida, mid-
Atlantic states

?

Construction $528 billion (1992
construction
industries)

temperature and precipitation affect
whether construction can proceed

construction managers
can better schedule
projects

increased seasonal home
construction in mid-
Atlantic region; more
working days for
carpenters, painters, etc.

?
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The Economic Value of an Improved
ENSO Forecast

Thomas J. Teisberg

Abstract

For an improved ENSO forecast to have
value, two conditions must be met. First,
economic wealth or income must be af-

fected by the weather, and second, it must be
possible to make better economic decisions when
a reliable ENSO forecast is available. This paper
presents a brief discussion of a number of areas
where these two conditions may be met. Of these,
agricultural production may be the most impor-
tant. Other areas where an improved forecast may
have significant value are prevention of storm
damage, natural gas storage, and management of
hydroelectric facilities.

I. Introduction
In recent years, the National Oceanic and

Atmospheric Administration (NOAA) has been able
to make reliable forecasts of the weather phenom-
enon known as the El Niño Southern Oscillation
(ENSO). ENSO has three states, known as El
Niño, El Viejo (or La Niña), and Normal. US
weather conditions over periods of several months
are predictably different depending on which of
these states exists. For example, during an El Niño
state, winter weather tends to be warm in the
Upper Midwest, and wet in the Southeast. NOAA
has become proficient at predicting the ENSO
state with several months leadtime.

Most people automatically assume that
better weather information is a good thing and
thus would have economic value.1 The true
situation is more complicated, however. For a
better weather forecast to have economic value,
two conditions must be met. First, weather must

have an effect on economic wealth or income.
Second, and more subtly, it must be possible to
make better economic decisions when a better
weather forecast is available. As the foregoing
implies, to find situations where a better weather
forecast would have economic value, one must
identify situations where wealth or economic
activities are affected by weather and in which it is
possible to make better decisions if a reliable
forecast is available.

II. Possible Effects of Weather on
Economic Wealth or Activity

Economic wealth is affected by weather when
there are storms strong enough to damage prop-
erty.2 Also, a number of economic activities are
clearly affected by weather. Perhaps the must
obvious such activity is agriculture, which is
highly sensitive to both temperature and precipi-
tation. In addition, space heating and cooling
requirements obviously depend on outside tem-
peratures. Perhaps less obviously, water manage-
ment for power generation is sensitive to precipi-
tation. Construction activities are more efficiently
carried out when the weather is warmer and dryer.
Some kinds of outdoor recreation, such as skiing,

 1Better information should never be a bad thing, since
information can always be ignored.  However, there is a
possible exception to this—the “ignorance is bliss” excep-
tion.  For example, if you could learn the exact date of your
death, but you could do nothing to change it, your enjoy-
ment of what remains of your life might be diminished by
knowledge of your date of death.

2 Some storms are strong enough to present risks to
human life.  However, regular daily weather forecasts, rather
than inter-annual ENSO forecasts, are relied on to avoid or
reduce these risks.
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may be more enjoyable and/or cheaper to provide
when temperature and precipitation patterns are
favorable.

III. Making Better Decisions With a
Reliable Forecast

As noted above, for a forecast to have eco-
nomic value, it must be true that better decisions
can be made if a better weather forecast is avail-
able. The following sections discuss whether this
condition is likely to be met in the situations
noted above where weather affects economic
wealth or economic activity.

A. Preventing Property Damage
There certainly appear to be situations where

decisions that protect property from storm
damage can be improved if a reliable ENSO
forecast is available. On the U.S. West Coast, for
example, El Niño frequently brings a great in-
crease in winter precipitation. Prior to the winter
of 1997-8, there were reports of heavy demand for
the services of roofing contractors, as people
repaired or replaced roofs in anticipation of
predicted El Niño storms. This can be viewed as
routine maintenance work that is accelerated
because there is reason to think that winter
storms will be particularly strong. The benefit of
such accelerated maintenance is a reduction in
the risk or extent of damage to the inside of
structures due to leaking roofs during heavy
winter storms.

B. Agriculture
In agriculture, there are many decisions that

could be improved if a reliable weather forecast is
available. Different crops have different water
requirements, temperature sensitivities, and
growing seasons. Thus, crop choice is a key
decision that is sensitive to a weather forecast. In
addition, for any given crop, there may be deci-
sions about the timing of planting and harvesting
and methods of fertilization and pest control that
might be improved with a better weather forecast.

A recent study considered the value of
improved weather forecasts for agriculture in the

U.S.3 This study focussed on decisions about what
crops to plant. For a perfect ENSO forecast, the
study found that the value of the forecast was on
the order of $320 million per year or one to two
percent of the total farm-gate value of crop
production. For a forecast accuracy improvement
from 60 percent to 80 percent, the value of the
forecast improvement was estimated to be about
$240 to $265 million.

C. Space Heating and Cooling
For space heating and cooling systems, the

decisions that could be made better with a better
weather forecast are less obvious. At the “down-
stream” consumption end of heating and cooling
systems, most people simply set a thermostat that
automatically makes “on the spot” fuel consump-
tion decisions depending on weather conditions as
they change. Somewhere in the fuel delivery
system, however, people make decisions that
determine the system’s capacity to deliver fuel or
energy. These decisions are a little different
depending on whether the energy system is one
supplying natural gas or petroleum.

Natural gas is primarily delivered by pipeline.
Pipelines are costly to build, and once built will last
for years. Thus, pipeline construction decisions will
not be affected by one season’s forecast of warmer
or colder weather. As a result, the capacity of
pipelines to deliver gas is strictly limited in the
short run, and gas storage is used to deal with short
run variations in the demand for gas.

In a typical gas system, there may be two
kinds of storage—large scale storage of gas in
underground sites such as salt domes, and much
smaller scale storage of gas in the form of propane
that can be added to natural gas. Typically, the
propane storage is located very near to gas mar-
kets, and it is used to meet extreme peak winter
gas demands over periods of days. Underground
storage, on the other hand, is gas that is set aside
during the summer months to augment flowing
gas provided during the winter heating months.
This gas might be drawn down over periods of
weeks or months. The following discussion
focuses on underground storage, since it is
quantitatively much more significant.

To what extent might underground gas

3 See Solow, et. al., “Value of Improved ENSO Predic-
tion to U.S. Agriculture,” Climate Change, 39:47-60, 1998.
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storage be managed differently if, for example, an
upcoming winter is predicted to be warmer due to
an El Niño ENSO state? The decision about how
much gas to place into storage is driven by the
short-run (or variable) costs of storing the gas, on
the one hand, and the costs of a gas shortfall, on
the other hand. The short-run costs of storage
include costs of initial gas injection and holding
costs comprised of any physical maintenance
costs, possible gas losses during handling and
storage, the cost of capital tied up in stored gas,
and expected capital gains or losses on gas held in
storage. A gas shortfall occurs when firm (i.e.
non-interruptible) gas customers do not receive as
much gas as they want. This can be very expen-
sive, both directly and in terms of the public
relations ramifications for the gas utility. The
primary direct cost of a shortfall is the discomfort
and inconvenience inflicted on gas users forced to
do without gas for a period of time when it is very
cold outside. The second direct cost of a shortfall
includes having to physically shut off all gas
consumers’ appliances prior to repressurizing the
gas system. This can take a work crew several days
for even a relatively small city. Even if a direct gas
shortfall is avoided, there are some costs associ-
ated with asking interruptible customers to stop
using gas. These are the costs to the interruptible
customers of switching to a more expensive
alternative fuel supply.

It seems likely that the cost of storing gas is
relatively small, especially since the price of gas is
likely to be lower in the summer and higher in the
winter, thereby creating a capital gain on stored
gas actually sold before the winter ends. On the
other hand, the costs of having insufficient gas
available in the winter appear to be very large. The
common sense expectation, therefore, is that it is
optimal to fill up gas storage facilities more or less
completely each summer, regardless of what the
forecast for the following winter may be. In other
words, the gas storage decision may not be sensi-
tive to a weather forecast.

The story may be different for the decision
about drawing down stored gas after the winter
peak demand period. At this point, the potential
capital gain from storing gas in the summer for
sale in the winter will be disappearing. As a result,

delaying the sale of gas in storage becomes very
expensive at this time. Also, the peak demand
period is increasingly likely to have passed, so the
expected costs of a shortage of gas diminish steadily
as spring approaches. Under these conditions, it
makes increasing sense to use any gas remaining in
storage, and the timing of such use is a decision
that is likely to be influenced by the weather
forecast for the remainder of the winter. Thus, it is
with respect to this decision that there is likely to
be an economic value of improved weather fore-
casts in the natural gas delivery system.

Fuel oil is another energy source used for
space heating. Fuel oil is made from crude petro-
leum in refineries that also produce gasoline and
other products derived from petroleum. Crude
petroleum itself is delivered to refineries by
pipeline and/or ships. Refined products may be
delivered from the refinery by pipeline, railroad,
trucks, ships or a combination.

Like pipelines, refineries are expensive long-
lived pieces of capital that are not built, retired, or
put to another use in anticipation of a colder or
warmer winter. However, different crude oils may be
run through refineries to change the output mix of
the refinery, and refinery processes may also be
adjusted to change the output mix. In this way, the
output of fuel oil may be increased in the winter, and
the output of gasoline increased in the summer.

In contrast to the situation with natural gas,
the fuel oil delivery system is somewhat flexible,
since much of the delivery system can be
reconfigured quickly in response to changes in
local demands for fuel oil. That is, trucks, railroad
cars, and ships can be redeployed from other
geographic regions to meet a sudden increase in
demand in one particular region. Consequently, a
local peak in demand can often be met by redirect-
ing fuel oil deliveries from other areas not simul-
taneously experiencing a peak in demand. Thus, in
a fuel oil delivery system, the peak demand that
must be considered is one averaged over a large
geographic area, and this is likely to be a smaller
peak relative to average demand.

Still, changing the refinery output mix and
redirecting fuel oil deliveries are not by them-
selves sufficient to meet winter peak demands for
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fuel oil. Thus, as with natural gas, fuel oil is also
stored to meet winter peak demands. Fuel oil
storage may exist at many locations in the refining
and distribution chain, including at ports (in the
case of imported fuel oil), at the refinery, at
distribution facilities located near markets, and
even at the point of use. In fact, storage at the
point of use may be quite significant, since a
typical residence using fuel oil might store
enough for a month’s usage during the winter.
Since many fuel oil customers have contracts for
automatic oil deliveries, it would be possible for
retail fuel distributors to make some use of
storage at customer locations, by appropriately
adjusting their delivery schedules. Overall, how-
ever, storage appears to be a relatively less impor-
tant component of the fuel oil delivery system
than it is for the natural gas system.4

Unlike the situation in natural gas, an actual
winter shortfall of fuel oil seems to be a very unlikely
occurrence. This is presumably because the oil
delivery system has sufficient flexibility to increase
production and/or redirect supplies so that actual
shortages do not occur. Thus the decision about how
much fuel oil to store is driven by the variable costs
of storing oil, on the one hand, and the expected
value (i.e. price) of oil during the winter season, on
the other hand. The costs of storing fuel oil include
injection and holding costs such as physical mainte-
nance costs, possible (presumably small) losses
during handling and storage, and the cost of capital
tied up in stored oil. These storage costs must be
weighed against the expected capital gain from
holding oil, which is the difference between the price
of the oil at the time of storage and the expected
price at the time of withdrawal and sale.

In general, one should expect that the capital
gain from storing fuel oil would exceed the
variable costs of storing oil. In fact, in long run
equilibrium, the capital gain should exceed
variable costs of storage by enough to pay the

annualized capital cost of installing storage
capacity. For this reason, it will almost always
make sense to fill storage capacity prior to the
peak demand season. In this regard, the situation
with fuel oil is the same as that with natural gas.

Regarding the drawdown of stored fuel oil
during and after the peak in winter demand, the
situation may again be similar to that for natural
gas. That is, when there is a forecast of a warmer
winter, the drawdown of fuel oil stocks would
begin sooner and proceed faster than otherwise.
This means that we should look to the decisions
about optimal fuel oil storage drawdown to find an
economic value of an improved weather forecast
based on prediction of the ENSO state.

D. Hydroelectric Management
Electricity generated from water power is a

relatively small component of total U.S. electric
production. However, hydroelectric power is very
cheap to produce, once the capital stock is in
place. Thus, whenever possible, electric generat-
ing authorities would prefer to use the hydroelec-
tric power instead of some more expensive oil,
gas, or coal fired generation facility. Nature,
however, provides the water to produce hydroelec-
tric power, and it does so in somewhat unpredict-
able amounts. Moreover, there are often other
competing uses for water, such as agricultural
irrigation, recreation, and ecosystem mainte-
nance. For these reasons, the use of water for
hydroelectric power generation is usually carefully
controlled so that other water users are not
compromised.

In view of the above, it is clear that improved
forecasts of precipitation would affect decisions
about the use of hydroelectric generation capacity.
For example, if an upcoming wet season is reliably
predicted to be wetter than normal, somewhat
lower water reserves might be carried into the wet
season, and somewhat higher water use might be
appropriate in the early weeks of a wet season. The
converse would be true if an upcoming wet season
is reliably predicted to be dryer than normal.
Thus, it seems apparent that there would be an
economic value of improved information in the
operation of hydroelectric generating facilities.

E. Construction

4 Storage is about 10 percent of annual consumption
for gas versus about 1 percent for petroleum products.
Storage in each case is defined as the monthly maximum
amount in storage minus the monthly minimum amount
over the last two or three years.  This calculation automati-
cally excludes the large amount of oil in the Strategic
Petroleum Reserve.
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In the case of construction, it was noted
above that this economic activity may be more
efficiently carried out when weather conditions
are favorable. It would also seem that an improved
weather forecast might affect decisions made in
construction activities. For example, it may be
more efficient to carry a given project through to
completion, rather than starting and later sus-
pending work due to unfavorable weather. In some
cases, the inefficiency of stopping and restarting
may be such that the project is simply put off
until some later time when the chance of having
to stop is very small. In such cases, a weather
forecast that clarified the prospects for being able
to carry a project through to completion might
affect when the project is started. Thus there
could be an economic value of better weather
information in the construction industry.

F. Outdoor Recreation
Finally, we come to outdoor recreation. As an

example, consider skiing. From the point of view
of the ski resort operator, there is little reason to
think that an improved weather forecast for the

upcoming ski season would affect his or her
decisions about how to manage the resort. The
amount of natural snow received would presum-
ably affect costs of maintaining the ski slopes and
costs of keeping parking lots cleared of snow, but
it seems unlikely that it would affect the number
of snow making machines or snow clearing crews
available for a given season.

On the other hand, the vacation choices of
skiers might change significantly in response to
better information about weather conditions in
ski areas. Skiers might make different choices
about where to go for a skiing vacation, or even
whether to take a skiing vacation, as opposed to
something else, such as snorkeling in the Carib-
bean or touring the restaurants of France. From
the point of view of operators of outdoor recre-
ation facilities, revenues and profits would be
more variable over time, but would presumably be
about the same or slightly higher on average.5

From the point of view of participants in outdoor
recreation activities, the overall utility or per-
ceived benefits of participation would be higher.
Thus there is reason to think that there would be
an economic value of improved weather forecasts
in outdoor recreation activities.

5 To the extent that better weather information created
greater demand for outdoor recreation (because a spoiled
vacation is easier to avoid), revenues and profits would be
higher.
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The Economic Consequences of
El Niño and La Niña Events for

Agriculture1

Richard M. Adams, Chi Chang Chen, Bruce A. McCarl,
Rodney Weiher

Abstract

Climate is the primary determinant of
agricultural productivity. In many parts of
the world, including the United States, one

can trace much of the year-to-year variations in
climate to the El Niño-Southern Oscillation
phenomenon. In 1997-98 the world experienced a
severe El Niño event and this is being followed by
a strong 1998-99 La Niña. This research develops
estimates of the economic consequences of such
events on U.S. agriculture. Both phases result in
economic damages—a $1.5 to $1.7 billion loss for
El Niño and a $2.2 to $6.5 billion loss for La Niña.
The major conclusion is that ENSO events impose
costs on agriculture and consumers.

Introduction and Background
Climate is the primary determinant of

agricultural productivity. An important aspect of
climate in terms of human well being involves the
effects on agriculture of seasonal and interannual
variation in temperature and precipitation. The
effects of drought and flooding provide the
clearest evidence of the vulnerability of agricul-
ture and food supplies to seasonal variations in
temperature and precipitation. However, less
dramatic climate variations also are reflected in
agricultural production, prices, and profits. In
many parts of the world, including the United
States, one can trace much of the year-to-year
variations in climate to the El Niño-Southern
Oscillation phenomenon.

The El Niño-Southern Oscillation (ENSO)
label refers to a quasi-periodic redistribution of
heat and momentum in the tropical Pacific Ocean.
In broad terms, one can characterize ENSO as a
varying shift between a normal phase and two
extreme phases: El Niño and La Niña (sometimes
called El Viejo). In recent years, the ability to
forecast ENSO events, in particular, the occur-
rence of El Niño events, has improved (Barnett et
al., 1988; Cane et al., 1986, Bengtsson et al.,
1993). These forecasts have potential economic
value because they can stimulate actions that
mitigate against adverse consequences or take
advantage of potential gains from an ENSO phase.

The 1997-98 El Niño is regarded as one of
the most severe in the past decade and perhaps
equal to the strong El Niño of 1982-83. The
physical effects of this El Niño were felt through
much of the Southwestern and Eastern United
States, with heavy rains and flooding throughout
the winter and spring in California and Arizona
and a mild, but wet winter and spring in the
northeast. Preliminary evidence from weekly crop
prices suggests that disruptions of certain high
valued spring crops in California imposed substan-
tial costs. For example, reductions in California
strawberry marketings in the spring of 1998, due
primarily to flooding, resulted in losses to con-
sumers of over $15 million compared to 1997
prices and nearly $100 million compared to the
average price for the previous ten years, based on
estimates of seasonal demand relationships for
strawberries.

By the summer of 1998, there was evidence1Accepted for publication, May 1999, in Journal of
Climate Research.
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that the waning 1997-98 El Niño was moving
rapidly into a La Niña phase, with a dramatic
cooling of ocean surface temperatures in the
southern Pacific Ocean. Like El Niño events, La
Niña’s also have specific regional “footprints” but
with a general reversal of the weather patterns
observed during El Niño’s (e.g., colder but drier
winters in the western U.S.). These La Niña events
also have effects on agriculture and other sectors.

The damages associated with the recent El
Niño demonstrate that ENSO events have poten-
tial economic consequences for agriculture and
other sectors of the economy; recent studies show
that the use of forecasts of these events has
economic value (Adams et al., 1995; Costello et al.,
1998; Solow et al., 1998). The agricultural values
for such forecasts have been estimated to be in
excess of $300 million per year (1992 dollars).
However, the actual damages from a given ENSO
event will be greater than the value of the fore-
casts since in general not all damages can be
avoided and forecasts are not perfect. Estimates of
actual or produced damages from ENSO events
can be useful to policy makers in determining first
whether such events are important relative to
other natural processes and second, whether the
potential damages from a future event, such as the
developing La Niña, merit vulnerability reducing
actions.

Objectives
The work underlying this report was de-

signed to develop estimates of the economic
consequences of the recent (1997-98) El Niño
event and to assess possible effects of the forecast
1998-1999 major La Niña event on U.S. agricul-
ture. Both estimates are prospective, in that the
final effects of the 1997-98 El Niño on agriculture
will not be understood until final data of the 1998
harvests and yields becomes available. Similarly,
the full effects of a prospective La Niña on agricul-
ture will not be realized for at least twelve
months. However, the historical climatological
record, which includes years reflecting all three
ENSO phases, does provide some indications as to
how weather and associated crop yield data has
varied during such ENSO phases. Thus, the

analyses reported here can be viewed as assess-
ments of the effects of moderate to strong ENSO
events.

Historical weather and yield occurrences,
measured as departures from normal (long term
average) yields, are used here as a measure of the
effects of the most recent El Niño and the pending
La Niña events. In addition, modeled yield
changes for such ENSO events, taken from a
recent study (Solow et al., 1998) are also used.
The Solow et al study involved  modeled (simu-
lated) crop yield changes and may well provide a
clearer picture than historical yield deviations of
the effects of weather, given that the historical
data on crop yields may contain effects from other
factors, such as crop diseases, changes in farm
programs or other non-weather phenomenon.

The yield changes for El Niño, Normal and
La Niña events arising from both the historical
record and model simulations are used as input
into an economic model of the U.S. agricultural
sector. This model is used to estimate the effects
of these ENSO events on prices, crop supplies and
the welfare of consumers and producers. Proce-
dures underlying this simulation of ENSO events,
including data and the economic model, are
discussed in more detail in the next section. The
following section presents results of these simu-
lated ENSO events. Implications and conclusions
of these estimates are presented in the final
sections of this report.

Data and Models
This assessment of the damages from ENSO

events involves a two stage process. In the first
stage, the consequences of the changes in weather
patterns due to ENSO phases on crop yields are
measured using estimates from both crop bio-
physical simulation models and historical yield
data. The second stage incorporates these yield
differences into an economic model in order to
assess the aggregate economic damages of ENSO
events.

Crop Yield Changes
The first set of yield estimates are taken from

Solow et al. and are based on output from a crop
simulation model. Specifically, estimates of the
yield implications of weather changes from each
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ENSO phase for eight field crops (corn, wheat,
soybeans, cotton, barley, sorghum, oats and hay)
were developed using a biophysical simulation
model called Erosion Productivity Impact Calcula-
tor or EPIC (Williams et al., 1984; Williams et al.,
1989). EPIC has been used in numerous studies
for a variety of purposes and has gained popularity
across disciplines in agriculture. EPIC has been
shown to provide reasonable simulations of crop
yields in previous ENSO studies (Bryant et al.,
1992). Details of the EPIC application to ENSO
events can be found in Adams et al. and Solow et
al. Specific crop yield data for ENSO phases are
reported in Solow et al. and Legler, Bryant and
O’Brien.

The second approach to estimating yield
consequences of ENSO phases is based on twenty-
five years (1972-1996) of crop yield data for all
crops included in the economic model (the eight
listed above plus citrus and some minor crops).
The yield data are taken from USDA publications,
including Agricultural Statistics (various years).
These yield data are first detrended (to remove the
effects of technological change and acreage shifts
on yields) and then yield estimates are projected
for each year.  In turn, the deviations between the
projected and actual yields are recorded as a
percentage change from the projected yields.
Finally these deviations were applied to the 1997
yield projection to obtain a joint probability
distribution across 63 US regions based on the 25
historic weather events.  This distribution reflects,
among other factors or influences, the variation
due to weather, including the ENSO phase.

Economic Modeling Procedures
The yield distributions, from both the EPIC

estimates and historical data, are used in defining
the economic model used in this assessment
framework. Specifically, the changes in yields are
used in an economic model of the U.S. agricul-
tural sector, identified as the Agricultural Sector
Model or ASM (see Chang and McCarl, 1992, for
details) within a stochastic framework (Lambert et
al).  This economic model provides the mecha-
nism for translating the physical (yield) effects of
ENSO changes into economic effects, including
net changes in economic welfare, as well as

changes in supply and prices for major agricultural
commodities. Variants of this model are used in
Adams et al., Solow et al., and a number of other
assessments of the consequences of environmental
change.

The economic model is a price endogenous
model formulated as a mathematical program-
ming problem (McCarl and Spreen). The model
represents production and consumption of 30
primary agricultural products including both crop
and livestock products. Processing of agricultural
products into 12 secondary commodities also is
included. Prices for these commodities are deter-
mined endogenously for both national and inter-
national (export) markets. The model maximizes
the sum of the area under the demand curves but
above the price (consumer surplus) plus the area
above the supply curves but below the price
(producer surplus) for these commodities. One
can interpret changes in this area as a measure of
the economic welfare equivalent of the annual net
income lost or gained by agricultural producers
and consumers as a consequence of crop yield or
other changes, expressed in 1997 dollars. Both
domestic and foreign consumption (exports) are
included.

The model takes regional level responses and
aggregates these to national level responses.
Specifically, producer-level behavior is captured in
a series of technical coefficients that portray the
physical and economic environment of agricul-
tural producers in each of the 63 homogeneous
production regions in the model, encompassing
the 48 contiguous states. The analysis also consid-
ers irrigated and non-irrigated crop production
and water supply relationships. Availability of
land, labor, and irrigation water is determined by
supply curves for each input. Farm-level supply
responses generated from the 63 individual
regions are linked to national demand through
the objective function of the sector model, which
features demand relationships for various market
outlets for the included commodities.

Certain assumptions and procedures are
required to use ASM to estimate economic dam-
ages from actual or prospective ENSO events:

• The base economic model is keyed to 1990
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economic, agriculture, and environmental
conditions.

• The EPIC yield forecasts and selected historical
yield deviations are assumed to reflect accu-
rately the consequences of the 1997-98 El Niño
and the 1998-99 La Niña.

As noted above, the yield changes measured
by historical records reflect all sources of yield
variation, not just the ENSO-specific influences.
The EPIC forecasts, to the extent that they are
tailored to specific weather conditions associated
with ENSO phases, are expected to more accu-
rately reflect such events. Taken together, how-
ever, both sets of yield changes provide evidence of
the consequences of these ENSO events on the
agricultural economy of the U.S.

Results
The two phase assessment procedure defined

above can be viewed as a set of “experiments” to
measure the potential consequences on U.S.
agriculture of as yet unrealized events (in this
case, the final effects of a major El Niño in 1997-
98 and a possible La Niña event in 1998-99). These
experiments provide an indication of how two
strong ENSO events may affect the aggregate
(national level) welfare of the agricultural sector.

The results from these experiments reflect a
range of weather and yield conditions. For ex-
ample, the yield and subsequent economic conse-
quences elicited here reflect historical frequencies
of each phase. To capture these, the economic
model is run (solved) under a series of uncertain
events (three in the EPIC analysis and 25 in the
“historical” yield case) based on the long run
probability of these events occurring. These sets of
model runs are used to determine average or
“normal” conditions from which the El Niño and
La Niña economic effects will then be inferred. In
the EPIC-based analysis, the El Niño and La Niña
results do not correspond to a particular year;
rather, they represent the weather and resultant
yield changes for years identified by each phase. In
the “historical yields” case, two time periods from
the twenty-five year record are used to portray
possible effects of each phase; 1982-83 for the El
Niño and 1988-89 for La Niña. Both time periods
reflect years identified by climatologists as strong
phases of each event. The economic consequences

under this latter approach are measured as
departures from the “normal” phase (neither El
Niño nor La Niña).

The results of these experiments are provided
in Tables 1 and 2. In Table 1, results from the
EPIC-based simulations of each ENSO phase or
event are reported. As is evident from the table,
both phases result in economic damages relative
to the Normal phase or case (of -$1.5 for El Niño
and -$6.5 billion for La Niña, respectively). For the
historical case, both ENSO phases again show
losses (economic damages) although of a smaller
magnitude. Here, the economic damages of El
Niño and La Niña are $1.7 and $2.2 billion,
respectively. While the results of the EPIC-based
analysis are greater than those from historical
data, the important finding is that these events
translate into economic damages for agriculture
under both sets of assumptions regarding yield
changes. It is also worth noting that the optimiza-
tion nature of the economic model used here
results in estimates that reflect some internal
actions (such as changes in crop mixes) to offset
or mitigate against the negative consequences of
the changes in yields. Thus, the estimates are
lower bounds on damages.

The overall implication of these findings
regarding ENSO phases is not surprising; extreme
events, whether driven by El Niño or La Niña
weather patterns, have adverse consequences for
agriculture (at the national level). To the extent
that some of these agriculture effects can be
mitigated or offset by planning, there is value in
forecasting such ENSO phenomenon. Previous
studies have confirmed the value of such forecasts.

Conclusions
ENSO events have varying effects on tem-

perature and precipitation across agricultural
regions of the U.S. For some regions, these
changes in seasonal weather may be beneficial.
However, for other regions the effects can be
dramatic and severe, such as the floods in the
southwest during the spring of 1998. These sets of
effects translate into economic effects if crop
yields are reduced (or increased) from expected or
“normal” levels.

The results of the experiments performed
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here indicate that overall, the effects of both
extreme ENSO phases are negative for U.S.
agriculture. Measured as departure from normal
(non El Niño or La Niña) yields, the consequences
vary from approximately $1.5 billion to $6.5
billion in losses. The range reflects assumptions
concerning how yields are estimated and whether
it is an El Niño or La Niña event. The estimates
reported here must be viewed in the context in
which they are generated. As estimates from a
modeling exercise, the numbers reflect a series of

embedded assumptions and are conditional on the
quality of data used in the economic modeling and
in the generation of the yields used to capture the
various ENSO phases. The major conclusion is
that extreme weather events, such as the ENSO
events, do impose costs on agriculture and con-
sumers. The magnitude of these cost estimates
support concerns over the likely increase in
extreme weather phenomenon under a warming
global atmosphere.
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Table 1. Estimates of Strong El Niño and La Niña Events, Using Simulated Crop Yield Changes.
Economic Consequences2

ENSO Event (millions of 1990 dollars)
El Niño1 -2,543

La Niña1 -6,455
1 The weather patterns used as inputs to the EPIC model reflect or simulate a “strong” ENSO event.
2 Economic consequences (damages) reported here are measured against an average or “base case” derived

by using historical frequencies of all three ENSO phases.

Table 2. Estimates of Strong El Niño and La Niña, Using Historical Crop Yield Changes.
Economic Consequences2

ENSO Event (millions of 1990 dollars)
El Niño1 -1,739

La Niña1 -2,247
1 The historical analogue used to represent the 1997-98 El Niño is the 1982-83 El Niño.
2 The historical analogue used to represent the 1997-98 La Niña is the 1988-89 La Niña.
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Effects of 1997-1998 El Niño on
Natural Gas and Distillate Fuel Oil

Costs
Thomas J. Teisberg

Summary

The El Niño event of 1997-1998 caused above
normal temperatures which significantly
reduced space heating requirements for the

US, especially in January and February 1998. The
purpose of this note is to present some estimates
of the fuel cost savings that resulted from this
reduction in space heating requirements. Esti-
mates are provided for natural gas used in the
residential and commercial sectors, and for total
distillate fuel oil use.

The analytical approach employed for each
type of fuel and/or fuel use is to statistically
estimate an historical relationship between fuel
use and heating degree days (HDD). Then this
relationship is used to estimate the fuel use
change caused by the monthly departures from
normal HDDs during the winter of 1997-1998.
Finally, the monthly changes in fuel use are
valued using recent fuel prices. The result is an
estimated cost savings due to the warmer winter
of 1997-1998. The total cost savings for the three
fuel/uses and for October 1997 through April 1998
is more than $2 billion. Table 1 on page 20 sum-
marizes the results of this analysis. These results
are also displayed graphically in Figures 1 through
3, also on page 23.

Analytical Notes
A. Relationship between HDD and consumption

For residential gas, commercial gas, and
total distillate fuel oil use, data were collected on
consumption and heating degree days, by month,
for the period 1984 through 1992. These data were
used to estimate relationships between fuel
consumption and heating degree days. Figures 4,
5, and 6 show the data points and fitted relation-
ships for the three fuel/use categories. The slopes
of the fitted trendlines represent the change in
fuel use per heating degree day; these slopes are
used to estimate the changes in fuel use attribut-
able to departures from normal of heating degree
days. Table 2 on page 23 indicates the slopes for
the three fuel/use categories.

Estimated Changes in Fuel Consumption

Normal and actual heating degree day
statistics for the U.S. were obtained for the
months from October 1997 through April 1998.
These are shown in Table 3 below, together with
the departures from normal.

The departures from normal of heating degree
days shown in Table 3 are multiplied by the coeffi-
cients in Table 2, to obtain estimated change in fuel
use for each month and each fuel use. These
calculations are shown in Table 4 on page 24.

Fuel Cost Savings

Fuel cost savings are obtained by multiplying
the monthly estimated fuel use changes by fuel
prices for the corresponding months. Using price
data from a single year excludes from the esti-

1 The 1984 initial year is the first for which gas
consumption data were conveniently available electronically.
The 1992 final year is the last for which historical HDD data
were conveniently available. There is no reason to think that
extending the data series forward or backward in time would
significantly change the estimated relationships between
consumption and HDDs.
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mated cost savings any effects of prices changes
between years. Such price changes might or
might not be properly attributed to El Niño. Table
5 on page 25 shows the fuel prices used in the
calculations.

Appendix: Data Sources
1. Residential and commercial natural gas

consumption for 1984-1992 were extracted from
GASCON.EXE available at ftp.eia.doe.gov/pub/
natural.gas/monthly.

2. Historical heating degree days for 1984-
1992 are from Table 1.8 of EIA Annual Energy
Review 1996.

3. Distillate fuel oil consumption for 1984-
1992 are from private communication from
Jonathan Cogan (Jonathan.Cogan@eia.doe.gov). I
assume these are also available in print form.

4. Heating degree days for winter 1997-1998
are from relevant issues of Monthly Energy
Review, Table 1.11.

5. Residential natural gas prices for winter
1997-1998 are from Natural Gas Monthly, Table
21, August 1998.

6. Commercial natural gas prices for winter
1997-1998 are from Natural Gas Monthly, Table
22, August 1998.

Finally, Table 6 on page 26 details the calcu-
lations of estimated cost savings by month and
fuel/use.
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Table 1
Fuel Cost Savings in Winter 1997-1998
(Million $)

Residential Gas Commercial Gas Distillate Fuel Oil
October 1997 -126 -42 -26
November 1997 -300 -114 -70
December 1997 127 49 31
January 1998 899 346 218
February 1998 700 269 169
March 1998 27 10 7
April 1998 15 5 3
October - March 1341 524 332

Table 2
Change in Fuel Use
per Unit Change in HDD

Fuel/Use Category Change in Use per Unit Change in HDD
 Residential Gas .718 BCF/HDD
 Commercial Gas .320 BCF/HDD
 Distillate Fuel Oil 1214 thousand gals/HDD

Table 3
Heating Degree Days for Winter 1997-1998

Normal Actual Departure
October 1997 271 294 23
November 1997 528 589 61
December 1997 836 809 -27
January 1998 948 754 -194
February 1998 768 616 -152
March 1998 611 605 -6
April 1998 339 336 -3
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Table 4
Estimated Changes in Fuel Use

Part 1 - Residential Gas

Departure Residential Gas
Coefficient

Est. Fuel Use
Change (BCF)

October 1997 23 .718 16.5
November 1997 61 .718 43.8
December 1997 -27 .718 -19.4
January 1998 -194 .718 -139.4
February 1998 -152 .718 -109.2
March 1998 -6 .718 -4.3
April 1998 -3 .718 -2.2

Part 2 - Commercial Gas

Departure Commercial Gas
Coefficient

Est. Fuel Use
Change (BCF)

October 1997 23 .320 7.4
November 1997 61 .320 19.5
December 1997 -27 .320 -8.6
January 1998 -194 .320 -62.1
February 1998 -152 .320 -48.6
March 1998 -6 320 -1.9
April 1998 -3 .320 -1.0

Part 3 - Distillate Fuel Oil

Departure Distillate Fuel Oil
Coefficient

Est. Fuel Use
Change (thou. gal.)

October 1997 23 1214 27924
November 1997 61 1214 74059
December 1997 -27 1214 -32780
January 1998 -194 1214 -235530
February 1998 -152 1214 -184539
March 1998 -6 1214 -7284
April 1998 -3 1214 -3642
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Table 5
Fuel Prices

Residential Gas
($/mcf)

Commercial Gas
($/mcf)

Residential
Distillate ($/gal)

October 1997 7.65 5.73 .921
November 1997 6.85 5.84 .941
December 1997 6.55 5.72 .938
January 1998 6.45 5.57 .925
February 1998 6.41 5.54 .915
March 1998 6.26 5.36 .896
April 1998 6.74 5.54 .876
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Table 6
Estimated Cost Savings

Part 1 - Residential Gas

Est. Fuel Use
Change (BCF)

Residential Gas
Price ($/mcf)

Est. Cost Savings
(Million $)

October 1997 16.5 7.65 -126
November 1997 43.8 6.85 -300
December 1997 -19.4 6.55 127
January 1998 -139.4 6.45 899
February 1998 -109.2 6.41 700
March 1998 -4.3 6.26 27
April 1998 -2.2 6.74 15

Part 2 - Commercial Gas

Est. Fuel Use
Change (BCF)

Commercial Gas
Price ($/mcf)

Est. Cost Savings
(Million $)

October 1997 7.4 5.73 -42
November 1997 19.5 5.84 -114
December 1997 -8.6 5.72 49
January 1998 -62.1 5.57 346
February 1998 -48.6 5.54 269
March 1998 -1.9 5.36 10
April 1998 -1.0 5.54 5

Part 3 - Distillate Fuel Oil

Est. Fuel Use
Change (thou. gal.)

Residential
Distillate ($/gal)

Est. Cost Savings
(Million $)

October 1997 27924 .921 -26
November 1997 74059 .941 -70
December 1997 -32780 .938 31
January 1998 -235530 .925 218
February 1998 -184539 .915 169
March 1998 -7284 .896 7
April 1998 -3642 .876 3
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Case Study of 1997-98 El Niño for
Minnegasco

Richard A. Nichols

Reliant Energy Minnegasco is the largest
natural gas distribution company in Minne-
 sota serving more than 604,000 residential

customers and 57,000 business customers, includ-
ing the Minneapolis metro area. Space heating
load represents most of the energy demand for the
entire year, but more specifically in the mid-
October to mid-April season. Daily total system
load varies from a peak of 1,082,371 Mmbtu to a
minimum of 109,084 Mmbtu. Normal heating
degree days (hdd) using a 65 degree base of
average daily temperature and a twenty year
rolling average assumption is 7,761 hdd.

The design day assumption is for 90 hdd or
25 degrees average daily temperature.
Minnegasco, in addition to delivered pipeline
capacity from the south, north, and west, operates
and receives gas delivery from underground
storage, propane, and LNG (liquefied natural gas)
peak shaving facilities and curtails interruptible,
dual-fuel customers with as short as one hour
notice.

Accurate weather forecasts are crucial to
system operation and considerable economic
efficiencies are realized on price, maintenance
scheduling, and storage reserves injection when
improved seasonal weather forecasts are used.
Although daily dispatching, system operation, and
scheduling occurs every day up to five days ahead,
seasonal weather forecasts play a large role in the
monthly planning and heating season preparation
to ensure that system operational reliability and
capability is realized to meet customer peak
demand requirements. The dispatch center

subscribes to two major weather forecasting
services. One is from a local provider and the
other from a large national service with a long list
of utility clients. NOAA and other web weather
forecast services are monitored as well. The NOAA
El Niño web page and links to other specialty
research organizations opened up new informa-
tion reference sources for longer term weather
outlooks related to El Niño and La Niña events.
Many of the internet-available weather forecasts
are restatements or slightly altered NOAA gener-
ated weather forecasts. This provides confirmation
and continuity across forecasters, but not much in
value-added content to the prediction output.
More accurate long- and short-range weather
forecasts would provide considerable economic
benefit.

The El Niño forecast and event of the 1997-
98 heating season resulted in only 5,624 hdd
which is 9.9 percent warmer than the normal
assumption. The extreme warmth of the 1997-98
winter season either set or came close to many
long-run historical records. The most recent
previous winter season experiencing this level of
warm or above normal temperatures was in 1986-
87, also an El Niño event. As the 1997-98 winter
season progressed by month, the mild tempera-
tures appeared to gain in frequency, persistence,
and dominance. For us, the weather news just
continued to get worse, even through the spring.
Some of our actions included the following:

• High gas prices and a warm winter forecast
resulted in some storage capacity and peak
shaving facilities not being as full as under
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normal circumstances.
• An insurance hedge policy was proposed and

negotiated that would have nearly maximized
the payout ceiling. Other companies did ex-
ecute such agreements and many reduced their
budget shortfall by one-half. Future utilization
of this type of financial tool would again be
considered.

• Curtailment activity was substantially reduced
to less than ten percent of the projected level
under normal weather.

• Operational efficiencies were exploited to the
greatest extent possible to help reduce costs
and as the warm weather persisted, gas prices
softened and fell providing additional customer
savings. Our performance-based ratemaking
(PBR) pilot program resulted in a large and
favorable reward incentive to the company’s
stockholders and customers. The PBR program
compares our financial performance parameters
to our own benchmark and to other area
utilities. The PBR reward demonstrated the
magnitude and success of our cost-cutting
efforts driven in part from the El Niño forecast.

• Due to the lack of snow, warm temperatures,
and the early spring, construction and mainte-
nance activities started earlier and better
planning and scheduling reduced many cost
factors such as overtime pay. In spite of another
year of rapid customer growth, new added
services have proceeded with minimal delays.

Long-term weather forecasts for El Niño type
events need to be identified with the detail of
statistical confidence. Business risks could be
evaluated in a more probabilistic approach allow-
ing for higher levels of certainty. A future El Niño
event would likely result in an insurance hedge if
confidence in forecast accuracy is high. Storage
and peaking facilities fill level and rate would be
driven more by price and less by attempting to
reach maximum levels as well as estimation of the
required operational levels needed for warmer
than normal weather events.

Due to the wide variety of weather
forecaster’s opinions, we believe access to histori-
cal sea surface temperature data and maps would
be useful analysis and decision support. For
example, NOAA pointed to the 1982-83 El Niño as
a similar event for the 1997-98 El Niño forecast.
Others identified 1957-58 and 1991-92 as their
forecast for 1997-98. The 1976-77 El Niño event
was actually substantially colder than normal and
raised the question of ‘what if?’. Having web
access to past sea surface temperature maps would
allow independent determination and assessment
of the best forecast scenario by those taking the
risk.
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The Value of Improved ENSO
Prediction to U.S. Agriculture1

Andrew R. Solow, Richard F. Adams, Kelly J. Bryant, David
M. Legler, James J. O’Brien, Bruce A. McCarl, William Nayda

and Rodney Weiher

Abstract

The economic value of long-range weather
prediction is measured by the increase in
social welfare arising from the use of the

prediction in economic decisionmaking. This
paper describes a study of the economic value of
ENSO prediction to U.S. agriculture. The interdis-
ciplinary study involved the analysis of data and
models from meteorology, plant science, and
economics under a framework based on Bayesian
decision analysis. The estimated annual value of
perfect ENSO prediction to U.S. agriculture is
$323 million.

Introduction
Skill in interannual climate prediction has

improved over the past decade. This improvement
is due in large part to the ability to predict, up to a
year in advance, oceanographic conditions in the
equatorial Pacific Ocean relating to the phenom-
enon known as El Niño-Southern Oscillation
(ENSO). A recent comprehensive review of ENSO
prediction is given in Latif et al. (1994). Public
investment in data acquisition, modelling studies,
and other scientific activities should lead to
further improvements in ENSO prediction and, as
a result, to further improvements in climate
prediction. For this reason, there is an interest in
assessing the return to investment in this area.

In a previous study, Adams et al. (1995)
estimated the value of improved ENSO prediction
to agriculture in the southeast U.S. This paper
describes an extension of the earlier study to all

U.S. agriculture. Beyond its enlarged scope, the
present study differs from the previous one in two
respects. First, the report of the previous study
was aimed primarily at economists. In contrast,
the present paper stresses the interdisciplinary
aspects of the study. Second, the present study
improves on the previous one in certain technical
areas, including a more comprehensive treatment
of climate statistics and crops and improved
modeling of decisionmaking under uncertainty.

The basic scenario considered here is the
following. The ENSO year runs from October to
September. Each ENSO year can be classified
according to ENSO phase. There are three ENSO
phases: warm event (or El Niño), cold event (or El
Viejo), and nonevent. Climate in the U.S. is
affected by ENSO phase, although not all regions
are affected and, those that are affected, are not
necessarily affected in the same way. The regional
climatic differences between different ENSO
phases affect the yields of different crops. Thus,
advanced knowledge of ENSO phase provides
advanced knowledge of climatic conditions, which
in turn provides advanced knowledge of agricul-
tural yields. Since different crops respond differ-
ently to climatic conditions, advanced knowledge
of yields provides information about the profitabil-
ity of different cropping patterns. Individual
farmers use this information about profitability in
selecting their cropping patterns. The conse-
quences of these individual decisions for the
agricultural sector and ultimately for consumers
are captured through the market for agricultural
products.

1Climatic Change, 39:47-60, 1998.
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In broad terms, the economic effect of
improved ENSO prediction is the same as that of a
technological improvement that increases the
supply of agricultural products. The value to
society of this shift in supply is the increase in the
sum of consumer and producer welfare. The sum
of these is referred to as economic surplus. Briefly,
changes in consumer welfare reflect gains (or
losses) due to lower (or higher) prices, while
changes in producer welfare reflect changes in so-
called quasi-rents, which in most cases are com-
parable to profits. The economic value of ENSO
prediction is defined as the expected chance in
economic surplus arising from changes in crop-
ping pattern due to the prediction.

To use this scenario as a basis for estimating the
value of improved ENSO prediction, it is necessary
to model:

• the climatic differences between different ENSO
phases;

• the effects of these climatic differences on
yields;

• the way in which information about yields
affects planting decisions; and

• the way in which the behavior of individual
farmers affects the market of agricultural
products. These steps are described in the
following sections.

Climatic Differences Between ENSO
Phases

The first step in estimating the differences in
monthly climate between the three ENSO phases
was to classify each ENSO year in the 40-year
study period 1947-1986 by ENSO phase. The
classification rule was based on a 5-month moving
average of the average sea surface temperature
anomaly within the tropical Pacific region 4° S -
4° N, 150° W - 90° W constructed by the Japan
Meteorological Agency. If the index exceeded 0.5°C

Table I

ENSO phase categorization, 1947-1986

Normal El Niño El Viejo

1950 1951 1947

1952 1957 1948

1953 1963 1949

1958 1965 1954

1959 1969 1955

1960 1972 1956

1961 1976 1964

1962 1982 1967

1966 1986 1970

1968 1971

1974 1973

1977 1975

1978

1979

1980

1981

1983

1984

1985
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for 6 consecutive months including October-
December, then the ENSO year was classified as El
Niño phase. If the index fell below -0.5°C for 6
consecutive months including October-December,
then the year was classified as El Viejo phase. All
other years were classified as nonevent phase. The
classification, which is similar to others (e.g.,
Kiladis and Diaz, 1989), is given in Table I.

Using this classification, monthly climate
statistics were calculated for each ENSO phase at
each of 54 stations. These stations, which are
listed in Table II, were selected to provide bal-
anced coverage of agriculturally significant
regions. An agricultural region was associated
with each of these stations. Both the climate
differences between ENSO phases and the corre-
sponding yield effects were assumed to be con-
stant within these regions. Daily climate data for
the representative stations were used to calculate

monthly mean values of the following climate
statistics:

• mean and standard deviation of daily minimum
and maximum temperature;

• mean, standard deviation, and coefficient of
skewness of daily precipitation;

• the number of wet days; and
• the one-step transition probabilities between

wet and dry days.

The selection of these statistics, which are
more comprehensive than those used in the
previous study, was based on a sensitivity analysis
of the yield model described in the following
section.

Details of this analysis, including an assess-
ment of the statistical significance of observed
climatic differences between ENSO phases, are

Table II

Stations used to define agricultural regions

Place State Place State Place State

Muscle Shoals AL Lafayette LA Corpus Christi TX

Union Springs AL Big Rap. Wat. MI El Paso TX

Mesa Exp. Farm AZ Greenville MS Liberty TX

Pocahontas AR Moorhead MS Marshall TX

Davis CA Chinook MT Mexia TX

Napa St. Hosp. CA Santa Rosa NM Muleshoe TX

Redlands CA Kinston NC Snake Creek UT

Fort Morgan CO Mt. Airy NC Columbia VA

Bridgeville DE Mott ND Pullman WA

Apalachicola FL Towner ND Buckhannon WV

Ocala FL McConnelsville OH Spooner WI

Covington GA Wooster OH Viroqua WI

Aberdeen ID Geary OK

Duquoin IL Mangum OK

Monmouth IL Dufur OR

Berne IN Wellsboro PA

Clarinda IA West Chester PA

New Hampton IA Newberry SC

Independence KS Cleark SD

Bowling Green KY Alice TX

Owensboro KY Ballinger TX
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presented in Sittel (1994a, b). Some selected
results are shown in Figure 1. In broad terms,
climatic differences between the phases are
greatest during winter. In the southeastern U.S.,
where the ENSO signal appears to be most pro-
nounced, El Niño years tend to be colder than
normal in the fall and winter and warmer than
normal in the spring and summer. El Viejo years
generally exhibit patterns with the opposite sign,
although typically not the same magnitude. For
precipitation, El Niño years tend to be wetter than
normal in the winter and spring and dryer than
normal during the summer. Again, El Viejo years
generally exhibit patterns of opposite sign, but
different magnitude. These results are generally
consistent with those found in other studies (e.g.,
Ropelewski and Halpert, 1986).

Yield Effects

The crops included in this study were barley,
corn, cotton, hay, potatoes, rice, sorghum, soy-
beans, tomatoes, and wheat. This selection was
based primarily on economic importance and on
planting schedules, which determine the potential
for incorporating long-range weather prediction
into planting decisions. These crops account for
over 90% of acreage and 80% of farm gate value in
the U.S. For each crop, the effect of yield of
climatic differences between ENSO phases were
estimated for each region using a plant biophysi-
cal simulation model called the Erosion Produc-
tivity Impact Calculator (EPIC). This model,
which is described in Williams et al. (1989) and
Bryant et al. (1992), was originally developed to
determine the relationship between soil erosion
and productivity. However, because it uses cli-
matic information in calculating yield, it is well-

Table III

Simulated crop yields under difference ENSO phases for
selected stations. Values are bushels per acre for corn,
soybean, wheat; pounds of lint per acre for cotton; and
hundred pounds per acre for sorghum

Normal El Niño El Viejo

Mount Airy, NC

 Corn 141 141 154

 Cotton 776 773 835

 Soybeans 47 45 50

 Wheat 42 41 48

Bridgeville, DE

 Corn 122 110 118

 Soybeans 36 29 36

 Wheat 51 48 54

Davis, CA

 Cotton 1014 1129 1073

 Wheat 85 86 84

Corpus Christi, TX

 Corn 137 175 144

 Cotton 544 708 576

 Sorghum 67 87 72

 Soybeans 26 32 26
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Figure 1
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Figure 2
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suited for this study.

The EPIC model estimates crop yield based
on total biomass produced and a harvest index.
Biomass and the harvest index increase through
the growing season as a function of heat units.
The harvest index may be reduced by high tem-
perature, low solar radiation, or water stress
during critical crop stages. Biomass may be
reduced by water, temperature, and aeration stress
and also by nitrogen and phosphorus stress.

The plant growth model in EPIC has been
tested throughout the U.S. and in several other
countries (Steiner et al., 1987; Williams et al.,
1989; Bryant et al., 1992; Kiniry et al., 1995). The
most comprehensive validation study was con-
ducted by Williams et al. (1989). In that study, the
model was tested for six crop species at 20 U.S. and
15 foreign locations with considerable variation in
weather and soil characteristics. In all cases, mean
simulated yield was within 7% of measured yield.
Other studies found similar results.

The yield results for the stations shown in
Figure 1 are given in Table III. Yield differences
among summer crops were due mainly to differ-
ences in water stress. For example, corn in Mount
Airy, NC and Bridgeville, DE suffered fewer days of
summer water stress in El Viejo years than in El
Niño and nonevent years. In contrast, the en-
hancement of growing conditions at Corpus
Christi, TX during El Niño years was due to
higher crop-available water in the spring months.
Winter wheat yields are more affected by tempera-
ture stress than by water stress. For example,
higher winter wheat yields during El Viejo years
were due mainly to reduced winter temperature
stress.

Decisionmaking and the Value of Prediction

Under the scenario considered in this paper,
the climatological implications of an ENSO
prediction are used to formulate a prediction of
crop yields. The prediction of yields is then used
by farmers to optimize cropping patterns. The way
in which farmers use this information can be
formalized in terms of Bayesian decision theory
(Kite-Powell and Solow, 1994). This formalization
is outlined in this section.

Let a denote a particular cropping pattern
and let the random variable S denote the ENSO
phase. The possible values of S are E (El Niño), V
(El Viejo), and N (nonevent). Let s denote a
realization of S and let B(a| s) be the profit for
cropping pattern a if the realized ENSO phase is s.
In the absence of an ENSO phase prediction, the
expected profit for a is:

(1)

where π(s) is the probability that S = s.

The optimal cropping pattern a* maximizes
E(b(a)). Note that, in the absence of an ENSO
phase prediction, the farmer optimizes cropping
pattern over long-run average climatic conditions.
In particular, a* does not change from year to
year. On the other hand, crop production in a
particular year resulting from cropping pattern a*
depends on the realized ENSO phase in that year.

For a given ENSO phase s, the economy-wide
supply for each crop resulting from optimal
cropping patterns of each farmer in all regions can
be found using a model capturing both farmers’
decisions across all production regions and the
demand for each crop. Let T1(s) be the economic
surplus arising from the aggregate supply curves -
that is, from supplies summed across all farmers
in all regions. In the absence of an ENSO phase
prediction, the expected economic surplus is given
by:

(2)

Suppose now that an annual ENSO phase
prediction is issued prior to the planting season.
Let the random variable X denote the predicted
phase and let x denote a realization of X. As with
S, the possible values of X are E, V, and N. Al-
though only categorical predictions were consid-
ered in this study, the same general approach
could be applied to probabilistic predictions.
Suppose that the ENSO phase prediction X in a
particular year is x. The farmer uses this predic-
tion to update the probability distribution of S
according to Bayes’s Theorem:

p(s|x)=p(x|s)π(s) / p(x) (3)

where p(s|x) is the probability that S=s given X=x,
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p(x|s) is the probability that X=x given S=s, and:

p(x)=prob(X=x)

(4)

The likelihood p(x|s) is a nonstandard mea-

sure of prediction skill. For a perfect prediction

p(x|s)=1 if s = x

0 otherwise (5)

in which case:

p(s|x)=1 if s = x

Table IV

Hypothetical likelihoods p(X|S) for modest and high skill
predictions

Modest

S = E S = V S = N

X = E 0.60 0.15 0.20

X = V 0.15 0.60 0.20

X = N 0.25 0.25 0.60

High

S = E S = V S = N

X = E 0.80 0.05 0.10

X = V 0.05 0.80 0.10

X = N 0.15 0.15 0.80

Table V

Posterior probabilities p(S|X) for modest and high skill
predictions

Modest

S = E S = V S = N

X = E 0.46 0.15 0.39

X = V 0.11 0.54 0.35

X = N 0.12 0.15 0.73

High

S = E S = V S = N

X = E 0.68 0.06 0.26

X = V 0.04 0.74 0.22

X = N 0.05 0.07 0.88
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0 otherwise (6)

In contrast, for a completely uninformative
prediction, p(x|s) = 1/3 for each s, so that p(s|x) = π(s).

The individual farmer behaves as before,
choosing the optimal cropping pattern a*(x) to
maximize expected profit:

 (7)

Note that, by averaging over p(s|x) in Equa-
tion (7), the farmer is taking account of the
possibility of incorrect phase prediction. Other-
wise, the farmer would simply choose a to maxi-
mize B(a|x).

The optimal cropping pattern a*(x) now
depends on the realized ENSO phase prediction x.
Let T2(x|s) be the economic surplus at the national
level if X = x and S = s. The conditional expected
surplus given X = x is found by averaging over the
conditional distribution of S given X = x:

 (8)

and the unconditional expected surplus is:

(9)

Finally, the value of the ENSO phase predic-
tion is given by T

2
 - T

1
. The same approach can be

used to assess the value of an improvement in—as
opposed to the establishment of—an ENSO phase
prediction.

It is important to stress that the value of
ENSO prediction is an average or long-term
concept. In a particular year, an incorrect predic-
tion may lead to a loss. However, on average—or
equivalently, over time—the use of the prediction
will lead to an increase in profits.

Implementation and Results
To implement the Bayesian approach out-

lined in the previous section, it is necessary to
specify prior probabilities of the ENSO phases and
the likelihood function of the prediction scheme.
In the study described here, the prior probability
p(s) was taken to be the relative frequency of s in
Table I, so that:

π(e) = 0.23 π(V) = 0.30 π(N) = 0.47

As noted above, the likelihood function is a
nonstandard measure of prediction skill. In the
present study, three hypothetical levels of predic-
tion skill—modest, high, and perfect—were
considered. In related work, we are attempting to
estimate the likelihood function of a simple,
model-based ENSO prediction scheme (A. R.
Solow and M. Cane, in preparation). The likeli-
hood function for perfect prediction is given in the
previous section. Those corresponding to modest
and high skill predictions are given in Table IV.
Using the prior probabilities given above, these
likelihoods are converted into the posterior
probabilities given in Table V.

For given posterior probabilities, an eco-
nomic model called SPRASM was used to calculate
expected surplus. This model is a stochastic
programming version of the Agricultural Sector
Model (ASM) that was used in the earlier study
(Chang and McCarl, 1992). The ASM provides
estimates of the changes in prices and quantities
of agricultural products, and corresponding
changes in economic surplus, due to changes in
yields. This model was validated by solving for
prices and quantities using 1992 yield data. The
solutions were all within 2% of actual 1992
quantities and 5% of actual 1992 prices. Further
details of this general approach to model valida-

Table VI

Expected economic value of ENSO
prediction ($ million per year)

Skill Expected value

Modest 240

High 266

Perfect 323
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tion are given in Fajardo et al. (1981). The incor-
poration of a stochastic component based on
discrete stochastic programming (Lambert et al.,
1995) provides a convenient and powerful way to
capture decisionmaking under uncertainty. Under
the combined model, farmers maximize expected
profit subject to a market clearing condition and a
set of resource constraints, while consumers
utilize agricultural products with knowledge of
prices. Again, it is important to stress that, under
the decisionmaking component of this model,
farmers take into account the possibility of
incorrect phase predication as outlined in the
previous section.

The results of the study are summarized in
Table VI. These values, measured in 1995 dollars,
are larger than those from the previous study.
This increase is due, in part, to the larger geo-
graphic scope and the greater coverage of agricul-
tural activities. However, due to the refinements
of data and procedures in the present study, a
direct comparison is not strictly possible. The
annual values given in Table VI represent recur-
ring gains to society. Assuming that future ben-
efits are discounted at an annual rate of 6%, the
net present value to the agricultural sector of a
high skill ENSO prediction operating over 10
years is around $2 billion.

In interpreting the results in Table VI, it is
important to distinguish between the economic
value of unproved ENSO prediction and the
economic impacts of a particular ENSO phase. For
example, in this study, the economic surplus
associated with a single El Niño year is approxi-
mately $2.5 billion less than that associated with a
nonevent year. However, even with a perfect
prediction, all of the negative effects (such as yield
reductions) cannot be avoided, so that the value of
predicting this event perfectly is considerably less.

Discussion
The study described here and in the earlier

report represents the first systematic attempt to
assess the economic value of ENSO prediction for
a major sector of the U.S. economy. Although
earlier attempts have been made (e.g., O’Brien,
1993), they have been based on ad hoc methods,
rather than on a model of economic

decisionmaking. The study described here docu-
ments the existence of ENSO signals in regional
climate in the U.S. and identifies their conse-
quences for crop yields. Advanced knowledge of
these yield differences has potential value for
farmers. The results of this study confirm the
preliminary findings of the earlier study that
ENSO prediction has substantial economic value
to U.S. agriculture. While the specific results
presented here seem reasonable, we believe that
the main contribution of this paper is the descrip-
tion of a rigorous approach to assessing the value
of long-range weather prediction. In implement-
ing this approach, it is not necessary to use the
EPIC model or the SPRASM model. Different or
more elaborate models can be used. Incidentally,
the same general approach can be used to assess
the value of prediction to other sectors of the
economy.

Turning to the specific results of this study,
while the values in Table VI are substantial—
particularly compared to the cost of ENSO predic-
tion itself — they represent only around 1-2% of
the net income of U.S. farmers. This may seem
low, in light of the publicized effects of ENSO.
There are features of the study that tend to
underestimate the value of ENSO prediction to
agriculture. For example, only cropping decisions
were allowed to respond to ENSO prediction. No
provision was made for other kinds of adjust-
ments, such as alterations in inputs (e.g., fertiliz-
ers) or harvesting decisions. Also, some valuable
vegetable and perennial crops were omitted from
the analysis due to lack of information about
potential yield effects. On the other hand, the
study assumed that all farmers respond optimally
to ENSO prediction. Failure of this assumption
would lead to an overestimation of the value of
ENSO prediction.

In addition to the technical problems associ-
ated with this kind of empirical analysis, the value
of ENSO prediction to any sector is limited in two
important ways. First, substantial climate variabil-
ity remains within ENSO phases, particularly on
the regional scale. To put it another way, even
perfect ENSO prediction is far from perfect
climate prediction. Second, as noted, the value of
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ENSO prediction is limited by the capacity of
decisionmakers to respond to the prediction. In
almost all cases, this capacity will fall far short of
avoiding all losses due to inclement climate.

Acknowledgments
The helpful comments of George Kiladis and

two anonymous reviewers are acknowledged with
gratitude. Funds for this work were supplied by
the National Oceanic and Atmospheric Adminis-
tration.

References
Adams, R. M., Bryant, K. J., McCarl, B. A.,

Legler, D. M., O’Brien, J. J., Solow, A. R., and
Weiher, R.: 1995, ‘Value of Improved Long-Range
Weather Information’, Contemp. Econ. Policy 13,
10-19.

Bryant, K. J., Benson, V. W., Kiniry, J. R.,
Williams, J. R., and Lacewell, R. D.: 1992, ‘Simu-
lating Corn Yield Response to Irrigation Timings:
Validation of the EPIC Model’, J. Prod. Agric. 5,
237-242.

Chang, C. C. and McCarl, B. A.: 1992, The
Agricultural Sector Model, Texas A & M Univer-
sity, Department of Agricultural Economics Paper,
p. 62.

Fajardo, D., McCarl, B., and Thompson, R.:
1981, ‘A Multicommodity Analysis of Trade Policy:
The Case of Nicaraguan Agriculture’, Amer. J.
Agric. Econ. 34, 23-31.

Kiladis, G. N. and Diaz, H. F.: 1989, ‘Global
Climate Anomalies Associated with the Extremes
of the Southern Oscillation’, J. Clim. 2, 1069-
1090.

Kite-Powell, H. L. and Solow, A. R.: 1994, ‘A
Bayesian Approach to Estimating Benefits of
Improved Forecasts’, Meteorol. Appl. 1, 351-354.

Kiniry, J. R., Major, D. J., Izaurralde, R. C.,
Williams, J. R., Gassmann, P. W., Morrison, M.,
Bergentine, R., and Zentner, R. P.: 1995, ‘EPIC
Model Parameters for Cereal, Oilseed, and Forage
Crops in the Northern Great Plains Region’, Can.
J. Plant Sci. 75, 679-688.

Lambert, D., McCarl, B., He, Q., Kaylen, M.,

Rosenthal. W., Chang, C., and Nayda, W.: 1995,
‘Uncertain Yields in Sectoral Welfare Analysis: An
Application to Global Warming’, J. Agric. Appl.
Econ. 27, 423-436.

Latif. M., Barnett, T. P., Cane, M. A., Flugel,
M., Graham, N. E., von Storch, H., Xu, J.-S., and
Zeblak. S. E.: 1994, ‘A Review of ENSO Prediction
Studies’. Clim. Dyn. 9, 167-180.

O’Brien, J. J.: 1993, Report of the Workshop
on the Economic Impact of ENSO Forecasts on
the American, Australian, and Asian Continents,
Florida State University, Tallahassee, FL, p. 86.

Ropelewski, C. F. and Halpert, M. S.: 1986,
‘North American Precipitation and Temperature
Patterns Associated with the El Niño/Southern
Oscillation (ENSO)’, Mon. Wea. Rev. 114, 2352-
2362.

Sittel, M.: 1994a, ‘Marginal Probabilities of
the Extremes of ENSO Events for Temperature
and Precipitation in the Southeastern U.S.’,
Florida State University, FL, COAPS Report 94-1,
p. 155.

Sittel, M.: 1994b, ‘Differences in Means of
ENSO Extremes for Maximum Temperature and
Precipitation in the U.S.’, Florida State University,
FL, COAPS Report 94-2, p. 76.

Steiner, J. L., Williams, J. R., and Jones, 0.
R.: 1987, ‘Evaluation of EPIC Using a Dryland
Wheat-Sorghum-Fallow Crop Rotation’, Agron. J.
79, 732-738.

Williams, J. R., Jones, C. A., Kiniry, J. R., and
Spanel, D. A.: 1989, ‘The EPIC Crop Growth
Model’, Trans. Amer. Soc. Agric. Eng. March, 497-
511.



40



41

The Value of El Niño Forecasts in
Agricultural Commodity Markets:

The Case of U.S. Corn Storage1

Kevin McNew

Executive Summary

No other sector of the U.S. economy likely
faces more of an impact from weather
conditions than does the agricultural

sector. The vagaries of weather can lead to sub-
stantial losses in agricultural crop production. For
example, after a major drought impacted the
Midwest in 1988, average U.S. corn yields were
reduced by 40 percent. Such a sizable production
shortfall can create problems because corn, like
many other agricultural crops, is produced only
once a year making it impossible to circumvent
the shortage for a significant amount of time.

One way that production shortfalls can be
buffered is through stockpiling, where commodi-
ties are stored from one year to the next. By
having commodity reserves, the economy can
partially offset the problems associated with
inadequate supplies resulting from weather
impacts. Storage of commodity reserves, however,
is a limited buffer against production problems
because stocks are not always held in the quanti-
ties needed to cover significant production short-
falls. For example, U.S. corn stocks are usually 10
to 20 percent of total U.S. production, but it is not
unusual to have production shortfalls of 30 to 40
percent in a given year.

Why are commodities stockpiled in smaller
quantities than needed to cover a potential pro-
duction shortfall? The first reason is the signifi-

cant costs associated with storing commodities.
For the entire U.S. corn market, this cost can
range from $250 to $500 million depending on
how much is stored in a given year. The second
reason is the possibility that the following year
could lead to abundant production. If so, then the
costly storage of commodity reserves would lead
to even more supply than is needed. Therefore, the
ability to predict weather patterns, and ultimately
crop production a year in advance should improve
the efficiency of storage reserves as a buffer. With
better forecasts, this should lead to lower storage
costs, which would benefit both U.S. farmers and
consumers. If accurate one-year weather forecasts
could be developed, then the economy could
accumulate commodity reserves in anticipation of
years when production would be unusually low
and release stockpiles in years when abundant
production is expected.

This research estimates the value of im-
proved weather forecast information by consider-
ing how improvements in forecasting the El Niño-
Southern Oscillation (ENSO) phase would be
valued in the U.S. corn market. ENSO is a disrup-
tion of the ocean-atmospheric system in the
tropical Pacific. It can be best understood as an
oscillation between a warm and cold state, popu-
larly known as El Niño and La Niña, respectively.
These phases vary in duration but typically persist
for 12 to 18 months. During the warm and cold
episodes the normal pattern of tropical precipita-
tion becomes disrupted and weather patterns are
altered on a global scale. The ability to predict
ENSO events is, therefore, of considerable public
interest and a number of researchers have ad-

1The complete study can be obtained from Prof.
McNew by e-mail at kmcnew@arec.umd.edu.
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vanced the state of ENSO prediction. For example,
it is not uncommon to find ENSO forecast models
with a 70 percent accuracy rate for one year in
advance. While there still exists the potential to
improve ENSO forecasting accuracy, the ability to
do so may require significant outlays by the
Federal government and agencies involved in
climatology research. Whether such improve-
ments are warranted (and at what costs) depends
on the value that economies derive from improved
forecasts.

The results of this study are based on histori-
cal data from 1961 to 1996 and indicate that the
El Niño phase tends to be associated with a larger
than normal U.S. corn yield while the La Niña
phase corresponds with a smaller than normal
U.S. corn yield. Both events cause roughly a 4.6
percent deviation from normal yield levels. If
these ENSO events could be perfectly predicted
one year in advance, then U.S. corn stocks would
decline by 8 percent in the long run. This would
benefit both U.S. farmers and consumers. By
having perfectly accurate ENSO forecasts, the
benefit to both groups would total nearly $240
million on an annual basis.
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The Value of Improved ENSO Forecasts
A Preliminary Assessment of the Effects on Fisheries in the

Pacific Northwest1

Richard M. Adams, Christopher J. Costello, Stephen Polasky,
David Sampson, Andrew Solow

Executive Summary

The El Niño Southern Oscillation is the
largest source of interannual variability in
the global climate system. The capability to

make predictions of ENSO is already in place and
is likely to improve in coming years. Extreme
phases of this phenomenon, called El Niño events,
are associated with climatic effects that have
economic consequences in sectors such as agri-
culture, energy, and fisheries. Fluctuations, and
extreme interannual variability in stock sizes of
some U.S. Pacific fisheries, such as the coho
salmon (Oncorhynchus kisutch) fishery, have
been attributed, in part, to El Niño.

Historically, the Pacific Northwest coho
fishery is thought to have been strongly influ-
enced by El Niño events. Over the past 15 years
such events are believed to be partly responsible
for recent closures of both the commercial and
recreational coho fisheries. Accurate short-term
predictions of ENSO events, and associated
variations in stock sizes, are hypothesized to have
value to society insofar as they are incorporated
into management regimes.

The overall objective to this analysis is assess
the value of improved ocean/climate forecasts to
marine fisheries in a stochastic, dynamic setting.
Specific objectives include:

• development of a general modeling framework
for assessing the value of improved forecasts
and

• application of the model to valuing improved
(more accurate) consecutive, one-year ENSO
forecasts in the coho fishery.

To achieve these objectives, a bioeconomic
model of coho salmon is developed, incorporating
data and models from biology, climatology,
economics, and oceanography. The bioeconomic
model is framed as a stochastic decision making
problem. Using Bayesian statistical techniques and
a Monte Carlo analysis, the expected value of the
coho fishery is estimated under the set of possible
forecast state/true state combination. The value of
information is extracted from these simulation
optimizations.

The first step in this procedure involves
constructing an economic model which includes
decisions made under uncertainty. This model
captures what are deemed the most relevant
components of economic value (consumer plus
producer surplus) in the coho fishery. These
changes in economic surplus result from altered
interannual management of the coho fishery.
Based on estimation from previously published
studies, in conjunction with data from various
management agencies, demand estimates for
charter ocean recreational, private ocean recre-
ational, and in-stream angling are developed for
use in the economic model. A social goal of
maintaining viable wild salmon is incorporated
using an existence value demand curve for wild
fish. Finally, producer quasi-rents accruing to

1Subsequently published as “The Value of El Niño
Forecasts in the Management of Salmon: A Stochastic
Dynamic Approach”, American Journal of Agricultural
Economics, 1998, Vol. 80; pp. 765-777. This work, and a
subsequent analysis, “The Value of Lengthening the ENSO
Forecast Time-Frame: Case of the Pacific Coho Salmon
Fishery,” was jointed supported by NOAA’s Office of Global
Programs, and the Chief Economist.
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commercial fishery and charter boat operators,
less hatchery production costs, are estimated.

The economic model is then integrated with
a biological model of coho salmon production
with parameters stochastically determined by the
ENSO phase. The ENSO phase is modeled as a
random variable with three phases of occurrence
with known historical probabilities; normal, weak
El Niño, and strong El Niño. Each phase effects
the life-history of coho salmon differently, but, in
general, effects of El Niño on coho salmon in the
Northeast Pacific include increased mortality,
reduced fecundity, and reduced average weight. To
create the assessment framework, a nonlinear
spawner-recruit curve (Ricker model) is employed
along with stochastic mortality, fecundity, and
average weight variables. In this model, hatchery
production is limited by a density dependent
ocean mortality term which reduces survival of
fish in the ocean as population density increases.
The full stochastic bioeconomic decision model is
employed to map out optimal management, and
associated expected net present value of the coho
fishery, under five models of varying forecast
accuracy. Control variables, which the model
chooses at each optimization stage, include
harvest, hatchery production (for release the next
time period), and hatchery smolt releases. The
General Algebraic Modeling System (GAMS) and
the Minos 5 nonlinear programming algorithm
are used to solve this dynamic programming
problem.

At the optimization stage, the model selects
the most appropriate management (to maximize
the net present value of the coho fishery) in any
year given the current population level and
prediction of future ENSO phases. However,
calculating the value of information involves one
more step in the analysis. The value of an im-
proved forecast is the difference in the expected
value of the objective function (the value of the
Pacific Northwest coho fishery) with and without
that forecast.

A base case must be identified from which to
compare these values. The base case model
involving the least accurate forecast (and subse-
quent management) is the naïve information

model where fishery managers ignore the possibil-
ity of normal or weak events. This simplistic base
case is probably unrealistic in that managers are
aware of the effects of El Niño, and even without a
forecast, probably exercise some “hedging” behav-
ior to mitigate the effects of a strong ENSO event.
Complexity of current stock predictors and
management of the coho fishery prevents precise
modeling of ENSO information as currently
employed in management of the coho fishery. As
an alternative to the naïve case, we use a “Cer-
tainty Equivalence” case, in which the manager
assumes expected (or average) El Niño conditions
for every future year. Value of information esti-
mates reported in this summary employ this case
as the basis for comparison.

Finally, an appropriate planning horizon
must be identified over which the information will
be valued. Results in the text are presented in
functional forms, allowing the evaluation of
forecast improvements over any planning horizon.
For the purposes of this summary, a 50 year
planning horizon is assumed.

Two models of enhanced ENSO forecasts are
evaluated here. The first improved forecast as-
sumes a posterior distribution halfway between
the perfect and prior information cases. That is,
the information in this model is halfway between
guessing (based on historical frequencies of
occurrence) and knowing the next year’s ENSO
phase with perfect certainty. The value of develop-
ing the improved forecast, and incorporating it
into management of the coho fishery on an annual
basis is approximately $5.3 million over a 50 year
planning horizon. This is roughly equal to
$250,000 annually.

The second model of enhanced information
is the perfect, one-year forecast. It is expected that
this model will yield a significantly higher value
estimate than the other, less accurate, forecasts.
In fact, the value of a perfect, one-year ENSO
forecast is approximately $19.4 million over a 50
year planning horizon, approximately $900,000
per year on average. This is equal to roughly two
to three percent of the annual value of the fishery,
as predicted by this model.
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Although not a primary objective of this
analysis, estimates of appropriate management
actions in the face of an accurate ENSO forecast
can be gleaned from model output. Specifically,
when an El Niño is accurately forecast, harvest in
the present period should decrease slightly,
hatchery smolt releases should increase, and wild
spawner escapement should decrease. This sug-
gested shift from wild to hatchery production in
times of poor ocean productivity is best under-
stood by recognizing that wild fish are affected by
El Niño throughout their life cycle, while hatchery
fish are only affected for about one year.-- Model
simulations also indicate that as a general rule,
hatchery production should be decreased from
recent average levels, perhaps by as much as 75
percent.

When an accurate forecast of ENSO is not
available, the most appropriate management
action involves “hedging” by managing based on

the historical average ENSO event. This involves
harvesting close to historical averages (approxi-
mately two million fish per year), releasing low
numbers of hatchery fish (approximately eight
million smolts per year), and allocating high
numbers of wild spawners to escape (approxi-
mately 400,000—almost twice the current escape-
ment target, but close to historical levels).

Value of information analyses will likely play
a critical role in future research as agencies
determine where to allocate research and develop-
ment funding for large-scale data gathering and
monitoring projects. With specific regard to
fishery issues, analyses such as this can provide
insight into the complex task of managing anadro-
mous fish stocks. The results reported here
demonstrate that improving the accuracy of the
one-year ENSO forecast would be valuable in the
management of the Pacific Northwest coho
salmon fishery.
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Cost Benefit Analysis of TOGA and
the ENSO Observing System

Peter G. Sassone and Rodney F. Weiher1

R&D programs intended to develop climate
prediction capabilities are costly. But if they
are successful, they yield continuing

economic benefits. However, because such ben-
efits are difficult for private companies to capture,
it falls to the public sector to pursue them. Public
sector decision makers, before funding climate
research programs, must be convinced that such
programs serve the public interest, i.e., that their
economic benefits exceed their economic costs.
The purpose of this paper is to shed some light on
that issue. Specifically, we construct a cost benefit
analysis of the recently completed TOGA (Tropical
Ocean Global Atmosphere) program. TOGA, a
successful 10 year international scientific effort to
understand and model the ENSO (El Niño /
Southern Oscillation) phenomenon, has led to
models which are capable of predicting ENSO
events a year or so in advance. In our cost benefit
analysis, we used estimates of the benefits of
climate forecasts to the U.S. agricultural sector,
the actual historical and the estimated future
costs (to the U.S.) of the research, development
and operationalization that climate forecast
system, and a 36 case sensitivity analysis. Our
results indicate that TOGA will provide a real
economic return on investment to the U.S. of at
least 13 percent to 26 percent, depending on the
assumptions made in the analysis. This is substan-
tially in excess of the hurdle rate of 7 percent

usually used by the federal government. We
conclude that the TOGA program was a sound use
of public resources, and that additional funding of
climate forecasting R&D efforts (at both the
national and international levels) merits serious
consideration.

The Economics of Climate Forecasts
Climate forecasts are public goods. A public

good, as defined by economists, has two key
characteristics: non-rivalry and non-excludability.
Non-rivalry means that one person’s consumption
of the good or service does not diminish the
amount of that good or service available for
others’ consumption. Non-excludability means
that once the good is provided for anyone, it is
readily and freely available to anyone else. In other
words, it is difficult or impossible to exclude
anyone from partaking of the good, once it’s made
available to anyone. Economists often cite na-
tional defense and clean air as examples of public
goods. A climate forecast, because it is non-rival
and nonexcludable, is also a public good.

The concept of a public good is important
because it explains how a good or service may be
highly valued2 by the members of society and, yet,
why private sector firms would be unwilling to
produce it. This unwillingness is a simple conse-
quence of non-excludability: if a firm can’t prevent
people from consuming the good without their
paying for it, then many people won’t pay (or at
least would underpay), and the firm would not be
able to recover its costs. In other words, in the
case of public goods, there is a divergence between

1Extracted from Operational Oceanography: The
Challenge for European Cooperation; J.H. Stel, ed. Elsevier
Oceanography Series, 62; 1997, pp. 36-50.
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the private and the social return on the investment
required to produce the good.3 The social return
on the investment may be substantially greater
than the private return. Economists recognize,
therefore, that an important role of government—
even in a market based economy—is the provision
of certain public goods.

However, all goods that satisfy the criteria of
being public goods do not merit public funding. It
is not difficult to identify some public goods
whose costs exceed their value to society. For
example, nightly fireworks shows over the mall in
Washington, DC would qualify as public goods
(being both non-rival and nonexcludable), yet the
social value of those nightly displays surely would
be less than their cost. We can conclude that only
those public goods which also pass the cost
benefit test should be provided by government.
The cost benefit test is that the value of the
benefits to society (of the public good) should
exceed its costs to society.

In some cases, it is relatively straightforward
to estimate the benefits and costs of government
programs, and in other cases it is quite difficult.
Usually, when difficulties are encountered, it is the
benefits that are the more problematic. It’s
important to recognize, however, that difficulty in
quantifying benefits (or costs) does not render
those effects any less real.

In the post-WWII era, much research and
development came to be recognized as a public
good, and much R&D consequently was supported
by the federal government through grants and
contracts with universities and private research
organizations, and through the establishment of
federal research units. Early in that period, the
cost benefit test (while often recognized) was not
widely demanded or applied by government
decision makers. Beginning in the Reagan era,
cost benefit analyses became more widely man-
dated; and in the fiscally conservative ’90s, the
pressure to “cost-justify” government expendi-
tures has increased. Today, while climate research
and forecasting programs are widely recognized as
public goods, the costs and benefits of those
programs are subject to increasing scrutiny.
Indeed, there is widespread concern in the scien-

tific community that such programs will likely not
receive significant future funding unless there is
compelling economic justification.

Climate Research Programs
Climate research has been funded, on a small

scale, by the federal government at least since the
DOT’s Climatic Impact Assessment Program
(CIAP) and the NSF’s NORPAX program of the
early ’70s.4 In 1984, the U.S. government joined
with a number of other countries in the ten year
TOGA (Tropical Ocean Global Atmosphere)
program, which focused on understanding ENSO
events. ENSO (El Niño/Southern Oscillation)
refers to quasi-periodic climate episodes originat-
ing in the tropical Pacific, and affecting weather
patterns in South and Central America, as well as
in the southern U.S.5 These climate episodes, with
irregular annual periodicity, sometimes bring
warmer and wetter weather (El Niño), sometimes
colder and drier weather (Southern Oscillation or
La Niña), and sometimes “normal” weather. The
variation in climate is sufficiently dramatic as to
cause widespread flooding in some years and
drought in others. The breakthrough in under-
standing the ENSO phenomenon was made in
1969 by Norwegian meteorologist, Jacob Bjerknes.
He recognized that the ENSO cycle was driven by
the interaction of the atmosphere and the ocean
in the tropical Pacific, and that models accounting
for this interaction could predict ENSO events.
The TOGA program’s objectives were:

1. To gain a description of the tropical oceans and
the global atmosphere as a time dependent
system, to determine the extent to which this
system is predictable on time scales of months
to years, and to understand the mechanisms
and processes underlying that predictability

2. To study the feasibility of modeling the coupled
ocean-atmosphere system for the purpose of
predicting its variations on time scales of
months to years; and

3. To provide the scientific background for design-
ing an observational and data transmission
system for operational prediction if this capabil-
ity is demonstrated by coupled
ocean-atmosphere models.

The TOGA Program is recognized among the
scientific community as a major success.
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Based on that research, there now exist at
least several ENSO prediction systems that have
demonstrated prediction skill at least a season in
advance. Perhaps the currently most successful
coupled ocean-atmosphere model is that of Zebiak
and Cane, which has predicted several ENSO
events at least a year in advance.7 Based on TOGA
research, in 1995 the National Weather Service
began issuing seasonal average temperature and
precipitation forecasts for the continental U.S. for
overlapping 90-day periods, out to a year in
advance. These forecasts are published in a new
monthly NWS product, Climate Outlook. In
addition, another new product, monthly Outlooks,
(forecasts for 30-day periods) will soon be issued
by the NWS.

Based on the demonstrated successes of the
TOGA program, follow-on programs have been
developed and proposed by the scientific commu-
nity. These proposals fall into two categories: the
operationalization of past research and the con-
duct of new research.

NOAA’s plan for an Operational ENSO
Observing System falls into the first category.8

During its 1985-95 lifetime, TOGA was developed,
operated and funded as a research program. The
plan now is to evolve this research program into
an operational program for collecting data and
making routine ENSO forecasts. This would be a
key contribution of the U.S. to the international
scientific community’s GOOS and GCOS pro-
grams, which were formally established in 1991
and 1992, respectively.

The GOALS program falls into the second
category. It is envisioned as a 15 year research
program building on the success of the TOGA
program. “The plan calls for an expansion of
observational, modeling, and process research to
include the possible influences of the global upper
oceans and time-varying land moisture, vegeta-
tion, snow, and sea ice.”

The question faced by U.S. budget authorities
regarding these and other proposed climate
programs is whether the benefits exceed the costs.
However, the determination of the costs and
(especially) the benefits of climate programs is not
an easy matter. While cost benefit analysis is a

highly refined and widely accepted tool used
frequently by economists to evaluate alternative
public sector investments, there are certain
characteristics of climate prediction investments
which render them inherently more difficult (than
conventional public investments such as roads,
bridges, buildings) to assess. These characteristics
include:

• Uncertainty about the ultimate actual costs of
the programs.

• Uncertainty about the ultimate success of the
proposed research. Unlike a project to build a
road or a bridge (where there is virtual cer-
tainty that the project can be accomplished),
projects to develop climate prediction models
are not guaranteed to succeed. The research
simply may not uncover the hoped-for correla-
tions and regularities among the variables.

• Even if the science is successful, the actual
benefits of a (correct) climate forecast for a
given season will be contingent on the actual
climate which occurs. That is, if the actual
climate is extreme, and if it’s correctly fore-
casted, the benefits will be greater than if the
actual climate is normal (and it is correctly
forecasted). Of course, the benefits in a cost
benefit analysis must be estimated for many
years into the future, and there’s no way of
knowing what seasonal climate patterns will
actually occur so far in advance.

• Cost benefit analysis (CBA) carries out an
economic comparison of a proposed public
investment versus a baseline, that is, versus a
scenario in which the proposed investment
project is not carried out. The two scenarios are
assumed to be alike in every other salient
respect. (This is the celeris paribus assumption
commonly used in economic analysis.) Thus,
CBA inherently compares the incremental
benefits in the project scenario (that is, the
gains over the baseline) to the incremental
costs in the project scenario (the costs in excess
of those incurred in the baseline scenario). In
the case of a climate project, because climate
research has already advanced to the point of
enabling climate forecasts (albeit imperfect
ones), the baseline scenario must include a
statement as to what forecast would be issued
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absent the proposed project, and what the
consequences of that forecast would be. This
would be a highly speculative basis for a CBA.

• Finally, the behavioral responses to climate
forecasts would have to be specified for both the
baseline and the project scenarios. That is, the
extent to which the forecasts will be “believed”
and acted upon by the relevant economic
sectors in the future would have to be specified.
Today, there simply isn’t a sound basis on which
to make credible long term forecasts of those
parameters.

The dilemma, then, is that a CBA of climate
research is necessary to assist U.S. budget officials
in making funding decisions, yet the construction
of such a CBA is fraught with difficulties.

A workable way around this dilemma is to
focus on the recently concluded TOGA program,
and on the proposed operationalization of the
climate forecasting capability developed under its
aegis. That is, one can view TOGA along with a
subsequent operationalized ENSO forecasting
system as a single program - extending 10 years
into the past and perhaps 15 - 20 years into the
future. This CBA would ask whether that program
is worthwhile. The analysis would be retrospective
with regard to the R&D costs of TOGA and pro-
spective with regard to the costs of the
operationalized observing and forecasting system.
The benefits would be the future value of the
seasonal to interannual ENSO forecasts which
would be provided by the system, along with any
additional scientific benefits not captured as part
of the value of improved forecasting. In what
follows, we adopt the shorthand, TOGA/EOS, to
stand for the combined TOGA program and
NOAA’s proposed ENSO Observing System.

This approach to a CBA, while not overcom-
ing all of the problems mentioned previously,
strikes a balance between tractability and perti-
nence. It’s tractable because the TOGA portion of
the program has already occurred, so its costs and
scientific outcomes are known with certainty. The
EOS portion of the program is in the near future,
so its costs can be estimated with some degree of
confidence. This approach to CBA is pertinent
because it is an objective assessment of the

economic value of an actual climate research
program. As such, it provides some insight into
the potential value of similar research programs.
In a sense, the proposed climate research pro-
grams of today are where the TOGA program was
in 1985: a climate research program with substan-
tial potential benefits, but also with a great deal of
uncertainty.

The Purpose of this Study
The purpose of this study is to address the

benefits and costs of climate research programs,
and thereby support government decision makers
who have budget responsibility in this area. More
specifically, our purpose is to present the results
of a cost benefit evaluation of a combined TOGA/
EOS. The CBA, described below, finds that a lower
bound estimate of the social real internal rate of
return9 of the combined TOGA/EOS program
ranges from approximately 13 percent to 26
percent, depending on the particular assumptions
employed in the calculations.

The CBA Framework
The fundamental concept in CBA is the

comparison of alternative scenarios (or time
lines). The baseline scenario is what happens
without the proposed policy or program. The
alternative (or project) scenario is what happens
with the proposed policy or program. The impact
of the policy or program is the difference between
the two scenarios. The goal of CBA is to ad-
equately identify and quantify that difference in
monetary terms. CBA is almost always motivated
by an impending policy or program decision, and
the CBA is best seen as a decision-aid.

Cost benefit analysis generally proceeds
along the following lines. The first step is clearly
to identify precisely the issue to be addressed.
That is, for exactly what policy or program are we
trying to estimate the benefits and costs? And
exactly what is the baseline? As already discussed,
in this case we’ve chosen to focus on the TOGA/
EOS program.

The second step in a CBA is qualitatively to
identify the benefits and costs. This is done by
filling in the details associated with each scenario,
and identifying where the scenarios coincide and
where they diverge. Where the scenarios coincide,
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no further CBA consideration is required, because
there is no difference between scenarios. Where
the scenarios diverge, those differences must be
explicitly identified.

The third step is to quantify in physical
dimensions (person-years, tons, bushels, etc.)
those identified costs and benefits. The fourth step
is to estimate the monetary value of those quanti-
fied physical effects. This is usually conceptually
straightforward when treating costs, but it is
sometimes quite challenging when dealing with
certain benefits. In fact, it is in the valuation of
benefits that economic theory makes its most
important contributions to cost benefit analysis.
Finally, the last step is to aggregate the monetary
effects over time using present value analysis, to
perform relevant sensitivity calculations, and to
summarize results and conclusions.

Because CBAs are usually prospective
(forward-looking), there often is substantial
uncertainty about the values of many variables
relating to future costs and benefits. There are two
principal ways of dealing with uncertainty in CBA.
One technique is the use of sensitivity analysis.
Assuming that net present value (NPV) is the
criterion being used in the CBA, sensitivity
analysis determines how responsive (sensitive) the
calculated value of NPV is to changes in the
uncertain variables. The goal is to determine
whether the conclusion of the analysis (whether
the proposed investment is/is not worthwhile) is
substantially affected by different plausible values
of those key variables. Sensitivity analysis can be
done in a variety of ways, some more sophisticated
than others. Perhaps the simplest approach is to
vary one variable at a time (often from “best” case
to “worst” case values) and calculate the corre-
sponding values of NPV. A sophisticated approach
is to construct probability density functions for
each key variable, and then (usually through a
Monte Carlo analysis) construct the probability
density function for the project’s NPV. In this way,
the probability that NPV exceeds 0, or is in one
range or another, can be readily estimated.

The second technique for dealing with
uncertainty is by constructing intentionally
conservative estimates of costs and benefits,

thereby insuring that the final calculations yield a
lower bound estimate of the net benefits of the
program.

In practice, the two techniques of sensitivity
analysis and of using intentionally conservatively
biased estimates of costs and benefits can be
combined, as we have done in this analysis.

The CBA Model for Climate Research
Our approach is to carry out an analysis of the

combined TOGA/EOS program using, as the costs
of the program, the actual historical costs of TOGA
along with the projected costs of the ENSO Observ-
ing System as proposed by NOAA. In the model, the
benefits of TOGA/EOS are the projected “expected”
benefits to the U.S. agricultural sector of annual
ENSO forecasts. The costs and benefits are aggre-
gated using present value analysis. Specifically, the
internal rate of return (IRR) for the entire invest-
ment is calculated. IRR is a widely used, and
intuitively appealing, summary measure of the
economic value of an investment.10

The IRR is an especially useful summary
measure of the value of TOGA/EOS because it is
independent of where, in the time line of the
project, the analysis is grounded. In other words,
in using the IRR criterion, it doesn’t matter
whether we carry out the calculations as though
we were in 1985 and we were looking at the entire
TOGA/EOS program unfolding into future; or
whether we assume we’re in the year 2010 looking
back at the entire program; or whether we’re in
1996 looking back at TOGA and forward to EOS.
As long as we use the same annual cost and
benefit values in each calculation, the resulting
IRR will be the same whether viewed from 1985,
1996, or 2010.

For convenience, the annual values of costs,
benefits and related calculations are organized in a
spreadsheet and shown in Table 1. Columns A and
B show the time index and the corresponding
years relevant to the analysis. Note that 1995 is
indexed as time period “0.”

Column C shows the TOGA-related costs
incurred by federal government agencies in each
year up to and including 1995. These agencies
include NOAA, NSF, NASA, and ONR.
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Column D shows the cost of ship time (ships
are used to deploy and tend buoys). Column E is
the sum of C and D. Column F is the relative price
index (for federal nondefense purchases). The
index is anchored at 1987 (index = 100), and the
index in each year is stated relative to 1987. For
example, the value of 130.5 for 1994 means that a
given bundle of goods purchased by the federal
government in 1994 would cost 30.5 percent more
than that same bundle would have cost in 1987. In
other words, the effect of inflation was to increase
the costs of goods to the government by 30.5
percent over the period 1987 to 1994. Using the
price index allows us to remove the effect of
inflation. For convenience, we adjust all costs to
equivalent 1995 values. This is done by construct-
ing in column G a new index anchored at 1995,
and then multiplying each value in column E by
that new index. Note that the new index (column
G) is simply 134.0 (the 1995 price index in col-
umn F) divided by the column F index value for
that particular year. For example, the 1984 index
value in column G is 134.0 / 91.3 = 1.47. This
means that costs incurred in 1984 can be con-
verted to their equivalent 1995 value by multiply-
ing them by 1.47. These equivalent costs of the
TOGA program are shown in column H. Note that
although the costs in column H are adjusted for
inflation, they are not adjusted to account for the
present value of those historical costs. The adjust-
ment for present value, done through the internal
rate of return calculation discussed below, takes
account of the investment return that could have
been earned on resources consumed in earlier
years.

Turning now to the ENSO Observing System,
current government planning documents indicate
an expected annual cost of the system of $12.3
million. That value is shown in column I as the
future annual cost, expressed in 1995 dollars.

For the purpose of this analysis, we use the
estimates developed by Adams et al. of the social
benefits related to the U.S. agricultural sector of
improved ENSO forecasts.

These figures, discussed below, are a measure
of the gain in consumers’ and producers’ surplus
associated with improved information. At the top

of column K of Table 1, the figures $244,000 and
$266,000 are shown. These are the estimates
produced by Adams et al. of the expected annual
value (in 1995 dollars) of 60 percent and 80
percent skill levels (respectively) ENSO forecasts.
These estimates assume that all farmers heed and
act on the forecasts.

Because there is likely to be incomplete
acceptance by farmers of ENSO forecasts, at least
initially, we have built into the CBA model a
“forecast acceptance curve.” A range of forecast
acceptance curves were used in the analysis, and
are discussed below. The particular curve illus-
trated in Table I embodies the assumption that
acceptance starts off at 50 percent level, and
builds to a maximum of 95 percent over a six year
period. The resulting dollar benefits, shown in
column K, are the product of column J and either
$240,000 or $266,000 (depending on the assump-
tion made about the accuracy of the forecast
system. Finally, column L shows the annual net
benefits (benefits–costs) of the TOGA/EOS invest-
ment. Column L is calculated as columns K - H -
1. The internal rate of return calculation (techni-
cally, the real internal rate of return) is calculated
from the values in column L, which show the
annual flows of resource values either consumed
or generated by the TOGA EOS program.

Measurement of Benefits
As mentioned above, in this study we have

relied upon the results of a recent study by Adams
et al. of the value to U.S. agriculture of alternative
skill levels in forecasting ENSO events. This study
(forthcoming) builds on methodology and results
of a previous study by the same authors which
focused on southeast U.S. agriculture.11 The
methodology employs a Bayesian “value of infor-
mation” framework.

In their initial study, Adams et al. estimated
the value of improved ENSO forecasts to south-
eastern U.S. agriculture as $145 million (for
perfect forecasts) and $96 million (for 80 percent
accurate forecasts). That initial research was
recently modified and extended by Adams et al. to
cover the entire U.S. agricultural sector. This
latest study:
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“evaluated the economic value of three
forecast skill levels with regard to the three ENSO
states. These forecast skill levels are 1) a modest
forecast skill level of .6 probability (technically, .6
is the probability of a forecast of a specific ENSO
phase, given that the phase occurs); 2) a forecast
skill level (improvement) to .8 probability (a
“high “ skill level) and 3) a perfect forecast
(probability of 1.0). These three skill levels and
three states of nature frame the set of possible
economic consequences (considered in the study).
The economic consequences associated with all
forecast skill-outcome (ENSO phases or states of
nature) combinations are measured against a
common base - the economic value of a “no-skill”
forecast situation, where producers follow histori-
cal crop management decisions each year.”12

The results of this latest study (which are not
entirely comparable to the previous results)
indicate that the annual value of perfect ENSO
forecasts is $323 million, the value of high skill
(80 percent accurate) forecasts is $266 million,
and the value of modest skill (60 percent accurate)
forecasts is $240 million. These figures are “ex-
pected” annual values, in 1995 dollars. The
expected value is computed by assuming that El
Niño, La Niña, and “normal” climate are each
likely to occur in the future according to their
actual historical relative frequencies, and that the
forecast skill (60 percent, 80 percent, or 100
percent) is independent of the actual climate.

At the present time, the research of Adams et
al. is the only work we could identify which has
attempted to quantify—at the national level, and
taking general equilibrium considerations into
account—the economic value of ENSO forecasts.
In the cost benefit analysis reported here, we have
used the recent Adams et al. figures as the ex-
pected benefits of improved ENSO forecasts. By
ignoring the benefits in economic sectors other
than agriculture, we are understating the actual
benefits—perhaps to a substantial extent.13 Also,
by ignoring any benefits which would accrue to
other countries affected by ENSO events (e.g. in
Central and South America), we are further
understating total benefits.14 Also, by using the
Adams et al. 1995 values as the values for future
years as well (effectively assuming a stagnate U.S.

agricultural sector), benefits are further under-
stated. Thus, we believe it is appropriate to inter-
pret our results as lower bound estimates of the
value of the TOGA/EOS program.

In order to deal further with the uncertain-
ties in the analysis, four parameters were varied in
our sensitivity analysis: the ENSO forecast skill
level, the future time horizon, the rate of accep-
tance of ENSO forecasts by the agricultural sector,
and the annual (future) cost of the ENSO Observ-
ing system (including the cost of generating and
disseminating the forecasts). By varying these four
parameters, 36 scenarios were generated and
evaluated.

Results
Table 2 shows the results of our cost benefit

evaluation of the 36 scenarios just mentioned.
Note that the forecast skill level was allowed to
assume 3 values: 60 percent accuracy, 80 percent
accuracy, and a combination 60 percent/80 per-
cent that allows for improvement in ENSO fore-
casting as more data are collected and models are
refined. In 60 percent/80 percent case, we as-
sumed that forecast skill improves from 60
percent to 80 percent after 5 years into the EOS
program.

The time horizon over which future benefits
are counted was set at two values: 10 years and 20
years. The ten year perspective is admittedly short,
because we would expect that ENSO (and other
climate phenomena) forecasts would continue to
be made indefinitely into the future. The issue,
from the CBA perspective, is how long into the
future we can credibly associate the benefits of
ENSO forecasts with the costs and results of the
TOGA program. It is certainly conceivable that
new climate theories and forecasting models may
evolve, and such models may not stand directly on
the foundation laid by TOGA. Thus, while it is
admittedly difficult to pin down a “best” time
horizon, 10 and 20 years may reasonably bound
the contribution of TOGA.

Agriculture has become an increasingly
sophisticated economic sector, highly dependent
on technology and knowledge. Today, farmers
routinely adopt new technologies, such as hybrid
seed or new herbicides, pesticides and fertilizers.
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Table 2
SUMMARY OF RESULTS

REAL IRR FOR TOGA/ENSO OBSERVING SYSTEM (FY84 TO FY05 OR FY16) FOR SELECTED PARAMETER VARIATIONS

FORECAST BENEFITS RATE OF ANNUAL
SKILL TIME FORECAST COST OF REAL

CASE              LEVEL           HORIZON        ADOPTION           ENSO                  IRR

1 60% .... 10 SLOW $12.3M 13.39%
2 60% .... 10 SLOW $17.3M 12.87%
3 60% .... 10 MODERATE $12.3M 19.60%
4 60% .... 10 MODERATE $17.3M 19.14%
5 60% .... 10 IMMEDIATE $12.3M 23.88%
6 60% .... 10 IMMEDIATE $17.3M 22.93%
7 60% .... 20 SLOW $12.3M 17.16%
8 60% .... 20 SLOW $17.3M 16.78%
9 60% .... 20 MODERATE $12.3M 21.62%
10 60% .... 20 MODERATE $17.3M 21.22%
11 60% .... 20 IMMEDIATE $12.3M 25.13%
12 60% .... 20 IMMEDIATE $17.3M 24.26%
13 80% .... 10 SLOW $12.3M 14.51%
14 80% .... 10 SLOW $17.3M 14.03%
15 80% .... 10 MODERATE $12.3M 20.75%
16 80% .... 10 MODERATE $17.3M 20.42%
17 80% .... 10 IMMEDIATE $12.3M 25.22%
18 80% .... 10 IMMEDIATE $17.3M 24.29%
19 80% .... 20 SLOW $12.3M 18.09%
20 80% .... 20 SLOW $17.3M 17.74%
21 80% .... 20 MODERATE $12.3M 22.63%
22 80% .... 20 MODERATE $17.3M 22.35%
23 80% .... 20 IMMEDIATE $12.3M 26.37%
24 80% .... 20 IMMEDIATE $17.3M 25.51%
25 60%/80% 10 SLOW $12.3M 14.06%
26 60%/80% 10 SLOW $17.3M 13.57%
27 60%/80% 10 MODERATE $12.3M 19.98%
28 60%/80% 10 MODERATE $17.3M 19.64%
29 60%/80% 10 IMMEDIATE $12.3M 23.57%
30 60%/80% 10 IMMEDIATE $17.3M 23.30%
31 60%/80% 20 SLOW $12.3M 17.81%
32 60%/80% 20 SLOW $17.3M 17.45%
33 60%/80% 20 MODERATE $12.3M 22.04%
34 60%/80% 20 MODERATE $17.3M 21.75%
35 60%/80% 20 IMMEDIATE $12.3 M 24.93%
36 60%/80% 20 IMMEDIATE $17.3M 24.68%

AVERAGES: 15 MODERATE $14.8M 20.35%

RANGES: 60% TO 80% 10 TO 20 YRS SLOW TO $12.3M TO 12.87% TO
IMMEDIATE $17.3M 26.37%
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Some research on the diffusion of new technology
in the agricultural sector suggests that new
technology becomes substantially absorbed into
the industry over a period of less than a decade.
While ENSO forecasts are a somewhat different
kind of “technology” than farmers are accustomed
to dealing with, we assumed here that the adop-
tion and use of such forecasts by mainstream
agriculture will not be remarkably different from
farmers’ adoption of other new technologies.
Thus, for our sensitivity analysis, we posited three
“ENSO forecast adoption” scenarios.

In one scenario, which we labeled the
“SLOW” rate of forecast adoption, we assumed
that initially only 10 percent of the agricultural
sector heeds (and acts on) the forecast. In succes-
sive years, that percent grows to 20 percent, then
30 percent, etc.; finally peaking at 90 percent in
the ninth year, and remaining at 90 percent
thereafter.

In another scenario, which we labeled the
“MODERATE” scenario, the initial acceptance is
50 percent, growing linearly to 95 percent over a
six year period (and remaining at 95 percent
thereafter). This is the scenario reflected in Table
1. Finally, as the most optimistic case, we assumed
that there would be “IMMEDIATE” 95 percent
acceptance.

Conclusions
The calculated real internal rate of return for

the 36 scenarios of the combined TOGA EOS
program is shown in the last column of Table 2.
The real IRR values range from about 13 percent
to 26 percent. The Office of Management and
Budget recommends to federal agencies that such
IRRs be compared to a hurdle rate of 7 percent.15

The reasoning is that “(t)his rate approximates the
marginal pre-tax rate of return of an average

investment in the private sector in recent years.”
In other words, had resources not been absorbed
by TOGA and (prospectively) the EOS, and if those
resources had remained in the private sector, they
could have been invested in private sector projects
generating a real return of about 7 percent. Thus,
the opportunity cost of the capital absorbed by the
TOGA/EOS programs is 7 percent. We should,
therefore, judge those programs economically
worthwhile only if they generate returns to society
at least as great as the cost (real 7 percent) they
impose.16

By this criterion, the TOGA / OEFS program
handily passes the CBA test. Importantly, the
range of results produced by the sensitivity
analysis (the 36 cases) falls entirely on the “up”
side of the hurdle. Considering these results, and
subject to the usual qualifications, we can be
reasonably confident that the TOGA/EOS program
represents sound use of society’s resources.

Furthermore, it is clear from the analysis
that if one focused solely on the prospective EOS
program, accepting TOGA as a now sunk cost, its
real IRR would be substantially higher than those
values reported above. Thus, we can confidently
conclude that the presently proposed ENSO
Observing System, built on TOGA, is a worthwhile
public investment.

Finally, as suggested above, one might say
the proposed GOALS program today is where
TOGA was in 1985—a promising but uncertain
climate research program. Our results here
suggest that climate research has measurable and
substantial economic payback. That is a clear
argument in favor of society’s continuing a
modest stream of investment in climate re-
search.
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2Value is usually measured as informed and rational
consumers’ willingness and ability to pay for something,
rather than going without it.

3Private return is the financial gain (profit) to firms
producing and selling the product. Social return also
includes those gains to consumers (willingness to pay in
excess of actual payments) which are not appropriated by
firms. This latter gain is called consumers’ surplus.

4CIAP was a research effort, funded through the
USDOT, to assess the climate impacts of a proposed fleet of
supersonic transport (SST) aircraft. NORPAX (North Pacific
Experiment) pioneered the use of expendable bathythermo-
graph profiling from volunteer observing ships.

5There is some evidence of ENSO effects in Europe and
Northern Africa, as well.

6National Research Council GOALS for Predicting
Seasonal-to-Interannual Climate, Washington, DC 1994.

7Zebiak and Cane “A Model El Niño/Southern Oscilla-
tion” Mon. Wea. Rev. 115:2262-2278, 1987.

8Michael Johnson et al., Transition Plan Towards an
Operational ENSO Observing System, NOAA, November
1995.

9Our terminology needs explanation. “Lower bound”
means that we have used conservative estimates of costs and
benefits so our results are likely not to overstate the value of
the program. “Social” means we’ve included benefits to
consumers as well as producers. “Real” means that in our
analysis we have removed the effects of inflation. “Internal
rate of return” is discussed below. “ IRR is often used in
evaluating financial investments, such as the purchase of
securities.

10For example, a bond which costs $1000 and which
pays the holder $100 per year in interest, and which then
returns the principal of $1000 along with the final $100
interest payment has an IRR of 10 percent. Another way of
interpreting the IRR is as that discount rate which, if used to
calculate the net present value of the investment, would
result in a value of $0. A project’s calculated IRR should be
compared with the opportunity cost of that investment (the
rate of return that could be earned in the next best invest-
ment). Currently, OMB suggests a real value of 7 percent as
the appropriate hurdle rate

11Adams et al., “Value of Improved Long-Range
Weather Information,” Contemporary Economic Policy, Vol.
XIII, July 1995

12Personal communication between Adams and one of
the authors.

13Research, sponsored by NOAA, is currently underway
to quantify the value of climate forecasts in other climate
sensitive sectors, such as hydroelectric power, natural gas,
water management, and fisheries.

14Whether to include “spillover” benefits to other
countries in a CBA depends on the perspective and purpose
of the CBA. Certainly, a global CBA perspective—as discussed
later in this report—would include those benefits.

15OMB Circular A-94 (revised), 10/29/92: Guidelines
and Discount Rates for Benefit-Cost Analysis of Federal
Programs

16It’s worth noting that even if society would have
chosen to consume, rather than invest, the resources
absorbed by the TOGA / EOS programs, the conclusion
remains unchanged. This is because, in choosing to consume
rather than accept a 7 percent real return, society reveals
that present consumption is worth at least as much as the
flow of future consumption that could be financed by the
investment of those resources.
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