

The Hazard Evaluations and Technical Assistance Branch of NIOSB conducts field investigations of possible health hazards in the voriplace. These investigations are conducted under the authority of Section 20(a)(6) of the Occupational Safety and Health Act of 1970, 29 U.S.C. 669(a)(6) which authorizes the Secretary of Health and Human Services, following a written request from any employer or authorized representative of employees, to determine whether any substance normally found in the place of employment has potentially toxic effects in such concentrations as used or found.

The Hazard Evaluations and Technical Assistance Branch also provides, upon request, medical, nursing, and industrial hygiene technical and consultative assistance (TA) to Federal, state, and local agencies; labor; industry and other groups or individuals to control occupational health hazards and to prevent related trauma and disease.

Mention of company names or products does not constitute endorsement by the National Institute for Occupational Safety and Health.
C. EUGENE MOSS, HP RANDY L. TUBBS, PhD LORRAINE L. CAMERON, PhD EUGENE FREUND, M.D.

## I. SUMPARI

On October 11-13, 1988, investigators from the National Institute for Occupational Safety and Health (NIOSH) conducted an investigation at the Loule Glass Company in Weston, West Virginia. This investigation was performed in response to a management request received on June 21 , 1988, concerning the appropriate eye wear to protect workers from optical radiation emitted by the glass furnace. Since heat stress was identified by the NIOSH investigators as potential problem, it was also evaluated as part of the investigation.

Optical radiation measurements were made in the furnace room under normal work conditions over several shifts. The maximum levels of far ultraviolet, near ultraviolet, visible, and infrared radiation were found to be non-detectable, 8 microwatts per square centimeter, 0.93 candela per square centimeter, and 173 milliwatts per square centimeter, respectively. Only the infrared radiation levels exceeded the American Conference of Governmental Industrial Hygienists (ACGIH) guideline value of 10 milliwatts per square centimeter.

The heat stress measurements made near the furnace yielded Wet Bulb Globe Temperature (WBGT) values ranging from 61 to 116 degrees Fahrenheit. Results of the medical questionnaire, given to furnace room personnel, revealed the occurrence of ahortness of breath, heat sickneas, burns, cuta, eye injuries, dry eyes, itchy nose, and ergonomic problems.

Based on the data collected in this gurvey, NIOSH investigators have concluded that under certain conditions vorkers would be exposed to excesaive levela of infrared radiation from both the furnace and certain glass making procedures. Recomendations are made in Section VIII for reducing these exposures and selecting appropriate personal protection equipment.

KEYWORDS: SIC 3229 (Pressed and Blown Glass and Glassware), infrared radiation, heat atress, ergonomics, personal protective equipment.

On June 21, 1988 , NIOSB received a request for a health hazard evaluation at the Loule Glass Company, Inc., Weston, West Virginia. The request was submitted by management and expresaed concern about the proper eye wear necessary to protect plant workers from optical radiation produced from glass melting furnaces. Two on-site surveys were conducted on August 18, 1988, and September 8, 1988, with a follow-up survey performed on October 11-13, 1988. Measurements of heat stress levels were made, optical radiation levela were recorded, and a health questionnaire was administered.

## III. BACRGROUSDD

Loule Glass Company is the largest manufacturer of handmade glass in the United States. The Louie Glass Company ships about six ailifon pleces of handmade crystal annually. In 1972 Loule Glass became a subsidiary of Princess Rouse, Inc. Today, both Louie Glasa and Princess House are subaidiaries of the Colgate-Palmolive Corporation.

The heart of the glass making operations at Louie Glass is the large furnace (Figure 1) which melts batches of uniquely blended rav materiala selected to enhance the glass crystal products at approxinately $2200^{\circ} \mathrm{F}$. Since there are many different glass pieces, the work is performed by groups of four to eleven workers called teans. Each tean or shop, is comprised of workera who have experience in various phases of glasa making and who have been working together for many years.

Glassvorkera stand near a semi-enclosed furnace as they form various gless products. After the piece is formed, it can be modified to receive a crimped or folded rim, a lip, or a stemmed foot by other slasavorkers located at several finishing atations further away from the furnace. The time to make the various pieces generally ranges from 1 to 3 minutes. After the piece is finished it is placed in an annealing oven for about 90 minutes. Following the annealing process, the flass products are inspected for scars, faults, or other defects.

The furnace room is built with a raised platform surrounding all the port holes. The platform is about 12 inches high and about 10 feet vide. All of the glase gathering is accomplished while atanding on the platform, while all the slase forming occurs beyond the platform.

Louie Glas: Company maintaina hourly logs of the furnace temperature at each vindov port using a calibrated pyrometer (Figure 2). The data obtained from these logs over the days of measurementa are shown in Table I. Over the 5 -day evaluation cycle the temperature ranged from 2202 to $2225^{\circ} \mathrm{F}$. This small temperature increment of $23^{\circ} \mathrm{F}$ over 5 days suggesta the furnace is relatively constant hot source.

After quality control (QC) inspection, the accepted glass products are transported to the final finishing department where all excess glass is removed. This removal procesa takes place manually (a process known as "crack-off") or can be performed with modern 20-head polishing units. After the removal process is completed, the glass products go to the engraving area where unique floral designs (such as stems, leaves, and flower petals) are inscribed manually by engravers.

Due to the nature of the glass making process the facility runs continuously four shifts total, rotating three shifts per day, seven days per week. The facility employed, at the time of this evaluation, about 550 employees, the majority (93\%) of which are male hourly employees.

Broken glass is an obvious undesired by-product from the operations. Normally at the end of workshift, employees dry sweep the floors and either remelt or dispose of the sweepings. All personnel are required to wear safety glasses for eye protection and about half of the workers wear some form of tinted lenses.
IV. METHODS AND MATERIALS

## A. Environmental

The following equipment was used to measure levels of radiant energy produced by the various processes:

1. Luminance or brightness levela were measured with a Spectra Mini-Spot photometer having a one degree field of view. The measurements vere obtained in units of footlamberts (fL) which were converted to candela per aquare centimeter (cd/cm ${ }^{2}$ ). The luminance of source is a measure of its brightness when observed by an individual without eye protection, regardless of the distance from source.
2. An International Light radiometer, model 700 , with specially calibrated detectors vas used to evaluate the ultraviolet (UV) radiation levels. One detector vas designed to read the actinic UV radiation ( 200 to 315 nm ) in biologically effective units of microwatts per square centimeter (uW/cm²), while the other detector measured near UV ( $320-400 \mathrm{~nm}$ ) in units of eilliwatts per square centimeter (mW/ cm ${ }^{2}$ ) with no biologic weighting factor.
3. A Solar Light Sunburn meter vas used to document the presence of any erythema-producing radiation in the 290 to 320 nm wavelength region. This meter reads in sunburn units per hour.
4. An Eppley model 901 calibrated thermopile with a quartz vindow was used to measure irradiance in units of $\mathrm{mW} / \mathrm{cm}^{2}$ over the vavelength range from 200 to 4500 na .

All equipment used to document exposure to optical radiation fields had been calibrated within aix months either by JIOSA or the respective manufacturer.

Heat stresa measurementa were obtained using a Reuter-Stokes heat stress monitor, model RSS-2llD at locations within the furnace room where glass workers spent the majority of their time (Figure 3). The instrument provided wet bulb globe temperature (WBGT) values for comparison to various WBGT evaluation criteria applicable to working in hot environments. The WBGT readings incorporate air temperature, natural wet-bulb temperature, and globe temperature measurements to assess the parameters that can contribute to heat stress such as the convective heat load, the radiant heat load, and the ability of the body to eliminate heat through perspiration and vasodilation. The monitors were mounted on tripods at a height of about four feet from the floor and allowed to equilibrate for a period of time at each measurement site prior to obtaining instrument readings.

## B. Medical Questionnaire

Prom October 11-13, 1988, NIOSH investigators administered a medical questionnaire, includins job history (Appendix I). Furnace room personnel from all shifts were invited to participate.

The study questionaife vas administered during the working hours of each of four shifts. Employees were scheduled (by ahop) to report to a break room where a self-adminiatered questionnaire was distributed. NIOSH investigators were avallable to answer questions and to assist those who were unable to read. The voluntary and confidential nature of the survey was explained both verbally and in writing. The questionnaire contained questions designed to gather information on jo history, use of protective devices (spectacles), and medical conditions and aymptom (particularly ocular, upper and lower respiratory, and dermatologic).

## V. EVALUATIOF CRITERIA

An a suide to the evaluation of the hazards posed by vorkplace exposure , NIOSH field staff employ environmental evaluation criteria for assessment of a number of chemical and physical agents. These criteria are intended to suggest levels of exposure to which most workers nay be exposed without experiencing adverse health effecta. It is, hovever, important to note that not all vorkers will be protected fros health effecta if their exposures are maintained below these levels. A amall percentage may experience adverse health effecte because of individual susceptibility, a preexiating medical condition, and/or aypersensitivity allerty.

In addition, some hazardous substances may act in combination with other workplace exposures, the general environment, or with medications or personal habits of the worker to produce health effects, even if the occupational exposures are controlled at the level set by the evaluation criteria. Also, some substances are absorbed by direct contact with the skin and mucous membranes, and thus, potentialiy increase the overall exposure. Finally, evaluation criteria may change over the years as new information about chemical and physical agents become availab:-

The primary sources of environmental evaluation cri'eria for the workplace are: 1) NIOSH criteria documents and recommendations, 2) the Anerican Conference of Governmental Industrial Hygieifsts' (ACGIH) Threshold Limit Values (TLVs), and 3) the U.S. Department of Labor (OSHA) occupational health standards. Often, the NIOSH recommendations and ACGIR TLVs are lower than the corresponding OSHA standards. Both NIOSB recommendations and ACGIH TLVs usually are based on more recent information than are the OSHA standards. The OSHA standards also may be required to take into account the feasibility of controling exposures in various industries where the agents are used; the NIOSH recommended standards, by contrast, are based primarily on concerns relating to the prevention of occupational diseases. In evaluating the exposure levels and the recommendations for reducing these levels found in these reports, it should be noted that industry is legally required to meet those levels specified by an OSHA standard. However, at present, there is limited information from OSHA on exposure criteria for workers exposed to physical agents. Criteria for physical agents not covered :- OSHA come from either ACGIH, NIOSH, or in some cases from consensus standards promulgated by the American National Standards Institute (ASSI).

## A. Optical Radiation

1. Infrared Radiation [1-5]

All objects having temperatures above absolute zero emit infrared radiation (IR) as a function of temperature. In biological systems, the major insult of IR exposure appears to be a rise in the temperature of the absorbing tissue.

Some of the physical factors which influence this temperature rise are the wavelength, heat conduction parameters, exposure time, and total amount of energy delivered to the exposed tissue. Since IR photons are low in energy, they would not be expected to enter into photochemical reactions with biological syatems. Molecular interactions with radiation in the IR regions are characterized by various vibrational-rotational tranaitions resulting in an increase in thermal energy of the nolecule.

Since the primary effect of IR on biological tiasues is thermal, the skin provides its own warning mechanise by havinis a pein threshold below that of the burn threshold. Hovever, there is no such adequate warning aechanian in the eye therefore, additional protective equipment ia often necessary. Traditionally, afety personnel consider IR to be a cataractogenic agent, but recent literature has cast serious questions about whether IR cataracta can be produced in the workplace from non-coherent optical sources, such as glass fyrnace operations.

IR radiation beyond 1400 nm can produce corneal and eyelid burns, as well as dry eye and skin. The primary biological effect of IR on the retina and choroid is thermal in nature, with the amount of damage being proportional to the length of exposure. If the radiation intenaity is low enough, however, normal retinal blood flow may be sufficient to disaipate any heat senerated. Nevertheless, due to the focusins effect of the anterior ocular components, small amounts of IR can produce a relatively intense point energy diatribution on the retina, resulting in a lesion.
2. Visible Radiation [1,5,7,8-10]

Visible radiation, from either the sum or artificial sources, is an important occupational health conaideration because of ite major role in our daily life. When light levela are high at unique wavelength regions, retinal hazards arise that require the vearing of protective eye wear devicea. These types of direct retinal effects from excessive light levela have been well known and documented for many yeara (i.e., staring at welding arcs or the sum).

Indirect effects of light, however, can occur not only from absorption of light energy in tissues but from the action of chenical subatances liberated by cella in the body. In many cases uch indirect effecta occur at much lower intensities than those required to produce the direct effects. As a result, such effects often are not recognized as a nor occupational health hazard. Examples of this relationship of light to blological rhythma include effecte on physical activity, sleep, food consumption, etc. Another well-known indirect effect is the inhibition of melatonin synthesia by the pineal gland, which in turn affects the maturation and activity of the sex organa. Only within the last fev years have investigators begun to discover the various subtle phyaiological and biochemical responsea to light.

Another isaue which often arises is that associated with poor room or task lighting conditions. Such conditions may cause asthenopia (eye strain). Although the etiology of eye strain is debatable, it appeara that repeated occurrences probably do not lead to any permanent eye damage. Workers over 40 years of age vill probably develop more symptoms of eye strain (headache, tired eyes, irritation) since they require more light to perform a similar job than younger workers.

The ACGIA TLVa for visible radiation are irtended to offer protection from retinal thermal injury and from photochemical injury that can occur from exposure to wavelengths in the region from 400-500 nanometers.
3. Ultraviolet Radiation $[1,6,7,9]$

UV radiation is an invisible radiant energy produced naturally by the aun and artificially by arca operating at high temperatures. Examples of these sources include germicidal and blacklight lamps, carbon arcs, welding and cutting torches, electric arc furnaces, and various laboratory equipment.

Since the eyea and akin readily absorb UV radiation, they are particularly rulnerable to injury. The severity of radiation injury depends on factors which include exposure time, intensity of the radiation source, distance from the source, vavelength, sensitivity of the individual, and presence of sensitizing agents.

Sunburn is a comon example of the effect of UV radiation on the skin. Repeated UV exposure of lightly pigmented individuals may reault in actinic skin: a dry, brown, inelastic, vrinkled skin. Actinic skin is not normally debilitating, but ia warming that conditions such as actinic keratoais, equanous cell epitheliona, and basal cell epithelioma may develop.

Since UV ia not visible, the worker may not be aware of an exposure at the time it is occurring. Absorption of the UV radiation by the eye and eyelids can cause conjunctivitis. Lesions may also be formed on the cornea as a result of high exposure levela (photokeratitis). Such injuries usually anifest themelves 6 to 12 houra after exposure. The injuries may be very painful and incapacitating, but impairment ia uavally temporary. Workers also need to be aware that the
presence of certain photosensitizing agents on the akin can produce exaggerated sunburn when exposed to certain UV radiation wavelengths.
B. Hot Work Environments $\{3,11-12]$

RIOSH originally defined hot environmental conditions as any combination of alr temperature, humidity, IR radiation, and wind speed that exceeds a WBGT value of $79^{\circ}$ Fahrenheit (F) or $26^{\circ}$ Celsius (C). NIOSH, in its revised criteria for occupational exposure to hot environments, presents maximum recommended heat stress levels on a sliding scale of WBGT values for various metabolic heat levels (work effort). The recommended heat stress limits are presented as a series of five curves on graph. Four curves represent different work-rest reginene, while the fifth curve is a ceiling limit which is not to be exceeded at any time for any work level without the workers being provided with and properly using appropriate and adequate heat-protective clothing and equipment. In order to use the criteria one must compute 1-hour time-weighted average WBGT values for the work area and estimate the work effort (metabolic heat) produced by the tasks performed by the worker in the hot environment. Figures 3 (recomended Heat-Stress Alert Limita (RALs) for heat-umacclimatized vorkers) and 4 (recommended Heat-Stress Bxposure Limits [RELs] for heat-acclinatized workers), shown in reference 11 , present this information.

These criteria assume the vorker is clothed in the customary one-layer work clothing ensemble, is physically and medically fit, has good nutrition, and has adequate salt and water intake. Additionally, the worker ahould not have any preexisting medical conditions uhich might inpair the body's thermoregulatory mechanisms. Alcohol use and certain therapeutic or over-the-counter medications can also impair the body's heat tolerance and may increase the risk for heat injury or illness. The HIOSH evaluation criteria may not be applicable if the worker or conditions do not meet the above requirementa.
C. Heat Streas [12,13]

Heat atress is defined as the total net heat load on the body, which is comprised of contributione from exposure to external enviromental sources and from metabolic heat production.

Four factora influence the interchange of heat between the human body and the environment. These are: (1) air temperature, (2) air velocity, (3) moisture content of the air, and (4) radiant heat sources. Industrial heat problems involve a combination of these factors which produce a working environment that may be unconfortable or even hazardous because of an imbalance of metabolic heat production and heat loss.

The fundamental thermodynanic processes involved in heat exchange between the body and its environment may be described by the basic equation of heat balance:

$$
S=M-B \pm R \pm C
$$

where $S=$ change in body heat content (heat gain or loss); $M=$ rate of metabolism (associated vith body function and physical work); $E$ = heat losa through evaporation of perspiration); $R=$ heat loss or gain by radiation (infrared radiation emanating from warmer surfaces to cooler surfaces); and $C=$ heat loss or gain through convection (passage of a fluid [air] over a surface with the reaulting gain or loss of heat). Under conditions of thermal equilibrive (easentially no heat atress) heat generated within the body by metabolism is completely dissipated to the environment and deep body (core) temperature remains constant at about $98.6^{\circ} \mathrm{F}$ $\left(37^{\circ} \mathrm{C}\right)$.

When heat losa faila to keep pace with the heat gain, the core temperature begins to rise. At this point certain physiologic wechanisms begin to function in an attempt to increase heat loss from the body. First, there is dilation of the blood vessels of the anin and subcutaneous tissues with diversion of a large part of the body's blood supply to the body aurface and extremities. An increase in circulating blood volume also occurs through the withdraval of fluide from body tissues. These circulatory adjustaenta enhance heat transport from the body core to the surface. Simultaneously, the sveat glands become active, spreading fluid over the akin, which removes heat from the skin surface by evaporation. Braporative cooling muat balance the combined effects of metabolic and environmental heat load to maintain thermal equilibrium. If thia fails, heat atorage begins with the resultant strain of increased body temperature.

Prolonged exposure to exceasive heat may cause increased irritability, lassitude (veariness), increased anxiety, and inability to concentrate. The reaulta are aifrored by a general decrease in the efficiency of production and the quality of the finiehed product.

The acute physical disabilities caused by excessive heat exposure are, in order of increasing severity: heat rash, heat cramps, heat exhauntion, and heat etroke.

Chronic heat illnessea are those occurring as after-effects of acute heat illnesses; those brought on by working in excessive hot jobs for a few veeks, month, or years but without the occurrence of acute heat illness; and those associated with living in climatically hot regions of the world. Chronic after effects
associated with acute heat illnesses can include reduced heat tolerance, dysfunction of sweat glanda, reduced aweating capacity, muscle soreness, stiffness, reduced mobility, chronic heat exhaustion, and cellular damage in different organs, particularly in the central nervous system, heart, kidneys, and liver.

Chronic heat illnesses not associated with an acute incident of heat illness can fall into one of two categories based upon the duration of exposure. After several monthe of exposure to hot vorking environment chronic heat exhaustion may be experienced. Symptoms which may develop include headeche, gastric pain, aleep disturbance, irritability, vertigo, and nausea. After many years in a hot job, cumulative effects of lons-term exposure which may develop are hypertension, reduced libido, sexual impotence, myocardial damage, and nomalignant diseases of the digestive organs.

## VI. RESURTS

The evaluation performed by NIOSB at Louie Giass Company included measurements of optical radiation produced by the furmace, determination of heat stress, and administration of a medical questionnaire.

## A. Optical Radiation

1. Luminance

Luminance levels associated vith the 13 open port holes ranged from 0.80 to 0.93 candela per square centineter ( $\mathrm{cd} / \mathrm{cm}^{2}$ ). These measurements were made with the photometer aimed at the furnace where the satherer was positioned during his work cycle. Measurements vere made dally on the aame open port holes, and all vere found to be vithin the above luminance range. The recorded levels are below the $\triangle C G I$ ILV of 1 $\mathrm{cd} / \mathrm{cm}^{2}$.
2. Ultraviolet Radiation

Levels of both near and actinic UV radiation, produced by the furnace, were documented daily during the evaluation. The actinic radiation levela ( 200 to 315 m ) vere non-detectable at all port holes. The maxime level of near UV radiation (315 to 400 na ) vaa 8 microwats per aquare centimeters at the edge of the port hole. These levels of near and actinic UV radiation are below the TLV and are not conildered to be an optical or skin hazard.

The sunburn meter indicated non-detectable levels everywhere in the facility, except outside. The maximum reading obtained at noon outside (overcast day) was 0.5 SBU per hour.
3. Infrared Radiation

During the initial plant walkthrough it was observed that vorker exposure to IR could occur from two different aituat!ons. One was exposure to the IR emitted from the furnace through the port holes and the secund was from handiling the hot glass as it was processed. While the furnace irradiance was higher than the irradiance from the glass processing, the exposure time from the slass processing was longer than the total exposure time spent in the immediate area of the furmace. The irradiance of the glass product after removal from the furnace constantly decreases as it undergoes shaping. These variationa in vorkers' IR exposure due to source differences are an important conaideration in developing an appropriate eyt protection program.

At close vicinity ( 2 feet from the furnace port hole) measurements of IR as high as $173 \mathrm{~mW} / \mathrm{cm}^{2}$ were obtained. This level is about 17 times the TLV of $10 \mathrm{~mW} / \mathrm{cm}^{2}$. Additional measurements vere made at selected port holes of the furnace at varying diatances. These results are shown in Figure 4 . While some elight differences exist in the magnitude of IR levels at different port holes, it is obvious that the IR levels decrease as the distance from the furnace is increased.

After gathering, the glass material was brought to the blower by the gatherer for further shaping and processing. The highest If level measured while vorkers vere processing the glass vas $140 \mathrm{~mW} / \mathrm{cm}^{2}$. This result was obtained at a distance of one foot from glass blower who was shaping the hot glass.

## B. Heat Strent

The heat atress measurements revealed a high level of heat at the porthole openinge of the furnace, but these levela quickly decreased as the distance from the furnace vas increased. This is shown in Table II. The WBGT readings obtained at two feet from three of the five porthole openings exceeded the nIOSH heat stress ceiling linit of $101^{\circ} \mathrm{F}$. The highest level obtained was $116^{\circ} \mathrm{F}$ at porthole fl. It is observed that the measured IR radiation levels folloved the ase pattern as heat atress levels. This finding clearly illustrates the radiative component associated with the measured heat stress levels.

Due to the short tine period gatherers stood at two feet from the portholes, the investigetors do not believe these WBGI levels represent actual increases in body core temperature and, therefore, do not represent a heat stress condition. At best, the themal insult sensed by the gatherers would be alight rise in body surface temperature when close to the portholea. As the satherers move away, this "warmth" effect would decrease until the they returned to the porthole area.

The heat levels were lover at the other end of the furnace. Measurements made at the edge of the platform ( 6 to 9 feet from the furnace) fell to a range of $67^{\circ}$ to $73^{\circ}$ F. The company had installed several fans (see Figure 5) throughout the furnace area for sdditional cooling.

Other WBGT measurementa made at the work stationa on the periphery of the furnace vere found to be in the $60^{\circ}$ to $70^{\circ} \mathrm{F}$ ranse. It is noted that all WBGT measurements made for this evaluation were made in the fall season, on a day when the outside ambient air temperature was $62^{\circ} \mathrm{F}$ with a relative hualdity of $61 \%$. These measurements should be repeated during the sumer months when the heat load from the environment ia at its highest to determine the maximum heat stress factors in the furnace room.

## C. Medical Questionnaire

1. Characteristics of the Worker Population

Of the 315 hourly furnace room employees on the payroll, 264 were present during the questionnaire administration and 233 (74x of hourly employees, $89 \%$ of those present) completed questionnairea. Participation rates varied little by shift. Almost all participanta vere male, vith a median age of 36 ; one-fourth of the vorkers were 44 years of age or older.

Experience in the glasamaking industry varied from less than one gear to 52 years, with a median of 11 years. Twenty-five percent of the sroup had vorked five years or less in glasgaking. The number of years apent in furnace roon jobs was sonewhat lesa (median 9 years, range $<1$ - 31 years; 28\% of the workers vorked in furnace roon jobs for five or lese years.) Workera vere in their current job for a median of 2.9 yeara (range <1 - 31 yeara); $25 x$ vorked at their current job for half a year or lese.

## 2. Categorization of Exposure

There are 22 specific jobs in the furnace room, and vorkers typically progress from the least akilled "spare" to the highest-skilled and highest paying jobs of blower and bit-person. The jobs that vere recorded fron the survey of
furnace room employees were grouped for analysis into high and low exposure groups, based on the IR measurements taken for each job during the induatrial hysiene survey of the furnace room and the description of job activities. Additionally, exposure was dichotomized into "platform" and "non-platform", with the former group considered highly exposed. Both current and cumulative IR exposures were considered in the analyses.

From the job history, we were able to calculate the number of years worked, per individual, in each exposure category (high, low, platform, non-platform). A substantial number of workers had held jobs in other glass factories in the past. Workers reported that job practices and exposures weze similar for the same job title in different plants, so these jobs were classified into the same exposure categories as the Louie jobs. Cumulative exposures were computed using just the reported Loufe exposure and also summarizing over all jobs, Loule and non-Louie. Current exposure categories were based on the present job ciasaification. After examination of a number of different groupings, blowers and bit-persons were chosen for the analysis as the high IR exposure group. Prevalance rates of medical conditions and symptoms were calculated for the high exposure group and for the rest of the workers (the "non-exposed"). The ratio of these rates was calculated (RR), as well as its 95 percent confidence interval (CI). Confidence intervals which exclude 1.00 indicate a statistically significant RR.
3. Survey Findings

Regarding conditiona affecting the eye: three workers reported a diagnosis of cataract, four reported glaucoma, one reported diabetes, and none reported retinal disease. Five workers reported carpal tunnel syndrome. Nineteen workers reported a diagnosis of bronchitis, and 15 reported "white lung", which ve believe is a local term for silicosis.

## a. Visual Rffects

Those with and without symptoms did not significantly differ by any of the cumulative exposure indices. When analyzed by current exposure categories, blowers and bit-persons (a high current IR exposure group) reported somethat higher rates of hazy and blurry vision, as compared to the other workers (Table III). This elevation lessened but peraisted after adjustment for the use of green spectacles at vork (Table III). Age did not affect this relationship.

All but 8 ix of the furnace room vorkers reported vearing some type of safety glasses at work. The majority wear green spectacles at work, either full-tine (149/234, 64X) or part-time ( $13 / 234,6 X$ ); next most comm slasses are colorless ( $57 / 234,24 X$ ); other types are roae-colored, photogrey, or various combinations of lensea. About half (123/234) wear prescription lenses to improve their vision at work, while 44\% (102/234) never wear any corrective lenses. Blowers and bit-persons are significantly more likely to wear prescription lenses at work (Table III); they are also more likely than other workera to have had two or more prescription changes vithin the past two years (Table III).

When asked whether they thought their job had affected their vision, $21 \%(48 / 234)$ of the workers answered affirmatively. Light sensitivity or glare; pain, itching or burnins; and blurry, distorted vision accounted for 38x of all reported effects. Blowers and bit-persons had higher rates of reported visual effects than the other workers. Those that wear green safety glasses also had higher prevalance rates than other workera for reported effects ( $R R=1.92, C I=1.03-3.56$ ); after adjustment for use of green-colored spectacles, there was no association of these reported eye effects with current job.

## b. Reapiratory Effects

Mean cumulative exposure indices did not differ between those with and without respiratory symptoma. However, shortness of breath was reported aignificantly more often from blowers and bit-persons than other vorkers, even aftes adjuatment for smoking (Iable IV). Shortneas of breath is highly associated with "white lung". (RR=3.81, $C I=2.66-5.46$ ). White lumg vas a self described medical condition viltten in by 15 vorkers under Question 12 , part 1. Even after removal of those uth "white lung", the blovers and bit-peraons atill showed significantly elevated rates of shortness of breath (Table IV).
"White lumg" workers were significantly older than the other vorkers ( 45 va. 37 yra, $p=0.002$ ), and worked longer In glasanaking than the others ( 26 vs. 12 yrs, $p<0.001$ ).

## c. Other Health Bffects

Blovers and bit-persons reported higher rates of tingling of the hands (a symptom of possible carpal tumnel syndrome) than the other workers (Table IV). This finding is
consiatent with the type of hand movements their jobs require, i.e. repetitive wrist rotatione, wrist flexions and extensions, and rolling of glassblowing tools with the fingers.

Dry eyes were more cowmon among blowers and bit-persons, as was itchy nose. The RR for both decreased with age and itchy nose vas significant only for those age 30 and under (Table IV). These results are probably due to a general dryins of the cornea surface and tiasues near the nose. The higher reported rate for younger vorkers may represent an adaptation to drying conditions in older exposed workers.

Thirty percent (70/234) of the furnace roon workers reported at least one incident of heat sickess within the past year. Of the 143 who reported beins in their present job at least one year, 47 (33\%) reported at least one episode of heat aicknes. The highest rates of heat sickness ( $40 \%$ or higher) were from workers in the following jobs: blockers (4/9, 44K), crack-offs (8/19, 42X), and bit-persons (4/10, 40X).
4. Injuries

The overall rate for all injuries over the past year was 47x (109/234). Burna vere most common at $37 \%$ ( $86 / 234$ ), followed by cuts at 25\% (59/234), eye injuries at $118(26 / 234)$ and all other types at $7 \pi$ (16/234).

For those employed at least one year in their present job, the injury rate vas $45 \%$ ( $64 / 143$ ). Forty-one percent of these injuries ( $23 / 64$ ) occurred among workers in the following jobs: apares, core/ball holders, handle atickers, burn-offs and crack-offs. In all these groupa the infury rates vere above 50x. When exanined by type of injury the following high riak sroupa vere identified: (1) $43 x$ of all burne occurred among holders, handle stickers, spares, burn-offe and crack-offa; burn rates in these sroupa ranged from 42-100\%, (2) 44\% of cuts occurred anong pares, handle atickers, burn-offs and crack-offs; cut injury rates in these groups ranged from 36-67x and (3) 71x of eye injuries occurred anong gatherers, burn-offa, crack-offa, and footers; eye injury rates ranged from 15-19x in these sroupa.

## VII. DISCUSSIO:

## A. Dye Vear Concern

While making the optical radiation measurements, it was observed that many of the furnace roon permonnel were wearing some sort of
eye protection, but it did not appear there vas a uniform policy regardint the type of required eye protection. One of the major issues to be deternined vas the value of the appropriate filter shade number for eye vear use in the furnace room. Bye protection can be specified in terms of shade number which is a logarithaic notation of viaual tranamittance. The ASSI standard 287.1 (1989) sets transoission specifications in the visible, UV, and IR radiation regions [15]. Measurement at Louie Glass demonstrated that $U V$ and visible occupational radiation exposures did not exceed the applicable standards and guidelines at the time of this investigation. Therefore, the proper selection of a furnace room filter depends on controllins the occupational IR radiation exposure.

Table 5 shows the maximum il transmittance percent peraited by gelected filter shades. Using these values and the maximun IR levela measured in the furnace roon one can calculate the IR levels transiltted by different shades. If the maximum values of 173 $\mathrm{mW} / \mathrm{cm}^{2}$ and $140 \mathrm{~mW} / \mathrm{cm}^{2}$ for platform and non-platform personnel, reapectively, are used (as reported earlier), then a filter shade of \#3/\$4 affords reasonable IR ocular protection based on the ACGIH TLV of $10 \mathrm{~mW} / \mathrm{cm}^{2}$. The relative spectral transmisaion of a typical shade 3 filter is ahown plotted against the relative furnace apectral irradiance in Figure 6. This figure shows how a filter controls the level of IR irradiance incident upon the eye.

The use of a shade $3 /\{4$ filter offers aufficient ocular protection from the ir exposure and atill permits sufficient luminous tranamittance for vorkers to view the majority of work taska (see Figures 7-10). While one can use higher filter shades to reduce the ocular exposure, it should be noted that the higher the shade number, the darker the tint, and the more difficult to see.

Platform personnel, such as gatherers and blovers, definitely ahould vear these eye protectora. In addition, other furnace room personnel should be offered eye protectors if, in the opinion of the afety office, their job taska require then to work with hot objects caitting exceasive levels of IR. All vorkers aust continue to vear some form of affety eye vear protection while in the glass production area, including engraving, $Q C$, and furnace atations.

From the medical aurvey it vas not posaible to identify any visual effects related to cumulative exposure to IR radiation among this group of vorkers. It muat be noted, hovever, that an ophthalaic or visual acuity examination vas not performed.

The questionnaire revealed some visual symptoms wich seemed related to current job. Eazy and blurry viaion, the use of prescription lenses and more frequent changes in preacription vere
reported more frequently by blowers and bit-persons than other workers. These findings persist after adjustment for age and type of safety glasaes and may reflect the high visual demands of these jobs rather than an acute effect of expoaure. Workers who wore green safety glasses vere more likely to report that they believe their job is affecting their vision. This may reflect the discomfort caused by wearing the lenses. Some of the discomfort might be eliminated by the use of different frame types.

## B. Ergonomic Issues

Higher prevalance rates of hand tingling and numbness in the blowers and bit-persons, along with the reports of five cases of carpal tunnel syndrome, indicate the need for an ergonomic evaluation of these furnace roon joba.

The Princesa House company (which now owns Louie) contracted for an ergonomic study of their Massachusetta facility, which also produces engraved glassuare. Their preliminary conclusions were that better seating, armrests and lowering of the machines would improve comfort of the engravers. These improvements had not been implemented at the Louif Glass facility at the time of our visit.

Three locations were observed within the facility where work was perforsed which required high demand visual tasks. The first location was in the furnace room where it was necessary for the blowers to shape the glass with the ald of a floor mounted mold (Figure 11). The blowers would attempt to place the molten glass slob into the mold (a distance of about 6 feet) while blowing through the gather pole. This task vas hard to perform for the blover due to insufficient task illumination. The proposed golution 1 a to increase the illumination within the mold so that the blower can better observe placement of the hot glowing glass glob into the mold. This approach was tested on several molds by using a flachlight to provide additional illumination of the bottom and aldes of the mold. All the blovers agreed that the additional illumination was helpful.

The second location was in the engraving area located at the other end of the building from the furnace area. There were 24 work stations set up in the engraving area on the days of this survey, but only 10 were occupied (Figures 12-14). The workers, all of whon were vomen, were responsible for engraving various decorative patterns, auch as leavea and flovera, into the crystal glass. Women ast at the work stations and used a rotating wheel for a scribing tool. The chaira used had no arn rests, few had any back reata, and none of the chaira vere adjuatable in any direction. As a reeult, the women vere forced to adopt awkward postures at their worktable for most of the day. Many of the women vere using table lamp for additional task lightins since the room light fiztures did not provide appropriate illumination. Unfortunately the table lams used very lov vattage bulb, and were therefore only marginally effective.

It was also noticed that slassware vould occastonally break durins the entraving procesa fron the pressure exerted by the scribing. tool, yet none of the women used sloves or finger protection while performins the ensraving, and only a few vore afety slases. Most of the women, hovever, did wear prescription slasses.

The third location was the QC inspection atation located at the end of a 40-foot heating oven. The glassvare made in the furnace room was carried to the heating oven and slowly moved to the inspection area via conveyor system. During this transit, the glass would undergo further annealing. At the end of the oven, two inspectors vould physically inspect each piece, notins the color, quality of glassuare, breakage, and defects. Each piece was observed in the light of opaque-filtered fluorescent lamps such as are used in an radiology department. It was noted that fluorescent lampa in the light fixture were of different buib types and ages. Different light sources might pose problems for consistent quality assurance. Some auggestions were also made about instaling additional lights along the side of the QC area so the inspectors vould not have to pick up each glass piece. Such an arrangement vould ainimize the potential for cuta and abrasions to inspectors and also permit a faster process.

## C. Other Observations

While the environmental measurements did not aupport heat stress findinge, the aedical gymptoma reported by the furnace room personnel did indicate reports of heat sicknesa. Since the measurements were made in the fall and not the sumar, perhaps some of the symptome reported were either a result of suman time exposurea or inaufficient ventilation. Since it is not known what expoures aituation caused the heat eickness syaptons, then it is recomended that heat atress measurements be repeated during summer nonthe.

This evaluation clearly indicated that high levela of IR exist in the furnace roon at Louie Glass Company. Previoua reports on IR radiation sugseat that workera exposed to high levels of IR can experience drying of the mucous membranea, shortneat of breath, upper respiratory syaptons, and general drying out of eoist tiance. [4,15] These types of symptome vere reported in the nedical questionnaire.

Symptom of dry eyes and itchy nose vere associated vith the furnace roon jobs of blower and bit-person and may reflect the acute drying effects of IR expoaure. The association of these jobs vith ahortnese of breath is not explained by the reapiratory demands on the slasablovers, but may be a reflection of discomfort due to the drynesa of the alr or the increased heat load on the body.


#### Abstract

As a result of the envirommental measurements and the reported medical symptoms, there exists a need to reduce IR exposure to furnace room personnel. One approach for reducing these exposures without altering job productivity is to reduce the effective porthole dimensions. A smaller porthole would reduce the IR flux emitted from given site. A second approach would be the use of a high transparent material, such as $1 / 4$ inch clear cast acrylic or polycarbonate, mounted a few inches in front of the porthole to reduce the worker's facial thermal load as well as permit visibility of the gathering process. A third approach might employ the use of tinted eye wear in conjunction with a plastic face shield cut so that it comes to the vicinity of the upper lip. Blimination of the IR thermal load by these and other methods would, in the opinion of the investigators, help reduce the observed effects as well as aid in ocular protection requirements.

Methylene chloride was present in the conveyor belt dressing compound. NIOSH considers this chemical to be a suspected human carcinogen and recommends that exposures be maintained at the lowest feasible level.

Industrial hygiene services are provided by an outside consulting group. The results from previous sampling periods over several yeara for silica and reapirable dust were provided to NIOSH. These reaults, from an accredited laboratory, indicated that all exposurea were below the applicable occupational exposure standard. Since evaluation of the optical radiation was the focus of the NIOSR evaluation, $\operatorname{HIOSH}$ did not repeat these environmental evaluations. A bulk sample which had been removed from the firebrick in the furnace was analyzed by NIOSH for free silica and none vas detected.


At the time of the first aite visit that there was no baseline ophthalmological information available on any of the glassworkers. Folloving a suggeation by NIOSH, a progran to obtain auch information had been initiated by the tine of the second visit.

## VIII RECONATHDATIONS

The following recomendations are offered to reduce potentially significant occupational exposurea and safety risks at Loule Glass:

1. It is recommended that shade $3 / 4$ tinted eye wear be used by the platform personnel. Other furnace room personnel should be offered eye protectors (probably at a lower shade number) depending on type of work performed.
2. There needs to be a clear and understandable company policy on the need for tinted eye protectora and who ahould wear them. This policy should be developed by the safety personnel as soon as possible.
3. Pre-placement visual acuity screening should be improved and expanded for all personnel involved vith glass production at the company.
4. Turnace roon workers who experience persistent ocular symptoms (such es irritation, difficulty seeing clearly, etc.), should be referred to an appropriate health care provider for further evaluation.
5. Area fans and general ventilation outleta should be placed near furnace room personnel to aid in reducing the thermal load.
6. It is recomended that the facility consider the possibility of reducins the effective porthole area and installation of transparent material in front of the porthole as potential methods to reduce the IR exposure level, as vell as to minimize the number of reported medical symptona.
7. More emphasia on wearing protective sloves is needed at the facility to reduce the large number of reported cuta and burns. The afety office should further identify those areas where high number of cuts and burns occur.
8. It is sugsested that the company adopt a no smoking policy for all workatations.
9. Heat atress measurement should be repeated in the furnace area during sumger months.
10. Furnace roon vorkera should maintain liberal fluid intake. In seneral, alt applesent should not be neceasary. If salt supplenentations is provided it should be in the form of salt solutions or sodiup-containing beverages.
11. More emphasis needs to be placed on solving some of the ergonomic and illumination probleas seen in the engraving and quality control areas. The molds used in the furnace area ghould have additional task lightins to aid the glasankera in placing the hot glase into the molds.
12. Workers reporting nubnesa and tingling of handa are possible crulative traum cases. Those with persistent aynptoms should be referred for medical evaluation. An ergonomic evaluation of the vorkplace (furnace room and engraving areas) should be undertaken.
13. Lovie Glase should attenpt to obtain conveyor belt dresaing compounda that do not contain methylene chloride or other hazardous ingredients. The company should conplete the collection of all material data aafety sheets (MSDS) for chencals used in the facility.

## IX. REFPRPICRS

1. Occupational Diseases: A Guide to Their Recognition, USPHS, CDC, NIOSH Publication 777-181, Revised June 1977.
2. Infrared Radiation. In manual on Realth Aspects of Exposure to Nonionizing Radiation by Moss, C. E. (et.al.) World Health Organization, Regional Office, Copenhagen, Denmark, 1980.
3. American Conference of Governmental Industrial Hygientsts (ACGIH), Threshold Limit Values (TLVs) and Biological Exposure Indices for 1989-90. ACGIH, 6500 Glerway Avenue, Cincinnati, Ohio $45211-4438$.
4. Moss, C. E., et. Al. Biological Effects of Infrared Radiation, NIOSH Publication *82-109, September 1982.
5. Optical Radiation and Visual Health , edited by Waxler, M. and Hichins, V. M., CRC Publications, Inc. Boca Raton, Florida 1986.
6. National Institute for Occupational Safety and Health. Criteria for a recommended standard: occupational exposure to ultraviolet radiation. Cincinnati, Ohio: National Institute for Occupational Safety and Health, 1973. DHEW (NIOSH) publication 73-11009.
7. IES Lighting Handbook, Reference Volume, edited by Kaufman, J. E., Illuminating Engineering Society of North America, New York, N.Y., 1981.
8. Safety with Lasers and other Optical Sources by Sliney, D.H. and Wolbarsht, M., Plenum Press, New York, N. Y., 1980.
9. Wilson, D.S. and Wilson, D. R. Protective curtain for radiation curing. Radiation Curing 10(2):35-39, 1983.
10. Siliney, D. H., Moss, C. E., Miller, C. G., and Stephens, J. P. Semitransparent curtains for control of optical radiation hazards. Applied Optics 20(14):2352-2361, 1981.
11. National Inatitute for Occupational Safety and Health. Criteria for a recomended standard: occupational exposure to hot environments. Cincinnati, Ohio: Kational Inatitute for Occupational Safety and Realth, 1972. (DHEW publication no. (MIOSH) 72-10269).
12. Fational Institute for Occupational Safety and Fealth. Criteria for a recomended standard: occupational exposure to hot environments revised criteria 1986. Cincinnati, Ohio: National Inatitute for Occupational Safety and Health, 1986. (DHHS [NIOSH] publication no. 86-113).

Maximu and Minimu Purnace Temperature Values (in degrees Fahrenheit) Recorded at Holes il, 7, and © 13 by Plant Personnel Durins the NIOSA Evaluation.

Loule Glane Plant
Weaton, Weat Virginia
HETA 88-299
October 11-13, 1988

| Date | Mo. Hole <br> Mesarements | Hole <br> Max | Hin <br> Max | Min <br> Min | Max | Min |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Heat Stress Measurements
Loule Glase Company
Weaton, West Virginia
HETA 88-299
October 11-13, 1988

| Measurement Location | Measurements in ${ }^{\circ} \mathrm{F}$ WBGT GT | 2RE |
| :---: | :---: | :---: |

Furnace room


GT, DB, and WB = Globe, Dry Bulb, and Natural Wet Bulb Temperature, respectively

Prevalence Rates of Selected Visual Symptoms in Blowers and Bit-Persons as Compared to Other Workers

Louie Glass Plant
Weston, Hest Virginia
HETA 88-299
October 11-13, 1988

| Symptom | Rate In Exposed | Rate In Non-Exposed | Rate <br> Ratio | 95\% Confidence Interval |
| :---: | :---: | :---: | :---: | :---: |
| Hazy vision | 14/52(27\%) | 23/182(13x) | 2.13 | (1.18-3.84) |
| adjusted for green glasses |  |  | 1.82 | (0.99-3.36) |
| Blurred vision | 18/52(35\%) | 35/182(24X) | 1.80 | (1.07-4.63 |
| adjusted for green glasses |  | - | 1.73 | (1.05-2.86) |
| Use prescription lenses at work | 37/52(71\%) | 86/182(47x) | 1.51 | (1.19-1.90) |
| Had $2+$ prescription changes -over last 2 years | 6/52(12x) | 4/82(2x) | 2.92 | (1.66-5.16) |
| Belleve job affected vision adjusted for green glasses | 16/52(317) | 32/182(18X) | $\begin{aligned} & 1.75 \\ & 1.49 \end{aligned}$ | $\begin{aligned} & (1.05-2.93) \\ & (0.89-2.50) \end{aligned}$ |

## TABLE V

## Maximun Infrared Iransmittance of Various Shade of Filter Lenses* <br> Louie Glass Plant <br> Weston, West Virginia <br> HETA 88-299 <br> October 11-13, 1988.



## Prevalence Rates of Selected Other Symptoas in Blowers and

 Bit-Persons as Compared to Other WorkersLoule Glass Plant
Weston, West Virginia
HETA 88-299
October 11-13, 1988

| Symptos | Rate In Exposed | Rate In Non-Exposed | Rate <br> Ratio | 95\%Confidence <br> Interval |
| :---: | :---: | :---: | :---: | :---: |
| Shortnesa of breath | 27/52(40x) | 37/182(20x) | 1.99 | (1.28-3.08) |
| (adjusted for amoking) |  |  | 1.99 | (1.29-3.05) |
| excluding "white lung" cases |  |  | 1.82 | (1.08-3.07) |
| Tingling/numbness of hands | 23/52(44x) | 43/182(24x) | 1.87 | (1.25-2.80) |
| Dry eyea | 21/52(40\%) | 44/182(24x) | 1.67 | (1.10-2.54) |
| Itchy nose (age $<=30$ ) | 23/52(44\%) | 57/182(31\%) | 1.41 | (0.97-2.05) |
| age <=30 | 7/11(64\%) | 17/55(318) | 2.06 | (1.13-3.74) |
| age 31+ | 16/41(39\%) | 40/127(31\%) | 1.24 | (0.78-1.96) |



Figure 2. Heat stress measurements performed at furnace porthole.


Figure 3. Furnace temperature being measured by pyrometer.


FIOUnE 1. Bchamatic of Loule Glass Company furnece. Croes-hatched area represents platform on which the gatherers worked.


Figure 5. Fans mounted in furnace area to provide additional cooling.


Figure 4. Distribution of $I R$ irradiance (in mW/cm ${ }^{2}$ ) on the platform as a function of distance from the center of the furnace.


Figure 7. Foot-setter attaching material to glass product.


Figure 8. Two Gatherers obtaining material from the furnace.

Figure 6. Relative furnace irradiance versus epectral tranamlesion of typlcal eye protector.



Figure 9. Gạtherer at work. Notice bandaged area on arm from burn.


Figure 10.: Up-close work being performed on hot glass by team member.


Figure 1l. Glassblower using mold.


Pigure 12. Glass polisher making final runs.


Figure 13. Typical chaix used by engraving personnel


Figure 14. Typical engraver's work station.

LOUIE GLASS FACTORI WESTON, WEST VIRGIHIA HETA 88-299

Personnel from the National Institute for Occupational Safety and Health (NIOSB) are conducting a study of poseible heslth and safety hazards in the furance roon of the loule Glass Factory. The study consists of two parts:

1. Collection of health informetion and work history fron questionalires filled out by exployees who work in the furnace room.
2. Industrial hygiene sampling of the furnace roon vork environment.

Since you work in the furnace roon, we would like you to fill out the quastionalire. This questionnaire takes about 15 minutes to fill out. It will ask you a fev beckground questions abou'̃ yourself (age and sex), about your present and past jobe in glass-making, and whether you have had certain medical conditions or symprons, either at vork or avay frow work.

Your participation is voluntany. You can refuse to participate at all or refuse to answer any quescions you wish. All personal inforation provided vill be coneldered confidential in accordance with the Privacy Act of 1974 (Public Lev 93-579).

## WORX AND HEALTE RISTORY

$$
\begin{aligned}
& \text { Soday's dace: } \frac{1}{(\text { eont } b)} / \frac{1}{(d a y)} / 19 \frac{1}{(y \operatorname{cas})} \\
& \text { I. GERERAL INTORMATION }
\end{aligned}
$$

1. Name
2. Addrese
$\qquad$
$\qquad$
3. Sex (please check): $\frac{1}{2}$ fale
4. Age laet birthdey: $\frac{1 \quad 1}{(y \operatorname{lears} \text { old })}$

## II. HORX HISTORY

S. What is your present job? (plesse check):

1 $\qquad$ blover

2 bit person

3 _gatherer
4__core gatherer
5 footer
6 blocker

7 ___orber (describe below):
6. What shop do you work with novt (describe belov):
7. What shift do you usually vork? (please check one):

1 dax_ $A$
2__Eserecou- $B$
3 niehe $C$

5 _oether (dewcrithe-belowh:-
8. How long have you worked this job at Louie Glase?

$$
\frac{1}{(1-1 \mid} \text { or } \frac{1}{(5 z 8)}
$$

## III. HEALTE HISTORY

## OPFICE USE

12. iere you ever cold by a medical doctor that you had any of the following medical conditions? (Please check all that apply and give year of diagnosis).

|  | Medical Condition | Year of diagnosis |  |
| :---: | :---: | :---: | :---: |
| a. | Cataracts ......................... | .. 1911 | (4-6) |
| b. | Glaucoma | . 19111 | (7-9) |
| c. | Retinal disease | . 1911 | (10-12) |
| d. | Diaberes | .. 1911 | (13-15) |
| e. | Eczema | .. 1911 | (16-18) |
| $f$. | Carpal tunnel syodroae | .. 1911 | (19-21) |
| 8. | Asthma | .. 1911 | (22-24) |
|  | Bronchitis . | .. $19 \times 1$ | (25-27) |
| 1. | Enphysems | .. 1911 | (28-30) |
|  | Other lung disease (describe below) | . 1911 | (31-33) |


:4. In the PAST YEAR, how many times have you had any of the following injuries during work at Louie Glass and vere you hospitalized?
Injuries : Hof times Hitalized
a. Goten sick frow the heat

$\square$
1
.... 1
$\qquad$
Yea 2
$\qquad$
No
b. Burned by hot glass or metal 111 .... 1

$\qquad$
Yes 2
$\qquad$
No
c. Cut by broken glass $111 \ldots 1$

$\qquad$
Nod. Injury to eye
$\square$ .... 1 $\qquad$ Fes 2 $\qquad$ No
e. Other injuries (describe below):

$\square$
.... 1
$\qquad$
Yes 2
$\qquad$
No
15. Do you smoke cigarettes?
1 no, never did
2 (m, quit more than a year ago
3 $\infty$, just quit
4 yes, lese than ose pack per day
5 yen, one or nore packa a day

## IV. VISIO

16. Do you wear eyeglasses or contact lenses to improve your vision AT HORK?

1__yes, eyeglasses
2 yes, contact lenses
3 yes, both

4 $\qquad$ no
17. Do you wear eyeslasses or contact lenses to improve your vision AhAY FPOM WOEX?

1 $\qquad$ yes, eyeglasses

2 $\qquad$ yes, contact lenses

3 yes, both

4 $\qquad$ no
18. What kind of safety glasses do you now wear at work?

1 $\qquad$ colorlest

2 $\qquad$ rose-colored

3 $\qquad$ sreen

4 $\qquad$ do not man safety slasees

5 $\qquad$ other (deseribe below):

Questions 19-23 are about how mell you can sea. If you man oyeglasses or contact lenses, ansmer the question describins how you see WITH YOUR CLASSES OR COMTACT LimsEs. (Please check one anever per question)
19. How much trouble do you have seaing with your LETT EYE?

1 $\qquad$ cannot see

2 $\qquad$ some trouble

3 $\qquad$ no trouble
20. :iow much trouble do you have seeing with your RIGHT EYE?

1 $\qquad$ cannot see

2 __some trouble
3 no trouble
21. How much trouble do you have seeing with BOTA EYES TOGETBER?

1 cannot see

2 some crouble
3 _no trouble
22. Do you have any problen seeing distant objects?

1 yes (describe below)

2 $\qquad$ 0

3 $\qquad$ doa't know

IF YES: What kind of probleas? (Please describe):
23. Do you have any problens seefng that can't be helped by eyeglassen?

1 _yee (describe belou)

2 $\qquad$
3 $\qquad$ don't know

IF YES: What are theyt (Plase describe):
24. Jo you have any rescrictions on your driver's license?

1 __yes (describe below)
2 $\qquad$ no

3 ___do not have driver's license
if YES: In what way? (Please describe):
25. Do you have probleas driving at night because of glare froa ocher cars' headlights?

26. Do you have probless with bluriy vision when you read or do close work?

$\qquad$
27. What year did you last have your vision tested?

## $19 \frac{1 \quad \mid}{(\text { year })}$

OR IF NEVER TESTED, CEECX RERE.
99 $\qquad$
28. During the past two years, how many times have you had your glassea or contace lenses prescription changed? ( $\frac{1}{\text { times })}$ OR if yot never hore giasses or comtact lenses, crieck here.. 9 $\qquad$
29. Do you think your job has had eny effect on your Fision?

1 _ jes (describe belov)
2
3___doz'r knov
IF YES: In what vayt (Please dascribe):

