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a user’s guide for the bplane, bstepp, and bwedge 
computer programs

S. Miller,1 J. Whyatt,2 J. Girard Dwyer,2 and E. McHugh3

abstract

This user’s guide covers the operation of a suite of three computer programs—Bplane, Bstepp, 
and Bwedge. These programs can be used to evaluate the potential for plane shear, step-path, and 
wedge failures along the crest of a slope bench. Such failures reduce the width of a catch bench 
and may compromise the bench’s ability to catch rolling or sliding material before it reaches 
miners working below. The Bplane and Bwedge programs address sliding of blocks defined by 
continuous planar joints. The Bstepp program examines sliding of blocks defined by more com-
plex failure surfaces that include steeply dipping cross joints and may even include breaks across 
small bridges of intact rock. The programs are applicable to jointed rock masses where the joints 
are small relative to the overall slope and form a number of sets with uniform statistical charac-
teristics within a slope sector. The theoretical basis, application, and operation of these programs 
are described.
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introduction
This user’s guide was developed by personnel 

at the National Institute for Occupational Safe-
ty and Health (NIOSH) as part of a program to 
protect miners who work on and beneath rock 
slopes. The guide covers operation of three 
related computer programs—Bplane, Bstepp, 
and Bwedge—that can be used to evaluate the 
potential for plane shear, step-path, and wedge 
failures along the crest of a slope. They are in-
tended for use in the design of catch benches, 
but can be applied to analyses of failure along 
any crest in an appropriate rock mass. These 
programs are enhanced versions of codes origi-
nally developed by Miller [1982, 1984].

Catch benches are periodic flat breaks in a 
slope designed to catch raveling, sliding, and 
rolling slope material (figure 1). Bench crests 
are often allowed to fail locally, which creates 
an uneven crest (figure 2). Such failures are tol-
erable if the bench is maintained at sufficient 
width to provide protection for miners working 
below. Most failures occur as a result of initial 
excavation, during which failed material is re-
moved. Other failures may occur later, after 
weathering, vibration, freeze-thaw cycles, etc., 
have generated debris that can load underlying 
benches or fall onto work areas if no additional 
measures are taken.

Accident statistics collected by the Mine 
Safety and Health Administration (MSHA) 
have shown that bench failure and loose mate-
rial moving down slopes pose significant safe-
ty hazards to miners. For instance, highwall 
failures and rock falls have contributed to 17 
fatalities during a recent 5-year period (1996-
2000). Of these, 12 occurred in metal/nonmet-
al mines and five in surface coal mines (figure 
3). All five surface coal mine fatalities were 
attributed to “material falling from above,” as 
were seven of the deaths in metal/nonmetal 
mines; two of these occurred while the vic-
tim was inside the cab of a piece of mining 
equipment. The remaining fatalities occurred 
when unstable or weakened highwalls col-
lapsed beneath workers, most of whom were 
operating equipment on a bench or on top of 
a highwall.

The importance of bench integrity is well 
illustrated by two of these accidents. One oc-
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Figure 1. Typical catch-bench geometry (side view).

Figure 2. Plan view (A) and perspective (B) of realized 
bench width (after Ryan and Pryor, 2001).
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curred on the evening of October 5, 1998, early 
in the night shift. A large piece of rock fell 6 
m from the highwall to a safety bench, split, 
then fell an additional 16.6 m onto the cab of 
a drill, destroying the cab (figure 4). The rock 
measured about 2.3 m long, 2 m wide, and 1.2 
m thick.

Another fatal accident occurred on the morn-
ing of September 2, 1998, when a 67-year-old 
bulldozer operator with 40 years of mining ex-
perience was maneuvering his Caterpillar D8 
along a bench in a limestone quarry in Oregon. 
The outside edge of the bench collapsed, and 
the dozer rolled sideways 2-1/2 times to the 
bottom of the pit, coming to rest on its side. 
The dozer was equipped with rollover pro-
tection and a seat belt. The operator was not 
wearing the seat belt and was fatally injured.

This guide begins by examining the prop-
er context in which the computer programs 
can be applied to assessments of bench safe-
ty. That is, when the programs can be used 
to provide insights into bench design and 
how results relate to results of other com-
monly used analysis methods. This discus-
sion is followed by program operation and .
interpretation of output. Appendices provide 

definitions of key terms, a summary of data 
collection methods, and a review of the com-
putational procedures. Appendix H provides 
a comprehensive list of input parameters, a 
useful reference on data input compilation.

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs

Figure 4. Cab crushed by slope failure (MSHA 
fatalgram, www.msha.gov).

Figure 3. Pie chart showing numbers of fatalities in 
coal and metal/nonmetal surface mines caused by 
failure of benches above and below workers for the 
period 1996-2000. Failure of benches above allows 
material to reach workers. Failure of benches below 
causes workers, especially those operating heavy 
equipment, to fall with failing bench material.
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A variety of engineering analyses can be con-
ducted in support of rock slope design, depend-
ing on the purpose, service life, and geologic 
setting of the slope. The programs described in 
this package are applicable to only a small por-
tion of these analyses, primarily those aimed 
at assessing retention of catch-bench width in 
highly jointed rock masses. Since fractures are 
too numerous to map and analyze individually 
in such a rock mass, a stochastic (probabilistic) 
approach is used. Thus, good results depend on 
accurate and representative statistical descrip-
tions of fracture geometry and properties. They 
also depend on these statistical descriptions be-
ing valid throughout the area of interest.

Bench-scale failures in this type of rock mass 
most commonly occur in the upper portion of 
the bench where the fracture lengths required 
to define a potential failure block are shorter. 
The programs check for kinematically feasible 
plane shear, step-path, and wedge failures along 
the crest of a bench, and then compare the driv-
ing and resisting forces for each. The effect of 
failing blocks on bench width is then evaluated, 
and the probability of retaining various bench 
widths is reported. The surviving bench width, 
not the nominal planned width, should be used 
for evaluating whether a catch-bench design is 
adequate.

The capabilities of each program can be sum-
marized as follows:

The Bplane program analyzes plane shear 
failure modes in a two-dimensional frame-
work by simulating plane shear fractures in 
the bench and then calculating the probability 
of stability for each one, as well as identify-
ing the corresponding back-break distance on 
the bench. By repeating the simulation many 
times for a given bench, the probability of 
retaining various bench widths can be esti-
mated.

•

The Bstepp program conducts two-di-
mensional plane simulations for potential 
step-path failures comprised of a master 
joint set and a cross-joint set.
The Bwedge program analyzes three-dimen-
sional wedges by simulating fractures from 
two fracture sets and conducting a similar 
back-break analysis.
While these programs bring powerful stochas-

tic tools to the analysis of some bench stability 
problems, they also have important limitations 
that must be recognized. First and foremost, the 
programs make specific assumptions about the 
geometry of failing blocks. More complex sets 
of discontinuities, failures of intact slope mate-
rial, and wedge failures involving step-paths are 
not considered. Nor do these programs directly 
address the possibility that additional weaken-
ing through creep, weathering of rock materi-
als, surface water runoff, freeze-thaw cycles, 
earthquake and blast vibrations, operation of 
equipment on haul roads, etc., can cause mate-
rial to ravel or be released.

In addition, important failure modes, includ-
ing rotational shear, block flow, toppling, and 
thin-slab (buckling) failure, are not considered. 
Rotational shear failures are typically found in 
soils and can be generated in slopes without 
critically oriented discontinuities or planes of 
weakness. Block flow failures are character-
ized by progressive breakdown of a rock slope. 
For instance, failure may be initiated in the toe 
of the slope, which in turn causes load transfer 
to adjacent areas that may fail, extending the 
failed zone.

Finally, the programs do not directly address 
filling of benches, nor whether a collapse might 
be caused by the weight of caught material and/
or any equipment working on the bench.

•

•

background

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs
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APPLICATION OF MODELS TO SLOPE DESIGN
Any analysis of slope stability necessarily 

starts with field investigations of the engineer-
ing geology of the rock mass (appendix B). 
Identification of which potential failure modes 
are possible and the scales at which they act 
are an important element of the investigation. 
Analysis of each failure mode is based on an 
idealized mathematical model, and a physical 
assumption is made (and, ideally, verified) that 
the slope is likely to act like the mathematical 
model. Such models define failure as inelastic 
movement of rock slope material from its origi-
nal location in the planned slope geometry. This 
definition of failure does not necessarily imply 
an engineering failure of the slope system.

Whether or not failure in a safety sense (where 
does failing material go?) or an economic sense 
(what is the cost of the failure compared to the 
cost of a flattened or better-supported slope?) 
will occur requires additional analyses. For ex-
ample, minor failure (raveling) of material in the 
slope face (perhaps as a result of weathering) 
might be tolerated if this failure occurs slowly 
with respect to pit life, and provisions can be 
made to control the consequences of such fail-
ure. That is, limited slope failure is tolerable so 
long as it does not pose a threat to miner safety 
or mine economic performance.

Common physical assumptions for slope fail-
ure modes have been validated through experi-
ence, some of which has been documented in 
case studies. The physical parameters required 
for each mathematical model are estimated 
and used to determine whether failure is likely 
under particular conditions. The accuracy and 
precision of this determination are sensitive to a 
number of factors, including validity of physi-
cal assumptions and the amount and type of 
geologic information available.

Mathematical models of the failure modes 
considered by these programs are described in 

the remainder of this section.

PLANE SHEAR FAILURE

A plane shear failure occurs when a block 
defined by fractures and bench geometry slides 
along a single failure surface. The plane shear 
failure mode is said to be “kinematically viable” 
if the average strike is parallel or nearly paral-
lel to the strike of the slope face and the dip is 
flatter than the dip of the slope face [Hoek and 
Bray 1981]. Failure will extend laterally along 
the bench to cross-cutting fractures, changes in 
bench orientation, and/or newly created frac-
tures that provide release surfaces (figure 5). It 
is assumed that these surfaces will provide little 
resistance to sliding, so they can be neglected in 
assessing the stability of the block.

Hoek and Bray describe the geometrical con-
ditions required for plane failure as follows:

The plane on which sliding occurs must 
strike approximately parallel or nearly 
parallel (within approximately ±20˚) to 
the slope face.
The failure plane must “daylight” in the 
slope face. This means that its dip must 
be smaller than the dip of the slope face, 
that is, ψf [slope face dip] > ψp [fracture 
plane dip].
The dip of the failure plane must be 
greater than the angle of friction of this 
plane [in the absence of pore pressure], 
that is, ψp [fracture plane dip] > φ [frac-
ture friction angle].
Release surfaces which provide negli-
gible resistance to sliding must be pres-
ent in the rock mass to define the lateral 
boundaries of the slide. Alternatively, 
failure can occur on a failure plane pass-
ing through the convex “nose” of a 
slope.

A.

B.

C.

D.
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STEP-PATH FAILURE

The availability of a single sliding surface 
that is long enough to permit plane shear fail-
ure may be comparatively rare if fractures are 
short. However, a more complex failure path 
comprised of multiple fractures is still possible, 
particularly where two conjugate fracture sets 
can form a stepped failure plane geometry [Jae-
ger 1971]. In this case, both sets strike parallel 
or nearly parallel to the strike of the slope, and 
the block slides on the flatter-dipping set (which 
usually dips at 20° to 50°). The steeper set cre-
ates release surfaces that connect to the sliding 
surfaces provided by the flatter set. The failure 
surface may also contain fractures which have 
broken small bridges of intact rock. Figure 6 il-
lustrates a typical step-path geometry in a frac-
tured rock slope.

Call and Nicholas [1978] describe criteria 
for generating potential step-path failure geom-
etries starting from the point where a fracture in 
the master joint set intersects the bench face.

At least two fracture sets characterize a 
step-path geometry. The master set inter-
sects the slope surface, and the cross set is 
steeper than the master set.
The fracture sets have strikes parallel or 
nearly parallel to slope strike. 
Fracture set characteristics, including 
dip, length, and spacing, can be de-

1.

2.

3.

scribed by statistical distributions.
Under tensile stress, an existing fracture 
will propagate along its plane until it inter-
sects another fracture, but not beyond.
A rock bridge is more likely to fail in ten-
sion than in shear.
Cross joints that do not intersect, but come 
within approximately 5 cm of the end of 
a master joint, are still considered part of 
the geometry that would allow the path to 
continue to the next master joint.
The flattest path is followed; that is, the 
step-path will follow a master joint to the 
cross joint farthest up the master joint. The 
path will then follow the cross joint until 
it intersects and continues along another 
master joint.

As the step-path geometry approaches a plane 
failure geometry, the step-path analysis may 
produce higher probabilities of failure. This is 
because a small rock bridge or jog in the fail-
ure surface accommodated by a cross-joint will 
not automatically prevent failure. However, 
the length of rock bridges that can be broken is 

4.

5.

6.

7.

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs

Figure 5. Idealized plane shear failure.

Figure 6. Examples of step-path geometries in 
rock slope (from Call and Nicholas, 1978). Top, 
continuous step-path; bottom, discontinuous step-
path with intact rock bridges.
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The quality of a slope stability analysis de-
pends on proper understanding and quantifica-
tion of the geologic environment. This under-
standing should include knowledge of what 
failure modes are possible and the geologic 
characteristics of the various structural domains 
(figure 8). Structural domains should be further 
subdivided into analysis sectors with common 
bench dimensions and orientations. While geo-
logic characteristics will persist throughout a 
domain, the relevance of various features will 

depend on the bench orientation and geometry 
defined for each sector. Input can be divided 
into three main classes: fracture-set geometry, 
fracture shear strength, and rock mass proper-
ties. Any planes of weakness within intact rock 
can be considered as fractures with non-zero 
cohesion.

FRACTURE SETS

Large-scale geologic structures that are con-
tinuous over distances comparable to an entire 

GEOTECHNICAL PROGRAM INPUT

typically quite small. For instance, experience 
has shown that for benches 12 to 20 m high and 
cut in crystalline rock (tensile strength of 500 to 
2,000 t/m2), the probability of sliding is nearly 
zero when the fraction of intact rock along a 
step-path exceeds approximately 0.08. Thus, 
step-paths where bridges constitute 8% or less 
of total length are likely to be assigned a higher 
risk of failure in a step-path analysis than in a 
comparable plane shear analysis.

WEDGE FAILURE

Wedge-shaped blocks are found in benches 
where two intersecting fractures daylight in 
both bench and slope (figure 7). Failing wedg-
es are assumed to maintain contact with both 
bounding fracture surfaces as they slide down 

the interaction line. Cases in which a wedge-
shaped block slides on a single bounding frac-
ture surface and loses contact with the other are 
not considered. In the absence of pore pressure, 
sliding will occur only when the inclination 
of the intersection line is steeper than the fric-
tion angle of the fractures. If multiple fracture 
sets with wedge-forming potential are present, 
separate analyses must be conducted on each 
possible pair.

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs

Figure 7. Idealized wedge failure.
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Figure 8. Example plot of structural domains in open-pit mine (after Nicholas and Sims, 2001).

Figure 9. Example plot of structural domains in open-pit mine (after Nicholas and Sims, 2001).
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slope or a project are generally mapped and 
addressed individually in the design process. 
Fractures (including joints and other planes 
of weakness) in rock slopes that compromise 
bench crest stability are generally too numerous 
to map individually and tend to be discontinu-
ous. However, the natural processes that cre-
ate these features tend to work systematically, 
generating patterns of fractures that can be un-
derstood in the aggregate. Thus, fractures can 
often be sorted into sets that contain fractures 
with similar orientations and with characteris-
tics that can be described statistically.

Fracture mapping has three objectives: (1) 
identification of fracture sets, (2) definition of 
regions that contain distinctive fracture set pat-
terns, and (3) definition of fracture set charac-
teristics. Fracture set characteristics used by the 
programs described in this manual are fracture 
length (persistence), spacing, waviness, and 
orientation (dip and dip direction).

Fractures are sampled (mapped) at discrete 
locations throughout the region of interest. 
Three of the most common sampling methods 
are cell mapping [Call et al. 1976], set mapping 
[Call et al. 1976], and detail line mapping [Pite-
au, 1970; Call et al. 1976].

Cell mapping is used where there are large, 
extensive exposures of rock, such as along 
benches in an open pit or in large natural out-
crops. Consecutive mapping cells are estab-
lished along the strike of the exposure, and 
information is recorded for each observed 
fracture set. Based on experience, Call and 
Savely [1990] recommend 30 to 40 cells for 
each structural domain described.
Set mapping is used in place of cell mapping 
when rock exposures are not suitable for es-
tablishing consecutive cells or for reconnais-
sance-type mapping. This method provides 
information on fracture set orientations and 
characteristics, but not systematic informa-

•

•

tion from a large contiguous area.
Detail line mapping has the least observer 
bias since all individual fractures are mapped 
along a line. It is most useful for initial stud-
ies prior to identification of fracture patterns. 
It is also the most tedious and provides the 
least amount of spatial coverage. The small 
amount of spatial coverage may bias the sam-
pling (particularly for some line placements 
and orientations with respect to fracture set 
geometry).
Once field data are obtained, the first analyti-

cal step typically consists of plotting the poles 
to fractures on a lower-hemisphere stereonet in 
order to identify fracture sets, which appear as 
clusters of poles [Hoek and Bray 1981]. These 
plots are used to identify fracture sets, establish 
structural domains, and assess possible failure 
modes. Call and Savely [1990] recommend ex-
amining poles in conjunction with slope geom-
etry and failure modes when identifying critical 
fracture sets (figure 9).

Each property of these fracture sets can be de-
fined by a probability density function, or pdf. 
These programs use the normal pdf (fracture 
dip, dip direction), the exponential pdf (frac-
ture spacing, length), and the right-skewed beta 
pdf (waviness). Spatial dependence in fracture 
properties can be described in geostatistical 
terms [La Pointe 1980; Miller 1979]. Semivar-
iograms [Isaaks and Srivastava 1989] provide 
a statistical format for describing the spatial 
dependence of fracture property variability as a 
function of the lag count separation of fractures 
in a set. These statistical models are briefly de-
fined in appendix A, and a more detailed treat-
ment is provided in appendix C. A full list of 
input parameters is provided in appendix H.

FRACTURE SET SHEAR STRENGTH

Shear strength along rock fractures is typi-
cally estimated in one of two ways. The joint 

•
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roughness coefficient-joint wall compressive 
strength (JRC-JCS) method proposed by Bar-
ton [1973] relies on a nonlinear failure envelope 
based on joint roughness coefficient (JRC), joint 
wall (that is, intact rock) compressive strength 
(JCS), and a base friction angle (that is, the 
friction angle associated with planar, saw-cut 
surfaces of the rock). The other shear-strength 
method (the one used for these bench stability 
programs) relies on laboratory direct-shear test 
data, or approximations thereof, to describe a 
power-curve model [Jaeger 1971] for small-
scale shear strength. A separate adjustment is 
used for large-scale undulations (waviness). 
One advantage of this approach is that wavi-
ness is much easier and faster to measure in the 
field than are the types of data associated with 
the JRC method.

Shear strength model

A general power-curve model for shear 
strength has been adopted for use in these pro-
grams. This curve is given by the following ex-
pression:

	 τ	 =	 aσb + c,	 (1)
where	 τ	 =	 shear strength,
	 σ	 =	 effective normal stress,
and	 a, b, c	 =	 model parameters.

This equation describes a general power 
model with a y-intercept. It reduces to a simple 
linear model (Mohr-Coulomb failure envelope) 
when b equals 1.0, in which case, c is equal to 
cohesion and a is equal to the coefficient of fric-
tion (that is, tanφ).

When using this model of discontinuity shear 
strength, a design engineer should beware of 
applying a linear (c, φ) failure envelope to the 
pseudo-residual shear data provided by a labo-
ratory testing program. A linear model may 
seem appropriate for a large range of normal 
stresses (and may suffice for values exceeding 
30 t/m2 for most rock types), but such is not the 

case for many natural discontinuity surfaces 
subjected to low values of normal stress. For 
example, the five shear data points presented 
in figure 10 are fit by a power model.  A linear 
model is fit to three tests with the least normal 
stress, and a linear model is fit to all five tests. 
The results vary widely for the low normal 
stresses encountered near a bench crest.

Finally, time must be considered. Safe slopes 
are required only for as long as mining contin-
ues beneath these slopes. Likewise, the final pit 
slope generally is required to be stable only for 
as long as it takes to mine the last portion of 
the ore and get all personnel and equipment out 
of the pit. However, there are also cases where 
permanent structures or property lines are 

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs

Figure 10. Power and linear models fit to test results at 
low normal stresses.
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close to the top of the slope. These may require 
more conservative estimates of fracture shear 
strength.

Waviness

The power curve model of strength is based 
on small samples and thus does not incorporate 
any resistance to sliding contributed by undu-
lations or waviness on larger scales (roughly 1 
to 10 m). Waviness can be quantified by mea-
suring the average and minimum dips along 
the rock discontinuity(ies) of interest as part of 
collecting field data [Call et al., 1976]. Wavi-
ness is then defined by the relationship “wavi-
ness = average dip - minimum dip” and is ex-
pressed in degrees (figure 11). The tangent of 
this angle is multiplied by normal stress and 
added to shear strength resistance along the 
failure path.

The rationale for this adjustment is essen-
tially geometric. The average dip of a slid-
ing surface along a fracture is used to calcu-
late the volume of a rock mass likely to fail 
(which leads to subsequent determinations of 
its weight and the effective normal stress act-
ing on the fracture) and to resolve forces that 
act on the block in question. However, as a 
block begins to slide, it tends to detach from 

the steeper portions of the fracture and rest 
on portions with the flattest dip. This strength 
adjustment is analogous to changing fracture 
dip, but only for purposes of calculating resis-
tance to slip. Thus, the greater the waviness, 
the greater the resistance to sliding.

Shear strength variability

Variability in shear strength for a given nor-
mal stress is also considered. Shear strength 
is modeled with a gamma probability density 
function. The standard deviation of this func-
tion is defined directly in Bplane and Bstepp 
and by a coefficient of variation (CV), which 
is given by—

	 CV	 =	 sτ/mτ 	 (2)
or 	 sτ	 =	 CV(mτ),.

where	 sτ	 =	 standard deviation of the shear 
strength (τ) distribution

and	 mτ	 =	 mean of τ given by Eq. 1.

Therefore, both shear strength mean and 
standard deviation increase with increas-
ing normal stress. Typical values for shear 
strength CV range from 0.15 to 0.35. Note 
that for small values of CV (less than 0.2), 
the gamma probability density function be-
gins to approximate a normal probability 
density function. The key advantage in using 
a gamma function to describe shear strength 
is that this particular function is defined only 
for positive values, which means that τ in the 
computer analysis can never take on a nega-
tive value.

The contribution of waviness (r) to shear 
strength is represented by an exponential prob-
ability density function, which makes the vari-
able tan(r) have a right-skewed exponential-like 
probability density function. Implementation of 
the strength model in computation of probability 
and sliding is discussed by Miller et al. [2004].

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs

Figure 11. Waviness angle “r” of fracture surface.
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The Bplane, Bstepp, and Bwedge programs 
were designed to extend block slope stability 
analyses to incorporate statistical descriptions 
of fracture sets, including spatial correlations of 
important parameters. Thus, geostatistical de-
scriptions are required for many input param-
eters.  Specification of back failure lines on the 
bench (all programs) and face simulation lines 
(in Bwedge) is also required. These artificial 
constructs discretize the problem for solution, 
much like elements in a finite-element model.

The programs are written for personal com-
puters (PCs) with Intel-compatible processors 
and all versions of the Windows operating 
system. Each program consists of a single, 
self-sufficient executable file compiled in the 
Lahey Fortran 95, version 5.5, programming 
environment. Since the programs require mod-
est resources, they should run on most PCs. 
The run time for these programs is quite fast, 
almost always less than 5 min, depending on 
problem discretization and the number of itera-
tions specified. 

Two versions of each program are provided. 
The first version (Bplane, Bstepp, and Bwedge) 
is designed for intractive use with single sets of 
values. This requires a minimum of file han-
dling and is good for exploring software capa-
bilities. For sensitivity studies, a batch-process-
ing version of each program is provided. Input 
files can be edited directly with a text editor or 
a utility program. Utility programs written for 
Microsoft Corp.’s Visual Basic 5.0 are provided 
for processing input files for batch versions of 
each program. Source code is also provided to 
enable users to further customize these utilities 
to their convenience. 

Installation requires only that files are copied 
from the disk to a folder on a PC. The software 
is organized into three main subdirectories 
called “Programs,”  “Batch Input,” and “Visual 
Basic Source.” The Programs subdirectory con-
tains executable files for the interactive version 
of each program. The Batch Input subdirectory 
contains versions of the program that are op-
timized for batch processing, along with file 
processing programs. The Visual Basic Source 
subdirectory contains source files for the Visual 
Basic programs. These should be useful to users 
who wish to automate file generation further.

BPLANE.EXE 
(TWO-DIMENSIONAL PLANE SHEAR 

ANALYSIS)

Input for Bplane includes a description of 
bench geometry, rock properties, characteristics 
of a fracture set striking roughly parallel to the 
bench, and solution parameters. Bench geom-
etry is described by height, width, and slope 
angle. Density is the only intact rock property re-
quired and is treated as a constant. Fracture char-
acteristics length, dip, spacing, waviness, and 
strength are assumed to be described by appro-
priate statistical distributions. Length is modeled 
within the bench cross section as varying ran-
domly within an exponential probability density 
function (where the standard deviation equals 
the mean). The dip direction of the fracture set 
should closely parallel dip direction of the slope 
face (within ±20°). Fracture dip angles can vary 
spatially as described by a spherical variogram 
model as well as randomly. Fracture spacing is 
modeled by an exponential probability density 
function, and waviness is modeled by a skewed 
right beta probability density function (P=1, 

DETAILED PROGRAM DESCRIPTION

4Mention of specific products and manufacturers does not imply endorsement by the National Institute for 
Occupational Safety and Health.

5Microsoft Corp., Redmond, WA.
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Q=4). Small-scale fracture strength (on the scale 
of laboratory tests) is modeled as a power-curve 
failure envelope. Additional frictional resistance 
related to large-scale fracture geometry is mod-
eled as fracture waviness. 

BSTEPP.EXE 
(TWO-DIMENSIONAL STEP-PATH ANALYSIS)

Input parameters for Bstepp include bench 
geometry, rock properties, characteristics of 
master and cross-joint sets, and solution param-
eters. Bench geometry is described by height, 
width, and slope angle. Fractures are character-
ized by length, dip, spacing, and strength. Frac-
ture strength is modeled as a power-curve fail-
ure envelope defined by small-scale laboratory 
tests. Additional large-scale frictional resistance 
is provided by fracture waviness. Fractures are 
assumed to have strikes roughly parallel to the 
bench crest and be sufficiently long that out-of-
plane termination of these fractures has little or 
no effect on the analysis. Unlike the preceding 
Bplane program, intact rock bridges between 
fractures are not automatically considered to 
stabilize the failure plane. Bridges are checked 
for tensile failure as part of the step-path failure 
surface. Thus, required rock properties include 
intact rock tensile strength as well as rock mass 
density.

Fracture input in Bstepp is required for both 
the master joint and cross-joint fracture sets. The 
master joint set intersects the face of the slope 
while the cross joint set is steeper and connects 
fractures of the master set. Where simulated cross 
joints fail to complete a path, intact rock bridges 
are included in the stability calculations.

Most of these parameters are allowed to vary 
within statistical distributions. These param-
eters include fracture characteristics (with the 
exception of length), but density is considered 
constant. Fracture dips can vary spatially as 
well as randomly, as described by a spherical 
variogram model defined by dip nugget, stan-

dard deviation (sill), and range. Fracture spac-
ing can also vary spatially as well as randomly, 
but is modeled by an exponential geostatistical 
model. Waviness only applies to the master 
joint set, because cross joints will pull apart, 
not slide, during failure. A spherical variogram 
model is used to account for the spatial depen-
dence commonly found in these parameters.

BWEDGE.EXE 
(THREE-DIMENSIONAL WEDGE STABILITY 

ANALYSIS)

Input parameters for Bwedge are bench ge-
ometry, rock properties, characteristics of frac-
ture sets that form each side of a failing wedge, 
and solution parameters. Bench geometry is 
described by height, width, and slope. The pa-
rameters for fracture dip, fracture dip direction, 
etc., are defined for both the left and right fail-
ure planes. One of the more common errors in 
using this program is input of failure planes that 
do not form a wedge and intersect the slope face 
(figure 12). Note that the left and right planes 
are defined as looking from the pit floor rather 
than from the slope crest (that is, left and right 
are viewed by looking up the intersection line). 

Fracture characteristics are allowed to vary 
in accordance with various statistical distri-
butions. Fracture dip angles (modeled with a 
normal probability density function) vary ac-

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs

Figure 12. Viable wedge failure with daylighting intersec-
tion showing position of left and right failure planes.
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Start-Up. Double-click executable file icon, 
and an input window will appear. The Bplane 
window is shown in figure 13, the Bstepp 
window in figure 14, and the Bwedge win-
dow in figure 15. A shortcut can also be cre-
ated for execution from the desktop.
Parameter Input. Enter the parameters nec-
essary to run an analysis by simply clicking 
within the boxes and editing the values. Alter-
natively, the Tab key can be used to toggle to 
consecutive input boxes. Box-by-box defini-
tions of input parameters are provided in ap-
pendix H. The specified units must be used. 
Example values are initially set in the boxes 
and can be used to test program operation. 
Boxes labeled “Sum. Results” will contain 
partial output from a run. Values need not be 
entered in these boxes and will not be con-
sidered during program execution if they are 
entered. The input screen specifies particular 
metric units for each parameter. Calculations 
and checks for appropriate input values are set 
specifically for these units. Other units or sys-
tems of units cannot be used.
Running Simulations. When the desired pa-
rameters have been entered, click the “Com-
pute” button to execute a simulation. The 
program may show “Not Responding” in 
the applications window of the task manager 
during execution, but soon a new window 
will appear saying that the program is com-
puting.

•

•

•

Each simulation examines potential failures 
resulting from a simulated set of discontinui-
ties in the bench. Results will be unique to 
the random seed and number of simulations 
specified. However, results should converge 
as the number of simulations increases. It is 
recommended that the maximum allowable 
number of simulations (200 for Bplane, 100 
for Bstepp, and 200 for Bwedge) be used un-
less there are computational time constraints. 
At least 30 simulations (50 for Bstepp) are 
typically needed to provide “defensible” sta-
tistical results. 
Saving Results. Output from each run, includ-
ing a full list of run input parameters, is saved 
in the file specified in the output file box on 
the input window. Subsequent runs using the 
same file name will overwrite the previous 
file. Input data only are also written to tem-
porary (.tmp) files named after the respective 
programs. These files can be copied after pro-
gram execution, if desired.
An additional explanation of some of these 
parameters, as well as practical guidance on 
assigning their values, is provided in the sec-
tion on “Geotechnical Program Input” and 
the appendices.

•

•

•

RUNNING THE INTERACTIVE VERSION

cording to spatial dependence as described by a 
spherical variogram model defined by dip nug-
get, variance (sill), and range. Fracture spacing 
and waviness are simulated using an exponen-
tial probability density function. Mean fracture 
lengths in both sets are used to define the ex-

ponential probability density functions used 
to calculate the probability that fractures are 
of sufficient length to create a fully detached 
block.

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs
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Figure 13. Program window for Bplane

Figure 14. Program window for Bstepp.
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Figure 15. Program window for Bwedge.
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running the batch version
Application of the Bplane, Bstepp, and 

Bwedge programs to real problems often re-
quires a sensitivity study to determine how re-
sults are affected by changes in various param-
eter values. Sensitivity studies can contribute 
significantly to a design. For instance, they can 
be used to identify critical input parameters that 
require extra attention during exploration. Sen-
sitivity studies can also be used to check and 
refine input data over sections of an excavated 
bench where predicted and realized failures can 
be compared. This is a particularly valuable ap-
proach for developing confidence in program 
results. Sensitivity studies help engineers un-
derstand how benches are likely to perform 
under a wide range of design alternatives, thus 
supporting design optimization. Finally, appar-
ently optimal designs can be tested for robust-
ness, that is, sensitivity to reasonable errors in 
various parameters. A design that is hypersensi-
tive to uncertain geologic variables introduces 
considerable risk compared to one that is more 
robust.

Batch processing versions of the three pro-
grams are included in a separate subdirectory 
along with related preprocessors. Program 
names are modified with a final “b” for “batch” 
(Bplaneb, Bsteppb, and Bwedgeb). The prepro-
cessing programs InPlane 1.0, InStepPath 1.0, 
and InWedge 1.0 have interfaces that resemble 
the stand-alone programs, but are designed 
merely to read and write input files. They also 
can enable a switch (not accessible in the inter-

active version of the programs) that allows ad-
vanced users to bypass screening of input data. 
This allows analysis of data sets containing a 
wider variety of parameter values, but will also 
allow implausible data sets to be run, some of 
which may crash the programs.

Each of the batch programs assumes a par-
ticular input file name (bplaneb.inp, bsteppb.
inp, bwedgeb.inp) and then writes to a file 
name specified in the input file. A controlling 
batch file (control.bat) can be used to rename 
each input file to the default name and then ex-
ecute the program. The input file name is stored 
within the file to aid in tracking large numbers 
of runs.

In a typical application, a large number of in-
put files having unique names would be gener-
ated. These runs might differ by small changes in 
one or more parameters. The input files could be 
generated by the preprocessing programs or by 
using a simple text editor (for example, Notepad 
or Wordpad, supplied with Windows). A control 
batch file is written that renames an input file, ini-
tiates the corresponding run, and then proceeds 
to the next input file. One batch file can execute a 
large number of runs, possibly requiring several 
hours of total run time.

Users may further optimize the preprocessing 
programs by modifying the Visual Basic code 
provided or by writing their own versions in a 
convenient programming language.

interpretation of output
Results are reported as the probability that vari-

ous bench widths will be retained for the specific 
failure mode being analyzed (that is, a particular 
failure mechanism involving a particular set of 
features). The probability of actually retaining a 
particular bench width will be the joint probabil-

ity of individual probabilities calculated for each 
failure mode. Joint probability is calculated by 
multiplying individual probabilities. In the case 
of wedge failure, the probability gives the odds 
that any section of bench as long as it is high 
will not contain any failures that reach deeper 
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into the bench width than a particular value. In 
other words, the proportion of bench segments 
that lose a calculated width somewhere along 
that segment will be 1 minus the joint probabil-
ity of retention. For example, a 0.80 probability 
of retaining 4-m-wide catch benches can be in-
terpreted as an expectation that 80% of a long 
bench run will retain a width of at least 4 m and 
that 20% of the bench run will not.

The probability of losing all the bench is 
also an important consideration. In addition 
to eliminating any capacity for catching loose 
material, such a failure could undermine over-
lying benches, leading to larger scale failure. 
Thus, the design of overall slope angles should 
provide for very high probabilities (greater than 
0.95) of retaining a bench of at least nominal 
width.

Results are typically plotted as a curve relat-
ing the probability of retaining bench width 
versus actual bench width at various bench face 
angles. Since bench geometry has a direct influ-
ence on the overall slope angle, similar plots can 
be made for overall slope angle (figure 16). The 
relationship between bench geometry and over-
all slope angle can be expressed as follows:

tan (A) 	 =	 1 / [(W/H)+(1/tanB)],	 (3).
.

where	 A	 =	 overall (average) slope angle,.
	 B	 =	 bench-face angle,.
	 H	 =	 vertical height of bench,.
and	 W	 =	 horizontal width of bench.

For example, if H = 15 m, W = 8 m, and B = 
64°, then A = arctan{1/[(8/15) + (1/tan 64°)]} 
= 44°.

If an overall steeper angle is desired, then 
the width:height ratio of benches must be de-
creased or the bench faces cut at a steeper an-
gle. Relationships between bench geometry, 
catch-bench width, and over-all slope angle can 
be displayed in graphs, which then can be used 
to optimize bench slope angle and width for a 

specified probability of retaining a specified 
catch-bench width.

A key issue in interpreting output from this, 
or any, model of slope stability is the robustness 
of the result. A robust result from an engineer-
ing analysis is one that is not overly sensitive to 
a small change in input conditions. This is par-
ticularly important for analyses such as slope 
design that are largely dependent on estimates 
of inherently variable geologic conditions. For 
this reason, analyses should be conducted with 
reasonable ranges of critical parameters rather 
than with single, best-estimate values. The va-
lidity of estimates for the most sensitive param-
eters should be reviewed and design recom-
mendations possibly refined.

For instance, fracture length (persistence) is 
often a critical parameter. Major geologic struc-
tures such as faults or contacts that are long 
enough to affect overall pit slope stability should 
be directly integrated into the slope design. 
Smaller (shorter) and more numerous fractures 
can be stabilized by intact rock bridges at scales 
larger than the bench. A small change in fracture 
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Figure 16. Typical results showing probability of retention 
for various bench widths and slope angles (calculated 
for plane shear failure, bench face angle of 64° [0.5:1], 
and bench height of 15 m).
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Computer software for a PC platform has 
been developed for stochastic analysis of bench 
stability in rock slopes. The computer programs 
analyze the potential for plane shear, step-path, 
and wedge failures along the bench crest and 
calculate the probability of retaining specified 
widths on affected catch benches.

Field studies are underway to evaluate and 
demonstrate how this software can be applied 
to mine pit slopes. These studies will be pub-
lished and posted on the NIOSH web site along 
with updates to the software and software doc-

umentation. Users of this software are invited 
to contribute their experiences and suggestions. 
The full potential of this software depends on 
developing a body of experience, including 
case studies, with real-world application to the 
design of catch benches.

The software was developed to support safe 
mining in open pits and quarries where benches 
are used to catch material moving down slopes 
toward miners. The analyses may also be use-
ful for other applications, including design of 
benches in civil projects.

summary

persistence can dramatically impact the range of 
block sizes that can fail. Small values for fracture 
persistence will limit failure to the crest lip. The 
step-path failure mode is an exception because 
it allows for a nearly continuous failure surface 
comprised of multiple fractures, each one of 
which may be short relative to the overall failure 
surface.

Care should also be taken to recognize what 
these results do not address. They do not pre-
dict how much of the failure will occur during 

excavation. Likewise, they do not reflect the in-
fluence of blasting practices, weathering, or ad-
ditional loading from loose material or machin-
ery placed on the bench to clean loose material. 
Finally, no allowance has been made for tension 
cracks that may truncate the failure paths. Thus, 
stochastic results may be approximate.
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appendix a: key terms
Design sector: A region of a pit in which the 
most important parameters influencing slope 
stability are constant [Coates 1977]. These pa-
rameters include lithology, number and extent 
of discontinuities, rock mass properties, ore 
grade distribution, pit geometry (curvature), 
and operating factors such as the location of 
major haulage roads and crushers. 
Exponential probability function: A special 
case of a gamma probability density function 
that is described entirely by its mean, which is 
equal to its standard deviation. The probability 
of occurrence declines exponentially from a 
maximum value to a value of zero. 
Failure: Failure occurs when the loads or 
stresses acting on the rock material (intact or 
fractured) exceed the compressive, shear, or 
tensile strength of the rock or the strength of a 
plane of weakness or a discontinuity. Failure 
may result from destressing as well as stressing 
of a rock mass. For example, removing clamp-
ing normal stress along a discontinuity may in-
duce sliding.
Failure kinematics: Failure kinematics is sim-
ply a geometrical description of the motion or 
movements that occur during a failure [Meriam 
1980].
Failure mechanism: Failure mechanism is a 
description of the physical processes that take 
place in the rock mass as load increases and 
failure is initiated and propagates through the 
rock. 
Gamma probability function: A flexible prob-
ability density function with no negative values 
that can take a range of shapes approximating 
the normal and exponential distributions at 
either extreme. The key advantage in using a 
gamma probability density function is that it is 
only defined for positive values. This property 
is particularly important for this application to 
the shear strength of geologic discontinuities.  

Otherwise, the small normal stresses common-
ly encountered in analyzing small failed masses 
along bench crests would have a probability of 
creating a negative shear strength.
Geostatistics: A branch of applied statistics 
that focuses on the characterization of spatial 
dependence of attributes that can vary in val-
ue over space and the use of that dependence 
to predict values at unsampled locations.

Spatial dependence in fracture properties has 
been observed and can be described in geosta-
tistical terms [La Pointe1980; Miller 1979]. 
Semi-variograms [Isaaks and Srivastava 1989] 
provide a statistical format for describing the 
spatial dependence of variabilities in fracture 
properties as a function of distance between 
fractures (figure A-1). The semi-variogram is 
defined by “nugget” (variance between neigh-
bors), “sill” (variance between pairs of remote 
fractures), and “range” (distance at which vari-
ability reaches the sill value). Additional geo-
statistical background information is provided 
in appendix C.
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Figure A-1.─Spherical semi-variogram model showing 
the variance in fracture properties as a function of 
distance between fractures (described by nugget, 
sill, and range).
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Joint set: A group of rock joints that share a 
common or similar orientation (dip and dip 
direction). A joint set will appear as a cluster 
of points on a stereonet plot.
Mean or expectation: The mean (M[X]) or ex-
pectation (E[X]) of X is the centroidal axis of 
the probability density function of X. It is de-
fined as—

M [ X ] = E [ X ] = f (x) dx.	 (A-1) 
 
 
Normal probability function: A commonly used 
probability density function. The normal prob-
ability function is symmetric about the mean 
(figure A-2). The tails extend indefinitely, im-
plying a vanishingly small probability of ex-
tremely high and low values (including nega-
tive values). To avoid problems with unusually 
high and low values, particularly the negative 
values for quantities such as strength and densi-
ty, the probability density function is truncated 
in these programs by the addition of bounds at 
zero and ±4 standard deviations. Values gener-
ated beyond these bounds are set equal to the 
respective bound. 
Nugget: The y-intercept on a variogram plot 
that corresponds to measurement error and 
short-scale natural variability in the spatial at-
tribute of interest (figure A-1).

Probability function: A function that defines 
probabilities of occurrence for values of a ran-
dom variable. Two common ways to represent 
such a distribution are cumulative distribution 
function  and probability density function. The 
first describes the probability that a random 
variable will be less than or equal to a given 
value. The second is defined so that the area 
encompassed by the function is 1 and the area 
under the function between any two values rep-
resents the probability that a value within that 
range will be realized.
Random variable: A variable (that is, a mathe-
matical entity used to model a physical proper-
ty, attribute, or characteristic) that takes on dif-
ferent values when repeatedly sampled. These 
values cannot be predicted with certainty, but 
each value has an associated probability of oc-
currence. Random variables that are distributed 
over space are called regionalized variables. 
The overall relationship between values and 
probabilities is described by a probability den-
sity function. The term “random” as used here 
does not imply that the variable itself is random 
or has randomly distributed values, but rather 
that the values occur in a probabilistic manner. 
For example, a set of fractures can be regularly 
but imperfectly spaced. The variable of fracture 
spacing is not random, but there is some natu-
ral and measurement variability that prevents 
precise prediction of the spacing between two 
fractures.
Range of influence: The separation distance 
(lag) at which a variogram plot levels off; this 
represents the maximum distance at which the 
spatial attribute exhibits spatial dependence 
(figure A-1).
Regionalized variable: A type of random vari-
able distributed over space. As such, it must be 
sampled over space at various locations. The 
distribution over space implies that variability 
between samples is a function of the position of 
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Figure A-2.─Normal probability density function.
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these samples relative to one another. Adjacent 
samples are likely to be more similar in value 
than samples distant from one another.
Rock mass: In situ rock material that includes 
blocks, discontinuities, and weathered and/or 
altered zones.
Rock substance: Solid, intact rock material that 
can be sampled and tested in the laboratory as a 
coherent piece.
RQD (rock quality designation): The proportion 
of drill core length that is recovered in pieces 
longer than twice the core diameter.
Semi-variogram: A functional relationship be-
tween the separation distance (lag) between (1) 
two sampling locations (spatial attribute) and 
(2) the square of the average difference in value 
at two locations having the same (or similar) 
lag. For joint set attributes, this lag is measured 
in numbers of joints rather than in distance.
Sill: The variance for pairs of data points 
separated by sufficiently large distances to 
eliminate any spatial dependence. 
Standard deviation: Standard deviation of 
a random variable X is the positive square 
root of the variance of X.
Stochastic:  A synonym for probabilistic.
Structural domain: An area characterized by 
structures having a distinct pattern of orienta-
tion. These structures are mappable features 
such as fractures, bedding planes, and folia-
tions. The identification of domain boundaries 
is essential to rock engineering investigations 
because geologic and hydrologic properties 
vary from one domain to another. Obvious 
domain boundaries are contacts between litho-
logic units caused by changes in depositional 
environment, intrusions, or fault displacement. 
However, domain boundaries may also occur 
within a rock unit and may be gradational.
Variance: Variance is a common measure of the 
dispersion (spread) of the random variable of X 

about its mean. It is defined as—
var[X] = (X - M [X] ) f (x)dx.	 (A-2) 

 
Waviness: Difference (in degrees) between the 
average dip of a fracture and the flattest dip 
observed along the fracture trace. Waviness 
accounts for the fact that the weight of a block 
tends to bear on the flattest portion of a frac-
ture as movement begins. Geometrically, slid-
ing movement will occur on flatter surfaces 
and will open gaps on steeper surfaces (in the 
absence of block rotation).
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appendix B: MAPPING AND DISPLAY OF FRACTURE DATA1

Dominant geologic structures such as major 
faults and lithologic contacts are usually con-
sidered individually in rock slope engineer-
ing projects because they occur in definable 
locations and are continuous over distances 
comparable to the size of the study area. In 
contrast, structures such as fractures and folia-
tions have high frequencies of occurrence and 
are discontinuous over a study area. They are 
too numerous to be mapped individually and, 
therefore, should be considered in a statistical 
manner.

RATIONALE OF FRACTURE MAPPING

Geometric characteristics of fractures, includ-
ing orientation, spacing, length, and waviness, 
are random variables that can be modeled by 
statistical distributions estimated from mapping 
data [Call et al. 1976]. Necessary fracture data 
can be collected by surface mapping techniques 
[Piteau 1970; Call 1972; McMahon 1974] and 
by oriented core logging. To map in detail 
every exposed fracture within a given area is 
impractical, if not impossible. Therefore, spot 
mapping is relied upon to provide a sample or 
samples of the fracture population from which 
distributions of the fracture properties can be 
estimated. 

After a geologic mapping and evaluation pro-
gram has been completed for the study area, a 
geologic map should be constructed to empha-
size the rock units present, their contacts, and 
any major structures that may affect the stabil-
ity of the proposed slope. This map, in conjunc-
tion with field knowledge of the area, provides 
the major basis for designing a fracture map-
ping program. At least one or two mapping sites 
are desired within each anticipated structural 
domain, and they should be located so as to 

help delineate and further define the domains. 
Careful thought and planning of the mapping 
program can not be overemphasized, because 
much time and money has been wasted by field 
sampling that has not been properly planned 
and directed.

If possible, the mapping samples should be 
random and representative so as to not make 
the population estimates biased or unrealisti-
cally weighted. Such samples are often difficult 
to obtain in the study area because surface out-
crops are usually limited and biased toward the 
more competent rock materials. This sampling 
problem can be offset somewhat by mapping 
man-made cuts along construction or develop-
ment roads and by oriented core logging of drill 
holes, even though such sites may be located 
for purposes other than fracture mapping and 
may have physical access limitations. There-
fore, the slope engineer must remember that 
the interpretative step in estimating population 
parameters from sample data should be guided 
by subject-matter knowledge, experience, and 
judgment.

EXAMPLES OF MAPPING 
TECHNIQUES

Many fracture mapping techniques are cur-
rently in use for collecting fracture data perti-
nent to rock engineering projects. The selection 
of mapping methods and styles primarily de-
pends on the mapper’s personal preference, site 
geology, size of the project, availability of map-
pable exposures, and the time and manpower 
allocated for the mapping task. However, most 
mapping schemes are variations of three funda-
mental techniques: fracture set mapping (or cell 
mapping), detail line mapping, and oriented 
core logging. Examples of these techniques that 

1Excerpted from S. Miller, 1984, Probabilistic Rock Slope Engineering, Publ. No. GL-84-8, USAE-WES, 
Vicksburg, MS.
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have been used extensively in rock engineering 
practice during recent years are described be-
low. Suggested mapping forms (for example, 
field data sheets) that allow for rapid computer 
processing are also presented, but it should be 
remembered that variations or modifications 
may be required for individual mapping pro-
grams.

Fracture set mapping

Fracture set mapping, which is also known as 
cell mapping, is a systematic method for gath-
ering information about fracture sets and for 
helping to delineate structural domains. This 
mapping method is particularly valuable in 
situations where fracture data must be collected 
over a large area in a short period of time. It also 
provides information useful for evaluating vari-
ations in fracture patterns over the study area.

Natural outcrops and man-made exposures 
are located and identified as potential mapping 
sites. Long or extensive rock exposures are di-

vided into mapping cells of a regular, manage-
able size, usually about 8 to 12 m (approximately 
30 ft) long. In each mapping cell, the dominant 
four or five fractures sets are recognized by lo-
cating groups of two or more approximately 
parallel fractures. Exceptionally large single 
joints and faults are also located; they will be 
mapped as single occurrences. Measurements 
of geometric characteristics and other informa-
tion are then recorded for each fracture set or 
major structure in the cell.

An example of a field data sheet for record-
ing fracture set mapping data is shown in fig-
ure B-1. Required basic information includes 
the project location, mapper’s name, date, 
and an identification number for the particu-
lar area being mapped. At a given mapping 
cell or site, the following information is re-
corded on the illustrated data sheet for each 
fracture set or major structure.
Coordinates: The approximate map coordi-
nates of the cell are recorded after being deter-
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Figure B-1.─Example of data recording sheet for fracture set mapping (from Rock Mechanics Division of Pincock, 
Allen & Holt, Inc., Tucson, AZ, 1979).
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mined by map inspection, compass, and pacing 
techniques or surveying. These coordinates are 
repeated for each fracture set or major structure 
observed in the mapping cell.
Rock type: The rock type (or types) in the 
area being mapped is recorded with a three-
letter alpha code.
Structure type: A two-letter alpha code is 
used to identify the type of structural feature 
being described. The most common code is 
“JS” for joint set.
Structure orientation: The overall average 
dip and azimuth strike of the fracture set 
are recorded using a right-hand convention 
whereby dip direction is 90° clockwise from 
strike direction. Orientation is identified by a 
two-number designation.
Minimum dip: The dip of the flattest fracture 
in the set is noted. For a single major struc-
ture, minimum dip is the dip of the flattest 
portion of its surface.
Length: The maximum traceable distance of 
the longest fracture in the set (or the single 
major structure) is recorded; this length is 
often limited by outcrop dimensions. 
Spacing: The number of fractures in the set and 
the distance between the outer two, as mea-
sured normal to the fractures, are recorded to 
provide data for calculating mean fracture spac-
ing. These measurements are not applicable to 
single major structures.
Terminations, Roughness, Thickness, Filling, Wa-
ter: These data are recorded only for individual 
major structures. Descriptions of these measure-
ments or observations are given in the section be-
low on “Detail Line Mapping.”

In a study area with accessible rock expo-
sures, an experienced mapper can typically 
map a dozen or more cells per day. If possible, 
at least five or six cells should be mapped in 
each rock unit or suspected structural domain. 

In remote areas with little or no construction 
and development, the mapping program should 
attempt to include most outcrops large enough 
to be mapped. By comparing fracture set data 
(especially orientation) from different mapping 
cells, the boundaries of structural domains may 
be better defined. Another major benefit derived 
from a thorough fracture set mapping program 
is that specific sites for collecting more-detailed 
fracture information can be identified.

Detail line mapping

Detail line mapping is a systematic spot sam-
pling technique for obtaining detailed informa-
tion about the geometric characteristics of frac-
tures and other geologic structural features. A 
measuring tape is stretched across the outcrop 
or exposure to be mapped. Using the tape as a 
reference line, a mapping zone is defined that 
extends 1 m above and 1 m below the line. The 
length of the mapping zone, or window, is de-
termined by the complexity of the structural 
pattern, and accordingly, this length serves as 
a measure of fracture intensity. All structural 
features that are located at least partially in the 
zone are mapped, although a minimum length 
of 10 cm is typically enforced. That is, features 
with trace lengths less than this cutoff are not 
mapped. Experience has shown that a minimum 
of approximately 150 fracture observations per 
line is desirable for statistical evaluations [Call 
et al. 1976].

An example of a field data sheet for recording 
detail line mapping data is shown in figure B-2. 
Basic information recorded for each mapping 
site includes line identification number, loca-
tion, data, mapper’s name, bearing and plunge 
of the measuring tape, and attitude (orientation) 
of the rock exposure.

For each discontinuity within the mapping 
zone, the following information is recorded on 
the data sheet.
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Distance: This is the distance along the measur-
ing tape where the fracture or its projection in-
tersects the tape. For any fracture parallel to the 
tape, the distance at the middle of the fracture 
trace is recorded.
Fill: Fill material (or materials) in the fracture 
opening is noted if present.
Length: Fracture length is the maximum trace-
able distance observed, which often extends 
beyond the mapping zone and is limited by 
outcrop dimensions. Lengths should be mea-
sured with a handheld tape, but longer fracture 
lengths (greater than approximately 3 m) may 
have to be estimated.
Minimum dip: Dip on the flattest portion of the 
fracture surface is recorded to compare with 
average dip. Their difference serves as a quan-
titative measure of fracture waviness.
Overlap: Overlap is the distance one fracture 
extends over the next fracture of the same set. 
For field mapping, the measurement is usually 
made along the trace length of each fracture 
and equals the distance from the bottom termi-

nation to the mapping tape (figure B-3). If the 
fracture terminates below the tape, a minus dis-
tance is recorded. The true overlap can then be 
calculated later from the field measurements. 
Overlap is not applicable for fractures parallel 
to the tape.
Parallel: A fracture parallel to the measuring 
tape is designated by a letter P in this column.
Rock type: The rock type (or types) in which the 
fracture occurs is recorded by using a three-letter 
alpha code.
Roughness: Roughness is defined on a scale of 
centimeters and is a qualitative rating (smooth, 
rough, or medium) of small irregularities on the 
fracture surface. A numeric rating can also be 
used, such as that suggested by the International 
Society for Rock Mechanics [1977].
Structure orientation: Average dip and azimuth 
strike of the fracture are recorded using a right-
hand convention whereby the dip direction is 
90° clockwise from the strike direction. Frac-
ture orientation is identified by a two-number 
designation.
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Figure B-2.─Example of data recording sheet for detail line mapping (from Rock Mechanics Division of Pincock, 
Allen & Holt, Inc., Tucson, AZ, 1979).
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Structure type: A two-letter alpha code is used 
to identify the type of discontinuity being de-
scribed.
Terminations: The manner in which a fracture 
terminates is described by a single alpha letter 
according to five designations:  in rock, none, 
en echelon, high angle against another fracture, 
and low angle against another fracture (figure 
B-4).
Thickness: Thickness is recorded if separation 
occurs along the fracture.
Water: The nature of water in the fracture 
(dry, wet, flowing, or squirting) is recorded 
using a single alpha letter.

For a typical mapping program in an area 
with accessible rock exposures, a team of 
two experienced mappers working together 
(one taking measurements, the other record-
ing data) can usually map two or three detail 

lines per day. If possible, at least one complete 
line should be mapped in each structural do-
main preliminarily identified from available 
geologic information. Detail line mapping can 
not be feasibly used to cover as large an area 
as that covered by fracture set mapping, but 
it does provide a comprehensive base of de-
tailed information that should be considered 
critical for statistical evaluations of fracture 
properties.

ORIENTED CORE LOGGING

Subsurface fracture data can be obtained by 
oriented core logging, which provides a de-
tailed record of fractures that intercept a dia-
mond-drill hole. These types of data are simi-
lar to those of a very strict detail line survey in 
which only those fractures intersecting the line 
are mapped.
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Figure B-3.—Illustration of field measurements for fracture overlap.

Figure B-4.─Various types of fracture terminations.
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Various devices and systems are currently 
available for orienting structural features in 
core holes. The most popular and reliable of 
these are the Christiansen-Hugel system, the 
Craelius core orientor, and an eccentrically 
weighted clay-imprint orientor. The latter 
two devices can only be used in inclined 

drill holes. The clay-imprint orientor as de-
scribed by Call et al. [1982] is by far the sim-
plest, fastest, and least expensive device for 
orienting drill core. Its use has a small effect 
on regular drilling rates and costs, usually 
causing only a 10% to 20% decrease in rates 
and a corresponding increase in costs. 
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Figure B-5.─Example of data recording sheet for oriented core logging (from Rock Mechanics Div. of Pincock, 
Allen & Holt, Inc., Tucson, AZ, 1979).

Figure B-6.─Lower-hemisphere Schmidt plot of mapped fracture orientations obtained from a detail line site.
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An example of a field data sheet for re-
cording oriented core data from inclined 
drill holes is shown in figure B-5. Orienta-
tions of fractures in drill core are measured 
relative to the core axis and to a reference 
line that has been scribed or drawn along the 
top edge of the core by the orienting device. 
These field measurements are made with 
a specially designed goniometer and later 
converted to true dip directions and dips us-
ing vector mathematics and the drill-hole 
orientation.

For each fracture intercepted by the drill 
hole the following information is recorded on 
the illustrated data sheet.
Angle to core axis: Angle of the complement of 
dip angle relative to core axis.
Circumference angle: Azimuth measurement 
of dip direction of the fracture relative to the 
reference line.
Depth from start: The distance from the top of 
the drill run to the fracture occurrence is record-
ed. If 3-m drill runs are made this distance will 
always be less than 3 m.
From – To: Distances (depths) from the drill-
hole collar to the top (“from”) and bottom (“to”) 
of the core run. 
Rock type: The rock type (or types) in which 
the fracture occurs is recorded by using a 
three-letter alpha code.
Structure type: A two-letter alpha code is used 
to identify the type of discontinuity being de-
scribed.
Top/bottom: A-B is recorded if the goniometer 
measurement is taken from the bottom end of 
a core stick; a T is used if the measurement is 
taken from the top end of a core stick.
Roughness, Thickness, Filling:  These data are 
recorded only for individual major structures. 
Descriptions of these measurements or obser-

vations are given in the section on “Detail Line 
Mapping.”

Oriented core data are appropriately used 
to supplement surface mapping data because 
fracture lengths can not be measured in drill 
core. Another point to remember when ana-
lyzing core data is that measured fracture 
orientations tend to be more dispersed than 
those obtained from surface mapping. This 
is due to the fact that core diameter limits 
the fracture area that can be observed, and 
therefore very little averaging is done subse-
quently during the measurement process as 
compared to a fracture mapped in a surface 
exposure. Perhaps the greatest benefit of 
oriented core logging is a resulting database 
that allows determination of the sub-surface 
extent of the fracture sets and structural do-
mains observed on the surface.

DISPLAY OF FRACTURE 
ORIENTATION DATA

Before a suite of mapped fracture data can 
be statistically analyzed, fracture orientations 
must first be displayed so that fracture sets and 
structural domains can be determined. The ori-
entations are plotted on lower-hemisphere pro-
jections that display poles to fractures. Schmidt 
equal-area projections are commonly used be-
cause pole densities can be readily calculated 
and then contoured to help enhance fracture 
patterns (figure B-6). The blind zone shown 
in figure B-6 corresponds to the orientation of 
the mapped outcrop where fractures that paral-
lel the outcrop are overlooked or sampled to a 
lesser degree than fractures with strikes more 
perpendicular to the outcrop [Terzaghi 1965].

Schmidt plots derived from various mapping 
techniques are used in conjunction with knowl-
edge of the local geology to help delineate 
structural domains in the study area. Fracture 
data are then combined within each domain, 
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and fracture sets critical to the slope design are 
identified. Geometric characteristics of the frac-
ture sets can then be studied by generating his-
tograms or cumulative distribution plots from 
which probability density functions can be es-
timated for the characteristics. These estimated 
functions are required for probabilistic evalua-
tions and analyses of rock slope stability.

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs



34

APPENDIX C: INTRODUCTION TO GEOSTATISTICS AND 
VARIOGRAMS

One of the first issues requiring attention in a 
study of geostatistics is summarized in the fol-
lowing question: What is the difference, if any, 
between statistics and probability?

Statistics is the science that deals with the 
analysis of data and the processes of making 
inferences and decisions about the populations 
and/or systems from which the data were ob-
tained. Thus, data are required for a statistical 
analysis. Examples of common statistical meth-
ods include describing confidence intervals for 
population parameters and comparing popula-
tion parameters via the testing of hypotheses.

Probability is an internally consistent branch 
of mathematical logic based on systematic 
statements and the formulation of principles 
that allow descriptions of random variations in 
populations and/or systems to be made. Conse-
quently, probability models can be constructed 
and used to describe and predict behavior or 
outcomes of sampling experiments based sole-
ly on professional knowledge and experience, 
and not necessarily on sampling data. Although 
data may be very helpful, they are not required 
for a probabilistic analysis. Examples of com-
mon probabilistic methods include descriptions 
of probability intervals, stochastic modeling 
and simulation, and hazard assessment.

Researchers and practitioners who deal with 
spatial populations and systems often ask the 
question: Given a set of data collected from 
a spatial population (for example, mining ore 
grades, soil or water chemistry, agricultural 
yields, etc.), how can the value at an unsampled 
location best be estimated?

In this instance, researchers are seeking a 
spatial estimate that can be obtained in several 
different ways. The most common are—

Simple averaging of regional or local val-
ues. When knowledge of the spatial patterns 
of the attribute of interest is limited, the lo-
cal mean is a reasonable estimate of the un-
known value.
Multiple regression or trend surface model-
ing (least squares, best fit) to describe a “best” 
surface passing through the cloud of data 
values mathematically. The estimated value 
at the unsampled location would be on this 
surface.
Spatial interpolation via some defined algo-
rithm that uses data in the spatial neighbor-
hood (in proximity) of the unsampled loca-
tion where the estimate is to be made.

OVERVIEW OF GEOSTATISTICS

The field of geostatistics is not the applica-
tion of statistics to geological or geoscience 
problems. Rather, the term has a more focused 
definition and much broader applications. Geo-
statistics is a branch of applied statistics that 
focuses on the characterization of spatial de-
pendence in attributes that vary in value over 
space and the use of that dependence to pre-
dict values at unsampled locations. The notion 
of spatial dependence implies that two values 
from nearby locations will be more alike than 
two values from distant locations. Probably the 
closest relative to geostatistics is time-series 
analysis, wherein the time dependence of data 
is important for understanding and estimating 
an attribute that varies over time.

The amount of data needed for a geostatisti-
cal analysis that will lead to a spatial estimate is 
tied to several factors, the most important be-
ing the spatial configuration of sampling loca-
tions. Prudently located sampling sites can help 
reduce data requirements; however, in most 

•

•

•
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cases, a set of 25 to 30 observations is a realistic 
minimum. This would provide 300 to 435 pairs 
of values to be analyzed. The number of paired 
combinations for n data points is [n(n-1)]/2. 

Geostatistical tools can provide certain ad-
vantages over other spatial interpolation pro-
cedures provided there is an identifiable spatial 
dependence in the data set. Thus, adequate char-
acterization of spatial dependence is essential 
for the proper implementation of geostatistical 
estimation procedures.

In recent years, the field of geostatistics has 
been expanded beyond spatial estimation to 
include probabilistic and stochastic procedures 
that lead to spatial simulations (sometimes 
known as stochastic images) of attributes. This 
provides another means to characterize, under-
stand, and quantify uncertainties in mapping 
such attributes. Rather than being dubbed as 
“geoprobabilistics” or “geostochastics,” these 
simulation approaches have simply been incor-
porated into the general collection of geostatis-
tical tools available to knowledgeable workers 
who can select the right tool for the right job.

A typical geostatistical study consists of the fol-
lowing:

Sampling design and data collection. 
Exploratory data analysis (plotting, graph-
ing, univariate and bivariate statistical assess-
ments, etc.).
Analysis and modeling of spatial dependence 
(computation and plotting of spatial covari-
ances and/or variograms, possible cross-vali-
dation to select desired models). Fitting of 
appropriate graphical models to the experi-
mental variogram plots is often accomplished 
by subjective methods.
Spatial mapping, which may consists of ei-
ther or both of the following: (1) Spatial es-
timation via an interpolation method in the 

•
•

•

•

kriging family or (2) generation of spatial 
stochastic images via geostatistical simula-
tion methods.

EXPLORATORY DATA ANALYSIS

For any sampling program and subsequent 
statistical study, a reasonable number of obser-
vations is required for the attribute of interest. 
In a spatial analysis, an important attribute is 
the difference in sample value for pairs of ob-
servations at certain separation distances. To 
average such a difference or to make any statis-
tical inference or estimate about this difference, 
an investigator must have a reasonable number 
of observed differences for each separation dis-
tance of interest. The only feasible way to ob-
tain such a set of differences is to lump all sam-
ple pairs of a given separation distance as found 
across the entire study site. This lumping will 
force a careful consideration of the spatial char-
acter (particularly continuity, smoothness, and 
trend) of the physical property being sampled 
and estimated. Such is the goal of exploratory 
data analysis for spatial data sets.

MAPS AND CROSS SECTIONS

One of the first investigations of a spatial data 
set should include map plotting of the values. 
Such maps include the following types:

Post-plots or post-maps,
Shaded-interval maps,
Symbol maps,
Contour maps, and
Indicator-type shaded maps.
These maps clearly illustrate the continuity 

and sampling regularity (potential clustering) of 
the spatial attribute, as well as reveal the pres-
ence of any trends. In addition, the indicator 
maps show the spatial patterns associated with 
various cut-off values or thresholds that may be 
selected for the attribute of interest.

•
•
•
•
•
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Cross sections or profiles can be constructed 
for specified directions where interesting fea-
tures may be indicated by interval or contour 
maps. Fence diagrams also can be generated to 
connect one sampling location to the next if in-
adequate data are available along a straight line 
through the sampling region.

MOVING-WINDOW STATISTICS

Once trends and discontinuities have been 
identified, basic exploratory data analysis cal-
culations can be used to describe and help ex-
plain the spatial data set. If data are abundant, 
then subdividing the study site and analyzing 
(more particularly, averaging) over smaller ar-
eas is appropriate. However, if data are sparse, 
then one single area may be appropriate.

Neighborhood or local statistical estimates 
(most often the sample mean and standard 
deviation) can be computed using a moving-
window scheme, provided there are adequate 
data for the study region. It is desirable to have 
at least four data points per window, but it is 
preferable to have at least six. An overlapping 
moving-window procedure is typically used to 
provide adequate numbers of local values.

Post-plots and accompanying contour plots 
of the local means and standard deviations can 
be helpful in the exploratory data analysis. For 
example, a contour map of the local means is a 
valuable tool for identifying and characterizing 
spatial trends in the data set, because much of the 
short-scale variability will have been smoothed 
out by local averaging. Also, by overlaying the 
contour maps of local means and standard de-
viations, heteroscedastic behavior (where vari-
ance is not constant across the site, but depends 
on local values) in the data set can be identified. 
Higher degrees of uncertainty about estimates 
in those local areas of high sample variance can 
be expected. Consequently, a contour map of 
local standard deviation values will highlight 
the local areas having high variability and thus 

large estimation errors. These would probably 
be good places to collect additional data.

Scatterplots of local standard deviation ver-
sus local mean also reveal much about the spa-
tial data set. For example, any significant rela-
tionship between the local mean and standard 
deviation indicates a proportional effect. Data 
that exhibit normal or Gaussian behavior typi-
cally do not have a proportional effect (that is, 
local standard deviation remains fairly constant 
across the site), whereas right-skewed data sets 
(for example, those that exhibit log normal be-
havior) often show a linear proportional effect.

Data transforms may be helpful for some 
exploratory data analyses. Highly skewed data 
have statistics that are influenced heavily by 
extreme values in the data set. One way to miti-
gate this influence is to use monotonous data 
transforms (that is, maintain the data ranks). 
These transformed values are used in subse-
quent computations, analyses, and estimates, 
then the results are reversed-transformed to 
complete the study. Examples of monotonous 
transforms include log, ln, rank, uniform-rank, 
and normal-score.

LAG SCATTERPLOTS

An investigation of spatial dependence should 
include the generation of lag or h scatterplots 
(figure C-1). Such plots display pairs of values 
at specified lag separation distances in a given 
direction (if needed). Thus, as many lag scatter-
plots as there are lags and directions of interest 
can be produced. If the plotted points are tightly 
clustered about the 45° line on a given lag scat-
terplot, then significant spatial dependency is 
indicated at lag (h).

For typical spatial phenomena, this cloud 
of points becomes more dispersed as lag in-
creases. In fact, the moment of inertia of such 
a point cloud about the 45° line can be com-
puted and used as a measure of spatial de-
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pendence. A more dispersed cloud provides a 
greater moment of inertia and thus indicates 
less spatial dependence.

Lag scatterplots also provide a quick way to 
identify outlier pairs at particular lags and/or di-
rections. Such pairs need to be recognized early 
in the spatial analysis because they can have 
significant impacts when spatial dependence 
measures are computed and spatial depen-dence 
models are fit. In many situations, removal of 
or ignoring certain outliers can be a major help 
in sub-sequent analyses of spatial dependence; 
however, in most cases, the outliers should be 
re-introduced to the data set before estimating 
and simulating the spatial attribute.

SPATIAL DEPENDENCE

Introduction

Recall the definition of the expectation opera-
tor for random variables:

	 (C-1)
.
where	 X	 =	 random variable,
	 f(x)	 =	 probability density function of 

the random variable,
and	 x	 =	 value taken on by random.

variable X.
The expectation of a random variable is also 

know as the mean of the random variable.

When a random variable is used to describe 
(model) a spatial attribute, it must be indexed by 
location, and then it is known as a regionalized 
variable. If the location vector (x,y) is denoted 
as u, then a general regionalized variable pair 
can be written as X(u) and X(u+h) or a specific 
pair referenced to location ui can be written as 
X(ui) and X(ui+h). The two values at these two 
locations would be written x(ui) and x(ui+h).

The result is a pair of locations (ui and ui+h) 
where h is the separation distance (lag) between 
the two locations. For many spatial attributes, 
pairs of regionalized variables are not indepen-
dent, but are related by some type of spatial de-
pendence. A shorter separation distance h often 
results in a greater dependence (figure C-2).

In a traditional statistical sense, many realiza-
tions of the pair X(ui) and X(ui+h) are required 
to make statistical inferences. However, it is 
impractical to sample each location repeatedly 
just to get enough data for reliable averaging. 
Instead, averaging of pairs over the study re-
gion must suffice; these pairs must be separated 
by a defined lag (h). Such global averaging 
forces some type of statistical stationarity as-
sumption.

Covariance stationarity: The mean does not 
depend on location, and the covariance for 
each pair of regionalized variables depends 
only on lag (h) and not on location. Data sets 

•
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Figure C-2.─Typical spatial covariance plot depicting 
spatial dependence.

Figure C-1.─Example of h scatterplot (lag scatterplot) 
for a specified lag (h).
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that exhibit severe spatial trends are not suited 
for this model.
Local stationarity: Covariance stationarity is 
re-stricted to local neighborhoods in which 
lag (h) is constrained by some defined limit.
Two common methods to deal with spatial 

•

data sets that exhibit regional trends are (1) to 
remove the trend, work with residuals to make 
spatial estimates, and add the trend back in and 
(2) to keep lag distances short in the spatial 
analysis and not extend estimates beyond well-
defined local neighborhoods.

Quantifying spatial dependence
One common way to describe the spatial dependence in a data set is to compute the 
sample spatial covariance, defined as—

	 (C-2)

where	 xi and xi+h	 =	 values separated by lag (h)
and	 nh	 =	 number of pairs separated by lag (h).

The notation for regionalized variable is—
	 (C-3)

where	 m(Xi)	 =	 mean of regionalized variable at lag-vector tails 
and	 m(Xi+h)	 =	 mean of regionalized variable at lag-vector heads.

Another measure of spatial dependence can be related directly to the moment of inertia of the 
point cloud about the 45° line on any specified h scatterplot (recall figure C-1). If d is the perpen-
dicular distance for a given point to the 45° line, then the moment of inertia I of the points about 
that line (figure C-3) can be written as—

	 (C-4)

However, we know that—
	 (C-5)

This moment of inertia is known as the semi-variogram or variogram (figure C-4).
	 (C-6)

The notation for regionalized variable is—

	 (C-7)
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Computational procedures

Two important guidelines should be consid-
ered when computing spatial covariance or var-
iograms from a spatial data set.

The number of data pairs per lag should al-
ways be more than 20, and usually be more 
than 30.
The longest lag used in the computations 
should be no more than about 60% of the 
maximum lag available in the study region. 
This avoids the problems of under-sam-
pling data locations in the middle of the 
site because long lag pairs have endpoints 
at the margins of the site.

For irregularly spaced points, the summations 
for lag pairs must incorporate cells, or bins, of 
specific distances. For example, all pairs having 

1.

2.

separation distances (lags) of 10 to 20 m would 
be grouped together into the 10- to 20-m bin 
and used to calculate one covariance value or 
one variogram value for that bin. The computed 
value is typically assigned to a lag equal to the 
mean lag of all pairs in that bin. If directional 
computations are desired, then the lag pairs 
must also be sorted by direction bins.

The lag bin boundaries are set arbitrarily by 
the investigator to obtain 6 to 20 bins, each 
having at least 30 pairs. For small data sets of 
n <  25, with the number of pairs <  300, it may 
suffice to have at least 20 lag pairs in the lag 
bins at shorter distances. Many variogram soft-
ware programs give the user the flexibility to 
set all the lag-bin boundaries, so that the bins 
need not be uniform in size. Other programs 
only allow uniform lag bins.

Directional computations most often are ref-
erenced as east = 0° and north = 90°, with direc-
tional bins being 15° to 30° in span. Typically, 
the initial calculations are set to 0°, 45°, 90°, and 
135°, then a rough range ellipse is constructed 
to help discern the directions of longest and 
shortest spatial-dependence range. The range 
ellipse is then rotated and fine-tuned to provide 
a geometric model of anisotropy for the spatial 
attribute. The magnitude of the major and mi-
nor axes (two ranges) of the final ellipse and 
the direction of the major axis are identified for 
subsequent use in kriging (figure C-5).

A User’s Guide for the Bplane, Bstepp, and Bwedge Computer Programs

Figure C-3.─One point on a lag scatterplot to illustrate 
moment of inertia.

Figure C-4.─A typical variogram plot depicting spatial 
dependence.

Figure C-5.─Spatial-dependence range ellipse with 
major range at 0o (east-west).
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Valid variogram and covariance 
models 

In many software packages, spatial covari-
ance values are subtracted from sample vari-
ance to produce a complementary covariance 
(also known as inverted co-variance), which 
provides values and a plot shape similar to a 
variogram (figure C-6). Thus, even though the 
computational formulae are different for the co-
variance and the variogram, both the variogram 
and the complementary covariance can be fi t to 
the same type of continuous models.

Because variogram structures can be com-
bined in a linear combination, each of the fol-
lowing structures can be added to produce an 
overall model.

Nugget effect

 for    (if γo = sample 
variance, then the result is pure nugget ef-
fect).	 (C-8)

Spherical model
Note that hr = range of influence; that is, the value 
of h for which spatial dependence disappears.

 

for 0 ≤ h ≤ hr	 (C-9)

or γ(h)  = σ2  for h > hr.

Exponential model

  	 (C-10)

The exponential model is similar to the spher-
ical model except that it rises more steeply near 
the origin and has an effective range of hr = 3c, 
where c is a constant. Note that c = hr/3.
Gaussian model

 for h ≥ 0.	 (C-11)

A typical way to describe a variogram mod-
el is γ(h) = 1.2 + 3.3Sph(52), where 1.2 is the 
nugget, 3.3 is the subsill (overall sill is 1.2+3.3 
= 4.5), and 52 is the range.
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Figure C-6.—Three variogram models.
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APPENDIX D: STATISTICAL ANALYSIS OF FRACTURE DATA1

Mapped fracture orientations displayed on 
Schmidt plots provide the foundation for ana-
lyzing fracture data for probabilistic slope en-
gineering. Plots obtained from various map-
ping sites are used to help delineate structural 
domains and to identify and describe fracture 
sets within each domain. After sorting the data 
according to sets, the fracture properties for 
each set are analyzed to obtain estimates of 
their probability distributions and spatial cor-
relations.

DELINEATION OF STRUCTURAL 
DOMAIN

The delineation of structural domain is es-
sential to rock engineering studies because geo-
logic and hydrologic properties vary from one 
domain to another. Obvious domain boundaries 
correspond to lithologic contacts caused by fault 
displacement, intrusion, or depositional envi-
ronment. However, structural domain boundar-
ies are not restricted only to lithologic contacts, 
but may also occur within the same rock unit. 
These less obvious boundaries often can be de-
termined by visually comparing Schmidt plots 
that display fracture orientations from various 
mapping sites.

Preferred fracture orientations appear as clus-
ters of poles on a Schmidt plot. Each cluster 
represents a fracture set, and the spatial rela-
tionships of clusters on the plot allow for mean-
ingful visual comparisons with other plots. In 
the evaluation of two or more plots, geologic 
experience and judgment provide the basis for 
determining if the plots are alike and thus repre-
sent samples from the same structural domain.

If fracture orientations appear dispersed and 
random on the plots with no obvious cluster-
ing, then visual comparisons are not appropri-

ate, and quantitative statistical methods are 
needed to evaluate the plots and provide guid-
ance in locating structural domain boundaries. 
A chi-square test procedure has been adapted to 
the comparison of Schmidt plots and provides 
a way to evaluate confidence in claiming that 
two or more plots were obtained from the same 
structural domain [Miller 1983]. The procedure 
is based on the analysis of a contingency table 
(table D-1) that contains frequencies of fracture 
plots in corresponding patches on the Schmidt 
plots being compared. 

In the contingency table, samples from r 
structural populations (domains) are listed 
down the rows in terms of the Schmidt 
plots. Each sample is classified into c cat-
egories, or patches. The frequency of ob-
served fracture plots in the ij cell (i-th plot, 
j-th patch) is denoted by fij. To test the null 
hypothesis that the plots represent samples 
from like populations, the following statis-
tic is calculated.

	 	 	 (D-1)

where 	r	 =	 total number of Schmidt plots,
	 C	=	 total number of patches in each 

plot,
	 fij	 =	 observed frequency of fracture 

poles in the ij cell,
and	 eij	=	 expected frequency of fracture 

poles in the ij cell.

The expected frequency in the ij cell is calcu-
lated as—

				    (D-2).

where	 Ri	 =	 total observed frequency of 
poles in the i-th row,

1Excerpted from S. Miller, 1984, Probabilistic Rock Slope Engineering, Publ. No. GL-84-8, USAE-WES, 
Vicksburg, MS.
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	 Cj	 =	 total observed frequency of 
poles in the j-th column,

and	 N	 =	 total number of fracture 
observations in all plots.

If the null hypothesis is true, then the above 
statistic is chi-square distributed with (r-1) (c-1) 
degrees of freedom (provided each fracture is 
sampled independently of other fractures), and 
its value does not exceed that of a chi-squared 
variant evaluated at a specified significance lev-
el α. The value of α is actually equivalent to the 
area under a chi-square distribution to the right 
of its associated X2 value. The usual test proce-
dure consists of selecting an α value and then 
calculating the value of X2 from the contingen-
cy table. The null hypothesis is rejected if this 
calculated value exceeds the known tabulated 
value of X2  with (r-1) (c-1) degrees of freedom 
for the specified α.
Table D-1.—Arrangement of contingency table for 
comparing Schmidt plots

Rows Patch 
1

Patch 
2

Patch 
3

Patch 
c

Total

Plot 1 f11 f12 f13 f1c R1

Plot 2 f21 f22 f23 f2c R2

Plot 3 f31 f32 f33 f3c R3

Plot r fr1 fr2 fr3 frc Rr

• • • • • •

• • • • • •
• • • • • •
Column total C1 C2 C3 Cc N

However, rather than selecting a particular 
significance level for comparing Schmidt plots, 
from a geologic standpoint, it is often desirable 
to use the calculated X2 value from the con-
tinguency table to compute its corresponding 
right-tailed area α. This computed α value is 
not really a level of significance, but serves as 
a measure of confidence in accepting the null 
hypothesis. It provides a quantitative and stan-
dardized measure of comparison among dif-
ferent contingency table analyses of Schmidt 
plots. A numerical procedure for estimating the 

right-tailed area under a chi-square distribution 
with more than 30 degrees of freedom is given 
by Zelen and Severo [1965]. 

In summary, contingency table analysis is a 
useful tool for comparing Schmidt plots and 
evaluating the alikeness of sampled structural 
populations. The method is intended for plots 
that display dispersed fracture orientations 
where the lack of well-defined clusters makes 
visual comparisons difficult and often times 
useless. The necessary statistical calculations 
can be easily programmed on a desktop com-
puter, thus providing a rapid way to compare 
Schmidt plots obtained from various mapping 
sites. Such comparisons are important for 
helping to predict the locations of structural 
domain boundaries. 

COMBINING FRACTURE DATA 
FROM DIFFERENT MAPPING SOURCES

In fracture mapping programs for many slope 
design projects, various mapping techniques 
are employed at different sites. After structural 
domains have been delineated in the study area, 
the mapped fracture data can be combined by 
domain to provide a foundation for the statisti-
cal analysis of fracture set properties in each do-
main.

One of the first steps in combining fracture 
data is the delineation of fracture sets on each 
of the Schmidt plots. If fracturing is complex 
within a structural domain and preferred ori-
entations are not readily seen in the plots, the 
density of fracture plots in small counting areas 
can be contoured to assist in the visual identi-
fication of fracture sets. Statistical methods are 
also available to help analyze and distinguish 
clusters of orientations on a given plot [Stan-
ley and Mahtab 1976; Mahtab and Yegulalp 
1982]. However, objective statistical analyses 
are strictly numerical and do not include engi-
neering judgment that often make it possible to 
identify fracture sets from careful observations 
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of rock exposures. An experienced investiga-
tor who has mapped the fractures in an outcrop 
and has knowledge of slope design procedures 
and requirements can apply geologic informa-
tion that is practically impossible for a statistical 
analysis to include. Therefore, statistical meth-
ods are tools that should guide, rather than con-
trol, delineation of fracture sets. 

Because mapping methods and outcrop ori-
entations often vary from one mapping site to 
another, observations of individual sets are ana-
lyzed separately to evaluate their characteris-
tics. For instance, measured spacings in a given 
fracture set as mapped by detail line techniques 
are corrected to true spacings by using the mean 
orientation of the set and the orientation of the 
mapping line. This correction is different for 
each observation of the set (denoted as a subset) 
and for mapping line.

The mean vector of a mapped fracture subset 
is not only useful for the spacing correction, but 
also can be used to explicitly describe the mean 
orientation of the subset and aid in combining 
numerous fracture data obtained from different 
sites within a structural domain. This vector rep-
resents the average direction of normals to frac-
ture planes in the given subset, and if plotted as 
a pole, it indicates the “center” of the Schmidt 
cluster that represents the observed fracture set. 
The normalized mean vector of a given fracture 
set is calculated by the expression below

where	 	=	 mean vector of fracture set,

	 Xi, Yi, Zi	=	 direction of a normal to the 
i-th fracture,

and	 N	 =	 total number of fractures in the 
set.

The plane orientation perpendicular to the 
mean vector is often truncated to serve as an 
abbreviated identifier for the fracture set. For 
instance, a mean vector plane with a dip direc-
tion of 162° and a dip of 47° would be labeled 
as 16.4. All the set mean vectors from different 
mapping sites within a given structural domain 
can then be plotted on a single lower hemi-
sphere projection to aid in grouping fracture 
subsets (figure D-1).

Fracture set properties are combined directly 
if the same mapping technique was used for 
each subset in a given group. Thus, all the ob-
servations are pooled and treated as indepen-

dent samples for calculating mean and standard 
deviation and for estimating probability distri-
bution. However, if different mapping methods 
were used, then weighted means are calculated 
according to the number of fracture observa-
tions in each subset, and probability distribution 
are inferred from experience with other similar 
types of data. Selected fracture set properties 
taken from the data represented by figure D-1 
are briefly summarized in table D-2.

(D3)
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Table D-2.—Partial list of fracture set properties for structural domain represented by figure D-1

Fracture set 
number

Number of 
observations

Dip direction, deg Dip, deg Length mean, 
m (ft)

Spacing 
mean, m (ft)

Waviness 
mean, m (ft)

Mean S.D. Mean S.D.
0.4 23 5.7 9.7 42.6 8.2 0.76 (2.5) 0.24 (0.8) 0.70 (2.3)
1.6 39 12.0 10.2 66.9 12.4 0.73 (2.4) 0.15 (0.5) 2.77 (9.1)
5.8 56 50.9 9.7 82.6 10.2 0.98 (3.2) 0.27 (0.9) 0.94 (3.1)
8.7 149 88.2 12.9 74.9 9.9 1.22 (4.0) 0.34 (1.1) 1.19 (3.9)
12.6 30 122.9 10.8 67.3 11.6 0.94 (3.1) 0.30 (1.0) 0.12 (0.4)
17.6 36 171.5 9.8 62.3 7.2 0.82 (2.7) 0.27 (0.9) 0.49 (1.6)
26.5 25 261.0 8.4 61.3 15.0 1.43 (4.7) 0.27 (0.9) 1.28 (4.2)
28.8 22 288.5 11.3 86.9 8.4 0.67 (2.2) 0.43 (1.4) 1.65 (5.4)
28.5 134 291.3 9.8 52.2 12.5 1.04 (3.3) 0.49 (1.6) 0.46 (1.5)
32.5 23 328.5 12.4 51.7 12.6 0.64 (2.1) 0.21 (0.7) 1.10 (3.6)
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Figure D-1.─Mean vector plot showing grouping of fracture subsets for a specified structural domain.



45

PROBABILITY DISTRIBUTION OF 
FRACTURE SET PROPERTIES

The combined fracture data for a given struc-
tural domain includes samples of fracture prop-
erties for all sets in that domain. These sample 
data can be used to construct histograms or 
cumulative frequency plots for pertinent prop-
erties in each fracture set. These plots are then 
used to help determine the probability density 
function that best describes the mapped fracture 
properties. Statistical goodness-of-fit tests can 
also be used in this evaluation process.

Distributions of dip and dip direction are usu-
ally best approximated by normal distributions 
(figure D-2), although some fracture sets may 
have orientation data that are nearly uniformly 
distributed. Distributions of set spacing, length, 
and waviness are typically approximated by 
exponential distributions [Robertson 1970; Call 
et al. 1976; Cruden 1977] as shown by the ex-

amples in figure D-3. However, some investi-
gators report that trace lengths within a fracture 
set may be distributed in a log normal fashion 
[McMahon 1974; Bridges 1976; Einstein et al. 
1978].

Statistical treatment of mapping bias and 
censoring of fracture length traces has been dis-
cussed by Baecher [1980] and Laslett [1982]. 
Such methods are used to adjust the distribu-
tions of mapped fracture lengths to provide im-
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Figure D-2.─Typical histograms of fracture set dip direction 
(A) and dip (B) that indicate normal distributions.

Figure D-3.─Examples of exponential distributions of 
fracture set length, spacing, and waviness (from Call 
et al., 1976).
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proved estimates of true length distributions.
Probability distribution forms other than those 

indicated above may occasionally be used to 
best describe the distributions of mapped frac-
ture set properties. Regardless of which particu-
lar form is used, the basic requirements are that 
it be a valid probability density function that can 
be explicitly expressed and that it be amenable 
to subsequent slope stability analyses.

SPATIAL CORRELATIONS OF 
FRACTURE SET PROPERTIES

A fracture property within a given set tends 
to be spatially correlated, and geostatistical 
methods can be used to determine the nature 
and extent of the correlation [Miller 1979; La 
Pointe 1980]. In classical statistics, the samples 
collected to describe an unknown population 
are assumed to be spatially independent (that 
is, knowing the values of one sample does not 
provide any information about adjacent sam-
ples). In contrast, geostatistics is based on the 
assumption that adjoining samples are spatially 
correlated and that the nature of the correlation 
can be statistically and analytically expressed 
as a variogram function [Matheron 1963].

In the analysis of fracture set properties, weak 
second-order stationarity is assumed, and esti-
mates of variogram functions are computed 
along the mean vector line of each fracture set 
[Miller 1979]. A given variogram function is 
estimated from sample data along a line accord-
ing to—				  

(D-4)

where	Z(xi)	 = sample value at location xi,
	 Z(xi + h)	 = sample value at location xi 

+ h,
and	 N	 = total number of sample 

values.
The estimated function γ(h) is expressed in a 

graph with h plotted as the independent vari-

able. For fracture set data, distance h can either 
be measured in terms of actual distance or in 
terms of number of fractures. The number of 
samples used in estimating the function should 
be at least 30 in most cases.

Examples of variograms and theoretical var-
iogram models are shown in figure D-4. For the 
spherical model, the value of γ(h) at the point 
where the curve reaches a plateau is called the sill 
value, and the corresponding value of h is called 
the range. The sill value equals the variance of all 
sample values used in calculating the variogram. 
The range can be considered in the traditional 
geologic concept of range of influence (that is, 
any two samples spaced further apart than this 
distance are not spatially correlated). Thus, the 
variogram represents a measurement of correla-
tion as distance between sample increases. Ide-
ally, the nugget should be zero because any two 
samples from the same point should have equal 
values.

However, a nugget practically always occurs 
in variograms of geologic data and may indicate 
highly erratic sample values spaced close to one 
another or may reflect errors or uncertainties in 
sample collection and evaluation.
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Figure D-4.─Examples of variograms and theoretical 
models. A, Variogram showing high spatial correlation 
and continuity of samples. B, Variogram showing no 
spatial correlation of samples. C, Theoretical spherical 
model showing some spatial correlation of samples. 
D, Theoretical hole-effect model showing spatial 
correlation of periodic samples.
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Typical variograms for fracture set properties 
are illustrated in figure D-5. For most fracture 
sets, the spherical model is appropriate for de-
scribing the spatial relationships of a specified 
fracture property. If periodicity is indicated, 
then a modified hole-effect model can be used 
[Miller 1979].
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Figure D-5.─Example variograms of fracture set 
properties (from Miller, 1979).
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APPENDIX E: EXAMPLE PLANE SHEAR ANALYSIS FOR BENCH 
DESIGN

Geotechnical fieldwork has provided the fol-
lowing field mapping data for a possible plane 
shear fracture set (actually, this set consists of 
relict bedding planes in a quartzite rock mass).  
Bplane calculations in this appendix were con-
ducted with a beta version that contained differ-
ent treatments of density and waviness.

CASE 1

Consider a case where an overall slope angle 
of 53° and 8-m-high benches are desired. Thus, 
several combinations of bench width and face 
angle are investigated to provide the overall 
angle (68° at 2 m, 76° at 4 m, and 89° at 6 m). 
Recall the geometric relationship (1/tanφ) = (1/
tan53°) – (W/8).

Step 1. Calculate and model the fracture 
set variograms for dip, waviness, and spacing 
based on mapping data (table E-1). This can 
be accomplished using various software pro-
grams. In this example, the demonstration ver-
sion of Golden Software’s Surfer8 was used. 
The results are illustrated in figures E-1, E-2, 
and E-3.

Step 2. Measure or estimate other rock mass 
properties needed for the analysis.
	 Rock mass density mean = 2.67 t/m3.
	 Rock mass density standard deviation.
	 = 0.02 t/m3 (not available in the release 	
	 version).
	 Mean fracture length = 6.2 m.
	 Fracture shear strength:
		  A = 0.6249 (tan 32°).
		  B = 0.990 (a slight curvature from a.
		  linear model).
		  C = 0 (zero cohesion intercept.)

Step 3. Execute the program Bplane and 
summarize bench back-break results. Sample 
input and output are shown in figures E-4 and 

E-5. The results are summarized in tables E-2 
and E-3.

Note that the probability of retaining a 2-m-
wide catch bench is quite low in all three con-
figurations, reflecting the long mean length (6.2 
m) of the fracture set. The preferred engineer-
ing design option likely is to not bench at all, 
but to have the cut slope coincide with the natu-
ral fracture set for the finished slope.
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Table E-1.—Sample data set

Count Spacing (to next fracture) Dip direction Dip Dip, mean Waviness Length, m Tape, ft
Feet Meters

1 0.19 0.058 57 46 44 2 7.6 5.90
2 0.53 0.162 36 52 49 3 7.2 6.19
3 0.27 0.082 53 44 42 2 7.3 7.00
4 0.49 0.150 54 44 41 3 7.7 7.41
5 0.68 0.208 60 43 39 4 7.0 8.16
6 0.92 0.281 55 46 42 4 7.2 9.20
7 0.10 0.030 62 44 39 5 6.9 10.60
8 0.43 0.131 58 44 40 4 7.0 10.75
9 0.31 0.094 53 48 45 3 6.7 11.40
10 1.17 0.357 62 41 37 4 6.9 11.87
11 0.39 0.119 70 40 37 3 6.4 13.65
12 2.07 0.631 62 43 40 3 6.1 14.25
13 0.53 0.162 63 49 46 3 6.1 17.40
14 1.25 0.381 49 45 42 3 6.3 18.20
15 0.29 0.088 59 50 48 2 5.5 20.10
16 0.47 0.143 55 43 40 3 5.3 20.54
17 0.22 0.067 60 45 41 4 5.5 21.25
18 0.14 0.043 53 45 41 4 5.4 21.58
19 0.53 0.162 55 48 45 3 5.2 21.80
20 0.26 0.079 70 40 37 3 5.8 22.60
21 0.16 0.049 58 41 38 3 5.6 23.00
22 0.23 0.070 61 44 40 4 5.6 23.25
23 0.76 0.232 58 45 40 5 5.7 23.60
24 0.20 0.061 56 42 38 4 6.1 24.75
25 0.15 0.046 59 45 42 3 6.1 25.05
26 0.47 0.143 56 41 39 2 5.8 25.28
27 0.46 0.140 60 40 36 4 6.0 26.00
28 1.12 0.341 68 35 32 3 6.1 26.70
29 0.16 0.049 68 38 34 4 6.4 28.40
30 0.30 0.091 55 38 35 3 6.2 28.65
31 0.33 0.101 49 42 38 4 6.2 29.10
32 0.32 0.098 62 40 37 3 6.3 29.60
33 0.64 0.195 56 43 39 4 5.9 30.09
34 0.22 0.067 64 41 38 3 6.2 31.06
35 0.07 0.021 65 44 41 3 6.7 31.40
36 0.32 0.098 69 44 42 2 6.7 31.50
37 0.36 0.110 64 40 38 2 6.6 31.99
38 0.53 0.162 58 43 40 3 6.5 32.54
39 0.21 0.064 67 44 42 2 7.0 33.35
40 0.68 0.207 41 42 40 2 6.6 33.67
41 0.72 0.219 54 44 40 4 7.2 34.71
42 0.29 0.088 56 38 36 2 7.3 35.80
43 0.05 0.015 65 42 39 3 7.5 36.24
44 57 40 36 4 7.2 36.31
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Table E-2.—Summary of results for 8-m-high benches

68° and 2 m wide 76° and 4 m wide 89° and 6 m wide
Width, m Probability of retention Width, m Probability of retention Width, m Probability of retention

2 0.064 4 0.039 6 0.019
1 0.163 3 0.089 5 0.039

0 0.312 2 0.183 4 0.083
1 0.314 3 0.149
0 0.465 2 0.248

0 1 0.367
0 0.507

Table E-3.—Summary of results for 8-m-high bench with 2.2-m mean fracture length

68° and 2 m wide 76° and 4 m wide 89° and 6 m wide
Width, m Probability of retention Width, m Probability of retention Width, m Probability of retention

2 0.010 4 0.296 6 0.223
1 0.151 3 0.550 5 0.405
0 0.494 2 0.767 4 0.622

1 0.893 3 0.769
0 0.950 2 0.873

0 1 0.931
0 0.964

CASE 2

Repeat the analysis shown in Table E-2, but 
assume a shorter mean length, for example, 
2.2m.

Note that the probability of retaining a 2-m-
high bench (Table E-3) increases significantly 
for the two steeper bench face angles. The pre-
ferred engineering design option here is to con-
struct steeper benches. The 76° angle is prob-
ably better because it will produce less crest 
back-break material than will the 89° angle.
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Figure E-1.─Estimated variogram and model for fracture set dip:  γ(h) = 5.9 + 4.9Sph(12).

Figure E-2.─Estimated variogram and model for fracture set waviness:  γ(h) = 0.40 + 0.263Sph(4).
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Figure E-4.─Example input screen and summary results for program Bplane (case 2).

Figure E-3.─Estimated variogram and model for fracture set spacing:  γ(h) = 0.0087 + 0.0045Sph(4).
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Figure E-5.─Output file of results for the Bplane example (case 2) given above in figure E-4.
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APPENDIX F: COMPUTATIONAL PROCEDURES
The computational procedures required for 

assessing whether a plane or wedge failure 
might occur under specific conditions are quite 
simple and can easily be programmed into a 
spreadsheet. Since fractures that cause failure 
in bench crests are often too numerous and 
too small to be mapped individually, they are 
mapped statistically and described by probabil-
ity density functions. Probability density func-
tion input is then examined by using the same 
procedures as for specific conditions to generate 
a probability density function that describes the 
probability of failures that could compromise 
various bench widths. 

The probability density function input is 
treated in different ways within the NIOSH 
bench stability codes. The first method involves 
a geostatistical spatial simulation of fracture set 
properties (spacing, dip, and waviness) to as-
sign a realistic fracture pattern to the bench (see 
Miller and Borgman [1985], for more detail on 
the simulation procedure). The second method 
deals with shear strength along each potential 
failure path by using a spatial convolution of 
input probability density function to generate a 
safety factor; this provides an estimate of the 
probability of sliding [Miller 1982].

A discretization scheme that divides the bench 
width into cells is presented. Output probability 
results are presented for cell boundaries, which 
should be defined at critical dimensions. Then, 
an overview of the statistical procedures that 
are applicable to both computational approach-
es is provided. Finally, an outline of the specific 
computations programmed in Bplane is pre-
sented. Bwedge follows a similar procedure.

BENCH BACK-BREAK CELLS AND 
STABILITY ANALYSIS

The concept of bench back-break cells is il-
lustrated in figures 16 and 17 in the main text. 
For the plane shear analysis (figure 16), a ran-

dom starting point is selected near the bench 
toe, after which fracture locations up the bench 
are simulated by generating spatially dependent 
fracture spacings. Fracture dip and waviness 
values also are generated using spatial depen-
dence and assigned to individual fractures pre-
viously located on the slope face.

By simulating many realizations of a given 
bench, each of which contains multiple oc-
currences of the particular failure mode, the 
probability of stability for any specified back-
failure cell can be estimated as follows [Miller 
1983]:

PCS = [(NT - N)/NT] +	 (F-1)
N	 Ji

+ (1/NT) Σ { Π[(1 - PLj) | Si + 
	 i=1	 j=1

+ PLj(1 - PSj) | Si },

where	PCS	=	 probability of cell stability,
		  NT	 =	 total number of bench simula-

tions,
		  N	 =	 number of bench simulations 

having at least one failure path in 
the specified cell,

		  Si	 =	 i-th bench simulation,
		  Ji	 =	 number of failure paths in the 

specified cell for i-th bench sim-
ulation,

		  PLj	 =	 probability of sufficient length 
for j-th failure path,

and	 PSj	 =	 probability of sliding for j-th fail-
ure path.

To simulate three-dimensional wedges in a 
bench, a standard length along the bench face 
must be specified to define an area for prob-
ability accumulations. This length is typically 
set equal to bench height to provide for square 
units that can be analyzed along the bench face 
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(figure 18). The number and size of simula-
tion windows depend on fracture set spacings, 
lengths, and engineering judgment [Miller 
1983].

PROBABILITY OF STABILITY FOR 
SIMULATED FAILURE MODES

The probability of retaining a specified bench 
width for given failure modes in a bench can be 
estimated by simulating potential failure geom-
etries and cataloging the back-break position of 
each one on the top of the bench. Stability of a 
given failure geometry can occur in two ways.

Failure length is not long enough to pass 
entirely through the bench and 
Failure length is long enough to pass 
through the bench, but sliding does not oc-
cur [Miller 1983].

The probability of stability for each geometry 
then is given by the sum of these two probabil-
ity values.

Failure length is not long enough

Pstab	 =	P	 (F-2).
(failure path not long enough) + 
P(failure path long enough and no 
sliding),.
in which Pstab = (1 - PL) + PL(1-PS)

where	 PL	=	probability that the failure path is 
long enough to extend through the 
bench

and	 PS	 =	probability of sliding along the 
failure path.

Thus, the probability of failure length and 
the probability of sliding must be computed 
for each potential failure mass generated in the 
bench simulation.

Failure length is long enough

The probability that a given simulated frac-
ture is long enough to pass entirely through the 
bench is computed as an exceedance probability 

1.

2.

using an exponential probability density func-
tion model for the fracture set lengths. The ex-
ponential cumulative distribution function is a 
one-parameter model given by Devore [1995].

F(x)	 =	 0 if x <0,	 (F-3)
F(x)	 =	 1 - e-x/m if x ≥ 0,

where m	 =	 mean.

The length required for a through-going fail-
ure path for a plane shear fracture is calculated 
by—

X	 =	 hf/sin(D),	 (F-4)

where	 hf	 =	 vertical height of failure mass 
(toe of failure to top of bench)

and	 D	 =	 dip of failure plane (or wedge 
intersection line for wedge fail-
ures).

Thus, the probability that fracture length takes 
on a value greater than x is given by—

P(X > x)	 =	 1 - P(X ≤ x)	 (F-5).
	 =	 1 - F(x).
	 =	 1 - (1 - e-x/m).
	 =	 e-x/m.
	 =	 PL.

For example, for a mean length of 1.6 m and 
x equaling 3 m, then P(X > 3) = e-3/1.6 = 0.153 
= PL.
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In the case of three-dimensional wedges, 
which slide along the line of intersection, the 
probability of length sufficient for failure is the 
joint probability that the left fracture is long 
enough and the right fracture is long enough.

PL(wedge) = PL(left) × PL(right). 	 (F-6)
After setting the length of the wedge inter-

section equal to x in Eq. F-6, the corresponding 
PL(left) and PL(right) can be computed using 
mean length for the left fracture set and mean 
length for the right fracture set, respectively.

PROBABILITY OF SLIDING

The probability of sliding for a given slope 
failure mode is evaluated by using the point 
estimation method [Rosenblueth 1975] applied 
to a limiting-equilibrium analysis in which the 
mean and standard deviation of a safety factor 
(F) are computed directly [Miller et al. 2004]. A 
gamma probability density function is assumed 
for F, and the probability of sliding (PS) is com-
puted by numerically integrating the area under 
this function to the left of F = 1.0. That is,

PS = P(SF ≤ 1.0).	 (F-7)

OVERVIEW OF COMPUTATIONAL 
PROCEDURES USED IN THE BPLANE 

PROGRAM

The following computational steps are com-
pleted by Bplane for each bench simulation. 
Typically, the number of bench simulations will 
be between 100 and 150.

The Fast Fourier Transform (FFT) method 
is used to simulate 256 spatially dependent, 
normally distributed values of fracture set 
dip for the identified plane shear fracture 
set. These 256 dip values are stored in an ar-
ray called DIP and should have the desired 
mean, standard deviation, and spatial cova-
riance. The number 256 is used because it is 
a power of 2 (appropriate for the FFT com-
puter algorithm) and will generally provide 

1.

more than enough fracture values to fill the 
face of a 15-to-25-m-high mine bench with 
plane shear fractures. Also, this simulation 
method is not a Monte Carlo-type simula-
tion, because Monte Carlo simulated values 
are random and independent of each other.
FFT is used to simulate 256 spatially de-
pendent, exponentially distributed values 
of fracture set spacing for the identified 
plane shear fracture set. These 256 spacing 
values are stored in an array called SPA and 
should have the desired mean, standard de-
viation, and spatial covariance.
FFT is used to simulate 256 spatially de-
pendent, exponentially distributed values 
of fracture set waviness for the identified 
plane shear fracture set. These 256 wavi-
ness values are stored in an array called 
WAV and should have the desired mean, 
standard deviation, and spatial covariance.
A uniform U[0, 1] number (uo) is generated 
and then multiplied by mean spacing of the 
fracture set to establish a random starting 
point near the toe of the bench face where 
the first plane shear fracture of the simu-
lated plane shear set will be positioned. 
The distance measured from the bench toe 
up the bench face to this position is given 
by—

Starting distance (meters)	=	uo (SMU)	 (F-8).
	 =	FID(1,1)

where	 uo	 =	 uniform U[0,1] random 
number,

	 SMU	 =	 mean spacing of plane shear 
fracture set (meters),

and	FID(1,1)	=	 array element equal to dis-
tance to first simulated frac-
ture .

2.

3.

4.
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Additional first-array elements are assigned 
as follows:

FID(2,1)	 =	first simulated fracture dip.
value = DIP(1),

FID(3,1)	 =	first simulated fracture wavi-
ness value = WAV(1),

and 	FID(4,1)	=	required length for first fracture 
to extend from bench face to 
breakout point on top of bench

		  =	{(bench height) - 
FID(1,1)[sin(A)]}/sin[DIP(1)],

where	 A	 =	bench angle.
Each successive fracture array element k is 
defined using the previous j = k - 1 element, 
as plane shear fractures in the bench are 
stacked until they intersect the bench face 
all the way up to the bench crest.

FID(1,k)		  =	 FID(1,j) + 	 (F-9).
				    + SPA(j)/sin(A - DMU),
where	A	 =	 bench angle,
	 DMU	 =	 mean dip of fracture set,
	 FID(2,k)	=	 DIP(k),
	 FID(3,k)	=	 WAV(k),
and	 FID(4,k)	=	 {(bench height) 

- FID(1,k)[sin(A)]}/
sin[FID(2,k)].

5.

6.

The probability that each k-th fracture will 
be longer than FID(4,k) is calculated using 
an assumed exponential distribution for 
fracture set length (that is, the fracture is of 
sufficient length to form a planar, continu-
ous slope-failure surface).

P[L > FID(4,k)]	=	1 - 			   (F-10).
			   - {1 - exp[-FID(4,k)/	
			   LMU]}.
where	 LMU	=	mean length of fracture 	
			   set.

The probability of sliding (that is, that the 
safety factor is less than 1.0) is calculated 
for the plane shear failure block defined 
by each k-th fracture using the point es-
timation method that relies on fracture 
waviness, fracture dip, fracture set shear 
strength, and unit weight of the rock mass. 
The probability that the plane shear block 
defined by the k-th fracture will not slide is 
then given by—

7.

8.

Pnonslide[k-th plane shear block] = 1 - Pslide[k-th plane shear block].	 (F-11)

For the k-th plane shear block to be stable, either the k-th fracture is not long enough to 
allow failure or it is long enough and the block does not slide.

Pstab.[k-th plane shear block]	  = {1-P[L>FID(4,k)]}+ 	 (F-12).
		  + {P[L >FID(4,k)]}{Pnonslide[k-th plane shear block]}.

9.

For any given back-break cell to be stable 
on the top of the simulated bench, all plane 
shear fractures that break out in that cell 
must be stable. Thus, cell stability is rep-
resented by the joint probability of plane 
shear stability, or the product (multiplica-
tion) of the corresponding Pstab. values for 
that given cell.

10. Steps 1 through 10 are repeated for n bench 
simulations. Cell stability values are accu-
mulated and then averaged (see Eq. F-1). 
The probability of retaining a specified 
bench width by combining the appropriate 
cell stability values is calculated.

11.
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APPENDIX G: VOLUME OF FAILED MATERIAL
Estimated volumes of rockfall debris gener-

ated by bench failure can be related directly to 
the probability of retaining given catch-bench 
widths. If the probability associated with a 
specified back-break cell is calculated as Pi, 
then the average failure volume associated with 
Pi can be estimated. First, calculate hf, the verti-
cal height of an average failure.
hf		  =	 Ci (sinD  ·  sinB)/sin(B-D),	 (G-1)

where	 Ci	=	 back-break distance to center of 
cell with probability Pi,

	 B	=	 bench face angle,
and	 D	=	 average dip of plane shears or 

average plunge of wedges in the 
simulation.

Then, calculate the unit width area (that is, 
the area associated with a 1-m increment along 
a bench run).

Ai	 =	 0.5h[Ci + (h/tanB)]	 (G-2)

The associated intact volume of rock prior 
to the failure is then Vi = Ai× 1 m3 of rock per 
meter of bench run. A bulking factor (usually 
1.20 to 1.35) then is multiplied by this volume 
to estimate the volume of loose rock and de-
bris lost from the bench crest and which must 
be contained on the catch bench below. If this 
volume exceeds the expected storage volume 
on the lower bench, then the debris can be 
expected to cascade farther down the overall 
slope.
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Parameter Bplane Bstepp Bwedge
Bench

Bench height and width (m)
The physical dimensions of a bench in a vertical section through the rock slope. X X X

Number of bench cells
Back-break cells are defined to discretize bench width to examine failure potential. 
A cell is considered to have failed when it contains any portion of a failing block. 
Typically, the cells are 1 m wide, but they can be adjusted to provide greater or 
smaller resolution. For instance, if maintaining a 2.5-m-wide bench is deemed to be 
critical, a cell width of 0.5 m could be used, ensuring that results would be reported 
for the 2.5-m width. If a width of 1 m were used, results would be reported for full 
meter increments only.

Figure H-1 Figure H-2 Figure 
H-3

Height of ground water above bench toe (m)
The effect of water saturation can be introduced through calculations of pore 
pressure. Water level is assumed to be at a constant height above the toe throughout 
the slope and is used to compute effective stresses in the joint stability criterion.

X X X

Slope angle (degrees)
Design dip of bench face X X X
Number of lines, distance 1, distance 2, .. (m)
These lines are defined along the face and serve, in combination with backbreak 
cells, to discretize the bench for failure analysis (figure 17). The first parameter 
indicates the number of lines. The subsequent values are the distances from slope 
crest to each line. The program seeks to identify failures within these cells that 
might occur within a section of slope as long as it is high. Cells containing failing 
wedges are considered to have failed. Thus, results should be interpreted as the 
probability that a segment of slope as long as it is high will have a minimum width 
everywhere along this segment. Results can be sensitive to the location of these 
lines. Such sensitivity can be evaluated by repeating the analysis with various line 
locations.

X

Fractures
Fracture length mean (m)
   Bplane and Bstepp assume that fractures are of sufficient length parallel to 
the bench so that the stability of blocks is not affected by terminations of the 
fractures along bench strike.
     Bwedge considers that fracture length is three-dimensional and invariant 
with direction.
     Bplane:   Fracture lengths are assumed to vary within an exponential 
probability density function defined by its mean. This function is defined 
entirely by one parameter, since standard deviation and mean of this function 
are, by definition, equal for the exponential probability density function. 
   Bstepp:  The user enters the minimum and maximum lengths for both master- 
and cross-joint fracture sets. These values are used to define a beta probability 
distribution of fracture lengths. This distribution is bounded by the minimum and 
maximum values with lengths clustered in the lower one-third of the range (a 
skewed-right probability density function with beta parameters P = 1 and Q = 4).

X

X

X

X

X

Fracture spacing mean (m)
Fracture spacing is the distance between fractures measured perpendicular to the 
fracture planes. If fracture planes are wavy or otherwise vary in orientation, the 
mean is the spacing between fractures of average orientation.

X X X

APPENDIX H: input parameters
Table H-1.—Input Parameters

(Continued)
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Parameter Bplane Bstepp Bwedge
Fracture spacing nugget (m2)
Fracture spacing nugget (that is, the y-intercept on the variogram plot) describes 
measurement error and/or short-scale variability of fracture spacings within a set. 
The exponential probability density function and a spherical variogram model are 
used to describe variability of fracture spacing. Thus, sill variance is defined as 
mean spacing squared, and the nugget must not exceed this value. If sill variance 
and nugget are equal, spatial dependence is absent, and fracture spacing varies 
randomly across space for this fracture set.

X X X

Fracture spacing range (number of fractures)
Fracture spacing range is expressed as a number of fractures and generally describes 
the distance (in terms of fracture count) at which spacing between fracture pairs 
loses spatial dependence. The range of a spherical variogram model is defined as 
the distance (in terms of a fracture count) at which the variogram model reaches the 
sill. The sill for fracture spacing is equal to the mean squared (that is, the sample 
variance assuming an exponential probability density function).

X X X

Fracture waviness (degrees)
Fracture waviness is used to account for large-scale roughness that is neglected in 
small-scale tests of joint strength. It is defined as the difference between average 
and minimum dip. Fracture waviness is discussed in more detail in the section on 
“Waviness.” Fracture waviness is described by a skewed right beta distribution (P 
= 1, Q = 4).

X X X

Fracture dip
Fracture dip mean (degrees)
Fracture dip is modeled by a normal probability density function. If multiple 
fracture sets are involved (Bstepp, Bwedge), each should be entered separately. 
The probability of maintaining a given bench width will be the joint probability of 
maintaining the width for each fracture set (or pair of fracture sets in Bwedge).

X X X

Fracture dip nugget (degrees squared)
The fracture dip nugget (that is, the y-intercept on the variogram plot) describes 
measurement error and short-scale variability of fracture dip within a set. This 
value should not exceed the sill value. If the nugget is equal to sill variance, there 
is no spatial dependence, and dip varies randomly.

X X X

Fracture dip range (number of fractures)
The range of a spherical variogram model is defined as the distance (in terms of a 
fracture count) at which the variance equals the sill value.

X X X

Fracture dip standard deviation (degrees)
The standard deviation of a normal probability density function approximating the 
population of fracture dips. The square of the standard deviation is the sill for the 
spherical variogram model.

X X X

Fracture dip direction mean (degrees)
Mean dip direction of the fracture set being modeled. X
Fracture dip direction standard deviation (degrees)
The standard deviation of fracture dip directions. The square of the standard 
deviation is the sill, or variance between pairs of fractures at great distance, in the 
spherical variogram model.

X

Fracture dip direction nugget (degrees squared)
The fracture dip direction nugget (that is, the y-intercept on the variogram plot) 
describes measurement error and/or short-scale variability of fracture dip direction 
within a set. This value should always be less than the sill.

X

Fracture dip direction range (number of fractures)
The fracture dip direction range is expressed as a number of fractures and generally 
describes the distance (in terms of number for fractures) at which fracture dip 
direction loses spatial dependence. The range of a spherical variogram model is 
defined as the distance (in terms of a fracture count) at which the variogram model 
reaches the sill.

X

Table H-1 (Continued).—Input Parameters

(Continued)
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Parameter Bplane Bstepp Bwedge
Rock mass

Rock density mean (t/m3)
An estimate of the bulk density of the rock is needed to compute the weight of 
blocks and wedges having the potential to slide. Density is modeled as a constant. 
Typical values range from 2.50 to 2.70 t/m3.

X X X

Maximum intact rock gap (m)
This parameter does not affect the geometry or the properties of the step-paths 
generated. Rather, it helps the program differentiate between potentially sliding step-
paths and those that are stable (that is, step-paths with intact rock bridges that are 
too large to fail). The program assumes that any step-path containing a rock bridge 
longer than the maximum intact rock gap will be stable, limiting the range of paths 
that must be analyzed further. Failures along surfaces that involve rupture of large 
amounts of intact rock (usually weak rock or soil) are best considered using other 
methods. Typical values for this maximum gap range from 0.02 to 0.15 m. Input 
must be in meters.

X

Rock tensile strength mean (t/m2)
Mean tensile strength of intact rock, particularly rock that will likely form bridges 
separating master and/or cross joints.

X

Rock tensile strength standard deviation (t/m2)
Standard deviation of rock tensile strength, particularly rock that will likely form 
bridges separating master and/or cross joints. Variation of tensile strength is 
modeled by a normal probability density function modified by setting minimum 
and maximum bounds at ±4 standard deviations. In addition, minimum tensile 
strength is not allowed to be negative. Values generated beyond these bounds are 
set equal to the exceeded bound.

X

Shear strength parameters (a, b, and c)
These parameters define a general power-curve model that relates shear strength to 
effective normal stress.

	 τ	 =	 aσb + c,
where	 τ	 =	 shear strength (t/m2),
	 σ	 =	 effective normal stress (t/m2), 
and	 a, b, c	 =	 model parameters.

This model reverts to the familiar Mohr-Coulomb linear model of friction if b is set 
equal to 1. In this case, a is the tangent of the friction angle, and c is cohesion. These 
parameters are discussed in more detail in section 5.2.1. Typical ranges for these 
values are 0.3 to 2.0 t/m2 for a; 0.5 to 1.0 for b; and 0.0 to 6.0 for c.
   Bstepp:  Shear strength is defined only for the master-joint fracture set. Sliding 
will not occur on cross-joint fractures. Cross joints open and are assumed to have 
no strength in tension.

X X

X

X

Shear strength standard deviation (t/m3)
Typical values of the shear strength standard deviation range from 0.2 to 0.6 t/m2. X X
Shear strength coefficient of variation
The coefficient of variation is defined as the standard deviation divided by the mean 
(in this case, shear strength standard deviation divided by mean shear strength). A 
coefficient of zero implies no variation from the mean, while higher values show 
increased variation of strengths around the mean. Typical values range from 0.2 
to 0.4.

X

Table H-1 (Continued).—Input Parameters

(Continued)
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Parameter Bplane Bstepp Bwedge
Computer entries

Random seed
A five-digit integer is input to Aseed@ the random number generator used to develop input 
to each simulation. The generated numbers are random in the sense that the likelihood of 
a given value being generated is independent of the magnitude of that value. However, 
the sequence of generated numbers follows predictably from any given seed value. The 
influence of the seed value on results will be greatest for a single simulation and will 
decline as the number of simulations is increased. The influence of the seed value on an 
analysis can be checked by repeating the run with a different seed value. If results vary 
significantly with seed value, then the number of simulations should be increased.

X X X

Number of simulations
Each simulation, or “sim,” involves randomly generating a specific set of fractures 
and fracture properties (Bplane and Bwedge) or step-paths and related properties 
(Btepp) consistent with the statistical distributions and then testing whether blocks 
defined by these fractures or step-paths have the potential to slide. Each simulation 
produces a plausible result, or one plausible realization. Many simulations are 
required to estimate the true likelihood that various bench widths will be maintained. 
Adequacy can be checked by seeing if results change significantly for a small 
increase or decrease in the number of sims or for a change in random seed.
   Bplane is capable of running up to 200 simulations, but 100 should be adequate 
for most situations. 
   Bstepp:  Bstepp is capable of running up to 100 simulations. Fifty sims should be 
considered minimal for most situations. 
   Bwedge:  Sixty sims will be sufficient in many cases, but the maximum of 200 
sims may be desirable in others. The sensitivity of results to the number of sims can 
be checked by making runs with slight variations in number of sims.

X X X

Output file
Name of the output file, including file extension. X X X
Compute button
Clicking on the compute button starts a run, which consists of checking input 
against a set of limits; saving the input to a file named Bplane.tmp, Bstepp.tmp, or 
Bwedge.tmp, as appropriate; computing the probabilities of retaining various bench 
widths; and then writing results to the specified output file. A “Computing–Please 
Stand By” message is displayed during calculations. This window will persist after 
calculations are complete. The input window will reappear when a run has been 
completed, displaying sample results.

X X X

Table H-1 (Continued).—Input Parameters
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Figure H-3. Discretization of bench width with cells 
and slope face with lines for a Bwedge analysis.

Figure H-1. Back-break cells plotted on a typical 
bench for a Bplane analysis. Each cell will be 
considered to have failed if a plane failure intersects 
the bench anywhere within the cell.

Figure H-2. Back-break cells plotted on a typical 
bench for a  Bstepp analysis. Each cell will be 
considered to have failed if a step-path failure 
intersects the bench anywhere within the cell.
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Bplane parameter values. Input parameters are screened for reasonable ranges. Error mes-
sages are generated for values outside the following ranges:

Bench height	 1 – 80 m
Bench width	 1 – 80 m
Bench cell increment 	 Less than or equal to 20
Ground water height 	 Less than bench height
Density	 1.9 – 2.9 t/m3

Slope angle	 20° – 89°
Fracture length mean	 0.1 – 50 m
Fracture dip mean	 Positive and less than the slope angle
Fracture dip standard deviation	 Positive and less than 10°
Fracture dip nugget	 Positive and less than dip standard deviation squared
Fracture dip range	 1 to 30 fractures
Fracture spacing mean	 0.05 – 5 m
Fracture spacing nugget	 Positive and less than mean spacing squared
Fracture spacing range	 1 to 30 fractures
Fracture waviness	 0° – 12°
Fracture maximum waviness	 Greater than minimum waviness
Shear strength a coefficient	 Positive and less than 3
Shear strength b coefficient	 0.3 to 1
Shear strength c coefficient	 0 – 2 t/m2

Shear strength standard deviation	 0.2 – 0.6 t/m2

Number of simulations	 Less than or equal to 200
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Bstepp parameter values. Input parameters are screened for reasonable ranges. Limits apply 
to both master and cross joints unless otherwise noted. Error messages are generated for values 
outside the following ranges:

Bench height	 1 – 80 m
Bench width	 1 – 80 m
Bench cell increment 	 Less than or equal to 20
Ground water height 	 Less than bench height
Density	 1.9 – 2.9 t/m3

Intact rock tensile strength	 100 – 2000 t/m2

Tensile strength standard deviation	 Less than 100 t/m2

Slope angle	 20° – 89°
Maximum fracture length	 Less than or equal to 20 m
Minimum fracture length	 Greater than or equal to 0.2 m
Master joint mean dip	 Less than the slope angle
Cross-joint mean dip	 60 – 110° (dip > 90° for overturned sets)
Fracture dip standard deviation	 Less than 10°
Fracture dip nugget	 Less than dip standard deviation squared
Fracture dip range	 1 to 30 fractures
Fracture spacing mean	 0.05 – 5 m
Fracture spacing nugget	 Less than mean spacing squared
Fracture spacing range	 1 to 30 fractures
Fracture waviness	 0° – 12°
Fracture maximum waviness	 Greater than minimum waviness
Shear strength a coefficient	 0.1 – 3
Shear strength b coefficient	 0.3 – 1
Shear strength c coefficient	 0 – 10 t/m2

Shear strength standard deviation	 0.2 – 0.6 t/m2

Number of simulations	 50 to 100
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Bwedge parameter values. Input parameters are screened for reasonable ranges. Error messages 
are generated for values outside the following ranges:

Bench height	 1 – 80 m
Bench width	 1 – 80 m
Bench cell increment 	 Less than or equal to 20
Ground water height 	 Less than bench height
Density	 1.9 – 2.9 t/m3 
Slope and fracture dips	 20° – 89°
Slope face dip direction	 0 – 360°
Fracture dip directions	 0 – 360°
Fracture dip direction standard deviation	 0 – 15°
Fracture dip direction nugget	 Positive and less than dip direction range 

squared
Fracture dip direction range	 1 to 30 fractures
Fracture dip standard deviation	 0 – 8°
Fracture dip nugget	 Less than dip standard deviation squared
Fracture dip range	 1 to 30 fractures
Fracture length mean	 0.1 – 50 m
Fracture spacing mean	 0.05 – 5 m
Spacing nugget	 Less than mean spacing squared
Spacing range	 1 to 30 fractures
Shear strength a coefficient 	 0.1 – 3
Shear strength b coefficient	 0.3 – 1
Shear strength c coefficient	 0 – 10 t/m2

Shear strength coefficient variance	 0.2 – 0.6
Fracture waviness	 0° – 12°
Fracture maximum waviness	 Greater than minimum waviness
Simulation line distance	 Less than or equal to bench height
Number of simulation lines	 1 – 4 
Simulation line spacing	 Not less than 0.5 m
Number of simulations	 Less than or equal to 200
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