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ABSTRACT

This report presents methods for computing the properties of the reflection
from a cube-corner array when it is illuminated by a laser pulse. Such information
is usetul in the design of satellite retroreflector arrays and ground tracking equip-
ment as well as in the analysis of the data obtained. The methods derived include
the effects of coherent interference, diffraction, polarization, and dihedral-angle
offsets. Considerable space is devoted to deriving expressions for the diffraction
pattern and active reflecting area of various types of retroreflectors.
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"\aﬁETHQz) OF CALCULATING RE?R@REFLECTOE«ARRAY
TRANSFER FUNCTIONS ' :

David A. Arnold

1. INTRODUCTION

The work described in this report was begun as part of the Lageos study program
{formerly called Cannonball) supported by grant NGR 09-015-164 from the National
Aeronautics and Space Administration (NASA)., The laser ranging accuracies pro-
posed for the Lageos satellite required the development of a transfer function to
relate the observed return pulses to the center of mass of the satellite. Preliminary
transfer-iunction analyses done for the Lageos vetroreflector array are presented
in Weiffenbach (1973). The development of the techniques and computer programs
has been continued under NASA grants NGR 09-015-196 snd NGR 09-015-002. Trans—
fer functions computed for most of the retroreflector-equipped satellites now in orbit
have been published (Arnold, 1972, 1974, 1975a,b, 1878). This report documents the
techniques and equations used in caleulating the transfer functions presented in those
references. Transfer-function analyses have also been done for some of the retro-
reflector satellites at Goddard Space Flight Center {Felsentreger, 1972; Fitzmaurice,
1977; Minott, 1972, 1974a,b; 1976, 1978; Plotkin, 1964; Regardie, 1976). Since the
optical properties of the cube corners are of primary importance, a large part of this
report is devoted to reviewing the basic properties of cube corners, deriving analytical
expressions for the active reflecting area of various cube-corner designs, and develop-
ing methods for computing the diffraction pattern of these retroreflectors. The diffrac-
tion caleulation for a circular reflector employs numerical integration over one of the

variables in the surface integral.

This work was supported in part by grants NGR 09-015~ 164, NGR 09-015-196, and
NGR 09-015-002 from the National Aeronautics and Space Admmastratlon.
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Expressions for the incoherent and coherent returns from an array are pre-
sented. The phases of the reflections from individual cube commers are chosen by
use of a pseudo random-number generator. Sfatistics on the variation of the proper-
ties of the return pulse due to coherent interference are derived by computing many

coherent returns.

The last section outlines the method of computing the position and orientation of

each cube corner in an array in which design data are used.



2. BASIC RETHOREFLECTOR PROPERTIES

2.1 Retroreflection

A rétroveflector consists of three mutually perpendicular reflecting surfaces. |

Let the reflecting surfaces be the xy, yz, and zx planes (Figure 1). A light ray inci-
dent on one of the surfaces, such as the xy plané, has the component of the velocity
' vector normal to that plane, the z component, roversed. After reflection from the
three surfaces, all components of the velocity vector afe reversed and the ray has

heen retroreflected,

Figure 1. Basic retroreflector.

2.2 Angle of Incidence on Back Faces

Each of the three orthogonal reflecting surfaces in a cube corner reverses the
component of the light's velocity vector normal to that surface. Since the magnitude
of the velocity vector is not changed by any of the reflections, it follows that the angle
of incidence of the beam with a particular face must be a constant independent of the
order in which the reflections occour. Therefore, the angle of incidence on a given
face is equal to the angle the incident beam makes with each face. This property is
particularly useful when determining the cuioff angles for total internal reflection in

mncoated cube corners,



2.3 Symmetry of Incident and Reflected Rays

The vertex of a retroreflector is halfway between the lines defined by the incident
and the reflected vays. In a two-dimensional retroveflector (Figure 2), OC is con-
structed through the vertex parallel to the incident ray AD and the reflected ray DE.

By the law of reflection, a, = a, and Py= Pos and by construction, a; = aq and Py= 53.
Therefore, BC = OC and OC = €D because the triangles are isosceles. Since BC = CD,
the line OC is halfway between the incident and the reflected rays. The same diagram
is equally valid in three dimensions since the third reflection reverses the component
of the velocity perpendicular to the paper and does not alter the angle of the lines in this
perspective. The above proof is the same for any pair of axes; thus, the line OC must
be in the same plane as AB and DE and halfwéy hetween them.

433

Figure 2. Two-dimensional retrorefiector.

2.4 Equal Path Length for All Rays

The distance traveled by all rays is the same as the distance traveled by the ray
that goes to the vertex. In Figure 3, BG is constructed parallel to CE, so

CE=DH=TEG. Also, Ch= OD= DE, as shown previously. Therefore, the path

B-C~F~C is equal to the distance HO + OH.



Figure 3. Path length for a two-dimensional retroreflector.

?f}? is 'ézéﬁsf::i‘ﬁcteézi i}éfﬁt}éﬁﬂiéular t6 the ineident and reflocted rays and is a phase
front, Smce AB FC} the paﬁh A-C~E-F equa!.s B~C~E~G. Theé equalities above
als6 hold for ﬁhe homzortm am:{ xertmai Qempenents of all the line' segmeﬁts. Since”
this is true for a,ny pair of axes§ the ‘hr‘ee-«dun énsional distance traveled by all rays
from the phase front is the same. This @r@of works for either a hollow reflector or

a sohd one Whose face is perpendmulaz* to i:he hgh@; beam.

If the reﬂecter is maée of a d;e}eetm whose face is ﬂat the ‘optieal path length
for all rays is &I,so constani. m Fzgure 4, BF L Of and AG _E_ IH CAs shcswn before, '
the path BC—E-F edquals the distance 90 + OF. Smce TG is twice J1, the path
B-C-E~G equals 10 + Oi. Outside the meiec‘irwg AB is twice HI, so AB= HI + TH.
These relations hold for both the horizontal and the vertical components of the dis-
tances. Sirce a similar proof exists for any pair of axes, the three-dimensional
optical path length for all rays is the same as the optical path length of theé ray that
travels to the vertex. If the front surface and the back reflecting faces are not
optically flat, or if the angles between the reflecting faces are not exactly 90°, the
optical path length will be different for different rays.

[P



Figure 4. Solid two-dimensional retroreflector.

2.5 Range Correction for Optical Path Length

The range measured by timing a laser pulse reflected from a hollow cube corner
is the range to the vertex of the reflector. I the retroreflector consists of a dielectric,
guch as fused q&aﬁz, then it is necessary to correct for the slower velocity of the light
heam in the dielectric., The optical path length is n times the geometrical path length,
where n is the index of refraction. If the length of the retroveflector from the vertex
to the center of the front face is I, the optical path length in the cube corner at nor-
mal incidence i nL. The difference between the optical and the geometrical path length
is nl - L= L{n - 1}. The range measured to a solid cube corner at normal incidence
ig greater than the range measured to a hollow cube corner by L{n - 1. The range
correction will vary with the incidence angle of the beam on the front face of the cube
corner. Ik is a liftle simpler to calculate the correction from the center of the front

face of the reflector than from the vertex.

The correction factor AR is the difference between the optical path length nOB
and the distance AC (see Figure 5); that is,

AR = n0B - AC . 2-1)

The length of the reflector is L= OA. The incidence angle is i and the refracted

angle is r. From TFigure 5, we see that

e L : ;
OB=mete o e



Figure 5. Optical path length in a retroreflector.

Using Snell's law,

we get
sin i

SI‘III‘WT s

from which we can write




Substituting this into equation (2~2) yields

L
cos T

OB =

= nL . 2-3)

Vn? - sin? i

From Figure 5,

B =g

AC=ABsini

i

Ltanrsini

ginr
cos T

= I, gin i

L sini/n

B {(1/n) Vn§ - sin? i

gin i

L2,
- L sin 1 . (2~4)
n - s‘m2 i

Substituting equations (2-3) and (2-4) into equation (2-1), we get

AR = nOB - AC

n21, L sin® i

Vo2 -sin2i  Vn2 -sin?i

= (n2 - sinz i)

e R T T



The corisction with respect to the vertex can bheexpressed as followss

AR’ AR~ Licosi oo

e 1 'ﬁgi% éﬁ‘zg iw EJ cos i

%

I .
-~ sl i-cosgi] .

2.6 Input and Ounput Anemres

dxrectmn ef the %nczéen%: beam: a3 my mmdem: at pomt A wséi be retroreﬂec’ced from
pomt B, thh is an equal distance on the other side of the vertex O. Similarly, point
C moves 7s) pomt D. For any shaped retroveflector face, the shape of the retroreflected
beam can be ¢ongtructed by moving eaeh point on the outiitie of the face an equal dig-
tance ‘on the other sz&e of the vertes., }?‘igzzre 6b shows the result for a f;rmngujar
retroreflector at normal incidence. “The solid line, the shape of the retroreflector
face, is called the input aperture, and the doited line, giving the outline of the retro-
reflected beam, is the output aperture. The overlap of the two figures iz the active
reflecting area. Any ray that is incident outside the overlap region will not be retro-
reflected, since the symmetry of the incident and the reflected rays would require

~ that the Tasi refiec%wn occur a’c a pofnt outside the cube cornsr.

Figure 6. a,} Me@;h@& of camtme@mg the output aperture; b} triangular input and out-
put apertures.



When the incident beam is not at normal incidence, the vertex as viewed from
the dirvection of the beam is not in the center of the aperture. When the ocutput aper—
ture is constructed, it is also off center, so the intersection of the two figures giving
the active reflecting area is decrsased. Figure 7 depicts this effect for a square

aperture. At normal incidence, the apertures coincide, while at an oblique angle of

;i -
| i
f ¢ |
o ! ° 0 !
| {
| |
NORMAL INCIDENCE OBLIQUE INCIDENCE

Figure 7. Displacement of the input and output apertures in the plane of the front
face.

incidence, the centers of the input and the output apertures are separated by some

digtance O0’. The separation of the apertures can be calculated from the incidence
angle, as shown in Figure 8. The ray A incident on the center of the input aperture
is retroreflected as ray A’. The distance D between the points of intersection of A

and A7 with the front face is
D= 2L tan g’

where &' is the angle between the rays and the symmetry axis of the cube corner. The
separation is given in the plane of the front face of the retroreflector. As viewed from
the angle ¢', this distance is D cos ¢'. If the cube corner consists of a solid dielectrice,
then the separation as viewed from the incidence angle ¢ is D cos ¢. The angles ¢ and ¢'

are related by Snell's law,

sind _ o

sin &°
Similarily, the intersection of the input and output apertures as computed in the plane
of the front face will be smaller by the factor cos ¢ when viewed from the direction of

 the incident beam..

10



Figure 8. Separation of input and output apertures.

In general, the direction of the incident beam is given by the two angles 0 and ¢,
where ¢ is measured from the normal fo the front face and 0 is the azimuth angle
around the normal. The input and output apertures separate along the line given by

the projection of the incident beam onto the front face (see Figure 9).

i
|
E
|
y
N\

R R
O
N\

E
§
|
|
i
L

Figure 9. Direction of separation of the input and output apertures.

In sumiary, the active reflecting area for a retroveflector when illuminated by
a beam whose direction is given by the angies © and ¢ i the intersection of the input
and output apertures in the plane of the front face multiplied by cos ¢. The separation
of the apertures is along the plane of incidence, the separation being 2L tan ¢/ in the
| piérie of the front face,

il



2.7 Tube Analogy

tstead of thinking of both the input and the cutput apertures as being in the plane
of the front face of the retroveflector, we can visualize the active reflecting avea by
considering the apertures as the openings af gither end of 2 tube. In fact, when
looking into a vetroveflector, it appears as though the output aperture is an equal
distance in back of the vertex from the input aperfure. Inthis representation, the
output apervture is constructed by taking aach point on the input aperture and moving
it an equal distance on the oppogite side of the actual position of the vertex, as shown
in Figure 10. This technique is similar to the model of cube-corner phenomena given
in Eckhardt (1971).

{MAGE OF
FRONT FACE QUTPUT APERTURE
s G i s wescmts s a4 ’A
*, / :: A
N /
N / ;
AN / g ]
N/ ¢ ¢
N VERTEX g /
g
A A
g "
' LT
5 5
L7 i1
/ .
L
/ #
FRONT FACE , INPUT APERTURE

Tigure 10. Tube analogy for mput and output apertures.

The space seen by looking through the tube from various angles is the active
veflecting area for that incidence angle. The analogy bolds for a solid cube corner
by filling the tube with a dielectric (Figure 11). The active reflecting area for a
solid reflector is larger than that of a hollow one at off-normal incidence because the

rays are bent into the cube corner.

iz



QUTPUT APERTURE

T M . M N L L W

'iﬂ\m\}\\\\\k\\ i e

INPUT APERTURE

\g— - ACTIVE
REFLECTING AREA

Figure 11. Solid-cube-corner tube analogy.

2.8 Masking and'Réces'sioﬁ

By means of a variety of techriques, the active reflecting area of a cube corner
can be made to decrease more mpiéiy ag the incidence angle dapérts from the normal
to the front face. The fube analogy is perhaps the best way to visualize the effect of
these techniques. If the cube corner is made narrower while keeping the length from
vertex to face constant, the reflecting avea is decreased directly at normal incidence
and the cutoff angle (the angle beyond which there is no retrorveflected signal) ig
smaller as méaszii*eé from normal incidence. The same effect could be achieved by
masking the front face by the samé amount. Figure 12 shows both techniques.

If a hollow reflector is recesséd in a cavity of the same shape as the face, the
effect is the same as changing the width—-to-length ratio, as was done in the two pre-
vious techniques. If a solid cube corner is recessed, the effect is somewhat more
complicated. The wall of the container shadows the fase of the veflector at an obligue

incidence angle. Since refraction cccurs at the dielectric boundary, the displacement

i3



D of the input and ocutput apertures is the sum of two terms. As shown in Figure 13,

D is given by
D=2Rtané + Liand) ,

where B is the amount of recession, and ¢ and &’ are the angles of the beam before and

after vefraction, respectively.

\ \ \

A
4 L LA % 5
%% % A
’; 5 % I ’
4 1 " L ’
A 3 A s f
L 4 %
5 L A
€ . 5 2 %
e 5 ] A
5 i 5 7 y /
|4 A 1 v %
g % / f
) # ; ; ' :
s g ‘ 4 g 4
NORMAL MASKED NARROW

Tigure 12. Effect of reducing the width-to-length ratio.

al \ b}

4 v ? 5

?\\ / % 4

- § g :

£ ! 4 A

% % / ’

% E / ; i

‘- : 4 f

g ! ? g R

AR A 7 z :

2 £ ;

' §¢! ' L ; i; ’ L
/. £ I /

’ f $ 4

/ /B g /

{ i \EWJR 4 i3

Figure 13. Recessed solid cube corner.
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Z. 9 Multiple Apertures

The technique of masking can be used to produce pairs of apertures on a retro-

reflector, If half the aperture of 2 cube corner iz covered {Figure I4), there will be

Figure 14. Half-coversed retroreflecior.

no effective reflecting area. Ravs entering the open left half of the retroreflector must
exit on the right side by the prineiple of the symmetry of the incident and reflected

rays about the vertex. If holes are made in the mask on the right side of the aperture,
rays entering the holes will exit from the open left half and those enfering the left half
exactly opposite the holes will exit from the holes. Thus, ;:}ai‘rs of apertures can be
produced, as shown in Figure 15. Figure 15 has the mask covering slightly more than
half the aperture, in order that a line will not be opetied up in the center if the cube cor-
ner is slightly misaligned. The problem of aligrument is also the reason for not having
matching holes in a mask that covers the entire aperture. Corrvesponding apertures

would not be exactly opposite each other except ai normal incidence.

Figure 15. Pairs of apertures.



2. 10 Multiple Retroreflection

In a solid cube corner, a partial reflection occurs at the front face both as the
light enters the cube corner and as it leaves. The light reflected on entrance is not
in the retroveflection direction except at normal incidence. The light reflected back
into the cube corner as the beam is leaving can give rise fo multiply retroreflected
wesms. The contribution of these multiple retroreflections is negligible, largely
hecause the reflection coefficient is small. Except at normal incidence, the active
reflecting area decreases for each successive reflection, and only every other beam

leaving the cube corner is in the correct direction.

At normal incidence, the reflection coefficient is

)
o 1’/

For n= 1.46, R = 0.035. The path of multiply retroreflected rays according to the

tube analogy is drawn in Figure 15.

RN

4 4

VW " W N

PN o
I E

A
:?/-5/5

Figure 16. Multiple retroreflection.

Y

/ T N T W W W VL .

Figure 17 shows the widths and positions of the various input and output apertures

and active reflecting areas for a square cube corher.

16



le—>{ THIRD ACTIVE REFLECTING AREA AND FOURTH INPUT APERTURE
k|| THIRD OUTPUT APERTURE
| l«—«{——-a—! FIRST ACTIVE REFLECTIVE AREA AND SECOND INPUT APERTURE

| »| FIRST OUTPUT APERTURE
; 3

1

ru——-—-#“-ﬂmésy INPUT APERTURE
e———=1 seconn outpuT APERTURE

SECOND ACTIVE REFLECTING AREA AND THIRD INPUT APERTURE

-
i
|
¥
|
|
|

Figure 17. Widths of successive apertures for multiple retroreflection.

Let T be the transmission coefficient given by 1~ R and let Wo be the intensity
of the incident beam A. Table 1 gives the width of each beam for a square retroreflec—
tor with sides of unit length and incidence angle such that 21 cos ¢ = 0.25. The inten-

sities of each beam are calculated for R = 0. 435 and T= (. 985,

Table 1. Intensity and width of successive reflections within a cube corner.

Intensity

Beam Width Analytical Numerical
A Indefinite Wo Wo
ﬁ 1 BWo 0.035Wo
C 1 TWo 0. 965Wo
D 0.75 W 0. 931Wo
b .75 RTWo 0.0338Wo
I3 b. 50 RT%Wo 0. 0326Wo
¢ 0.50 RTWo 0.00118Wo
B 6. 25 R T%wo 0.00114Wo
i 0.25 CRYTWE T 0l 00004we
7 0. 00 2o r%wo 0. 00004Wo

7



In the sbove case, only beams T and H are in the retroveflection direction, and
the intensity of each successgive vetroreflected beam is decreased by Rg = (. 001225,
The separation of the input and oulpul apertures increases by 4L tan &' between sach
suncessive refroveflection. The cutoff angle occurs when the width of the front face
ig less than 2L tan ¢’ for the first retroveflection and when it is less than 6L tan ¢’

for the gecond.

9. 11 Dihedral-Angle Olisets

In o perfect retroveflector, the angle between any pair of reflecting faces is
exactly 90° and the reflected beam is exactly antiparallel to the inecident beam. If
the dihedral angles differ from 90° by a small amount, the reflected beam will be
spiit into two, four, or six beams, depending on whether one, two, or three dihedral
angles are changed. Each spot corresponds to a particular orvder of reflection.
There are 3! = 6 possible ovders of reflection. The orientation of each face is given
by the unit normals & 1 ﬁz, g :?zg to each face. The reflection from each face
reverses that component of the light's velocily vector that is normal to the face. Let
¥ and ¥ be the directions of a ray before and after reflection, respectively, with
the vector V! given by

= JEN Y FARAN
V=V ~2{ - mn

where gi {g the normal o the face. Application of the above formula three times
vields the direction of the veflected beam for a particular ovder of reflection. For-
mulag for the direction of the reflected rays affer the three reflections are given in
Voder (1958), Chandler (1960), and Rityn (1587). Chandler's formula is

PENY iy S S
t=g+ Z2g ¥ {az - B3b+ vyl {(2~-5)

where —f is the final divection; q is the original divection; a, B, and v ave the small
angles by which the angles between the three mirrors exceed right angles; and Ta: “g,
and © are the normals to the three mirrors taken in order in a right-hand sense.

Equation (2~-5) is valid to fivst order when the mirrors are nearly mutually perpen-

18



The normals may be strictly perpendicular: that is, they do not need fo include the
small deviations caused by the dibedral-angle offsets,

In the transfer funetions given in Weiffenbach (1973) and Amnold (1972, 1974,
1975a,b), the directions of the reflected rays were computed by applyving the law of
reflection three times. 7The small deviations in the normals must be included to use
this technique.

The unit normals to the faces can be computed as follows (see Figure 18) Let
the normals to the faces without dihedrai-angle offsets be the unit vectors 1, J, and
k along the three coordinate axes x, v, and z, respectively. I the angle between the
xz plane and the yz plane is (v/2) + &, this can be expressed by

A MA+§!3~

nl“l 23 ¥

n,=44+2%

2" Tl
A

ﬁsmk

For small angles &, the above expressions are guite adequate. Offsets in the other
two dihedral angles can be similarly represented. The normals should be divided by

their absolute magnitudes to ensure that they are strictly unit vectors.

F4
¥
X
{m/z)-8
8}{2 e L .

Figure 18. Normals to the reflecting faces with dihedral-angle offsets.
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¥ is desirable to have the unif normals given in the coordinate gystem of the
symmetyy axiz of the corner cube smee the incidence angle of the laser beam is given
with respect to this axis. The symmetry axis is in the direction of the vector

x=y=z= 1, as shown in Figure 19, and is given by the angles eﬁ and }kA“ From

T

Figure 19. Direction of symmetry axis.

Figure 19, we see that

sin E}g = 17

3

Cos Rﬁ = 28

#

ain ?\A = 1/43

The normals in the xvz coordinate system can be given in the coordinate system of

the symmetry axis by rotating the original coordinate system about the z axis hy © A

and about the v axis by -h < "This brings the x axis along the axis of the cube. In
Fa

matrix form, the total rotation is given by



F oo i P W ; £ 3
X cesxAG alﬁ,}‘.ﬂ\ cosé‘aA smeg 1 X
v’ = ¢ 1 0 -sin 6, cos 6y Ol y
; s
z! \-gin Ny 0 cos RA .0 ¢ 1,

Substituting the values of the sines and cogines and multiplying the matrices,

we get

1 .
x’=:f-—~§(x+y+z} s
1
P o iy
VeEEs-x 0,

’

=i @7 -x-
z@{?.zxy}s

In Figure 20, the unprimed axes represent the original coordinate system, and the
primed axes are the rotated coordinates.

Figure 20. Relationship of X ¥, zand X', y', 2’ coordinate axes.

The incident laser beam after refraction at the front face is in a direction given
by the angles 8’ and &’ in the primed coordinate system (see Figure 21),

21



Figure 21. Direction of incident heam after refraction.

A second rotation of the coordinate system must be performed to get the normals
i the facee in the coordinate system of the laser beam. By rotating the coordinate

system about the x’ axis by 8’ and then about the new z’ axis by ¢/, we get

x" cos &7 sing’ O0y/1 O 0 N\ /x0
y” |=1{-sin ¢’ cosd’ 0 || 0 cos®’sin® || ¥
2, .0 0 1/ \0 -sin 87 cos @'/ \z'/.

The relationship of the primed and double-primed coordinate axes is given in Figure
99, The ¥’ axis ig the symmetry axis of the reflector, the y’z’ plane is parallel to the

front face, and the x” axis is parallel to the beam after it enters the cube corner.

Figure 22. Relationship of X', ¥, 2z’ and x”,y", z" axes.
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If the corner cube is hollow, the reflections can be done for all six possible
sequences of reflections by taking the incident beam, given by the vector x" = -1,
y'=1z"= 0, and reﬁec‘i:mg it from each of the normals to the faces in the double-
primed goordinate sysf:em The ¥ and z*‘ ﬁGOI‘dinaﬁés of the reflected beam give
the deviations from the incident divection. The effect on these deviations due fo refrac»

tion when the rays exif from a solid cube Gorner is discussed below.
2.11. 1 Effect of vefraction on beam divergence

Let the incident beam on the cube corner he i the diraction 6, ¢) and let the
direction of the heam after refraction he (9, cp }, where

0'=0
sin ¢ = n sin ¢’
Owing to dihedral-angle offsets, the divection of the retroreflected beam before being

refracted out of the cube corner is (8 + de’, &' + dp’y for a particular order of reflec-
tion. After refraction, the direction becomes (@ + d6, ¢ + db), where

8+do=06"+do" |
do = 4o’ |
sin (p + dp) = n sin ' + db’)

Since the arc distance hetween ©/, &'} and (@' + d8’, ¢') is 8’ = sin ¢’ d0’ and that
between (8, &) and (0 + d9, ¢} ig 8 = d0 sin ¢, the deviation of the ray perpendlcular to
the plane of mmdence his been increased by the ratio s/s’s

s . dosing _ siné}":
s’ dB’ sing’  sing

To obtain the change in the component of the deviation in the plane of incidence, we
expand sin (& + db}. and sin @’ + db’), which yields

23



sin b+ dby=nsin 7+ &),

gin é).(}()s dp + cos ¢ sin dp = n(sin §’ cos dé’ + cos ¢ sin do’)
Since b and &b are very small, we khave approximately

sind +do cos p=nsing’ +ndp’ coa &'
By using sin ¢ = i sin ¢, this reduces to

db cos &= n db’ cos ¢’

Therefore, the component of the deviation parallel to the plane of incidence is

increased by the ratio

dé 0os &’
- = n

i Cos &

3.11.2 Beam spread at normal incidence

The beam spread at normal incidence when all dihedral angles are offset by an

equal amount is given by the formula (Rityn, 1967)

\fﬁ% VB né

where, following Rityn's notation, & is the angle by which the dihedral angles exceed
90° and v is the angle between the incident and the reflected rays. This formula is
good to first order when the dibedral angles are nearly 90°, If the deviation y is
large compared to the beam gpread due to diffraction, the positions of the reflected
spots in the far field can be accurately predicted. M vy is on the order of the spread-
ing due to diffraction, the formula represents the deviation of the exiting phage fronts

exactly, but the positions of the maxima in the far-field pattern are altered as a
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calculation for the whole cube corner is necessary in order to predict the intensity
distribution in the far field to a sufficient acouracy.

2.11.3 Phase gradients due to dﬁlee:iraiwangie offsets
Let the direction of the reflected beam from a cube corner for a particular

sequence of reflections be given by the unit vector

A
v=| v s

where —% points toward the illuminating sourece. Since the dihedral-angle offsets are
assumed to be small, we have

a= kvy s

b= kvz R
where

k=2n/\

A being the wavelength.

Figure 23 shows a ray going to the vertex of 2 hollow cube corner. The two



which results from the incident ray being infinites imally displaced from the vertex

in different directions. Two factors are evident from the diagram, but they can be
neglected because vy and v, are so small. First, the space between each ray and the
incident ray is a dead spot confaining no reflected radiation. Second, the pbase fronts
drawn perpendicular to the unit vecters, giving the directions of the reflected rays,

do not intersect the incident ray at exactly the same point. In diffraction calculations,
the phase difference due to dihedral-angle offsets will be taken as zero at the point
where the phase fronts intersect the incident ray going to the vertex. These effects
are insignificant in texms of their effect on the far-field pattern. A larger effect,
which has also been neglected, is the reflecting area lost owing to the rounding of the
back edges to prevent chipping in solid cube corners.

Figure 23. Relationship of phase fronts for different sectors.

2. 12 Six Sectors

A ray retrorveflected from a cube corner imdergoes three successive reflections
at the back faces. The order in which the reflections occur ig determined by where
the incident ray strikes the cube corner. Since the direction and polarization of the
reflected ray may depend on the order of reflection, we must determine the regions

corresponding to the six orders of reflection.
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I Section 2. 11, the ‘norials to'the reflecting surfices wore computed i the
X", ¥, 2" doordinate system. The ¥ axis is antiparaliel £o the jnoident beam after
refraction ‘into the cubé cornet] and the v axis is it the plane of incidence. In
Figure 2-4';E the projections of the normsls oito the y"2" plane are shown as two-
dimensional vectors labsted 1 52, The detted-line weemm 1"to 8" are antiparallel,
respectively, to the first thres. Thesé six vectors form the angular boundaries of
the six sectors of the cube corner as viewed from the direction of the incident beam
inside the reflector. Let the reflecting faces be identified by their unit normals.
The three-digit number in each sector gives the order of reflection for light emerging
from that sector. The order of reflection is determined from the principle that the
incident and reflected rays are eymmetrical with respect to the vertex, For example,
all rays leaving the sector between the 1 axis and the 3’ axis must have originated in
the 13 sector. The normal fo the 1'-3 gector ig the | axis, and that to the 13’
sector is the 3 axis. By a process of elimination, since the first reﬂectwn is from
the 1 plane and the lagt from the 3 plane, the second is from the 2 plane. The order
of reflection is therefore 123, as shown in the -3’ sector.

i

7




The angular boundaries of the six sectors will be modified by refraction of the
rays at the front face. Letan x,y,2 coordinate system be set up outside the reflec-
tor. The x axis ig antiparallel to the incident beam outside the cube corner and
collinear with the ray to the vertex. The z and z" axes ave parallel, and the y axis
ig in the plane of incidence. The boundary lines of the Ifh sector outside the cube

th

corner are given by the I vector in the yz plane, whose compments are

COB &

i
Y1791 Gos o ?

Z. = 27

I T2

where

sing
sin &

The slopes of the boundary lines when i is not zero are given by
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3. ACTIVE REFLECTING AREA
In this section, analytical expressions are derived for the active reflecting area
of a retroreflector whose face is in the shape of a eircle, triangle, or hexagon. For
all cases, the separation of the reput and output apertures inr the plane of the front
face is given by
D=2Ltand’ ,
where L is the length of the cube corper and 4’ is the angle of refraction:
.=l fsin {!p%
"= gin (m)
in which n is the index of refraction and % is the angle of incidence.

3.1 Circular Retroreflector

The active reflecting area of a coated mrcmar retroreflector is independent of
the azimuth angle of the incident beam and is & function only of the angle between the
beam and the normal to the front face. The input and output apertures are circlesg in

the plane of the front face.

Let the radius of the front face be . The maximum possible value for r for a
given L occurs when the civcular face is tangent to each of the reflecting faces (and
perpendicular to the symmetry axis of the cube corner). In Section 2.11, it was
shown that the angle between the symmetry axis and each face is the angle whose
tangent is 1/¥2. From Figure 25, we see that

max 1
L /5
or
oL
?maxwvf‘g“



FRONT FACE

BACK EDGE

tan ' (1/7/2 )

REFLECTING FACE

Figure 25. Ratio of cube-corner length to the radius of the front face.

The active reflecting area is cos ¢ times the intersection of two circles of radius
r separated by the distance D. The intersection of the two circles is four times the
shaded area shown in Figure 26. The angle 0 is given by

8= cos"j' (_“__D/ 2)

r f

Figure 26. Active reflecting area for a circular retroreflector.

The area of the sector OAB is

30
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and the area of the triangle QAC is

1 /b . _Drging
5(-2-» (rsme)wl 7 .

The active reflecting area is

. ‘V\
4 cos ¢ (rg 'fﬁz" - E%M) = (2}:28 - D1 8in 8) cos ¢

b4

which is zero when

The cutoff angle g, is defined by -

g

Substituting D_ = 2L tan ¢é into the above equation, we get

2L tan:i:é

5 T

or, = tan™?! EI?

From Snell's law,
b= sin”! (nsing’)
c c

In summary, if D/2 < r, the active reflecting area of a circular retroreflector is

area ={Zr 0 - Dr sin 0) cos ¢ = (21"29 - 21‘2 cos 6 sin 8) cos ¢

= 21“-‘-?“{6- -~ cog 0 sin 8y cos &
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where

ool B
8= gog 5T

If B/2 =r, the area is zero.

3.2 Triangular Retroreflector

The active reflecting area of a triangular retroreflector is independent of the
azimuth as long as the intersection of the input and output aperfures has six sides.
A somewhat lengthy calculation is required to derive this simple result. When the
overlap has four sides, there is an azimuth dependence, which is repeated every 120°.
Only cases with 6 between 0° and 60° need be cons idered, since the result for 0
between 60° and 120° is the same as for 120° - 6. Let the rvadius of the inscribed
cirele in the front face be r. The maximum value of r is L/v2, which occurs when

the circle is tangent to the reflecting faces. ILet W be the width of the hexagonal

active reflecting area at normal incidence (see Figure 27). The relationship of W and
ris

w/vE

Figure 27. Triangular retroreflector at normal incidence.
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In Case 1, which occurs at small values
Case 2 runs from the transition point

The analysis is divided into two cases.
of D, the active reflecting avres has six sides.
to the cutoff of the cube corner, and the active area has four sides.

The following areas must be calculated in order to get the overlap of the input and

output aperfures in Case 1, as shown in Figure 28,

amaiz'%}_{_"}“
mé 25@ (W - D cos & +V3D siﬁ@?%—(W« D cos 6 +v3D sin 8)
lef’w (W - D cos 6 +v3D sin 8} ,
arean='§-5m5“

= (W - i}cos(}i‘i (W-?-ZDCOS@)stinéi}
VE

““‘1‘*(“7-1)0038} (W + 2D cos 8 - V3D sin 0)
k]

The overlap of the two aperatures is

overiap= 4 amaI -2 areay + arealﬁ

1
2"‘ Dcos 6+ 31:)%11:18) M\ZSD Sll’l 0

T (W - Doos 0) (W 2D cos 0 - VED sing) .. . (3-1) .



Figure 28. Triangular retroreflector, Case 1.
CALCULATION OF DISTANCES IN FIGURE 28

5 = the width of the hexagon minus the displacement of the aperiures in
the 6 = 0° direction

=W ~ D cog B

¢d = the height of a star point plus the displacement of the apertures in the
6= 0° direction

m-—‘%%«Dces@
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Figure 28 (Cont.)

ezw%«m& ;‘éw (§+Dcm 8)

= ;(W+ 2D cos )

fe = the height of a star point minus the displacement of the apertures in
the 8 = -60° direction

=3 - D cos (60° + 0)
W \ e o
—-—:‘Z—uD{cos 80° cos & - sin 60° sin 6)
=§’§~ D(»cosemﬁg%sm@)
%—(W D cos 8 + /3D sin 0)
—_— 3 e
ah = = g
Y
:;%w_—(WchosB+v’§Dsin8}
hi= &k
! (W - D cos 6 + V3D sin 0)
ZVS
e AT i
ai= 22 3= T
1

=5 (W-Dcos & +v3D sin9)

bj = 2ai - ab = (W - D cos 6 + v3D sin 8) - (W - D cos 8) = V3D sin 6
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After evaluating equation (3-1) by use of an algebra computer program, we get the

following result:
- .
overlap = 3’~§-— {Wz - DZ)

The evaluation, though lengthy, is straightforward and involves nothing more com-

> 2
plicated than vecognizing the identity -D™ cos2 8 - Dz sin”™ § = -—Dz.

The active reflecting avea for Case 1, then, is

s

J w?-phycose - (3-2)

The transition from six sides (Case 1) to four sides (Case 2) occurs when
bj=ai ,
V3D sinem%(W~ D cos 0 +V3D sin 8)

23D sin0=W ~ Dcos 0 +V3D sin@

VD gin0=W -Dcog . (3-3)

The two cases ave thus defined by

Case I: V3D sinO <W - D cos 6

2

Case 2: VEID gin® >W -Deos 0

The geometry of the active reflecting area for Case 2 is shown in Figure 29. The

intersection of the apertures for Case 2 is

be x ab= ——%— (W - D cos 8) (2W + D cos 8 - v3D sin 6)
Vo
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Figure 29. Triangular retroreflector, Case 2.

CALCULATION OF DISTANCES IN FIGURE 29

be=W - D cos 6

- D cos (60° + e} = fg {from Case 1)

(W ~ D cos 6 ++3D gin 0)

ﬂJ?W»wE—.M’~DCGS@+J§BSiﬂG)

‘\i
9
@*‘V“;“(DCOSG+\3ESIHQ} _____ e
;—%—:(ZW+I}GOSEB - /3D sin 6)
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The active reflecting area is

9—2—5,_31? (W - D cos 0) (2W + D cos 0 - /5D sin 8) . (3-4)

Cutoff occurs when
he=W -Decos@=0 , (3-5)
and thus the active reflecting area is zero when

Tiecos 8>W

Since equation (3-2) for Case lis independent of 8, there are no special formulas
for different azimuths. When 0 = 0°, the cutoff and transition points coincide, sothe
reflecting area is given for all ¢ by Case 1. The cutoff angle for 8 = 0° is obtained
by setting cos 6= 1 1in equation (3-5), which gives

Wa-D=0 ,

W=D .

Substituting D= 2L tan cﬁ;;, we have
2Ltan¢, =W
6, ©=0°)=tan" (g-‘-’i)

The active reflecting arvea for Case 2 with 0= 60° is obtained by putting cos 8 =1 /2
and sin 6 = ¥3/2 in equation (3-4), giving
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Cj_g.é (W - Dcos 8) 2W + D cos 6 - V3D gin 8)

&=60°
2928 (w - 2) (2w + .2 p) - S22 (W - D) (2W - D)

9.9.§..§ @W - D)

The transition for 8 = 60° using equation (3-3) is
V3D sin 8 =W-D cos 0
8=60° 6=60°
/3D ? =W -3

H

3 D _
~2-D+“2“~—~W s
D=W/2 |,

while cutoff for 6 = 60° using equation (3-5) is defined by

W-Dcos 8 = (
6=60°

Substituting D= 21 tan c§>é s we get
2L tan 4)(’3 = 2W

4., (8= 60°) = tan™! (W)

This is the largest possible cutoff angle for any retroreflector design. If application
of the formula
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- | : ’
b, = sin (nsing,)

leads to imaginary values of G 9 thené = 90°.

In summary, the active reflecting area of a triangular cube corner is given by

the following formulas for the range 6° <6 < 60°. For V3D gin® < W ~ D cos 6,

ayea = Eé'-)- {W’Z

- DE) cosd
for V3D sin8>W - Dcos 8> 0,

cos &

V3

area = (W ~ D cos 6) (2W + D cos 6 -V3D sin8)

and for W - D cos 8 < 0,

area= §

The active area for other values of & is obtained by using the following symmetry

properties:

area (0) = area (6 + N X 120%)

H

area {8y = area (-6} |

area (0)= area (120° - 08) ,

where N is an integer.

3.3 Hexagonal Retroreflector

The active reflecting area of a hexagonal retroreflector varies with the azimuth
angle 0 except at normal incidence. This variation repeats every 60°. Also, since

all cases between 30° and 60° give the same answer as for 60° - 8, we need consider

40
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only the cases where 0 is between 0° and 36°. The active reflecting area may be
bounded by either six sides (Case 1) or four sides (Case 2), as shown in Figure 30,
depending on the values of 6 and ¢.

.a) b)

Figure 30. Hexagonal retroreflector; a) Case 1, b) Case 2.

The width W of the hexagon is 2r, where T is the radius of the inscribed circle
{see Figure 31). The maximum value of r for a given L is

W/ /3

Figure 31. Hexagonal retroreflector at normal incidence.
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. L
max 2 7

aq in the case of the circular reflector; this value oceurs when the inscribed circle
ig tangent to the reflecting surfaces. Inthe dingram for Case 1 (Figure 32), the
following areas must be calculated:

Bk + hiybi

2] b

area, =

s § A
| S
]

it

= i{ﬁ“ﬁw’?ﬁ gog 6-D sin 0) + —7% (W - /3D cos 6 + D sin 8%
v

ki

Y.

Xz (W - 2D sin G}

= m%w (3W - 2/3D cos 8) (W - 2D sin 8) ,

443

area, = be de

mDsm@F,:(z&vw’é“}}cose_Dsm@)} )
4

2reay = Ared,
The intersection of the apertures is
ayes = 2 area. -+ area
* i

-2 (/3W - 2D cos 0y (W - 2D sin0) + D sin Git[%- (2W - V3D cos 6 -D sin @ﬂ
W

FEvaluating the above expression gives

area = _%, (—g- W’ - DW W3 cos 8+ gino)+ D” sin B /5 cos © - sin eﬂ
v S,
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The active reflecting area for Case 1, therefore, ig

cos E W2 - DWW cos 6 + sin 0) + D° sin 0 ¢'F cos 6 - sin e}] . 3-8
v .

The transition from Case 1 to Case 2 occurs when

Eﬂ—%g_m(\f\}’nw{’g]}cose+})sine}:{} . (3-7)
v

The two cases are defined by

Case 1: W > D3 cos 8 - sing)

Case 2: W < D(/3 cos 6 ~ sin 8)

In the diagram for Case 2 (Figure 33), the area of intersection consists of aren II
plus two times area I. Defining

T=Ef€=«—%(2w—¢"§ncose-nsme>
v

. (3-8}
= e [2W - D3 8 +sinb
Vf_S_{ '3 cos )
and
e SV
jm = kz‘“‘fé—T s
we have

areanz'EEEE: (Dsin®)T
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Figure 32. Hexagonal retroveflector, Case 1.

CALCULATION OF DISTANCES IN FIGURE 32

be= D gin 6
ac= D cos O

] e
fec = —==he
< 75 o

m—f;l:wi)gine
¥



Figure 32 (Cont. )

1 .
w13 5in 6
V3

af=7c-Tc= D cos 0 ——= D sin 6

V3

1
=Dcog 8 ~-—=Dsging
iy

himgi~§ﬁ=% -Dcose»i”-i—Dsine

V3
mm\%—(w-.-x/'a‘neose+nsine)'
bj = c3—~§5=}§~-1}sme

=g—Wchose——%~Dsiﬂe

3 V3

=L (2W - V3D cos 6 - D sin 0)

4

xﬁ%:(ZWH/'i?Dcose-I)sine)

hYS
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Figure 33. Hexagonal retroreflector, Case 2.

CALCULATION OF DISTANCES IN FIGURE 33

ac=Dcog d

he=Dging
= —=Pe
7
w e I3 gin 6
75 si

e = ae - ac - ¢d

2w 1 .
wﬁ-—Dcose~ﬁDsm@

= % (2W ~ /3D cos 8 - D sin 6)
Y

bk = de
:,.;_.1_: (2W - V3D cos 6 - D gin 0)
Vo
e _\/'_3—_*‘- .....
jm=5-b
=3 @W - /3D cos 0 - D sin ©)
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and the intersection of the apertures is

area = 2 areal- + areaH

The active veflecting area for Case 2 is
cos@:(i)sine T+w\/2§T2>mT(})sin8~z—§T>cos¢ . (3-9)

This expression has been evaluated by using an algebra computer program, with the
following result:

2cos¢[ 2/ 2 1
v o W({W - /3D cos 8) + D“(cos G—Z)] . (3-10)

Cutoff occurs when

. - DI : -
T = \;]ﬁgm [ZW D(\' 3 cos 8+ gin 9)] =0 3 (3“1:{}

and the active reflecting area is zero when
D&/3 cos 8 + sinB) > 2W

The cutoff angle cpé as a function of @ can be computed by substituting D = 2L tan ¢;é
into the above the expression, which yields

2L tan ¢/ W3 cos 0+ sinB)=2W

-1 W
L .t . i
bo = tom le{v’? cos 0 + sin e)] (3-12)

The unrefracted cutoff angle b, 18

b, = sin " (nsingl) .
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The cutoff angle is largest when & = 0° and smallest when 6 = 30°. At 30°, ‘the
transition and cutoff points coincide, so a single formula expresses the active refiect-
ing area for all values of &. The active reflecting area for this special case is

obtained by substituting
6= 306° ,

o8 8:%% s

Sin@z}%“

&aF

into equation (3-6) for Case 1:

33&;@ E WZ - ;g}wgfé'cgs 8 + sin 9) + D2 sin & (/3 cos 6 - sin 8)]

9=30°

L8080 32 3.y, B /3 1
&l [z“’ pw(5+5) (5 3)

= %‘-’%ﬁ [3W2 - 4DW + D

Cos &
ol AR -
575 { Dy (W=~ D)

The cutoff angle for 8 = 30° using equation (3-12) is

(3}, (E} — 300) — tan""‘l \s . W Q\
¢ LT 3/2) + (1/2)])

- tan (W
= tan \“21;)

The other special case, 0= 0°, is obtained by setting

8=0° |,
cog @=1
smo=0
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in Case 1. The formula before transition using equation (3-6) becomes

%ﬁ E W2 ~ DW'8 cos 8 + sin 8) + p? sin (V3 cos 8 - sin eﬂ

9=0°

m“’i’;‘i’ $w? - /30wW)

= W mW’ D) 003¢

.5
snd after transition, by using equation (3-8) with @ = 0%

) .
T®=0° == [2W - D3 cos 8 + sin 0)]|
73 Moo =73 =

in equation (3-8} it becomes

T (’ﬁ-sin g + §T> cos &

6=0°

Transition from Case 1to Case 2 at 6 = 0° oceurs using equation (3-7) when

3 [W - D (/3 cos 6 + sin 6)]

W ~-+v3D=20

3

while cutoff takes place using equation (3-11) when

”";}-33 [2W -~ D /3 cos 8 + gin 8)] = 9W - 3D
kY eweq

Substituting D= 2L tan ¢é, we get

2W = V3D = 2V3 L tan ¢,

]

or

(e 0%y = tan" (%) RS-
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In summary, the active reflecting area of 2 hexagonal cube corner is given by the

following formulas for the range 0° < 8 < 30°. For D&S cos 0 - sin 8) < W,

A

. £ ] ¥
ares = 5-3-9%% {% W -DWHS cos B+ sin B) + Dz sin 6 (/3 cos 8 ~ sin Sﬁ :
i

53

for D3 cos 8 - sin 6) > W and D3 cos 8 + 5in 8} < 2W,

y
]
th
&

W(W - 3D cos 6 + BZ("*GSZ o - %)] ’

and for DH/J cos 8 + sin 0) » 2W,

ayea = 0

The active area for other values of G is obtained by using the following symmetry

properiies:

arez (8= area (8 + M 60°})
ares (6) = area (-0}

area (8) = area {60° - 0) ,
where N is an infeger.

3.4 Cutoff Angles for Total Internal Reflection

The cutoff angle for total internal reflection is defined by the equation
n gin r,= Py, (3-13)

where T, is the angle of incidence of the ray. There will be total internal reflection

whenever the incidence angle r satisfies the relation

b0



”E‘hs} mmdeﬁce angies that do not gwe total mtemai reﬂectmn are contazned ina cone
gf haifwang}e r, aboat the normai to the dielectrm bomdary (see Fxgure 34)

INDEX OF
REFRACTION n

Figure 34, Total-internal-refiection cone.

As shown in Section 2. 2, the angle of incidence of the light with a particular
reflecting face in a cube corner is the same ag the angle that the incident heam makes
with that face after refraction at the front surface. Thig property makes it possible
to visuzlize the directions of the incident beams that do not undergo total internal
retlection at all the back faces. In Figure 35, 'a quarter-cone of half-angle r has been
drawn about the normal to each reflecting face of a cube corner. If a vector dra“m

~

Figure 35. Total-infernal-reflection cones about each axis. _
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from the origin antiparallel to the incident beam (after refraction) lies within any of
the three quarter-cones, the beam will not undergo total internal reflection when it

i incident on the face whose normal is the axis of the cove. As depicted in Figure 35,
the cones do not overlap, and total internal reflection is lost at only one face in this
cage. If ¥, ig greater than 45°, the cones intersect and the incidence angles in the
mterseotmn lose total reflection at two faces. Viewed from the front face of the

veflector (Figure 36), a ¥Y-shaped region is formed by the intersection of the cones

Figure 36. Region of total internal reflection.

with the front face. The ray that goes to the vertex must be incident on the front
face within this Y-shaped area to give total internal reflection. Let ¢ be the angle
of incidence of the beam on the front face (measured from normal incidence) and ¢’

be the angle after refraction. The smallest value of & that does not give total reflec-
tion is af:«g, which is given by




where o, the angle between the symmetry axis of the prism and a back edge (see
Figure 37), is given hy

&=:t3nmlv§“ .
Substituting values for o and T We get

-1 .o=-11
Lo [ 2 R —
by tan ~ 2 - sin

SYMMETRY
a AXIS

BACK EDGE

Figure 37. Minimum cutoff angle for total internal reflection.

For a given ¢’, we can compute the azimuth limit G for total reflection. Let GC
be measured from the projection of a back adge onto the front face, as shown in
Figure 38. The circle is the intersection with the front face of a cone of half-angle
¢ about the symmetry axis of the cube corner. The Y-shaped area is the intersec-
tion of the three cones of half-angle r, with the front face. To compute 0.5 let the

symmetry axis of the prism be the z axis, and let the back edge A deflmng the origin
of GC be in the xz plane {sef Figure 39). The angle o }i);:tween the symmetry a!i(IS
{z axig and the back edge (A) has been shown to be tan * V2. The unit vector A

is given by



Figure 38. Azimuth angle for loss of total internal reflection.

<>

Figure 39. Diagram for computing total-internal-reflection cutoff angles.

A
A= (sina, 0, cOs a}

- (:«iﬁ: o “;._J)
V3T 7 VE

O
The it vector V antiparallel to the incident beam after refraction is
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it s . ;
V= (sind’ cos ec, giné’ sin ec, cos &)

In order for the angle between ¢ and A to he the cutoff angle r,, we must have
cosr_ =4 ¢
c
V2 1
= gind’ cos 8+ = cos &’
V8 ' ¢ V3 ¢

Solving for E}C, we get

V3 cos r, - cos ¢’ =2 sing’ cos B,

_1[V3cosr, - cosp”
0 = cos . 3-14
c V2 sino’ ( ‘

Equation (3~13) can be used to rewrite cos r, as

.. mPr = of1oLo1 JF
cosrcn‘/i-—sm rc~ ‘/Imnzwn n 1

Also, cos ¢’ can be writien as

, / . 2
cos@’z‘/i—xsin?‘(p: 1_%___.,31“2‘3:%‘/112_51312@ .
n

Substituting these expressions into equation (3—14) gives

8 = cog™ [”:’? {1/n) Vn® - i- {1/n) 0’ - sin® @}
<

V2 sin ¢/n

— 3
_ -1 (v’3 \/nz - \/n2~sm é))
= QGs -
y V2 Siﬂ@)




For a thorough discussion of the loss of total internal reflection in uncoated cube
corners, see Chang (1970). In his paper, Chang gives sin ¢ as a function of 6 . If we

convert his notation to ours, his result becomes

J@yng ~ 1 cos Scm #3 Man sin2 8,

2@0«52@ + 1
e

gind=

R A TR



4. POLARIZATION

- A beam of light retrorveflected from a solid cube corner wdergoes two refractions
and three reflections, Each emaﬁmer with a ‘Eeoméary introduces a change in either
the amplitude or the phase or both. Since the ehanges are different for the componeants
of the rav paraliel m{% pe“peﬁdmuiar to the plane of mmd@ﬁee the polarization state
of the ray is also aha;ged. Changes m»a.mphtude atfect the total enercy retroreflectad
and thereby reduce the apparent active reflecting area of a cube corner. The diffrac-
tion pattern of the prism is affected by hoth phase and amplitude changﬁs The follow-
ing three cases szi be eenmdaredv :

A. Transmission across. a, dielectric boundary.

B. Reflection from a dielectric boundary, including
i}y Ordinary reflection..
2) Total internal reflection.

C. Reflection from a metal surface, including
1y Perfect metal.
2) Real metal.

At each encounter with a boundary, the ray must be resolved into components
parallel and perpendicular to the plane of incidence. The coordinate system with
unit xectors defmmg the dzrachons of the components is shown in Figure 40. The
angle of mmdence is @& 0* and the angle of refraction is 8 The compiex vectors for
the incident, refracted, and reflected electric vectors are E B , and E"’, respec-

tively, given by

= A ﬁ
EwEi_E,L+ E§{ o

P S S 8

s

-—"'?I! E Ha ﬁ £ E 4 E.}? .

-3

1]



in general, complex. The trans-
on (1941,

The unit vectors are real, and the coefficients are,
mission and reflection coefficients used in this report are taken from Stratt

pp. 494-506).

REFRACTIVE INDEX n >

. i S— o—. | SAAUTCT | T ib—— i | —

REFRACTIVE INDEX n

Figure 40. Polarization coordinate system.

4.1 Transmission across a Dielectric Boundary

—
After refraction across a dielectric boundary, the components of E' are given

by the Fresnel relations

2cosb, sinG

E! = 0 ! E
Tl + s
L sin @0, 9y L

2 cos © si:ﬂel

ol 0

|~ Sm @, 76 cos O, - 0;) E

i
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Ef = 5,
e 1_1124-1 L
2
T N
S e R
with
n, =t
= . 3
12 g,

where ny is the index of refraction of the transmitting mediom and n, is the index of
refraction of the incident mediwm. The angles e and 8, are reiated by Snell's law

nz sin 60 = nl gin el

The transmitted ray is always in phase with the incident ray. Inthe case of a light
beam erossing the front face of a cube corner at an incidence angle ¢ and a refracted
angle &', we have

80’“““6;) s
elmféy 3
nlzwn

@{}:(ng 5
81:":(%) .
n =2
2 n

ag it leaves the retroreflector,



4.2 Reflection from a Dielectric Boundary

4.2.1 Ordinary reflection

In uncoated cube corners, the reflection at a particular back face is partial when

the incidence angle satisfies the relation

nsin€€}< 1

and total when
nsin g 0 =1

The reflected electric field components E 1 and E‘E in the case of partial reflection are

—— sin {eﬁ - él}

T taursr-wal
i sin (B, + 9,) Lo

tan 0 - 9,)
. 0"t o
i tan (65 + 6, "l !

which, at normal incidence, reduce to

n.. =1
i 12
S e R B {(4-1a)
L Ny * 171
.., — 1
X {2 12‘ nl -
Ellmnmn%l”&ii (4-1b)

Tn the case of a ray incident on the back face from inside the solid cube cormer,

i
I
R P

12

60

S s



Therefore, equations (4-1) become

«ﬂmm{j-/n -1 3.,}__1..3_1‘ :m
By = {1;}3)#1E e el nrloL

The difference in sign is due to the fact that at normal incidence,

ﬁﬁ”‘% ’

4.2.2 Total internal reflection

For total internal reflection (n sin 6 g = 1), the components of the reflected fieid
are

where

. 2 .3
ngoseowig/n gin %»—1

ZL:

s S8 i !
ncos%%—;%/n sin @0 i

. .ﬁ! 2 .2
cos%«m n- gin 80 I

“ie 0 +ins§/n2 sin“e. - 1
COs 0 0
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4.3 Reflection from a Metal Surface

4.3.1 Perfect metal

The case of reflection from a perfect-metai surface (infinite conductivity) gives

the gimple relations

B{=-E

By = Ey

4.3.2 Real metal

Reflection from a real-metal surface produces changes in both phase and ampli-
tude. The reflecting properties of the metal are specified by the complex index of
refraction a + ip. For a perfect metal, B = . If the conductivity is zero, p= 0 and
the material is a perfect dielectric with index of refraction a. The components of the

reflected electric field are

"o
E/=ZE

12 B—
Ef =2,E,

% ¥
where

{11 cos 60 -q) - ip

ZJ_K {(n cos 90+q)+ ip 7?7

{cos 80((12 - {32} ~ngl +1{2ab cos 60 - np)
Z =
I [cos 8@(@2 - 62) +ngl + i {2ab cos 60 - np)

H
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1}-—"@2 _“32 ~1}2 sin2 60 .

Values of a and B for certain metaly are given in Schulz (1954).

4.4 Polarization State of Each Sector

The direction of incidence of a beam on = cube corner is specified by the angles
8 and ¢, where ¢ is measured from the normal to the front face (see Figure 41). The
polarization state of the incident beam is given as a complex vector

NORMAL T0O
FRONT FACE OF X
RETROREFLECTOR
p
? !
|
i
Yy
i
|
|
|
i
" ! g
™~ g e
| s
g AN e
~

Figure 41. Coordinate system for an incident beam,
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where E Ey a;.\nci ‘E7 are complex numbers and X, y, and z are real unit vectors.
The it vector ¥ points toward the source, y is in the plane of incidence pointing in
the direction of increasing ¢, and 2; is perpendicular to the plane of incidence pointing
in the direction of increasing €. The polarization state of the beam incident on an
array is gwen as a complex vector £’ in a coordinate system related to the coordinate
system of E by a rotation about the <’ axis through an angle y. The components of

—
E are

n — ! 4 i
Ey~Eyc<}sy+Ezsmy ,

— T o3 4
Ezw Eysmy+EZc05y

Both E and E’ ave zero because electromagnetic radiation ig a transverse wave.

if there are dlhedral angle offsets in the cube corner, the polarization state EI of the
radiation emerging from the I th sector will have a small component in the x direction
because the direction of the emerging beam has heen changed slightly. This com-
ponent will not be considered in the polarization calculations. The effect of dihedral~-
angle offsets will be included oniy through the phase changes that they produce across

each sector.

The polarization states EI of the six sectors are obtained by computing the
changes in polarization due to refraction on entering the cube corner, to reflection at
each of the back faces in the appropriate order for each sector, and to refraction on
leaving the cube corner. The changes in the components of the polarization vector
parallel and perpendicular to the plane of incidence were given in Sections 4. 1, 4.2,

and 4. 3, and the order of the reflections for each sector was given in Section 2. 12.

The formulas for the change in poiarization during refraction can be applied

directly to the incident polarization state ¥ since Ey is parallel and E is perpendicular

" to the plane of incidence. After refraction, the direction of the- bea,m is. (®', . ¢'), where .
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8'=g

f_ il /3in
&’ = gin (mn ) .

Aa A
Section 2. 11 showed how o compute the normsls By, N, and g inthe =7 y", 2%
coordinate system. This system has the x” axis in the direction (8", ¢’ 1, the v7 axis
in the plane of incidence in the direction of mereasing ¢/, and the z7 axig perpendicular
oty
to the plane of incidence in the direction of Increasing 0’. The polarization state B 0

after refraction into the cube has fhe components

E,=0 ,
En=RyE
E ,=RE, ,

where RE% and R ., are coefficients giving the change in the parallel and perpendicular

companents of the polarization vector due to refraction. The divection of propagation
A

after refraction in the x7,y", 2" coordinate system is v e Eliven by

A

o fT

R ¢
0

In order to apply the changes in polarization at each refiection, the polarization
vector must be resolved into components parallel and perpendicular to the plane of
incidence (see Figure 42y, Let QIJ be the unit vector giving the direction of motion
of the ray for the i sector before the Jth reflection takes place, and let fm be the
polarization state for the ray with direction %J* For all sectors,

i “__1":
0T Vo -
Ey=E, .

i,l\ .
Tet be the normal to the piane from which 2 ray of the 1&1 soctor is reflected on

B Jt reflection. The divection of motion affer the 'Jth reflection 13



Figure 42. Unit vectors for parallel and perpendicular components of the electric
field.

A » A A
Va1 Y "

2 Fal 2N
(Vo " Py

The unit vectors parallel and perpendicular to the plane of incidence, then, are

Fat ><J"\

A Vg Mg
‘L_IA’ xfo |
Viy Py

A I 2y
Ey=E Xvy
Brof
A”’"EHXV

i o IJ+1

The pamilel and perpendmular components of the yolamzatmn vector EI 7 re

ity

EIJ E%i and EIJ F P respectively. The components of EIJ are complex, and those
of ﬁ and ﬁ are preal. To compute the dot product, we multiply the corresponding
components of the vectors without taking the complex conjugate of any of the numbers.

The polarization vector after reflection is
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B =R @ -B)E R
Lael” By B T EYE T

o A A

4

where RIS and R | are the complex coefficients giving the change in the parsliel and
perpendicular components of the polarization vector due to reflection. After three
reflections, the direction of motion is nearly 2 if we neglect the effects of dihedral-
angle offsets. Since the v” and 2”7 components of the polarization vector are paralial
and perpendicular, respectively, to the plane of incidence, the complex coefficients
R%E and R n {giving the change in polarization on leaving the front face) can be applied

direetly to obtain the polavization vector 'ﬁi for each sector. The components of E‘FTI
are therefore '

E_=0 ,
*1
E =RE, |,
E, =R E_,
S S £

Peck (1972) gives a study of the polarization states produced by either single cube

corners or cavities consisting of two cube corners facing each other.
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5. DIFFRACTION

5, 1 Diffraction Integral

According to Huygen's principle, the field up at a point p due to radiation emitted
from a surface s is

SIKR
u, = fu T dfn , (5-1)

where a is a constant to be determined, u is the field on the surface s, k= 2n/)\,

) is the wavelength, dfn is the projection of the surface element in the direction of
point p, and R is the distance from dfn to p. The constant a can he evalunted by con-
sidering the case of radiation from an infinite plane with u equal to a constant. The
value of up must then be the same as u. The result of performing the integral for
this case (Landau and Lifschitz, 1962, pp. 167-168) shows that

ok 1
A= 5m o

Substituting this into equation (5-1) gives
ikR
1 e
upw-i—ifu Hﬁwdfn R _ {52}
8

The irdensity Ip at point p is

I =uu*
p~ Up'p

69



Let a coordinate. system be set up with the x axis antiparallel to the beam
illuminating a cube corner and with the origin just outside the cube corner. They
and z axes are parallel and perpendicular, respectively, to the plane of incidence.
Let an x’,y’, 2’ coordinate system be established in the far field parallel to the x,y, z
system with the x and x’ axes collinear (see Figure 43}, The reflected field from the
cube corner in the yz plane is u, and the field atf point p in the y’z’ plane is up.

Finally, let the distance between the coordinate systems be D.

z z’

CUBE X SOURCE ' X
CORNER 4 | - ;

| |
- > >

Figure 43, Coordinate system for the far-field diffraction pattern.

5. 1.1 Fraunhofer diffraction

When the distance D is very large and when the problem is restricted to cases
where the angulay spread of the beam due to diffraction is small, equation (5-2)

reduces to the simpler formula of Framhofer diffraction. The distance R is given

by

R=YD%+ 579+ (-2

=DVI+-§—2 [(y’-—y)2+ (z'—z}z]

= D {1 + ;}I;é» [(y’—y)z + (z’mz)z]g

mD+-2--5(y’ -2yy 4y 42 -222’+z)

70



It is agsumed that U is so much larger than the size of the ares s that the quantities
bl

yzf 2D and z° /2D are always much less than a wavelength and cun be neglected.

Therefore, - '

A4
(ﬁfz}”:ﬁ)

2 4
- yo ez
R=D+ 555

Since it is desirable {o have the diffraction patiern given in terms of angles

rather than as a fimction of y* and 2z’ at a distance D, we can define the angular coor-~
dinates of the observer (8 1280} 88

so that R becomes
n ,2 .
R= (D P A

Substituting this for the factor R in equation (5-2) and setiing R= D in the denominator,
we get

1 (< X’z + z’g ) il
mmfuexpgﬁci_.p+ 55 “W81+Z@2)J dy dz
S X
r ,!2 .'2‘
m-i-g-ﬁ- axp 'j_k (D EX m;z_.,.\

55 /} fu, aexp [uik(yel + 282}§ dy dz .

b

The exponential outside the integral is a constant phase factor, which will disappear
P

when u_ is multiplied by u; to obiain Ipa It can therefore be neglected, resulting in
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i wik{y(%}l + 262}
up ~ m ue dy dz . (5~-3}

3

5. 1.2 Modified Frauhofer formulas

In equation (5-3), the infensity Ip = upag is in units of energy per unit area per unit
time, and the formula contains the range in the denominator. But it is desirable to
compute diffraction patterns in a way that is independent of the range and the incident
field strength. These gquantities can be provided when calculating particular cases by
using the range equation led. (7-12)] from Section 7.11. Omitting the range causes
u, to be in units of area — i.e., the resulis have to be given in a particular system of

units. The equation can be written in a dimensionless form, however, as follows:

) 1 , dk(y@l 4 282) ]
E (81,62) =3 fu e @y dz (5-4)
s

where 8§ is the active reflecting area at normal incidence and

u’ = u/u(} s

in which u, is the incident field. Let a function F’(B1 s @2) be defined as

0
&
Fr 12 62) = E’(el: 62) E’ (ey 62}
In the above form, the intensity F'{0,, 82) is unity at the center of the diffraction

pattern of a perfect retroreflector at normal incidence. The relationship of the

modified Fraponhofer formulas to the original forms is

Uy = Y MD ip &0 ]
e

1 F'O,0,)T,

p }L2D .2. 0

where I = ueug is the incident intensity.
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In doing the integration over various sections of a cube corner, the formula

-i§<(y91 + z82§
- dy dz {5~-8

E(8,,0,) = fu’ &
will be used 10 calculate the pisces of the integral in equation (5-4).

5.2 Calculation of Diffraction Patterns from an Arrav of Phases

To caleulate diffraction patterns from an array of phases, let the field v’ in the
modified Fraunhofer formula [eq. (5-4)] be given as an array Ury of field values at
the points OpZy) where

yp =1y

zJ:J&z o

The complex number u’ is related to the amplitude A and phase § of the field by
u’mAeiézAct}s &+ iB gin d

H ¥ Tece r +
Let the field E/(6 1299) be given as an array EIM at the points {QIL’ sz) where

0= Lao,
GZM =M ABZ

Since the aperture may not be rectangular, all values of Uy that are outside the
aperture can be set equal to zerc. The avea element Ay &z ig 5/N, where N is the
number of nonzero items in the Uy array.

The modified Fraunhofer formula in the discrete case hecomes

f 1 -ikl(T Ay)(L 46 ) + (J A7) (M 29,)]
E};Iﬂ = ﬁ-ZaH @ s {5~-6a)
i
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-1(k Ay Ael) IL ik Az A@z}JM
e . (5-8b)
LM N Uy ©
Defining
C,= kay 48,
2 b

szklﬁzaﬁ

the expression for E'L‘M becomes

'-1C JL -iC,IM
EIMTR 2 : 7 ° ©
JMl . ... L

=*Z }:m( ) e

.

N ( 0O )IL ‘
N Z Sp \© ? (5=7)
I

where
5o
SIM = Upy e
J
, ~iCa
__All the complex exponentials in equation (5-7) are integral powers of e and

~1
e l. This very useful property results from the equal spacing between points

across the aperture and between points in the far field. If Ay= Az and ABI = Aez,
then C:1 = 9 and all ferms are powers of a single exponential. Since complex multi-
plication involves only four multiplications and complex exponentiation invoives the
computation of two transcendental functions (a sine and a cosine) by means of series

expansions, it is much faster to compute the powers by repeated multiplication and
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to save all the powers in an array. If sach of the indices has a range of n values,
there are E.‘iz complex mumbers to be stored {or zﬁz if %if # %’,‘322 A second progerty
that can be exploited {o reduce computation time iz the Ezaﬁ’% that S@E does not coniain
the index L. ¥For eachwvalue of M, the n quantilies Sﬁ yp CEn be compuiad and saved
while the quantities EI;M con be compubed for the n vaiues of the index L. The
z}ﬁysmaé veason that SYM dogs not condain L iz that the phase differences hetween the
rows across the apsrture are counstant for sach row in the fay field, and thus the
gummation over sach column of the aperture needs to be done only once for each row
i the far fleld.

A straightforward computation based on equation {5-6a) requires i‘iz complex
exponentiations per poini, E‘%mtﬁii‘ﬁg in a total of z{% exponentistions for the whole
matriz. Eguation (5-7) requires n complex muliiplications o compute the powers
of the exg}fmﬁﬁtm};, For each value of SEM , b complex muliiplications are needed,
for a total of ﬁ for all SE £ Each point E”z& requires n gomplex muliiplications,
for a total of ﬁ for all E%&@ The compiete computation therefore requires
Zﬁg + z;z = 2113 complex multiplications, a considerable savings compared fo mé

exponentistions.

5.3 Diffraction Integral for a Trapezoid

To calcuiate the diffraction integral for a trapesoid, lef the field v’ be given by

o = o (BY + D7 , (5~8)

over 4 piane surface with linear boundaries, where o i the rate of change of phase
in the y divection due to dihedral-angle offsets and b is the rate of change of phase

in the z direction. The Frauchofer equation iz integrable in closed form under these
conditions. Let the area be divided into vertical strips bounded by straight lines on
the top and bottom, as shown in Figure 44.
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Figure 44. Trapezoid aperture.

By employing the modified Fraunhofer formula [eq. (5-5)], the integral over the
area shown in the figure is

Y C +S ;
2 . -k {y0, + z6,)
E(,0,) = j’ j ol(ay + bz) 1772
y“Yi C S
2 Cz"“szy (3, - 50 )y + (b - k6,)z]
= f f dy dz
y:Y = +S
Defining
aza—kel s {Bab-—kez , (5-9)
we have
Y C,+8,¥
2 2 72 .
Ef@,p) = f f oty + P2) dy dz . (5~10)
y:YI Z=Cl~%~81y
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Y , , ,
2 ilay + BC, + 8, v}  iloy + BT, + 8,y
E(a,;i%}:f ég{e 2T T T o
y=Y,

f 2 { i[BC, + @@ + PSy)yl -ilEC; + @+ le}sf})?
= —— " - d}?

T -e
nyl - ’
if we further define
QIE'O,{—;SSI‘, | I=1,2 , (5-11)
then
Yz . N .
E{l,p)= f “16 e - € dy . {5-12)
y=Xy '

If Ql # 0, the second term in equation (5-12) is

4 i . .
fz _m};_el(ﬁ81+Qiy}dy=_i_;— ;(gscfw;}l‘fz)nex(ﬁcjlm@lyl}
i YEIF R “
mel
Using
_ I=1,2
Py = PO+ QY -T2 | (5-18)
in the above expression, we get
Yy {BC, + Q) P iP,,
,{ _L v 1Ydy:__g__(e 2 :u)
ip Py )
y=Y,



2 e e 2
~= e dy = f = e dy
j ip p
y=Y, y=Y,
. ipC
=L oy -
- ﬁ e <Y2 Yl}

sz 1 0 A gy [0 Q) G, - Q)
B YT R,
¥y=r

and if Q2 = 0,

H

j-"z L BC, + QyY) jYz ¥ ipC,
y=Y

".1"58 dy
1

If p= 0, equation (5-10) becomes

Y2 C 2+Szy

E(a,0) = J e dy dz
mel ZﬂCl+Sly

Y
2 iny
= e [(02 +8,y) = (C; + Sly)] dy
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v

g
- j e E{Cz ~Cy) (8, - Sl}y} dy
YzYI

a0

. / m’z e
E(a,ﬁ}mua{az—cz}@ -e

; ( iaYz . ic,Y}> _
m}-(Swal} - Yze —Yle +

(ia&’z, _ia‘x’_;t):b ,
e -8 s

P ol

while if « = 0, we have

Y
2
E(0, 0) = f [y -Cp + (8, - spy]dy

y=¥,

=0y -Cp Eg - Y )+35(8 ~ 8y (Yz “Y})

==Yy ﬁcz -G+ (8, - 8p) (¥p+ gl)} .

In summayy, ¥p+0, @, 20, andQ, # 0,

P ip iP iP
E(a,@}"—'é}[@% (e 12 _e 11> mzi- (e %2 e 22)} . (5-14a)

Efﬁ%@, le.ﬁ, &ﬁszq‘-‘O,

ipC ip ip
E(a?ga)sé [,;e 1 (Y, - ¥, —«--~];- (e 22 _ o 23}] . (5-14b}

IR0, @, #0, andQ, = 0,

ip ip ipC ]
ﬁ?{a,ﬁ)méf{fég (e 12 e 11) - ie 2(‘Y2--Y1)J . (5~14c)
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o+, Qiz 8, aﬁd@zs G,

i [0, 1BCy
Bl fl=g (- Yle -e J (5-144)
ER=0, a+i

: SRS PR 3

E{a,i}}iwgiijgw@zé{e e Y
e ;_;i(«v ﬁi{LYE Ly ;ﬁyl 1 em,Yz i el@Yi)ﬁ e
(By=5p " e \F2® 1 A\ J| - B-tde)

Finally, if §=a= 0,

) li© (5-14f)

5,8.1 Pactorization of the diffraction integral
As shown in Section 7.4, the angles 8, and 8, are

813823651&5%5"2 siny

B, =~ %% sin vy %é ¢os vy,
where 0 and 62 are the angles fo the observer in the coordinate system for the array

diffraction pattern.

The diffraction pattern of the array is given at a matrix of points {B’l, 9%) at inter-

vals A8 in both directions. Let

of = /]
Oong = M A5

a0



where L and M are indices labeling points in the arvay diffraction pattern. Substitut-
ing the expressions for 8} and éfz into those for 6, and B,y we have

QILE L Agcos y+Madsiny

szﬂ - L ABsiny+ M A cos y

Putting these expressions into equations (5-9) gives

a=a-kag (Leosy+Msiny) (B~15a)

B=b-kad (- Lsiny+Mcosy) . (5~15b)

The expression for QI from equation (5-11} can be substituted into equation (5-13)

for PIJ:

P = BC;+ (o + BS) ¥
=a¥y+ B(C, + SY))
=a¥;+ BZyy (5-16)
where
=8y

in which GI is the slope of the boundary line, SI is the intercept of the boundary line,
and ¥ 3 represents the integration limits in Y. Incorporating o and B into Eﬁ, , we get
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P =[a-ka8 (Lcosy+M siny)| Yy + [b - ka0 (-Lsiny+M cos v)| Zyg

= aY¥ ., + bZIJ + Lk A8 (w—YJ cos v + ZIJ sin v)

d
+ Mk A8 (”'Y,} ginvy - ZL}, CO8 y)

We can simplify this by defining

19 EaYJ+bZ

IJ I’

VIJ =k A (—YJ cos y + ZIJ gin vy ,

WIJ = k AD (—YJ siny - ZIJ cos vy)

which gives us

Prp= Upp+ LV + MW (5-17)

iP
The terms e L for a trapezoid in equations (5-14a, b, ¢} can then be written

elP ) e1(UIJ + LVIJ + MWIJ)

- . L, . M
_ EDIJ ( Nﬁ) ( EVVIJ)
= @ a ! e

i

The above expreasion is the product of two factors, the first containing only the
index L and the second containing only the index M. When computing the diffraction
pattern for all vatues of L and M, the computation time can be reduced by precom-

iU i iw, \M
. ( . 13 Vg Wi
puting and saving the factors e e and \e . The powers of the expo-

nentials can be computed by repeated complex multiplication, Since I and J have two

values each, and since the range of L. and‘%% is n, each matrix has 4n terms. It is
1

not necessary to store all the powers of e L simultaneously; the values of M
Wiy

E(® 11 eéM) can be computed for all L for the {irst vaive of M and then (e can

be raised-to the M+1 power to-find E{@lL, 82, Nid i for all values of L.
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ipC, oY
Substitution of o and B info e " and e gives

i8C,  ifb + k A5 Lsin )G, i(-k 48 M cos V) €y

e =g { e s

iy ifa ~k A8 Leos )V, i{-kA0M siny)¥
& = 8 ©

]
These expressions can also be factored info terms involving only the index L or M,

and fhus the diffraction pattern can be computed by complex muliiplication.
5.3.2 Beverse order of integration

When it is necessary to reverse the order of infegration over the varisbles, the
problem is reformulated, as shown in Figure 45. The solution proceeds as before,
except that the roles of v and z and those of o and § are interchangsd. The formulas
summarized in the previous section and the vesults derived therein can be converted
to the present case by making those substifufions plus, when o and 8 do not appearx
explicitly, the followings

LM
M=~L ,
Yoy e

MM{. y= i+ 5,2
gimw § H
i
| !

i J >
Z,  f2

Figure 45. Trapezoid aperture, reverse order of infegration.



5.4 Diffraction Integral for an Arbitrary Shape

For an arbitrary shape, we can calculate the diffraction integral by letting the
field W be given by equation (5-8) over a plane surface bounded by a curve z;(y) on
the bottom and %o (y) on the top (see Figure 46). The Fraunhofer equation is integrable
along any line in the plane, as the phase of u’ is linear over the region. Since the
integration limits are not linear, integration over the second variable cannot, in
general, be done, although numerical integration can be used.

Bnd

Figure 46. Aperture of arbitrary shape.

We get the following integral over the area by use of the modified Fraunhofer
aouation:

Y %) :
2 2 . . ~ikye. + z0.)
E(Bl 82) = f el(ay + b2) e 1 2 dy d=z
y=Y, z=24(y)
Z, (5)

2 i[(a~k{31)y+(b~k62)z]
wf f e dy dz
y

:Yl zzzl(y)
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Yo )
Ee,B) = j f MW TP gy g
y=Y, z=2,(y)
It a% G,

Y . . .

2y {Hey+pzgl ey + Bz, (y)]
E@,p)= f EE ~© dy . (5-18)
y=¥,

The integral consists of two terms, both of the form

T oy + pay()]
f dy
y=

Y

where [ is either 1 or 2. The integral can thus be represented approximately by
Y . .
2, iy Bzl p ¥y + Bz
f e dy = E e Ly . (5-19)

The diffraction patiern will be computed at equal intervals A8 of the angles 9’1 and G}éa
The guantity oY 3 + B2 I is the same asg Pg ag given in equation (5-18). Substituting

equation (6-17) for aYJ + gzm into equation {(6-18}, we get

oY, + PZ, ) Uy + LV o+ MW,
AL ST W A4
2.
J
”Z r 1 WUy (f kvmf’} ( é’%&?’w\}
a B @ e ; \e 5
3 i
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which, inturn, can be substituted into equation (5-18) to give

ey dT, e M v A M
st S B )
J " ‘ -

(5-20)

Equation (5-20) can be factored into terms containing only L or only M. The compu-
tation time can he reduced by precomputing and saving the factors, so that each value
of ELM can be determined hy complex multiplication.

;M
Wiy IVIJ R
The quantities e and each consist of 2mn terms, where
2 is the vange of I, m is the range of J and n is the range of L and M. The powers
of e Wig do not need to be stored simultaneously. The values of ELM for the first

Wy M
value of M can be computed for all L and then the quantities (e IJ) can be raised

to the M+ 1 power to find EL, M1 for all L.

Yo 200
E(a,())-—-f f @Y gy dz

=Y, 2=2,()

Yo

= [V iy - ol
y=Y
iuYJ !
”Ze (Zoy = Z1y) &Y

J
After incorporating equation (5-1562), we get

ifa -~k A9 (L cos v+ M siny)]Y J
Erm° E By = 21g) &Y

”“”2 :e e ) (\e Loy =%y -

J
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whers

ng aYJ .

VJE Mlé&@EJCOSY s

=B
I

7= mk'&QYJ sin vy

vy ( ng‘L W, _
The quantities e e s e, and Zog should be precomputed and saved. Those
’ . ﬂ_ ~v§f

iw i
for (e J )are computed by multiplving sach successive power by e J to obtain the

next higher nower.
Ha=p=0,
zz(y

YZ
E@h@)z_f j

}
dxdyﬂZ{Zzs - Z;ﬁﬁy
y=Y, 2=2(y) J

5.5 Diffraction Pattern of a Cube Corner

From é:he;modified Frawbhofer i‘mégrai{eq, {(5~411, the com@lg:;;_;ﬁdiarizaﬁ_én
state iol (84,95} in the far field of a cube corner is

. - Yy iy + bz) ~ik(y0, + z0,)
E (@1,.@2):.“8" E EI fj‘e = dy dz 5 (5-21)
I

where E} is the pelarization vector for the i sector, sy is the area of the I%h sector,
and ay and ‘nI are the phase gradients in'the y and z directions , respectively, due to

dihedral-angle offsets for the Ith sector. FThe intengity of each compenent of polari-
zation is ' ' '

; g K

Fz(elz 82) = Ez{ep 82} Ez (gia 62} 3



and the total intensity is

F(0,00) = F1(0,05) + F,0,0) -

The amplitude Ap of the reflected field in a polarization state given by the com-
plex unit vector P is obtained by taking the dot product of P and ol .

A :?.qﬁ’mP*E’-FP*E’ .
Y Yy ¥ Z 2

The field “El{) having the polarization P is

ﬁ=%§,

and its infensity ip is

The method of computing the six polarization vectors EI was given in Section 4.4,
and the phase gradients ay and bI were computed in Section 2. 11.3. The angular
boundaries of the six sectors and the order of reflection corresponding to each were
given in Section 2. 12. The active reflecting area S at normal incidence and the
integration limits for each section 81 will depend on the shape of the front face.

The integration for the polygon can be done analytically since the integration limits

are linear. The circular reflector requires numerical integration over one variable.
5.5.1 Diffraction pattern of triangular and hexagonal retroreflectors

The previous section gave the diffraction integral for a cube corner. Now we
need to determine the integration limits for each section Sy and for the fotal active

reflecting area S at normal incidence. For both triangular and hexagonal cube

corners, the active area at normal incidence is a hexagon of area v’?TWZ/Z, where W
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is the width across flats. The following subsections describe how to set uw the

integration limits and perform the imbegration over each of the gix sectors. Since
each section iz 2 polygon, the region of integration iz defined by ghving the vertices
of the polygon. The coovdinates of the vertices of the total active reflecting area

are given in Sections 5.5.1.1 and 5, 5. 1. 2.

i the phase and amplitude of the reflected beam are constant over the face of the
cube corner; the retroveflector acts like a simple apertire. The methods described

in Smith and Marsh (1974) are appiicable in this case.

Julian, Hieser, and Magill (1970) compared measured and computed diffraction
patterns of bexagonal cube corners. The méiysig %.ﬁﬁi&ﬁes the sffectis of dibedral-
angle offsets and polarization changes af the reflecting faces. The technique is
completely analyiical and can be applied fo iy oube curner whosse face is out in the
shape of a regular polygon. A circular face csn be adequately approximated by a
regular polygon with a lavge number of zides.

5. 5. 1. 1 Vertices of the active reflecting area for a triangular retroreflector

In Section 3.2, the active reflecting area was computed for a triangular reirore-
flector. Here, we compute the coordinates of the vertices of the aotive veflecting area
for use in caleulating the diffraction pattern of the cube corner. Much of the infor-

nation needed {o locate the vertices was provided in Section 2.2,

Referring to Pigure 28 for Case 1 in Ssction 3, 2y let v,z coovdinate axes be set
up as shown in Figure 47, Thres of the vartioes ave numbersad counderclockwise;
the positions of the other three can be computed by symmetry from the positions of
the first three (see Seciion 2.3). By using the distances caleulated for Case 1, the

coordinates of the three vertices numbersd in the dingram are

o W 3w
yy= W+ 5 =5 s
B4
TREs el
N 1 /W . e
e ;’;,%.; %‘Ej‘%‘ Dcos %} e ibmin g e
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Tigure 47. Triangular retroreflector (6 > 0°), Case l.

Yo= Y1757

il

_— "“mgéj,““
Zg, ad + bk = 5 + bk

i

%+Dcos@)+Dsin6 s

7 (

cd + ai

il

Ya

=-%i+Dcosm%(w-ncosaw"ﬁ)sine)

T—W-i--gCOS 8 %v’?;-:éqsine

=W +—21—(D cos 6 ++3D sin@) ,

_®, %
Zo =5 + hi

=-£-1-F§ (W+2Dcos8)+§-1E(W—D0088+v"§}f}sm6)
A

' =--—-—~2$.§ (2W + D cos 6 + /3D sin 8)

a0



The above formulas a???y to the range 0° < 8 < 60°, Since the §hys zcai szmatmn
repeats every 120°, all ms&s can he covered by addmg formulas for the range
~60°% < 8 < 0°. In Figure 48, three of the vertices are numbered for the case 6 < 0°.

This figure is the same as Figure 47, reversed from top to hotbom; thus, we can
obtain the coordinates of the vertices for the case -60° < 8 < §° by*mrripuﬁmgﬁ the
coordinates for [6] and then reversing both the order of the points and the sign of the
z goordinates. Since only gin © iz affected by a change of sign in €, the expressions

for the case ~80° < 8 « 07 can be written

yy= W -%— (D coe & +/3D |sinsly

l TY . '.
z, = “%(gw+§)ce$6+$§ﬁ lsin 8[) 5

oW
2 g
ézymﬁﬁ_(z %DGGS@/)“I){SETQQJ,;
W
ug"' 7 E
(WL L
23“"‘;’*3“\'2 Dcos 8) |sin 6]
Z

Figure 48. Triangular retroreflector (0 < 6%}, Case 1.
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Case 2 is given in Figure 49 with coordinate axes drawn and two of the vertices

numbered. The distances needed were given in Figures 27 and 28 for normal incidence

and Case ! in Section 3.2. The coordinates of the points are

ST
VBW
17 2 ?

N

\

Figure 49. Triangular retroreflector (0 > 0°), Case 2.

The above formulas apply to the range 0° < 8 < 60°, while Figure 50 shows the
case -60° < & < 0°, The coordinates of these vertices are
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}rirl%»&ﬁease s
far i
ifﬁﬁ—!%&%mﬁcas%} ,
_ 3w
"2“‘ 2 H
M“*JE‘E““‘{
2 2

Figure 50. Triangular retroveflector (6 < 0°), Case 2.

From Figure 27, we see that the coordinates of the center of the active reflecting
area at normal incidence are v = W, z= 0, while for other incidence angles (see
Figure 28), the right-hand triangle is displaced by Ay = D cos 6, Az = D sin 0 and the
center of the active reflecting area is displaced by Ay/2, Az/2. Therefore, the

coordinates of the center of the active reflecting area are

o 1
Vo © N+-§§3c958 .

2,53 Drgigegr,
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and those of the vertices with respect to this center are

ST A (5-228)
2=z -7, (5-22h)

Figure 51 shows the y”, z” axes, where the z” axis is perpendicular to the plane

of incidence. The coordinates of these vertices are

y:fl’ == y{ cos & + zi sn9 | {5-23a)
{5-23b)

z%’m —*y; sing + z{ cos 8

I

Figure 51. Relationship between v}z’ and y”, z” axes.

Equations (5-22) and {5-23) are in a form that can easily be used in a computer pro-
gram. The algebra, though, is somewhat tedious: First we have to substitute the ex-
pressions for Yi» 2% to obtain yi’, z£ and then substitute yi’ s z{ to obtain y{’, z{’. We have em~

ployed an algebra program to perform the substitutions, and the results are given below.

Case 1

:—W:- (COS@—M)*D(SiHBG_}.MW>
2 ;

i

0052 6_)
. 3

v

%)

Zl:m%’i (Eginol + £O8 9) 4—13(0038 lsingl -

894

V3 .. 2 Vi



W(]gmeg nge) (szgm%%cgseisineg ,

V3

- | __ .
W (gos 6 o . cos” ©
Zzﬂﬁ—,(\ 5T !Sl_r_l 6{) +I.)(‘.{:ose{sin ei {‘_mx?'é"m) s

b

lsin 0 2D e
Vo= W __.:3_1 + 7 cos e lsin 6]

ZB_WGOSG 2}}2 (4—sin2 9>

Case 2

=

VT 5 (3 |sin 6| + cos €) ...,21;’; ,

":—\gi W3 cos 0 - sine)) ,

\ ; ]
gin 0 1 . 2 coselsin 8l
| vré_l"cosé)+D(§~31n 9+-—--————,=_3—~——--*) y

v

b

i
vo|
T ——

_. \ /9
z ﬁ"% (isin o %«E—Q—S;ﬁ) -'rD(EM - cos 9 |sin 89

These equations are for the range 0° < 6 < §0°. The absolute-value signs on

sin 6 make it possible to use the same expressions for the range -60° < 8 < 0° by

reversing the order of the points as well as the sign of Ze All v coordinates must

he multiplied hy cos & to get the coordinate of each vertex parallel to the plane of

incidence on a plane perpendicular to the line of sight.

5.5. 1.2 Vertices of the active reflecting area for a hexagonal retroreflector

In this section, the coovdinates of the vertices of the active reflecting area are

computed for use in calculating the diffraction pattern of a hexagonal cube corner.

Dmtances caiculated in Section 3.3 are used in the derivation.



Referring to Figure 32 for Case 1 in Section 3.3, let the y, z coordinate axes be

set up as shown in Figure 52. Only three of the vertices are numbered; the positions
of the other three can be computed by symmetry (see Section 2.3). By using the dis-
tances calculated for Case 1, the coordinates of the numbered vertices are

Lo — =
yizv—z—ag{-gu—fc
1w W D
~2V’§m+v@ﬁTxf§5me
_J/3W . D
= Eeme
W
Zl-'-""‘2 ibc
=-i“-2‘-5+Dsme ,
2w
27
22*0 5
Ll e
YgTg e T El
AN W
2v3 VB
_V3W
=
7, =
32 7
z

Figure 52. Hexagonal retroreflector (6 > 0°), Case L.
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These formulas apply to the range 0° <& < 30°. Since the geometry repeats

every 60°, all cases can be covered by adding formulas for the range -30° <9 < 0°.
In Figure 53, three of the vertices are numbered for the case 8 < 0°, Figure 53 is
the same as the one for 6 > 0°, reversed from top to bottom. The coordinates of the
vertices are oblained by computing the coordinates with |8 in the formulas for 6 > 0°
and then reversing the order of the points and the sign of the z coordinates. Since
only sin 8 is affected by the sign of 8, the coordinates of the vertices for the range
~30° < 8 < 0° can be written

. _ V3w

F17 79 3

7 =

1 2 ¢

=2V

2 5 7

2o = 0

va= 51 + 2 sin g

jg P4 ‘\_j,rgi ?
W i

zs-nff—-l}ismﬁ‘




Figure 54 shows Case 2 with coordinate axes drawn and two of the vertices

pumbered. Using the distances from Figures 31 and 33 in Section 3.3, we get the

following coordinates of the points:

oy
yi”";}"'g‘"" 3
zer 5
=uC+4 TR
Yo = 5
:Dcos(})+%§%(2\v—{§f)cose~Dsi116)
z, = be + jm

2

=D sin® +3 (2W - V3D cos 0 - D sin @) .

Figure 54. Hexagonal retroreflector (0 > 0°), Case 2,

These formulas apply to the range 0° < 0 < 30°. Tor the range -30° < 6 < 0°, the

coordinates of the vertices (see Figure 55) are

98



y;=Deost+ %;7%{2&%’”@"??}3 cos @ -~ Dgingl)

z, == Dlsiné| - % (2W - /5D cos & ~ D sin6)) ,

2w
yz"‘q\{;é‘ 2
A § B

Figure 35. Hexagonal retroreflector 6 < 0°), Case 2.

Figure 31 in Section 3.8 gave y = WAS, »= 0 as the coordinates of the center of
the active reflecting area at normal incidence. Af other incidence angles, the right-
hand hexagon is displaced by 4y = D cos 0, 4z = D sin §, and the center of the active
reflecting avea, by Av/Z, Az/2. Thevefore, the coordinates of the active veflecting

Zren arae

w1
v, = b D oos 8
Yo /3 2 : ’
i T sin O
z,= 5 b sl 5

45




area are given hy equations (5-2Z).
the z” axis perpendicular to the plane of incidence is shown in equations (5-23).

and the coordinates of the vertices with respect to the center of the active reflecting

Using an algebra program for the substitutions, we get the following expressions

for y; and z’;

Case 1

o Wilgos § . N 2
yiwm(mﬁ%«—ismeo ‘D(sm 0-3

At 5 ,\("

1 V3
- w 208 g D
2 Ve 27
Esi.n 8[
Zo = = W = ’

Case 2

. e tosd D
}1AY;€J Vfg R TI

7= _wlsinel

S
Vo

v, = Wlsin 8] - 2D
=

The transformation to y”, z” coordinates with

L cos isin 0
+ 05U SR UL

7 et |
7 Em}g_;\\smﬂ%c% 8) +D<coselsinel -

Z

.siﬁze V3
ZZW COS@%-ZD(—*;,_S-:W ““4"")

180



These equations ave for the range 0° <6 < 30°. Because of the ahsolute-value

signs on sin 8, we can use the same expressions for the range ~30° <8 < 0° by
reversing the order of the points and the sign of Zz All ¥y coordinates must be muifi-
plied by cos ¢ to obtain the coordinate of each vertex paraliel {o the plane of incidence

on a plane perpendicular to the ling of sizhi.

5.5. 1.3 Vertices of 2 sector

The vectors ﬁ}: dividing the active vefleciing area of a cube corner into six gec~
tors were computed in Section 2. 12, Let Vy 3 sl ”EF? 5 be the coordinates of the
vertices of the active refleciing area on a plane perpendicular to the line of sight.

'The angles vy to each verfex are

and the angles of the boundary lines are

PR A 4§
dy = tan s
vt

The vertices within a sector whose boundary lines have the angles By and a are

T+1
those for which

VT By
In addition, the vertices of a sector include the origin and the intersections of the
two boundary lines with the sides of the active veflecting area. The intersections

are computed by means of the method described in Section 5. 5. 1. 4. Figure 56 gives

an example of a secior with the vertices numberad,

10}




(&1}

L
[N

I+

L
ro

Figure 56. Vertices of a sector.

5. 5. 1.4 Intersection of two line segments

We give herein a systematic method of testing for singularities in computing the
intersection of a sector boundary and a side of the active reflecting area. The sector
boundary is a line starting at the origin (y = z = 0) and extending to one of the gides.

Let the other end of the sector boundary be given by the coordinates IVEI let
Yy 24 and y,, % be the ends of the side that is intersected by the boundary (Figure a7

{ya, zz)

{yA, zp)

(yg, Z4)

(yf, z))

Figure 37. Intersection of two line segments.

102



Leat

Ay =Yg " ¥y s (5-24a)
Az = 9 "By - (b-24b)
The slopes of the lines are
s, - % ’
Sp = %
The equation of the sector boundary is
2= SpY (5-25)
and that of the infersecting side is
(5-26)

z= + SBy s
where
C= Z}; - SByl

If there are no singularities, the intersection Yo % is obtained by solving equations

{5-25) and {5-26) simultanecusly. Substituting the former into the latter, we get

SAymC"i-SBY

The ¥g coordinate of the infersection is

ing



Vo= g g
378, -85,

By substifuting Vg i.nto‘equation (5-25), the other coordinate of the intersection is

3= Sy

ok

After equations (5-24) have been computed, we can apply the following outline as a

sequence for performing the computations and testing for singularities and error

conditions:

A. Ify, #0, compute 8, = ZA/YA'

1. It Y1 # Yoo compute

S, = An/Ay

B
C= Zy - Syl
a. If SB # SA’ compute

V= C/(SA - SB) ’
7y = Sp¥3
b. If SB = §,, the lines do nol infersect.
2. Ifyl = Yo then

V3= ¥ =¥y

ZRNE

B. Xy

A=Y theny,= 0.

3

I Iy, 2y comte
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ﬁSﬁzﬁﬁmgay P

' 2 18 }i 3?25, “the hﬁes d{) nct zﬁter;,ect. B

5. 5. 1. 5 Integration limits for a sector

L&i: Y “and Z I he the cc}erc}mates osf i:he ve:fuces defzmng One of the sectors of a
fetyareﬁecta“. The diffraction infegral must jals; g&ez“femed over the surface e«ﬂciocsed
by conuecting successive vertices by strazght lines. Let the first and lagt vertices
be the origin of coordinates and let the other pamts be given cemterczociamse around
the sector. The diffraction integral is done for each successive pair of ppmts uging

, eqméi@ns {5~ 1) from Seetion 5. 3, The ‘,mtegr&tignriimi‘tg_fqr éach-pair éf points

indexed J and J+1 are
Yg C+8v
I
7Yy 70

wharve

HY 7= b4 I+ the integral is omitted for that pair of points.
G. 5.2 Diffvaction pattern of a civeular reflector

Section 5.5 discussed the diffraction integral for a cube corner, except for how
to determine the integration limits for each sector Sy and the total active reflecting

area S at normal incidence. For a civeular face with radius v, we have §= —
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The integration is partly analytical, based on formulas (5-14}, and partly numerical,

hased on Section 5.4, The numerical integration is done with a second-order technique
(Section 5. 5.2.7), with Section 5.3.2. 6 showing which parts of the integration are
sumerical., To obtain the best results, it is sometimes necessary to reverse the
order of integration over the variables (Section 5.5.2. 5). Formulas for the z values
af each numerical-integration point are given in Section 5. 5.2.2, and the end points

of the section of the =llipse bounding a sector are computed in Section 5.5.2.3. The
Airy formula, which is useful for checking the more general methods in the special

case of the Airy patfern, is given in Section 5.5.2. 1.

Chang, Currie, and Alley (1971) present an analytical solution for the far-field
diffraction pattern of a circular cube corner at normal incidence. Polarization
effects are included, based on results from Peck (1972). The diffraction infegral
for each sextant is evaluated according to the methods of Mahan, Bitterli, and Cannon
{1964).

5.5.2.1 Alry patlern

If the field u is constant across a circular aperfure, the diffraction pattern is a

finction only of the angle 0 from the center of the paitern. The intengity I is given
by

2
I= 1{}6 5
where E’g is the intensity at the center of the pattern and
23 {=dO/A)
G = e s

7d@G A

in which J I {5 the Bessel function of the first order and d is the diameter of the
aperture. This formula is useful both for testing the numerical-integration techniques
to make sure that they give the correct answer for this special case and for determin-

ing the accuracy of the numeri cal integration for various integration intervals.
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G..8:.2, 2 Ellipse geometry

The active reflecting arvea of a2 civceular retroreflector consista of the intersec-
tion of two cireles as viewed in the plane of the front face (Figure 58) and two

ellipses as viewed from the direction of the incident beam. The separaiion of the fwo
civeles is Z¢, given by

Zc = 21 tan ¢

a= L {an ¢

where L. is the length of the cube corner and -

” . ~1 sin@
& = gin (mn ) .

Figure 58, Imtersection of inpul and oufpul apertures for a cirealar reflector.



When viewed from the direction of the incident beam, distances in the y’ direction

arve contracted by a factor a, where
a= gosg .

The equation of the circle in Figure 59 is
Al c)2+ z’zw v

The equation of the ellipse in Figure 59b is obtained by substituting y' = y/a and

z' = z, resulting in
. 2
(\X ~e) o+ 22 = rz
a =/

To integrate the diffraction pattern numerically, we must have values of z at equal

intervals iny. Solving for z, we get

, 2
Z=4 ‘/rz m%uc) , (5-27)

where the plus sign gives the values at the top of the ellipse and the minus sign gives
those at the bottom. FEgquation (5-27) is used for the left half of the aperture (v = 0).
For the right half, the ellipse is centered at y = -ac, and the formula is

2 2 2

Tigure 59. Ellipse geometry.
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Irﬂ:egratmg fxz:st over z and then numemcaily over y does not give good results
Wheﬂ the slo;)e of the elllpse goes to m;funty Ac; seen in Flgtxre 60, the sector can be
better mtegmted first in y and i:hen in z. The trmngular sectzon remammg n
F1gure 602 can be mtegrateci ana.lytzcaily We need to express yasa functlon of z
in order to perform the mumerical mtegratlon in the variable z.

a) 0 : - . b)

Figure 60. a) Normal order of integration; b) reverse order of integration.

Solving the equation

) 2
@%:;:c) PR

for y, we have

S ___‘.3’.?‘?_&?.(#??.‘._.1‘2 "&ZZ) ; e
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where the upper signs refer to the left ellipse and the lower signs, to the right

ellipge.

-

5.5.2.3 Intersection of a line and an ellipse

The active reflecting area of a circular retroreflector is divided into six sectors
by the projection of the back edges onto the front face. In general, the diffraction
integral must be done over each sector separately, since dihedral-angle offsets and
polarization effects result in the field u being different in different sectors. Let the

boundary line between two sectors be given by
7= By,

where § is the slope of the line (Figure 61). The intersection is given by the solution
of the two equations

. 2 .

(g«?c) +za=r2
and

z= 8y .

2
Substituting 22 = Szy“ into the firgt equation gives

3-'2 T 2acy + a‘?cz + azszyz = a2r2 s

(1+ azsz} yz ¥ {(Jac)y + 3,2(02 - rz): o,

o
+2ac ¥ Y sa’c? - 41+ azsz) az(c“ - rz}

y:

2.2
2(1+a’8") [eq. cont. on next page]
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e _ . _
+ Zac F2a ‘/:3,2 - (cz + 328202 - r2 - rzazsz)

201+ 3.282)

+ X ‘/{rz + azsz{rz - cg)

=2} .
l+a‘?‘82

Figure 61. Intersection"ef a line and an ellipse.

in cases Whera 'i:he boundary of a sector is ver’mcal the y component of f:he vector
defmmg the beundary line is zero ami the slope 8 is mfmr%:e. In this case, the z coor-

dinate of the intersection of the line a.nd the eiﬁpse is computed by
Lo 2 2 J»Z
z=+¥r -(*Z-:tc) * =+ ¥ - ¢

The aign of the square root is chosen to be f:he same as that of the z component of the

vector defining the botmdary line.

5.5.2.4 Slope of an ellipse

‘The active reflecting area of a circular retroreflector is bounded by two ellipses,

Whose equation ig
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g B
S-S
Lzxe) +2 =7¢
a

e

The slope ig given by differentiating

2

to give

2z dz = “%%? c)dy ,

dz . gg/ag T o
dy az

If z= 0, the slope is infinite. The value of the slope will be used in determining the

hest order of infegration in order to obtain accurate numerical results.
5.5.2.5 Order of integration over y and z variables

The active reflecting area of a circular cube corner is divided into six sectors,
each of which is hounded by two lines and one or two curves that are sections of an
ellipse. The numerical infegration used to calculate the diffraction pattern gives
poor results when the slope of the curve as a function of the numerical-integration
variable becomes very large or infinite, The problem can be avoided by integrating
numerically over the other variable. A sector may be wholly contained in one
guadrant of the coordinate system or may span two quadrants. If the latter situation
oceurs, the numerical integration is performed over the variable that changes sign
over the sector. If the sector is in only one quadrant, the order of integration of the
varinbles is chosen such that the maximum slope as a function of the numerical-
imtegration variable is minimized. Since the slope is a monotonic function over a
single quadrant, it can be computed at the ends of the elliptical arc as a function of
both integration variables, and the variable having the smallest slopes (absolute
magnitude} can be chosen.
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5. 5.2,6 Numerical and analytical parts of sector integration

if the boundary lines af a sector have slopes of the same s1gn, the mi:egml can
be broken into an s,na,lyﬁ?eal part boumied by straigh% um-zs and a numarzcal part boumied

I t%ze si@peg are of d;fferent sign, the mtegrahon xs amemca}. &ﬁd the eurve has
sectiong of two different eihpses if y changes szgn. over the sector (Fzgure 62¢) or 2
single ellipse if z changes sign (Figure 62d). For Figures 62c¢ and 62d, the numerical
integration must be split into two sections, one for each of the boundary lines. The
numerical integration is over the z variable in Figure 62d. | :

a) B T UL

Figure 62. Analytical and numerical parts of sector integration.
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5. 5 2,7 Second-order numerical integration

The numerical part of the diffraction integral for a circular cube corner is done
hy means of & second-order technique. The interval is divided into equal pieces of
tength &, and the value of the integrand f(y) is computed at each point fo obtain a set
of values fi' Fach set of three points is fitted with a quadratic, which can be integrated

analytically. The result of the integration is Simpson's rule (Hildebrand, 1956, p. 73):

5
fy) dy = 5 (1) + 4f, + 1)

5.6 Symmetry of Cube-Corner Diffraction Patferns

The far-field diffraction pattern of a retroreflector is caleulated by equation
{5-21). Under ceriain conditions, the diffraction pattern has symmetry properties
that are helpful in checking the accuracy of a diffraction caleulation. I a retroreflector
has perfect-metal reflecting faces, the polarization "ﬁl of the reflected light is the

same for all six sectors of the cube corner. In this case, the diffraction patiern has

the symmetry property

E{® 17 8,) = E("‘Gp ‘@2) 3 (5-28)
which can be shown as follows. A ray incident at the point (~y, ~z) in sector I
emerges from the point {y, z) in the opposite dector I with a phase change ary + bI %
due to dihedral-angle offsets. A ray incident at point {y, z) emerges from point

{-v, -z} with a phase gradient

azrimy} + b}“f{mz) = (ma:[){...y) + {Mb};)(wz)

li

Ay bIZ
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We have 2r, = -0 and bI = ~h{ becausge the rays travel virtually the same path in
opposite directions for the I and the I’ sectors. The diffraction integral is the sum

of pairs of poinis of the form
i(a[y + E';zz) -il(® P ezz} i(aI} e bIz) ~ik(-8 v %zz}
e e + 8 &

Ha,y + bz}
e 1 i

= 2 cos kgaly + E}gz) .

Since the cosine function is symmetric with respect to a change in sign of the argument
and since the diffraction integral is the sum of such symmetric terms, the diffraction

patiern has the properiy given in equation (5-28).

Anocther symmetry property can be seen from the same argument. If all the
dihedral-angle offseis are reversed in sign, the constants a and b change sign so that

the integral is the sum of terms of the form

i[(waz)y + (-?:’}I} z] _ - (aIy + bz}
& 2 cos k{sly + egz) =8 2 cos k(@ly + 822)

Since the intensity is obtained by multiplying the integral by its complex conjugate,
the diffraction pattern is unchanged when the sign of the dihedral-angle offsets is

reversed.






6. RAYLEIGH DISTRIBUTION

The return signal from a satellite vetroreflector array congists of reflections
from a large number of cube corners. Since the laser beam is coherent and each
reflection has a different phase, the reﬁéctioms will interfere with each other. For
a large number n of reflections each having unif ampiitude, the normalized probability
that the resultant amplitude will be-A is @ayleigh, 1945, pp. 35-42)

- AB /

pyaa=2e Maas |

ince the ersrgy B of the retuxn sighal is Proportional to the square of the amplitude,
the probability of a given energy is obtained by substituting

dE = 24 dA

into the above equation to give

L PE) dEm% M |

The mean energy E is given by
“ﬁf PE)E dE
i

n

o]
“j‘ ~ 6—-E/n leq. cont. on next page]
O
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z {f - <n%mE/ﬁ‘)

|

= - {f-ny=n

6.1 Factors Modifying the Rayleigh Distribution

Thyee factors that exist in actual retroveflector arrays make the probability

digtribution of the return energy somewhat different from the Rayleigh distributions
A. The mumber of reflectors ig finite.
B. The amplitudes of the reflections from individual reflectors may not be equal.

€, The iransmiited pulse is of finite length, and thus the envelopes of individual

reflections do not coincide exactly.

6.2 Cuidelines for the Application of the Rayleigh Distribution

The following guidelines can be used to determine when the Rayleigh digtribution

ig not appropriate:

A. The probability distribution for the resultant amplitude of a finite number
of equal phasors (Slack, 1946; Jaffe, 1971) is quite different when N is 2, 3, or 4.
For N = 5, the probability of E = 0 is about 15% lower than for the Rayleigh distri-
bution. At N= 10, the difference is only about 5%. 'Therefore, anything over about

N = 10 can be expected to give nearly a Rayleigh distribution.

B. If the amplitudes of the phasors are udequal, the probability distribution will
still be a Rayleigh digtribution as long as there is a lavge number of phasors of each
amplitude (Rayleigh, 1945). Any mumber greater than about 10 is considered large

for ihis purpose.

C. As long as the pulse length is long compared to the separation of the retro-

reflectors, the Rayleigh disiribution will be applicable.
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7. ARBAY TRANSFER FUNCTION

7.1 Retroreflector-Array Coordinate System

The coordinates of the center of the front face of exch cube corner in an array
are given in a system whose origin is at the center of mass of the satellite in the
orbital configuration. H the array has a symme‘tfy axis, let it coincide with the =z
axig. The direction of the x axis is chosen to be at some convenient angle in the
plane normal to the symmetry axis. Let an x’, v/, z/ coordinate system be set up
parallel to the x,y, z system with ifs origin at the center of the front face of a cube

~corner {see Figure 63). The orientation of the cube corner is represented by the

Figure 63. Array coordinale system.

thres angles 6., {bg, and Cps the first two giving the dirvection of the normal to the

front face of the cube corner in the x',y’, 2’ system (see Figure 64).

To show the angle Gy let an X', Y", Z’ coordinate system be set up with its origin
at the center of the front face, its X’ axis normal to the front face, Y’ in the direction

of inereasing 6*{_},-- and % in the direetion of decreasing :%;R-n ~Fhe orientation angle ag’
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Figure 64. Coordinate system for cube-corner orientation.

is measured counterclockwise from the Z’ axis to the projection of one of the back

edges of the cube corner onto the front face, as shown in Figure 65.
/

Z

Figure 65. Cube-corner orientation angle ape
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7.2 Coordinate System of the Incident Beam and the Observer

Let the direetion to the' Tuminating source be given by the angles % and ¢ g
related £o the X, ¥,z coordinate system of the array (Figure 66). Lot the complex
vector B giving the polarization state of the incident beam be given in the x* y*, z*
coordinate system, defined as follows. The x¥ axi% psim;b toward the scurce and the

v* and z* axes are in the direction of increasing 8 and decreasing ¢, respectively.

S}
This is the coordinate system of the obsemer and ism f:he cne in which the diffraction

pattern of the array will be given. .

z
2% 'x*
y%
c{:s g
|
|
§
v | Y
~ | P /,/
8 \’“\ § e
R S Vel

Figure 66. Coordinate system of an incident beam.

7.2 Coordinate System for the Diffraction Pattern of Cube Corners

The direction of the beam incident on a cube corner is specified by the two angles
0 and ¢, where ¢ is the angle between the normal to the front face and the incident
beam. The azimuth angle 8 is measured to the projection of the incident direction

onto the front face, as shown in Figure 67. The coordinate system in which the



diffraction pattern of the cube corner is computed has its 1 axis pointing toward the

source, its 2 axis in the plane of incidence pointing in the direction of increasing ¢,

and ifs 9 axis perpendicular to the plane of incidence in the direction of increasing €.

.
// 8

Tigure 67. Projection of an incident beam onto the face of a cube corner.

7.4 Conversion between the Coordinate Systems of the Incident Beam and the Retro-
reilector

A A
1,6t € he the unit vector pointing toward the illuminating source and R be the unit
normal to the front face of a cube corner in the array. In the coordinate system of

the array, the components of the vectors are

§ = sindg cos QS s R_Xx sin ¢, cos GR ,
Sy = sl g 5N Og , R-y = sin ¢ sid SR s
8 =C080q R, = COs by

The incidence angle & on the cube cormer is given by
A A
cosb= 85+ K

To compute the azimuth angle 6 of the projection of the incident direction onto the

cube corner face, the vector 8 must be expressed in the X', Y’, 2’ coordinate system,
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A

coordinate system of § first about the z axis by the angle QR and then about the new
Ay

v axis by the angle c'pR (Figure 68). The components of the vector § in the rotated

coordinate system are '

/8 os dp 0 -singp\  / cos Op sinbp 0\ /S
Syff 1 ] i ’ﬂ‘ _fsxﬁ E%R cos 8, 0 Sy
SZ” Si:ﬂ é?R 0 CO8 é}R | G 0 1 SZ

Z

Figure 68. Direction of the normal to the cube-corner front face,

The velationship of the x”,y”, 2" coordinate system to that of XY, 7" is given
./‘,\ ’
in Figure 69. The components of the vector S in the X/, Y, 2’ coordinate system
are

X’ AL
Sy.' = Sfy [
Szf —SXH I



Figure 69. Relationship of X/, Y', 27 and x",y",z" axes.

a7 = tan 1 (-;3—-24*)
Y.’

with the Y’ axis, as shown in Figure 70. The desired azimuth angle 6 is

Figure 70. Diagram for computing the azimuth angle 8.
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The complex vector T is in the x*, §*, 2% coordinate system of Fisure 66. The
diffraction pattern of a retroreflector is computed in the coordinate system defined

in Section 7.3. The two coordinate systems are therefore related by a rotation about
the x* axis through a rotation angle vy, which can be computed’ by expressmg the vec-
tor § in the x* s ¥*, 2* coordinate gsystem of the observer. This is done by rotating
the coordinate gystem of ﬁ aboul the z axis by the angle & 5 and then about the new v

- axis by the angle @_S‘,»The components of I’l\‘}a in the rotated system are then

R_, cO8 bg 0 msinegns cos QS sines 0 R

X bie
Ryﬂ = 0 i 0 -gin BS Go8 ?S 0 | Ry
R_» singg 0 cos bg o 0 1 .

Figure 71 gives the velationship of the x”, y”, %" coovdinate system to that of Xk, yF, ok,
The components of the vector R in the latter systém are

Rex=R,, ,
Rox=Re,
R,.= R, ,

Figore 71. Relationship of x”, 3/, »” and x*, y*, 2% axeg. oo



and the projection of the normal to the front face of the cube corner onto the y*z* plane

makes an angle

with the v* axis, as shown in Figure 72. The dmectlon of the 2 axis in the y*z* plane

is opposite that from the projection of the vector R onto the y*z* plane (see Figure 73).

3 AXIS \
\

Figure 72, Diagram for computing the angle v.

- S* x* AXIS
R | AXIS

|

|

|

: ¢*7* PLANE
S D -

2 AXIS

Figure '?3 Reiatlonshlp of the 2 axis to the unit vector R.
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The desirved angle v as shown in Figure 72 is

\i; = ‘\{” - 97 o

Let Ev* and Ez* be the complex components of the incident polarization vector in the
X*,y*; z* coordinate gystem. The components Ez and Eg in the coordinate system

used for the diffraction pattern of the cube corner are then

Egm Ey* cos vy Ez* giny ,
ES = —EY* siny+E_, cosy
A peint with the angular coordinates (97 ,eé) in the coordinate system for the diffrac-

tion pattern of the array has the following angular coordinates in the coordinate system

for the diffraction pattern of an individual cube corner:

- ’ 7 H
61m€}1008y+82 siny ,

By = -07 siny + 8 cos y

7.5 Transmitted Pulse

The transmitted puise is assumed to be a monochromatic wave with a gaussian
envelope. The intensity across the retroreflector array is assumed to be uniform.
In the x*, v*, z* coordinate system, where the x* axis points from the array to the

source, the complex vector field incident on the arrayv is

(X + ¢t} 1 o B ct)2/4 o2 (7-1)

o A Ao ik
Em(Eyy%«Ezz)e s

where k= 2w /%, & is the wavelength, ¢ is the veloeity of light, and ¢ is the sigma of

the transmitted pulse. For simplicity, we have dropped the asterisks on x, v, and z.

The intensity 1 of the pulse iz
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2,0 2
1= (B E*+ B EY L kel /20

y v OgVEdn

17 the width of the transmitted pulse is given as the distance / between half-power points,

o is ealeulated from

~w/2 et 1
e 2

which can be solved to give

2
211
“('72")22‘135 ;
203
¢ 1 5
'é'wf_..gmwinﬁ s
? i /2 /e Ji

UTT Bmen  Jind  1.17741  2.35482

7.6 Position of the Retroreflector along the Line of Sight

Let gbe a unit vector pointing from the array toward the incident beam and gbe
the vector from the satellite center of mass to the center of the front face of a cube

corner. The position of the cube corner along the line of sight is
A
5. C

If we take the optical path length in the dielectric (Section 2.5) into account, the

apparent position of the cube corner along the line of sight is

A e ; .
¥x=8. C~-Ly¥n -sin & ,
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where L is the length of the cube corner from the vertex to the face, nis the index of

-1 4 4 v s .
refraction of the cube corner, ¢ = cog = (8« B), and ¥ iz the digtance to the satellite

center of gravity minus the apparent distance to the cube corner,

7.7 Inccohzrent Helurn

The equations given in this section apply to situations in which the return signal
ig independent of the phase relationships among the refiections from individual cube
corners. If the array is illuminated by an incoberent source containing many frequen-
cies, the phase relationships are different for each freguency, so that averaging
ooccurs over all possible phase relationships.  The eguations also apply o a laboratory
experiment in which the fotal reflected energy is measured. The return pulse is the
s of the total veflected signals from each cube corner. The primary use of these
aguations is to compute the average behavior of a large number of refurns measured
at some point in the far-field pattern when the array is {luminated by 2 coherent
source. Inthis situation, it is assumed that the phase relationships vary randomly
from pulse to pulse as a result of changes in viewing angle to the array. The inco-
herent return is constructed by adding the infencifies of the reflections from each cube
corner at a point in the far field. In Section 7.8, il will be shown that this gives the

average pulge shape of & large number of eoherent returns,

The reflection from a cube corner has the same mathemsatical form as the nei-
dent pulse, except that the reflection is moving in the opposite direction. The dis-
placement between the pulses feﬁec’ted from two different cube corners iz twice the
difference in dizstance to the two reflectorg. Letl the return pulse be construcied in a
coordinate system having its origin at the center of the reflection that would be received
from a ¢ube corner at the center of masg of the gatellits. The positive divection will
be taken as the direction to the observer. In this coordinate system, the intensityv 1

K
e . th , a
of the reflection from the K™ cube corner is

A
. SK_ @w{chiK} /-'282
K o7 ’
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where d‘K is twice the distance of the apparent reflection point for the Kth retroreflector

from the plane through the center of mass of the satellite perpendicular to the incident
beam. The constant SK giving the intensity of the reflection from the Kth cube corner
is proportional to the active reflecting area, if the total reflected energy is being meas-
ured, or to the intensity of the diffraction pattern at the position of the observer, if the
detector is located at a point in the far field. Depending on the method of detection,

8., ig either the total intensity (EyE;f + EZEZ) or the intensity of any component of

K
polarizstion being measured.

The total intensity I of the incoherem return is
Ifx) = 2 I
K

o 2 2
3 o

o ¥
i

and the total energy of the return is proportional to

o ~(x—-dK)2/202

T P ; l
jf L{x)dX—ZSKj = dx
K ul

o0

[rs)

mZSK '
K

The mean position of the return pulse is

e

f xI{ey dx
v = ot

fc Iy dx
m -’ /20

_______ B - ZSKJ@;: (x/oZuy e X
K .

: (7-2)

%
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Substituting x* + &K =X, X =¥~ dK’ and dx:f'v:’ ’éix, we get

a7
o

¥

o

f[{x’ + dK);’w‘é‘%}e”

PIEN

% SKdK

S S A (7-3)

A measure of the spreading of the pulse due to the array is obtained by computing
the second moment V of the return:

' fo XZI(X) dx

V=2
J-I(x)dx
o R : : : _2,', 2
o -(x~-d )" /20
;SK j‘ 2/ 0VET) e K dx

- R : ' "(?ﬁ4y,.
o

If we make the same substitufions for x, x“dg,, and dx, the integral becomes

5 o mea 2o merean® s
<2 e_(x d)" /20 e f (x )’ e—x’z/.?a“‘? .
T . g%ﬁ%x
. ) ' o0
o o 9 o 5
X" -x" /20 X! x™ /o
= dx’ +2 - r
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After we substitute this into equation (7-4),

2 . 2
;SK (0% + a2)
V= .

Defining ¢’ = V'V, we have

‘/Z S (07 +aZ)

for dK « ¢, the inccherent return is nearly gaussian, with a sigma of g’.

7.8 Coherent Return

The coherent return from an array is computed by adding the fields of the reflec-
tions from all the cube corners and squaring the sum to obtain the intensity. The
field of the transmitted pulse is given by equation (7-1). Let the return pulse be con-
structed in a coordinate system whose origin is the center of the pulse that would be
reflected from a cube corner at the center of mass of the satellite. Tet dK be twice the
distance of the Kth cube corner from the plane through the center of mass of the satel-
lite perpendicular to the incident beam. The quantity dK is known with sufficient accu~
racy for use in positioning the envelope of the reflection from each cube corner. How-
ever, it is not known with enough precision to predict the relative phases among the
reflections. We will therefore assume that the relative phases are random and vary

- randomly from pulse to pulse. Very small changes in aspect angle of the satellite are
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sufficient to change the phase relationships completely. In the expressions below,
the field strength EK can be any component of poiamzatxog. The phase of the field
component can be absorbeci in the random. phase factor e K. The field reflected from

the Kth cube corner is

IR Ik(dek) [ —

where GK = wkdk = g random phase between 0 and 2w,

The field of the whole array is

Emg EK
K
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since EE” is real, all imaginary terms cancel, resulting in

e 2

ovaT Ao

2 2
| v/ S8 (x-d "+ (x=-dy)
I(X)=Z cos (BK—E}L) YEL axp [—- S L j| . {7~5)

KL

The mean value of cos Ok -SL) over a large number of coherent returns where the
phases vary randomly is 0 for K # L and 1 for K= L. Therefore, the mean return

pulse shape is

2, 2 '
-x-d.)" /20
P S -0

43 \-’%

which is the incoherent case derived previously.

In order to obtain the total energy by integration, the exponent can be transformed

into a perfect square plus a constant:

2 2 2 2 2 2
(xde) +(x-dL) = X —~2de+dK+x -2XdL+ dL

= 2x2 - 2% (dK + dL) + <d12€ + di)

é [Xz ooy (5 (s 2y

ﬂz(x_k:iﬁf 1

-5 {dK‘}“ dL)2 - (d_i + d’i)

I

P
a2 g2 2 2 2
xz(x_dKidL |y - 2ddy - dp v 2d 2y
2/ 2
o +d )\ & -2d .4 +d
- alx dtdp)™  dg - 2dpdy +dy
B * 3




Substituting this info equation (7-5), we get

) = cos {8, exp

ke azm T 252

~(dy ~d ) 2/3@ 4/ Sc5L 5_ {X—(dK+dL)/2:]2}

KL

{7-7)

The total energy is proportional to
2 2
~{d,-d.)y"/8c
j Tz} dx = E cos (0 - 6,) e KL VeSL -

I we substitule equation (7-7) into the first line of equation (7-2), the mean position

ot the return pulse, we have

—(d ~d VY d.)/21"/
f Zces(eK—eL)e et 806{3 5, /0V2 ) -y sad® dx

8

x= ) [ /Jz 2
- (A~ dp)7/807 \ TR e+ dp)/27 20
o —
{ > cos O -67) e (,, [sKsL,wzw) e dx
e KI, :
(7-8)
Incorporating the following substitutions
d. +4d
X=X - Kg L s (7-9a)
dx’ = dx (7-9b)
d_ +d
b XF + m}{gmméj_. (7_90)

info equation {7-8), we have
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-dy)?/80”

- < ;
cos O -Op)e 8k St J {[X’%" (dye* dﬁ/z]/cm} 1207 4

-y - dL)2/862
Z cos (@K«m BL} e
KL

242
VEL g | WoEme Y ax’

2 2
- (g - dy) /8¢

1sz Sy E(dK+dL)/2}
e
~ (A - dy) /8¢

Z cos (6, -0,) €
L K 'L

Z cos (0, -0;) e @S}:

KL

If we substitute equation (7-7) into the first line of equation (7-4), make the change of

variables given in equation (7-9a, b) plus

2
. +d
2 ;2 ; K L
x" =% +x(dK+dL) -%( 5 ) ,

and perform the integrations, the variance of the return pulse becomes

2 02
- (A ~dy ) /8G

% cos (0 -67)e Vo Sy, {02 + [(dK*dL)/le}
- (A - dL)z/SUz

. (710

Vo=

S

E cos (GK—GL) e KL

Ki
The square root of the variance is
of=vV .

7.8.1 Calculation shortcuts

The expression for the coherent reflected intensity was given above 4s 2 Sui

" involving a double index. This form was necessary in-order to obtain the total energy,
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s—qmr@ the reaaﬁt @m}‘f;ﬁmg the factor:e’ b{, whick disappears when E is muﬁ::tphed

by BT, wehave

from: which the intensity iz o
Lok = By BYen .

In computing the tofal energy, fhe mean, and the variance of a coherent return ‘the
following techmiques can be employed to reduce computation time. The cosine factor
can be expanded to give

oo %“?ﬁ_: 008 By 095 Oy, ¥ i By sin 0y,

”‘he ﬁerms on %:he mght can be preeompu‘é:ed and saved th,ch xequsres ZN trlgometrlc
calculations, where N is the number of retmreﬁeotom Each value of cos Oy ~01)
can then be computed with two multiplications and one addition, a much faster proce-

dure than deing NZ cosine calculations.

In all the expressions, the terms with index KL are equal to those with index LK,
50 we need to compute only about half the ferms. Since terms with K= L are indepen~
dent of the random phases used, their sum can be precomputéd aﬁd saved when many
coherert returns ave being calculated for the same incidence angle on the array. The
terms for K= L give the inccherent resulis,

7.8, 2 Helation of echervence to diffraction

The calculstion of coherent refurns by use of a random~number generator to

e assign phases to the reflections from individual cube corners is-a way of gaining some '

137



statistical information despite the impossibility of knowing the actual phase relation~

ships between the reflections. A coherent calculation is actually a diffraction calcula-
tion for the whole array at one point in the far field, based on assumed phases. I we
have anccurate enough information, we can perform the diffraction integral over the
whole array, calculating the phases from the relative positions of the reflectors in the
array. The characteristic width of the diffraction pattern of a single reflector is
roughly ?\/DR, where BR is the diameter of the cube corner. The basic physical
reazon for this is that the phase relationship between the opposgite sides of the cube
corner changes by 360° when the angular position of the observer changes by }\/DR.
The phase relationship between reflectors on opposite sides of an array changes by
360° when the viewing angle changes by \/D e where D " is the diameter of the array.
Since D A is generally much larger than DR’ we can expect the diffraction pattern of
the whole array to vary within a characteristic angle \/D A? giving rise to a mottled
appearance in the array diffraction pattern. I is these variations that are being

studied statistically in a coherent calculation.
7.8.3 Coherent variations
Let X represent some property of the ith coherent return, such as the energy

or mean position, and let Wi be the weighting factor for the return. The mean value

of the guantity for a get of coherent returns is

~ ; Wixi
e S—
Zi:wi ’

and the variance of the quantity is

5 w7

5

Vo=

s M

> Wl - 2w, ¢ W)

; W, [eq. cont. on next page]
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In cases where the average value ¥ of & coherent quantity is subsfmiﬁany different

vom the inechervent value, the statistical significance of the differences Ax can be

measured by the guantity Ax/ Uy Where

-
2 %/';{f H
N being the number of coherent returns.
7. 8.% Meaﬁ value of cohevent quantities

it has airﬁa{i‘y been ::sami:ed out ‘tha% the mean vaive of the mtensﬁ:y, equation ('7 5),
vemged over ma‘,&y coherent re‘f:urns iz the mcohe:t:‘ent mtensity shown in equatlon
(1-8). Since the ioé;ai energy is the mtegrai of the mi:ensﬂ:y, the mean xaiue of the
aeh@rent energiem ig the incoherent encérgy. This result is also obtained from the

expression

Since the av&:mge value of cos (6 - GL) ig 0 for K # L and 1 for K'= I, the mean value
of the cohererd éﬁﬁ&rgy is

energy

which is the incoherent expression.

The gituation is a Little more eomphcated for i:he ether quantitzes. The mean

position of the return pulse is
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2,2
- (dy ~dy) /8¢

VS Sy, (gt dp )2
- (dK—dL)Z/SGZ

Z cos (GK»«@L) e \fSKS

KL

(7-11)

Zcos ©,.-0.)¢€
-g___KL' K "L

H

in which the mean value of the numerator is

Z Sy dy -

K

The denominator is the energy of the return that has a mean value of % SK. If it

were true that the mean value of the quotient of the two quantities is the quotient of

the mean values, then the mean value of X for the coherent returns would be the same
as the value of ¥ for the incoherent return. Calculations of large numbers of coherent
returns for certain arrays have shown statistically significant differences between these
two values of . The arrays used had unsymmetrical distributions of retroreflectors
along the line of sight. Presumably, if both the incident pulse and the distribution of

reflectors were symmetrical, there would be no mechanism for causing a bias.

A technique for removing the difference between the average X of the coherent
refurns and the X for the incoherent case is to weight each coherent X by the energy
of the coherent return. This has the effect of canceling the denommator in equation
(7-11), so that we need to average only the numerator, whose mean value has already
heen shown to be equal to the numerator in the incoherent expression for X, equation
(7-3). Computer runs on large samples of coherent returns have verified that this
weighting technique works to within the statistical uncertainty due to the number of
returns computed. These computer runs also show, however, that the whole sample
must be used; excluding returns below a certain energy causes a bias. This is
probably the result of the fact that a return's low energy puts constraints on the phases

such that they are no longer randomn:.

A similar situation exists with the variance given by equation (7-10), whose mean
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denomingior is the &3‘2&3‘5}?» Waighting by the mean SNOIgy removes any bias batween

the mean coherent value and the incoherent value,
7.8.5 Coherent variafions versus pulse lemgth -

Computation of coherent returms Ador wmyious arrays with ciifiex*ent’gﬁises_lengths
has shown that the variation of the mean position of the return pulse decreases as the
pulse length decreases! A gqualiiative explanation of this phenomenon s the following:
i the pulee lesgth ig much shorfer than the syeoing between the reflections from -
different veflectors, no interference occurs bétween the different reflections,; because
they do wet overfap. In thig case, the coherent return is identical o the incoherent :
‘wetorn, and all properties of the coherent return, suech as the energy and mean posi—
tion, are constant. As the pulse leugth increases; both the degree of overlap between
individeal reflections and the variations in pulse shape increase. Therefore, the
variations in energy, mean p@sz‘émﬁ, @né other properties will merease ag t’he pulse

length increases.

7.9 Half-Maximum Hange Corrvection

In a balf-maximum detection system, the range to a retroreflector array is meas-
ured by recording the time Interval between the halfmmaximmﬁ poitits on .i:he_ leading
edge of the transmitted and received pulses. If the received pulse is the same shape
as the tranamitted pulse, this will give the same range as a centroid detection system.
Howew er, if the pulse is broadened by the array, because of the fact that the eube
corters ave distributed in raﬁwe from the ohierver, then the range measured by a
half-maximum sygiem will, in geﬁﬁmz be shorter than that measured by a centroid
detection systewd. The difference between the half-maximum range correction and
the centroid range correction must be computed by plotting the return pulse and
mmnerically finding the point on the leading edge where the intensity is half the maxi-
mum ftensity. In cases where the half-intensity point ie multivalued, the first point
on the ieading edge will be considered the half-maximum point X, /9° The difference
mﬁveeﬁ the half-maximurm point and the centroid on the transmitted pulse is ovInd ,

as shown in Section 7.5. The corresponding difference on the received pulse is

Eis ~¥, where X is the centroid of the received i}iﬁses_.. The difference between the .-

half-maximum and the centroid range corrections



The factor of 1/2 converts the result to a one-way correction.

7.10 Pulse Spreading by Array versus Pulse Length

Computer runs on various retroreflector arrays with different pulse lengths
have shown that the amount of pulse spreading due to the array increases as the pulse
length decreases. There is one particular array geometry where this result can be
proved analytically. Let the array consist of a large number of reflectors whose
density along the line of sight is approximately gaussian. Let the density of reflectors
he

- {2}{”)2/20%

Dex) @axy = —==e @dax")
1

and let the intensity of the incoming pulse be

- (X + CE)Z/ZG%

e -

1
o 0”\(%

IO(X) =

The contribution dI{x) to the incoherent return signal from an element of the array at
the point x” is a gaussian moving in the +x direction reflected from point x” at time

t = - x”/c and centered at 2x” at time t = 0. If we define x’ = 2x”, we getat t =10

wx’z/zcri 1
- @ !
(}1\/.2_”1’} ()'Ox-%

- (me')2/2{ri
e s

difx) =

and then we can integrate over x’ to obtain the total incoherent intensity:
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- o
=2'}é§'c'r"f exp }“'ZH%“JrLu?}fdx’
boJ. l o) o5 1

The terms in the square brackets can be rewritten to form a perfect’ square plus a
constant, as follows;

' {x—x’)z :x:"2 X =-2xx 4+ x
A R N 3
! 9 % Yo

2
0 o 0
2 9 2
24
_ 91% 9% 2 Orl_’“x ; Xz
= X . X e a————
Z.2 S )
1% 17 % o
2. 2 22, 2 2
mai+ 74 G{t 07X ) (u::rix ) +x2
T TR TS Y R U ) 3
D19 |\ OpF 0y o toy/ i oy
2 9 2 2 9 2,2 2
oyt 0 .. 1% ) oy x X (O’lJ-UG
T 22 2, 2] 2,2 3 2,2 2
1% U179 %({’1 o Ge({’ﬁ%
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where

After we substitute this back into the exponent, the integral becomes

o ; 2 2]
1 %" /200 J ¥ - 0}x/0)
e exp <~

Iy = TG o
0,0 2
170 J 2(0,04/0)
I S e |
21?0“1 UO a
1 —XZ/Z(}“2
ovam
The reflected pulse is a gaussian with o= 0'? + G’%. A measure of the amount

of pulse spreading is the difference

J

_ e 2 2
AC = G—O‘G-—v01+60 Ty -

For very long incident pulses,

0'2 02‘

2+ 2. 1+——-1~ l«%—-—--w—w}“
Vo179 % 5~ Og 5) 0

GO \ 200

so that
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Instead of having Ac on the order of o P which we might have expected intuitively, the
spreading is reduced hy the factor 61/20‘0, so that A0 ~—~0as ¢ 0

For very short pulses,

3T
Yo +0,= 03

and thus )

0% . : (3'0 \'_
Pt g 0“1%-%; —0‘050“14-(}'0 :é“é-iﬂ)

In the limit, as Gy 0, A0~ - Oy = U, as we would expect for a point reflector.
By taking the devrivative of Ac with respect to Oy We can prove the statement made
at the beginning of this section for the special case of a gaussian distribution of retro-

reflectors. We have

d ~_,.5};,"/ 2L 62
dg(Aﬁ)—d% ( U * g, O‘O)
83
- 20 5 -1 -

01+ 9%

Since UO/‘/ a? + o'g = 1, d(Ao)/do*O = 1, so that the pulse spreading increases as the

pulse length decreases.

7. 11 Range Equation and Gain Function

The range equation giving the received energy as a function of the transmitted

energy can be written
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dE_/E
dE/EQTT g8

A 42 §78TA d2 T
s T

¥ = ET Q.
iy

where Er is the received energy, E is the transmitted energy, T A is the atmospheric
transmission factor, QS is the solid angle subtended by the active reflecting area of

the satellite array, Tg 1s the transmission factor of the array, Eg is the energy
reflected by the satellite, and Qr is the solid angle subtended by the receiving telescope.
To ealculate the number of photoelecirons, the equation must be divided by hv and
multiplied by g . where b is Planck's constant, v is the frequency of the laser, and

g v iz the efficiency of the receiver in photoelectrons per photon.

The solid angles QS and Szr are

where AS ig the active reflecting area of the array, Ar ig the area of the receiving

telescope, and R is the range. Introducing the definitions

dE/E
G, = === |,
t dQS
dE_/E
G = 878

g~ dQ s
b

we get the following equation for the number of photoelectrons N

GA GA
_E 975y 2.0 g
N=gy =T T, Telp - (7-12)
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This definition of the gain functions G, and Gg differs from standard usage, which
imcludes a factor of 4w Eguation (7-12) can bhe converted to the standard definition

‘}
of gain by adding (4m)" to the denominator.

The gain G of the array is proportional to the intensity of the diffraction pattern
of the array in the direction of the receiver. In the incoherent case, the intensity of
the whole array is the sum of the intensities of all the cube corners. In Section 5.1.2,
we ghowed that the intensity I o from each cube corner in terms of the dimensionless

intensity ¥’ is

2
Y
Ip“;\zmz o

For an array of identical cube corners, the intensity is

. 2
- S

[ o= E ol
ZE} \Zp2 0

n order to facilitate comparison with the range equation, let us make the gubstitutions

D=R ,

dE ., 1
o=t Qs
0" At Tt 2

which results in

2
g , dE
Zp ‘}\ZRZ Z: Tat RZ
9 .
_dE . [S E: AL
Tt C’t<2 F) 4

3 R

[
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We can ignore the factors T I TS , and éi and Writez Ip in terms of the variables

used in the range equation:
- 4E A
Z b =dr &Gy A

Comparing t}ie two expressions forz Ip, we see that

2
-8 y
GSAS—)\E § Fo,

which gives

Tor a single cube corner at normal incidence, AS = 8. If the cube corner is perfect,
in the sense that the reflected field equals the incident field, then ¥’/ = 1 at the center
of the far~field pattern, as shown in Section 5. [.2. The gain in this case is S/hz.
The standard definition of gain for a perfeet reflector of area S ig szs/xz.

7. 12 Velocity Aberration

In the moving coordinate system of a retroreflector aboard a satellite, a laser
beam incident on the cube corner is reflected back along the same line as the incident
beam. In the coordinate system of the observer on the ground, the reflected beam
makes an angle 2v/c with the incident beam, where v is the component of the satellite's
velocity perpendicular to the line of sight. - The position of the receiving eguipment in
the diffraction pattern of the array is therefore determined by the magnitude and direc-
tion of the tangential component of the satellite’s velocity. Since the transfer function
varies within the diffraction pattern, it can also vary with the amount and direction of
the velocity aberration. In cases studied, fortunately, the variation is not toc large
and is reduced when the beam width is deliberately widened, such as by building
dihedral-angle offsets into the cube corners.
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7.13 Variation of the Transfer Function within the Diffraction Pattern

The light reflected from each cube corner in an array is initially a geparate pen-
eil of light antiparallel to the incident beam. At large distances from the array, the
individual reflections spread, owing to diffraction, and overiap each other. It is
assumed that the return is observed at a distance large enough so that the diffraction
patterns of the individual cube corners are much larger than the size of the refro-
reflector array. Under these conditions, the difference in position of the centers of
the individual diffraction patterns can be neglected. The incoherent intensity at a
particular point in the far field is obtained by adding the intensity of the diffraction
pattern of each cube corner at that point. Since cube-corner diffraction patterns can
be rather lumpy, the incoherent return energy will vary at different points in the far
field, The averé.ge position of the incoherent return pulse is calculated from equation
(7-3), Although the values of dK are essentially constant over the whole diffraction
pattern, the infensities SK of the individual reflections vary from point to point.
Therefore, the mean position of the pulse varies at different points in the diffraction
pattern. At each point, there will also be variations about the inccherent values as

a resulft of coherent interference.

In cases where the information available on the optical specifications of the cube
corners is insufficient to model the diffraction patterns, we can assume that the
intensity due to each reflector is proportional to the active reflecting area of the cube
corner. This is equivalent to assuming that the diffraction patterns of all cube cor-
ners are identical.
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8. RETROREF‘LECTORwPGSITION CALCUIATIONS

8.1 Caleulation of Retroreflector Positions and Qrientations

In Ssction 7. 1, we deécribéd the ;gooxfémate systém of the retroreflector positions
and orientations, in which three ébordiﬁates and three angles were given for each cube

COrner.

The arrays carried by many of the retroreflector satellites now in orbit congist
of several panels with cube dci‘ﬁers'armged in rows and columns on each panel. The
general procedure for computing the position of eac}i cube corner is first to compute
the pogition with respect to the panel and then, through a series of translations and
rotations, to move the panel to its position on the satellite. The rotations performed
define the dire;c_i:i(m_ of the normal to the front face of the cube corner. .

Let the panel, row, and column indices of a cube cornerbe 1, J s and K, respec-
tively (see Figure 74). The position of a cube corner with respect to the supporting
panel is

Ky = CXH+ (K-1) dx R
yIJKx CYI + (J""?‘} dy H

x " ﬁzI

The constant CZE is the height of the cube-corner face above the hinge point of the
panel.
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Figure 74. A panel of cube corners.

The arrangement of the panels on most satellite arrays is such that it is conven-
ient to rotate the panel about the x and y axes by the angles @I and ¢I’ displace the
panel by AXI, Ay and Az, and then rotate about the z axis by the angle 6. The

regult is
¥ 3 -
XK AXy cos ¢y 0 sindg; 1 0 0 X15K
! e - 4 ~-si 3
Ve |° A}I ¢ i O & cos {31 sin 51 Yk E
7 . ot s . s
ZIK &2}: sin &, 0 cosdy 0 sin {31 cos ﬁI 17K /
XK Ccos 6I -8in @1 8
it - :
Ypr 1© gin 81 CO8 E}I ¢
1
213K O 0 1

The double-primed coordinates are the positions of the center of the front face of each

cube corner in the array coordinate system.
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The direction ;‘{eR, bp) of the normal to the front face of the cube corner is

obtained by performing the [3?‘@*1} aﬁd‘@l rotations successively on'the vector (0, 0, 1)

- and then computing the angles of the vector, from which we gef -

cosdy 0 sime y /1 0 0 W\

o 1 o Jlo cos By -sin

-»s;;ncj;r 0 ccsq;I g 0 sm’ﬁl C_'OS_?}I"_

+ - Let-the orientation of the cube corner on the panel be o/, as shown in Figure 75.

The angle o’ is the orientation with respect to the pole (©p ¢p- The orientation a can

be computed with respect to the pole of the array coordinate system (0 =¢ =

)y as de~
scribed in Section 8.2, hy using

" Fzgure 75. Orientation of a cube corner on a panel.

153



The above method was used to calculate retroreflector positions for the satellites
analyzed in Weiffenbach (1973} and Arnold (1972, 1975a). The geometry of the Starlette
array, whose transfer function is given in Arnold (1975a), is deseribed in Centre National
d'Ttudes Spatiales (CNES, 1972). Photographs showing the construction of Starlette
have also been published (CNES, 1975). The information used to compute retroreflector
positions for Geos 3 can be found in Arnold (1975b),

8.2 Orientation with Respect to a New Pole

In computing the position and orientation of a cube corner in an array, the orien-
tation o’ can be given initially with respect to some local pole having angular coor-
dinates 6 o and ¢ . with respect to the z axis of the array coordinate system (see Figure
76). All such orientations must be expressed with respect to the z axis of the array
(6 = ¢ = 0). Let the normal to the face of the reflector be given by the angles 65 and
‘%‘}R' The orientation angle is measured left from the great circle joining the points

(BR, ch) and (ap, ¢p) on a unit sphere, as shown in Figure 77. The plane in Figure 77

.Y
o) v b)

Figare 76. a) Direction of a local pole; b) direction of the normal to the front face of
a cube corner.
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' TO POLE o
» (6, ¢,) TO POLE (8= ¢ = 0)
PROJECTION s
OF BACK EDGE -
ONTO FACE OF
CUBE . CORNER

s

Figure 77. Diagram for computing the orientation of a cube' corner with reépec:t to a
hew pole (8 = ¢ = 0),

is the front face of the cube corner. To express the orientation with respect to a
new pole, we must compute the difference in direction to the two poles. LetV be
a unit vector in the direction (Sp, %) with the following components:

‘/Xm sin @;p cos ep P
V = sind sine
Vy sm¢p 8 b

Vz = Cog é)p .

Let an %/, v/, 2z’ coordinate system be defined with z’ in the direction of the normal to
the front face of the cube corner (SR, ch), the x’ axis in the direction of increasing
q':tRs and the y” axis in the direction of increasing BR' The components of V in the
5, 2" coordinate system can be obtained by rotating the %,¥, % coordinate system

~about the z axis by the angle 65, and then about the new y axis by the angle ¢p- The

regull is
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V., cos ¢y 0 -smc;)R cos BR smBR a

X X
Vy" = 0 1 0 - -gin GR co8 GZR 0 Vy . g
Vg, gin @R g cos {bR 0 0 1 .

3
8
b
z
i
4
&
:
1
&
i

The angle to the pole £=¢ = 0y in the x'y’ plane is 0" = =, while the angle to the pole

(ep, céap) in the X'y’ coordinate system is

1Yy

6 = fan \VX!) .

The degired orientation a from Figure 77 is

az=a +68 -1 .

8.3 Condensing Large Arrays for Coherent Calculations

The amount of computer time required to compute the enefgy and mean position
of a coherent return from a satellite retroreflector array is roughly proportional to
the square of the number of active retroreflectors. Satellites such as Geos 1 and
Geos 2 have a very large number of reflectors, a1l of which are generally active since
they all face the same direction. The variations in energy and mean position are
largely independent of the mumber of reflectors as long as the number is reasonably
large. Guidelines regarding what is considered a reasonably large number of re-
flectors were given in Section 6. Considerable savings in computer time can be
accomplished by averaging groups of neighboring reflectors and representing each
group by a single reflector at the mean position, weighted by the number of cube cor-

ners averaged. All reflectors averaged must have the same orientation.
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8+4 Shadowing

8.4.1 CGeos

Botk Geos | and Geos 2 have o hemispherical structure in the center of the side
containing the retroreflector panels (sé,e Figare 78} At large incidence angles, some
of the cube corners may be shadowed by its structure. Letx v, and 7 be the 2ODT -
dinates of 2 cube corner, and let the center of the hemisphere of radius R be located
ont the symimetry axis of the satellite g distance Z, from the satellite center of mass
(CM). The position of the cube corner in a coordma%e system with its origin st the
certer of the sphere ig

x'=x (8-1a}
y’:y y {810}
AU A {8-1c

7 Y

g \,\.Z‘ij,/

Figure 78. a) Geos I and 2 satellites; b) direction of ineident beaim on Geos 1 and 2.

Let the direction of the incident beam be (8, ¢), as shown in Figure 78, We can

rotate the x', y7, 2’ coordinate system about the z/ axis by € and about the new ¥ axig

157



by ¢ so that the final z” axis points toward the source. The coordinates of the cube

corner become

x cosd O -sing cos 6 sin® 0\ /%
vy’ j= 0 10 ~sin6 cos® O v’ . (8-2)
7" sing 0 co0s¢ ] 0 1 z'

The cube corner will be shadowed if both
z" < 0

and

vxc’fz _;__YHZ <R

The values of R and Z, for the two Geos satellites are as follows:

Satellite R _(m} z,, (m)
Geos 1 .3048 0.423
Geos 2 0. 3048 0. 444

8.4.2 Peole

The Peole satellite has a frustrum of a cone extending from the satellite in the
positive z dirvection. The axis of the cone is the z axis. Let R, and R, be the radii
of the bottom and the top of the cone, respectively, and let Z, be the z coordinate of
the base and H be the height. The position of a cube corner with respect to the center
of the bottom of the cone is given by equations {8~1), where X, ¥, and z are the coor~
dinates of the cube corner with respect to the center of mass of the satellite. Let the
direction of the incident beam be (0, ). Rotating the primed coordinate svstem s0
that the 2" axis points in that direction, we get the coordinates given by equation (8-2;.
The frustrum of a cone in the double-primed coordinate system has the shape shown

in Figure 79.
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Figure 79. Shape of Peole cone.
The cube corner will be shadowed if the following four conditions are met;

S

or if

or if

RV 7+ 3
27
) =

2

The values of the parameters, in meters, are

Po = O 8% v H=0.561 R E 051, R.O=0,051 ..

159



e s e e




9. ACKNOWLEDGMENTS

The author wishes to express his appreciation to all those who have helped with’
this work and particularly to Dr. George C. Weiffenbach, Dr.

Michael R. Pearlman,
and Mr. Carlton G. Lehr for their guidance and assistance.

161



NI LI

A e b A e

L A i




10. REFERENCES

ARNOLD, D. A. _
1972, Caleculation of retroreflector array transfer functions. Final Tech. Rep. s
NASA Grant NGR 09-015-196, December,
1974.  Optical transfer function of NT8-1 retroreflector arrayv. Tech. Rep.
RTOP 161-05-02, Grant NGR 09-015-002, Supplement No. 57, Octoher.
1975a. Optical transfer finction of Starlette retroreflector arrvay. Tech, Rep.
RTOP 161-05-02, Grant NGR 09-015-002, Supplement No. 57, February.
1975b. Optical and infrared transfer function of the Geos % retroreflector ATTAY.
Tech. Rep. RTOP 161-05-02, Grant NGR 09-015-002, Supplement No.
, October,
1978. Optical and infrared transfer function of the Lageos retroreflector array.
Grant NGR 09-015-002, Supplement No. 57, May.
CENTRE NATIONAL D'ETUDES SPATIALFS
1972, Project STARLET ~ Etude Geometrique de la Structure Porteuse de
Reflecteurs Laser. CNES Publ. No. 645, October.
1975.  STARLETTE. CNES, Groupe de Recherches de Geodesie Spatiale,
¥ebruary.
CHANDLER, K. N.
1960.  On the effects of small errors in the angles of corner cube refl eetm
Journ. Opt. Soc. Amer., vol. 50, pp. 205-208.
CHANG, R, F.
1970.  Possible failure of total reflection in an wnconted solid retroreflector.
University of Maryland Tech. Rep. 70-130, NASA Contract NAS 9-7809,
June.
CHANG, R. ¥., CURRIE, D. G., and ALLEY, C. O.
1971, Far field diffraction pattern for corner reflectors with complex reflection
coefficients. Journ. Opt., Soc. Amer., vol. 61, pp. 431-438,
ECKHARDT, H. D.
1971, Simple model of corner reflector phenomens. Appl. Opt. s vol, 10,
pp. 1559-1566,

163



FELSENTREGER, T. L.
1972, Geos-1 laser pulse refurn shape analysis. Goddard Space Flight Center
X~553-72-354, September.
FITZMAURICE, M. W., MINOTT, P.O., ABSHIRE, J. B., and ROWE, H. E.
1977.  Prelaunch testing of the laser geodynamic satellite (LAGEOS). NASA
Tech, Paper 1062, October.
HILDEBRAND, F. B.
1958.  Introduction to Numerical Analysis. MeGraw-Hill Book Co., New York,

511 pp. (see especially p. 73).
JAFFE, R. M.
1971, Signal strength fluctustions in a laser ranging system due to optical
interference between the many reflectors on a satellife. JPL Tech.
Memo. 391-218, July.
JULIAN, R. S., HIESER, G., and MAGILL, A. A.
1970. Evaluation of solid cube corner reflectors. GE Doc. No. 708D4218,
Sei, Rep. No. 2, Project No. 7600, July.
LANDAU, L. D., and LIFSHITZ, E. M.
1962.  The Classical Theory of Fields. Rev. 2nd ed., Pergamon Press,
Oxford, 404 pp. (see especially pp. 167-168).
MAHAN, A. I, BITTERLL, C. V., and CANNON, S. M.
1964. Far-field diffraction patterns of single and multiple apertures bounded

by arcs and radii of concentric circles. Journ. Opt. Soc. Amer., vol.
54, pp. 721-732.
MINOTT, P. O.
1972.  Analvsis of requirements for Geos-C laser cube corner reflector panels.
Goddard Space Flight Center X-524-72-33, January.
1974a. Design of retrodirectoy arvays for laser ranging of satellites. Goddard
Space Flight Center X-723-74-122, March.
1974b. Measurement of the lidar eross sections of cube corner arrays for laser
ranging of satellites. Goddard Space Flight Center X-722-74-301,
September.
1976. Reader's guide to the Y"RETRO'™ program output. Goddard Space Flight
Center X-722-76-267, September.
MINOTT, P. 0., FITZMAURICE, M. W., ABSHIRE, J. B., and ROWE, H. E.
1978. . Prelaunch testing of the Geos-3 laser reflector array. NASA Tech.
Paper 1138, January.

164



PECK, E. R.
1972, Pelarization properties of corner reflectors and cavities. Journ. Opt.
Soc. Amer., vol. 52, pp., 253-257.
PLOTKIN, H. H.
1964, Geos-1 laser retroreflector design and preliminary signal calculations.
Goddard Space Flight Center X- 524-64-205, July.
RAYLEIGH, J. W. S.
1945, The Theory of Sound, Vol. 1. Dover Publ., New York, 480 pp. (see
especially pp. 35-42),
REGARDIE, M. L., KIRK, J. G,, and ZIMMERMAN, J. J.
19785, Cube corner retroreflecior (RETRO) program functional design descrip-

tion and user's guide, revision 1. Computer Science Corporation
C8C/TM-76/6009.
RITYN, N. K.
1967. Opties of corner cube reflectors. Soviet Journ. Opt. Tech., vol. 34,
pp. 198-3201.

SCHULZ, L. G.
1954, The optical constants of silver, gold, copper, and aluminum. Journ.
Opt. Soe. Amer., vol. 44, pp. 357-368.
SLACK, M.
1946, The probability distributions of sinusoidal oscillations combined in
random phase. IEE Proc., vol. 93, pp. 76-86.
SMITH, R. C., and MARSH, J. S.
1974, Diffraction patterns of simple apertures. Journ. Opt. Soc. Amer. s
vol. 64, pp. 798-803,
STRATTON, J. A,
1841, Electromagnetic Theory. MoGraw-Hill Book Co., New York, 615 pp.

{sce especially pp. 494-508),
WEIFFENBACH, G. C.
1973, Use of a passive stable satellite for earth-physics applications. Final
Report, NASA Grant NGR 09-015-164, April.
YODER, P. R., Jr.

1558, Study of light deviation errors in triple mirrors and tetrahedral prisms.

165



A




