XIII. TABLES AND FIGURES TABLE XIII-1 PROPERTIES OF NITRIC OXIDE AND NITROGEN DIOXIDE | | Nitric Oxide
NO | Nitrogen Dioxide
NO2 | |--|--------------------|-------------------------| | Formula weight | 30.01 | 46.01 | | Density (gas) | 1.3402 | 1.4494 | | Melting point C | -163.6 | -11.2 | | Boiling point C | -151.8 | 21.2 | | Solubility
per 100 cc
hot water (60 C) | 2.37 cc | | | cold water (0 C) | 7.34 | soluble, decompose | Derived from Handbook of Chemistry and Physics [1] TABLE XIII-2 OXIDATION RATE OF NITRIC OXIDE IN AIR (20% O2) AT 20 C | Concentration | | Oxidation Time | | | |---------------|-----------|----------------|-----|-------| | (ppm) | 25% | 50% | 90% | Z. | | 10,000 | 8.4 sec | 24 sec | 3.6 | min | | 1,000 | 1.4 min | 4 min | 36 | min | | 100 | 14 min | 40 min | 6 | hours | | 10 | 2.3 hours | 7 hours | 63 | hours | | 1 | 24 hours | 72 hours | 648 | hours | From Austin [167] TABLE XIII-3 NITROGEN OXIDES FROM CUTTING WITH OXYACETYLENE TORCH | | A 11 | Oxides of Nitrogen (ppm) | | | | | | |------------|----------------------------|--------------------------|-----|----------|--|--|--| | Sample No. | Collection
Time (A.M.)* | NO2 | NO | NO2 + NO | | | | | 1 | 6:55 | 25 | 165 | 190 | | | | | 2 | 6:55 | | | 210 | | | | | 3 | 7:06 | | | 260 | | | | | 4 | 7:11 | | 4. | 300 | | | | | 5 | 7:18 | | | 290 | | | | | 6 | 7:20 | 90 | 180 | 270 | | | | | 7 | 7:21 | | | 300 | | | | | 8 | 7:27 | | | 330 | | | | | 9 | 7:27 | | | 310 | | | | | 10 | 7:28 | | | 340 | | | | ^{*}Cutting began at 6:40 A.M. From Norwood et al [23] TABLE XIII-4 FORMATION OF OXIDES OF NITROGEN BY VICTOR TORCH | | | Gas Evolution Rate (mg/min) | | | | | | |------------|-------------------------|-----------------------------|--------------|-------|--|--|--| | Sample No. | Torch Characteristics | Nitrogen Dioxide | Nitric Oxide | Total | | | | | lm | Flame only | 16 | 215 | 231 | | | | | 2m | Flame only | | | 250 | | | | | 3m | Stainless-steel melting | | | 47 | | | | | 5m | Stainless-steel melting | 9 | 62 | 71 | | | | | 6m | Carbon steel cutting* | 14 | 150 | 164 | | | | ^{*}More oxygen is used during cutting than during melting From Norwood et al [23] 17/ TABLE XIII-5 NITROGEN DIOXIDE CONCENTRATIONS FROM FLAME-CUTTING | Minutes
after
Completion
of Cut | Mean Concentration of Nitrogen Dioxide(ppm) | | | | | | | |--|---|-------------------|---------------------------|-------------------------------------|--|--|--| | | Flame
Only | Unprimed
Plate | Polyamide-Cured
Primer | Amine
Adduct-
Cured
Primer | | | | | 1 | 594 | 86 | 82 | 95 | | | | | 2 | 518 | 90 | 99 | 97 | | | | | 3 | 493 | 68 | 78 | 91 | | | | | 4 | 465 | 78 | 87 | 67 | | | | | 5 | 437 | 70 | 93 | 91 | | | | | 6 | 382 | 74 | 79 | 68 | | | | | 7 | 346 | 62 | 82 | 81 | | | | | 8 | 333 | 64 | 77 | 67 | | | | | 9 | 308 | 62 | 77 | 72 | | | | | 10 | 288 | 68 | 70 | 59 | | | | | 15 | 196 | 45 | 48 | 60 | | | | | 20 | 100 | 30 | 32 | 37 | | | | From Steel and Sanderson [19] TABLE XIII-6 CONCENTRATION OF NO, AND CO2 IN SILO | Days after Onset of Filling Silo | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 | 11 | 13 | 21 | 42 | |----------------------------------|---------------------|-------------|-----|-----|--------|------|-----|--------|-----------|---------|-----------|----------|-----| | No. of Loads
of Silage | | 12 | 18 | 22 | 32 | 48 | 64 | 90 | 93 | 93 | 93 | 93 | 93 | | Sampling sites | ···· | | | | | | | | | | | | | | Periphery of tower | | | | | | | | | | | | | | | 1 ft above | NO ppm | 0 | 0.4 | 0.6 | 1 | 2 | 1 | 300 | 5 | 0.6 | 0.1 | | 0.2 | | surface | NO2 ppm | 0 | 1 | 2 | 2
1 | 9 | 1 | 280 | 5 | 0.6 | 0.1 | | 0.0 | | | CO2 %v/v | | 4 | 2 | 1 | 2 | 0.4 | 41 | 0.1 | 0.0 | 0.0 | | 0.4 | | 5 ft above | NO ppm | | | | 0.5 | 2 | 0.3 | 150 | 5 | 0.4 | | | | | surface | NO2 ppm | | | | 1 | 5 | 0.6 | 220 | 4 | 0.4 | | | | | | CO2 %v/v | | | | 0.1 | 2 | 0.0 | 40 | 0.1 | 0.0 | | | | | 6 in. below | NO ppm | | | | | | | | 395 | 10 | 0.6 | 0.6 | | | surface | NO2 ppm
CO2 %v/v | | | | | | | | 200
39 | 1
13 | 0.2
11 | 0.6
2 | | | Center of tower | | | | | | | | | | | | | | | l ft above | NO ppm | 0 | 9 | 240 | 240 | 630 | 560 | 3 | | | | | | | surface | NO2 ppm | 0 | 0.1 | 400 | 220 | 1920 | 360 | 2 | | | | | | | | CO2 %v/v | 19 | 34 | 49 | 49 | 60 | 78 | 0.2 | | | | | | | 5 ft above | NO ppm | 0 | 3 | 29 | 3 | 30 | 3 | 2 | | | | | | | surface | NO2 ppm | 0 | 0.2 | 24 | 4 | 35 | 4 | 2
0 | | | | | | | | CO2 %v/v | 3 | 23 | 12 | 3 | 25 | 3 | 0 | | | | | | | 6 ft below | NO ppm | | | | | | | | | | 4.5 | 0.2 | | | surface | NO2 ppm | | | | | | | | | | 0.1 | 0.0 | | | | CO2 %v/v | | | | | | | | | | 222 | 8 | | Load covered with polyethylene sheet after 6th day, removed before tests on 11th day From Commins et al [29] TABLE XIII-7 SUMMARY OF EPIDEMIOLOGIC AND EXPERIMENTAL STUDIES ON HUMAN EXPOSURE TO NITROGEN DIOXIDE | Concentration
in ppm | Length of
Exposure | Type of
Exposure | Observed
Effects | Remarks | Reference | | |-------------------------|--|--|--|--|---------------------------|--| | 38-345 | Working lifetime | Working lifetime Occupational:
Shotfiring
operations in
coal miners | | Inappropriate con-
trol sample. Ex-
posure to high
levels of carbon
monoxide and carbon
dioxide in addition
to "nitrous fumes" | Kennedy [28] | | | 62-158 | 3 separate expo-
sures ranging
from 10 min to
2 hrs | Experimental:
Continuous in-
halation | 62 ppm for 1 hour: Laryngeal irrita- tion, but no other effects. 25-100 ppm for 2 hours: Marked mucosal irritation, increased pulse and respiratory rates. 158 ppm for 10 min- utes: Coughing, irritation of nasal and laryngeal mucosa lacrimation, head- ache, nausea, and vomiting. No delayed or long-term illness | Probable exposure
to nitric oxide
and airborne nitric
acid in addition
to nitrogen dioxide | Lehman &
Hasegawa [39] | | | 4-20 | Acute, duration not stated | duration Occupational: Conjunctivitis and | | Exposure to oxides of nitrogen | Morley & Silk
[63] | | | 2.0-10.3 | Unknown | Occupational:
Arc welding | Slight increase in methemoglobin levels in blood | Exposure to oxides of nitrogen | McCord et al [56] | | | 4-5 | 10 min Experimental:
Continuous inha-
lation | | Decrease in effective
lung compliance with
corresponding increase
in expiratory and
inspiratory maximum
viscous response | 5 healthy adult
male subjects | Abe [67] | | | 0.0-5.0 | 30 breaths or
15 min | Experimental:
Continuous in-
halation. | Exposure at 1.5-5.0 ppm increased airway resistance. Signif-icant decrease in arterial oxygen tension, and significant increase of endexpiratory arterial pressure at 4-5 ppm. No effects noted below 1.5 ppm | 88 chronic
bronchitis
patients | Von Nieding
et al [68] | | | 0.5-5.0 | 15-60 min | Experimental:
Continuous in-
halation | Significant reduction in carbon monoxide diffusing capacity in 16 healthy male subjects exposed for 15 min at 5 ppm. Significant decrease in arterial oxygen partial pressure with corresponding increase | | Von Nieding
et al [69] | | | | | | in alveoloarterial oxygen pressure gradients in 14 chronic bronchitis patients exposed for 15 min at 5 ppm. Continued exposure to 60 min did not significantly change findings at 15 min. Increased airway resistance in 70 chronic bronchitis patients exposed at and above 1.5 ppm | | | | # SUMMARY OF EPIDEMIOLOGIC AND EXPERIMENTAL STUDIES ON HUMAN EXPOSURE TO NITROGEN DIOXIDE | Concentration in ppm | Length of
Exposure | Type of
Exposure | Observed
Effects | Remarks | Reference | | |---|---|---|--|---|----------------------------|--| | 0.4-2.7 | 4-6 years Occupational:
Chemical works | | Complaints of sporadic cough, mucopurulent expectoration, and dyspnea on exertion. Normal chest X-ray, spirometry, and blood pH. Carbon dioxide partial pressure and total carbonic acid in blood increased. Significant decrease in serum proteins and significant increase in urinary amino acids and glycoproteins | Conflicting results
on the presence
of chronic obstruc-
tive pulmonary dis-
ease. Total lack
of environmental
data | Kosmider et al [71] | | | Less than 2.8 | Unknown | Occupational: Printing shop and sulfuric acid plant | Dental erosion and gingivitis; emphysema and pulmonary tuberculosis; cardiovascular hypotonia and bradycardia; polycythemia rubra, granulocytosis, basophilla; decreased osmotic fragility of red blood cells, accelerated agglutination of the blood cells; reduced catalase index, reduced alkali reserve, reduced blood sugar | Workers probably
exposed to sul-
furic acid mists
and sulfur dioxide
at unknown con-
centrations | Vigdortschik
et al [70] | | | Low Exposure=
0.106
High Exposure=
0.711 | 24 hrs/day | Community:
Ambient air
near TNT plant | Higher incidence of acute respiratory disease in high exposure community compared with low exposure community, particularly in children below age 12. No difference in chronic respiratory disease between communities | Suspended nitrates and total suspended particulates higher in high exposure community compared with other communities. Concentratio of sulfur dioxide and other contaminants not reported | French [74] | | #### TABLE XIII-8 ## SUMMARY OF CLINICAL AND EPIDEMIOLOGIC STUDIES ON HUMAN EXPOSURE TO NITRIC OXIDE | Concentration in ppm | | | Observed
Effects | Remarks | Reference | |---|---------|---|--|---|-----------------------| | ∮ 112 | 3 min | Anesthesia acci-
dent | One patient showed signs of cyanosis and methemoglobinemia, followed 18 1/2 hours later by death. Autopsy indicated severe pulmonary edema. Second patient showed signs of cyanosis, but recovered fully following proper medical treatment. | Accidents due to contamination of nitrous oxide by nitric oxide, the analysis of which was not described. | Clutton-Brock
[58] | | Working Occupational: lifetime Nitrogen ferti- lizer production | | Exposed workers had higher carboxy - and methemoglobin levels in their blood compared with controls. Exposed workers developed pyroxidine deficiency. | Exposure to carbon monoxide, ammonia, and mixed oxides of nitrogen | Nizhegorodov
& Markhotskii
[57] | | | 2-10 | Unknown | Occupational:
Arc-welding | Slight increase in methemoglobin levels | Exposure to mixed oxides of nitrogen | McCord et al [56] | TABLE XIII-9 SUMMARY OF EFFECTS OF EXPOSURE TO NITRIC OXIDE IN EXPERIMENTAL ANIMALS | Concentration in ppm | Species | Duration of
Exposure | Type of
Exposure | Observed
Efects | Reference | |----------------------|------------------------|-------------------------|---------------------|---|----------------------------------| | 5000-20000 | Dog | Up to 50 min | Continuous | 5000 ppm: Decreased arterial oxygen tension, rise in methemoglobin and arterial carbon dioxide tension. If exposure greater than 24 min, death occurred 7-120 min after exposure. 20000 ppm: Death in 15-50 minutes | Greenbaum et al [81] | | 2500-5000 | White
mice | Up to 12 min | 11 | Animals exposed at 5000 ppm died after 6-8 min. Animals exposed at 2500 ppm died after 12 min of exposure. | Flury and
Zernik [86] | | 310-3500 | 11 | Up to 8 hrs | | LC50 = 320 ppm All animals survived an 8-hr exposure at 310 ppm. At high con- centrations, nitric oxide 4 times more toxic than nitrogen dioxide | Pflesser [47] | | 175–2100 | Mice,
guinea
pig | Up to 6 hrs | n | Mice exposed at 2100 ppm for 30 min produced 80% methemoglobin. Exposure at 322 ppm for 6 hrs produced 60% methemoglobin. No change in recovery of resting respiratory rhythm in guinea pigs at 175 ppm for 120-150 min | Paribok and
Grokholskaya [87] | #### TABLE XIII-10 | Concentration
in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | R | esults | Reference | |-------------------------|----------------|---|--|--|--|---|-----------------------------------| | 88-1445 | Rats | 2-240 min | Continuous | Mortality | T1me | LC50 | Gray et al [89] | | | | | | | 2 min
5 "
15 " | 1445 ppm
833 "
420 " | | | | | | | | 30 "
60 "
240 " | 420 "
174 "
168 "
88 " | | | 115-416 | Rats,
dogs, | 5-60 min | 11 | ** | Time | <u>LC50</u> | Carson et al | | | guinea pigs | | | | 5 min
15 "
30 "
60 " | Rat
416 ppm
201 "
162 "
115 " | | | | | | | | | nea Pig | | | | | | | | 15 min | 315 ppm | | | | | | | | approxim
LC50 lev
At these
showed n
microsco
rats sho | d of toxicity mately 25% of cels for rats. levels, dogs o gross or pic changes, wed some y edema. | | | 12.5-100 | Rats | Until animals died
or arbitrary ter-
mination of exposure | Continuous
24 hrs/day,
7 days/wk | Microscopic
changes in
pulmonary
system | resulted within 2 exposed had mode hyperrlass chial are epitheli irregula ducts ar | phy and hy-
a of bron-
d bronchiolar
um as well
r alveolar
d alveoli
days of | Freeman and
Haydon [97] | | 20-70 | Guinea pigs | 30 min | Continuous | Antigen sen-
sitization | enhanced | e at 70 ppm
sensitiza-
ppm and
not. | Matsumura
[122] | | 50 | Hamsters | 1-10 wks | Intermit-
tent: 21-
23 hrs/day | Microscopic
changes in
lung tissue | within in Epitheli plasia a phy of alveoli animals mediate posure. of inflate epitheli plastic served dilled a posure of a pitheli plastic served dilled pit | nnimals died iirst 3 days. ial hyper- und hypertro- oronchial and noted in killed im- y after ex- Regression ummatory and ial hyper- changes ob- in animals wks after tion of ex- | Kleinerman
and Cowdrey
[91] | | Concentration in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |----------------------|----------------------------------|--|--|---|--|----------------------------------| | 30-50 | Guinea pigs | 30-45 min | Continuous | Mortality due
to inhaled
acetylchlo-
rine | Exposure at 50 ppm resulted in significantly higher mortality in animals pretreated with nitrogen dioxide than in controls. No differences in mortality between controls and pretreated groups at lower concentrations of nitrogen dioxide | Matsumura et al
[123] | | 5–50 | Rabbits | 3 hrs | 11 | Phagocytic
activity | Supression of virus-
induced resistance
and phagocytic ac-
tivity | Acton and
Myrvik [121] | | 10,22,36,45 | Rats | Single 4-hr
periods | ** | Microscopic
changes in
tracheal and
lung tissue | Normal trachea and
lungs 4-8 days after
exposure | Diggle and
Gage [94] | | 15 and 40 | Guinea pigs | Continuous for
10 wks or inter-
rupted for 4 1/2 hrs | 15 ppm-cont.
40 ppm-int.:
1/2 hr every
2 hrs for
4 1/2 hrs | Oxygen con-
sumption of
tissue homo-
genates | No increase in lung
tissue, but marked
increase in liver
tissues | Buckley and
Balchum [112] | | 8-40 | Rabbits | 3 hrs | " | Cellular dis-
tribution in
lung tissue | Significant increase
in intraalveolar
heterophiles from
exposure at 8 ppm | Gardner et al
[110] | | 40 | Mice | 6-8 wks | " | Oxygen consump-
tion and LDH
activity in
lung | Increase in oxygen
consumption and LDH
activity at sites of
nitrogen dioxide
lung lesions | Buckley and
Loos11 [114] | | 4-30 | Mice | 14 days at 4-7 ppm,
24 hrs at 30 ppm. | 11 | Lung capillary
permeability
and epithelial
cell damage | Leakage of tritri-
ated serum into
pulmonary lavage
fluid | Sherwin and
Richters [115] | | 26 | Dogs | 191 days | п | Macro- and
microscopic
changes in
pulmonary
system | l dog showed bullous
emphysema. Others
showed a striking
increase in the
firmness of the
lungs and emphysema,
microscopically. | Lewis et al
[101] | | 20–25 | Rats,
rabbits,
guinea pigs | 3 wks-18 mon | Intermit-
tent 2 hrs/
day, 3-4
days/wk | Macro- and
microsco
pulmonary
changes | Changes judged equivalent to microbullous emphysema observed in guinea pigs exposed for 15-18 mon. No such changes observed in rats or rabbits. | Kleinerman
and Wright
[96] | | Concentration
in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |-------------------------|----------------------------------|---|--|---|---|----------------------------------| | 15-25 | Rats,
guinea pigs,
rabbits | 2-hr exposures
for 1 or 5 days | Continuous | Macro- and
microscopic
pulmonary
changes | Pulmonary edema noted after one 2-hour exposure. Repair noted 2 wks after ex- posure. Edema and inflammation less severe after multiple 2-hr exposures than to single 2-hr ex- posure. Degree of morphologic change related to exposure concentration | Kleinerman
and Wright
[95] | | 25 | Mice | 4 1/2 mon | Intermit-
tent:
30 min/day,
5 days/wk | Microscopic changes of lung tissue due to exposure to nitrogen dioxide alone and to carbon particles with absorbed nitrogen dioxide | Lung lesions such as destruction of alveolar walls was apparent in animals exposed to combined carbon-nitrogen dioxide. No lesions noted in animals exposed only to nitrogen dioxide | Boren [124] | | 25 | Dogs | 6 mon | Continuous | Macro- and
microscopic
changes in
pulmonary
system | l dog showed macro-
scopic bullous em-
physema. All dogs
showed enlargement
of alveoli | Riddick et
al [100] | | 2-25 | Rats | Natural lifetime except for 1 ex- periment in which rats were sacrificed at daily intervals during the 1st week of exposure at 18 ppm | v | Microscopic
changes of
pulmonary
system and
lung weights | Terminal bronchiolar epithelial hyper-trophy was observed to begin on the 5th day of exposure at 18 ppm. Widespread hypertrophy of respiratory epithelium indicative of emphysema resulted from continuous exposure at 10-25 ppm. Exposure at 2 ppm resulted in a reduction of bronchiolar cilia, inhibition of normal exfoliation and blebbing of epithelia cells, and appearance of cytoplasmic crystalloid inclusions. | | | Concentration in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |----------------------|---|-------------------------|--|---|--|-----------------------------| | 1-25 | Dogs, mice,
rabbits, guinea
pigs, rats, and
hamsters | Up to 18 mon | Intermit-
tent:
6 hrs/day,
5 day/wk | Macro- and
microscopic
changes of
the pulmon-
ary system | Dogs exposed at 1 ppm for 1 year had moderately dilated alveolar ducts and sacs which contained some edematous fluid and an occassional macrophage. After 18 mon of exposure some thickening of alveolar septa and chronic inflammatory cells were noted. Hamsters exposed at 25 ppm for 3-6 mon showed minor changes in bronchiolar epithelium. No changes noted in rabbits and mice exposed for up to 18 mon at 5 and 25 ppm, respectively | Wagner et al | | 15-17 | Rats | 48 hrs | Continuous | Macrophage
division | Large increase in
no. of dividing
macrophages, as well
as total no. of
macrophages. | Evans et al [111] | | 2 and 17 | n | 1 hr - 43 days | • | Microscopic
changes in
lung tissue | Increased lung weight and severe injury to bronchiole epithelium in animals exposed at 17 ppm. Animals exposed at 2 ppm showed no increase in lung weights compared with controls. Loss of cilia, hypertrophy, and focal hyperplasia noted after 3 days of exposure. Tissue recovery observed in animals killed after 21 days of exposure | Stephens
et al {130} | | 2 and 17 | " | Up to 360 days | 11 | Microscopic
changes in
bronchioles
and terminal
alveoli | Increased cell pro-
liferation during
the first 3-5 days,
returning to normal
after this time | Evans et al [131] | | 5-16 | Dogs and
rabbits | 1 hr | | Microscopic
changes of
capillary en-
dothelium and
alveolar epi-
thelium | Exposure had greatest effect on capillary endo-thelium. Findings included bleb formation, endo-thelial cell organ-elles in the capillary lumens, and appearance of platelets and polymorphonuclear leukocytes in lumens of capillaries adjoining blebs. | Kilburn and
Dowell [104] | | Concentration
in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |-------------------------|-------------|---|---|--|---|--------------------------------| | 3-16 | Dogs , | 1 hr | Continuous | Microscopic
changes of
endothelisl
cells | Bleb formation,
loss of pinocytic
vesicles, and
mitochondrial
swelling. Exposure
at 3 ppm resulted
in bleb formation
without other
changes. | Dowell et al [105] | | 15 ± 2 | Rats | 1, 2, & 7 days | " | Ultrastruc-
tural changes
of lung tissue | Bronchiolar epithe-
lium was less
columnar, brush
cells increased in
number, microvilli
became smaller,
and number of
macrophages in-
creased. | Parkinson and
Stephens [107 | | | Guinea pigs | 3 mon | | Quantitative
change in
alveolar cells | Both an increase in
the number of
alveolar cells and
the number of cells
per alveolar space
resulted from ex-
posure. | Sherwin et al | | 5–15 | | l year | 5 ppm:
4 hrs/ day,
5 days/wk
15 ppm:
7 1/2 hrs/
day, 5 days/ | Antibody
titers
wk | Minimal microscopic change of lung tis-
sue. Serum anti-
bodies appeared within 160 hrs, and increased with continued exposure. | Balchum et al | | 15 | Rats | Natural
life-time | Continuous | Pulmonary
changes | Animals had volumni-
ous dry lungs,
microscopic signs of
epithelial hyper-
trophy emphysema,
and loss of cilia. | Freeman
et al [102] | | 15 | Guinea pigs | 26-40 days | 23 hrs/day | Enzyme ac-
tivity in lung | Decrease in aerobic
isozyme and increase
in anaerobic isozyme
in lung tissue. | Buckley and
Balchum [113] | | 1-14.8 | Mice | 1.9-14.8 ppm for
4 hours and 1, 2.3,
6.6 ppm for 17 hrs | Continuous | Antibacterial
activity of
animals in-
fected with
radiophos-
phorus labeled
Staphylocco-
cus aureus | Decreased bacteri-
cidal activity in
animals infected
then exposed to
7 ppm. Exposure
at 2.3 ppm for
17 hrs prior to
infection also
resulted in reduced
bactericidal re-
sponse. | Goldstein
et al [139] | | 9.3-14.3 | Rats | 10-24 days | Intermit-
tent:
4 hrs/day,
5 days/wk | Pulmonary
changes | Immediately after exposure, rats showed severe rhinitis and tracheitis with less severe pneumonitis. Animals killed 8 wks after exposure showed signs that the inflammatory process had subsided. However, localized areas of emphysema were noted. | Gray
et al [92] | | Concentration in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |----------------------|---|--|-------------------------------------|--|--|---------------------------------| | 0.5-14 | Mice | Ct = 7; continuous
at 0.5, 1.5, 3.5 ppm;
7 hrs/day at 3.5 ppm
for up to 288 hrs | Continuous
and inter-
mittent | Mortality due
to challenge
by Strepto-
coccus pyo-
genes | Ct was not a con- stant. Lower mor- tality with inter- mittent exposure. Linear regression of % mortality versus exposure time significantly different from zero slope for exposure at 0.5 ppm, not so for exposure at 1.5 ppm | Coffin et al [140] | | 8–12 | Rabbits | 3-4 mon | Continuous | Microscopic
changes of
pulmonary
system | Emphysema-like
dilations of peri-
pheral alveoli
were noted. | Haydon et
al [98] | | 0.5-12 | Monkeys, dogs,
rabbits, guinea
pigs, rats | 90 days | 11 | Hematologic
changes,
weight gain,
gross lung
pathology | Bronchitis, broncho- pneumonitis, pneu- monia, and foci of multinucleated cells noted in animals ex- posed at 12 ppm. No lung pathology observed in animals exposed at and below 5 ppm | Steadman
et al [145] | | 10 | Guinea pigs | 6 wks | 11 | Ultrastruc-
tural changes
of lung
tissue | Thickening of blood-
gas barrier by re-
placement of
ultrathin type 1
cells by cuboidal
or columnar type
2 pneumocytes. | Yuen and
Sherwin
[106] | | 10 | 11 | 7 wks | п | Macrophage
congregation | Exposed animals showed an in- crease in macro- phage congregation as well as an in- crease in the number of macrophages/epi- thelial cell. | Sherwin
et al
[109] | | 5-10 | Squirrel
monkeys | 5 ppm: 2 mon
10 ppm: 1 mon | n | Susceptibility
to infection | Increased suscepti-
bility to infection
by K. pneumonia and
influenza virus | Henry et
al [117] | | 5 | Rats, mice,
monkeys | 90 days | ** | Mortality | No significant mor-
tality. No remark-
able changes in
growth or blood
chemistry | MacEwen and
Geckler
[128] | | 5 | Squirrel
monkeys | 169 days | п | Antibody pro-
duction due to
intratracheal
injections of
mouse-adapted
influenza
virus | Hemaglutination-inhibition anti-body not affected. Serum neutralizing antibody increased initially, but no differences between experimental and control animals by 169th day. | Fenters et
al [137] | | Concentration in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |----------------------|----------------------------|-------------------------|---|--|--|----------------------------| | Nean = 4.5 | Rats, mice,
monkeys | 90 days | Continuous | Hematologic
and urinary
changes as
well as micro-
scopic changes
of the liver,
kidneys, lungs,
heart, pan-
creas, spleen,
adrenals,
cortex,
medulla, and
spinal cord | findings | House [127] | | 4 | Rats, mice,
guinea pigs | 6 maon | Intermit-
tent: 4 hrs/
day, 5 days/
week. | Incidence of pulmonary obstructive disease | No significant
difference between
experimental and
control groups | Gray et
al [126] | | 0.8-4 | Rats | 16 wks | Continuous | Macro- and
microscopic
changes of
lung tissue | No macroscopic signs
of chronic obstruc-
tive disease. Only
minimal microscopic
changes | Haydon et
al [143] | | 2.5 and 3.5 | Mice | 2 hrs | u | Susceptibility
to Klebsiella
pneumoniae | Increased susceptibility at 3.5 ppm, not at 2.5 ppm. | Purvis and
Erlich [135] | | 1.5, 2.5, 3.5 | n | 11 | u | Mortality due
to challenge
by Klebsiella
pneumoniae | Significant increase
at 3.5 ppm, but not
at 2 lower levels. | Erlich et al [136] | | 0.5-3.5 | n | 2 hrs and
9 mon | Continuous
or Intermit-
tent (6 hrs/
day, 5 days/
wk) | Mortality resulting from exposure to airborne Klebsiella pneumoniae | No effect following
2-hr exposure at
3.5 ppm. Significant
increase in mortality
in animals exposed
continuously for 3
mon or intermit-
tently for 1 mon
at 0.5 ppm | | | 2.9 <u>+</u> 0.71 | Rats | 9 mon | 24 hrs/day,
5 days/wk. | Changes in
lung weights
and physi-
ology | 12.7% mean increase in lung weights. 13% mean decrease in lung compliance. Reduction of surface-active properties of lung-wash fluid | Arner and
Rhodes [134 | | 2 ± 1 | H | Natural
lifetime | Continuous | Changes in
respiratory
function as
well as
microscopic
changes of
lung tissue | Persistant tachyp- nea in all animals. No changes in air- flow resistance or dynamic compliance. Microscopic changes including reduced blebbing of cytoplasm into airways, loss of cilia, and appearance of intracytoplasmic crystalloid inclu- sions. | | | 2 | Guinea pigs | 1, 2, or 3 wks | "
186 | Ratios of
lactate de-
hydrogenase-
positive wall
cells to
alveoli | Exposed animals showed changes of LDH activity suggesting increases in type 2 pneumocytes as compared with controls | Sherwin et
al [132] | | Concentration in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |----------------------|-------------|-------------------------|--|---|--|--------------------------| | 0.1-2 | Mice | 3 1/2-7 mon | Continuous at 0.5 and 2 ppm. Intermittent: 0.5 ppm with 1-hr peaks at 2 ppm, 5 days/wk, or 0.1 ppm with 3-hr peaks of 1 ppm, 5 days/wk | Cellular mor-
phology of
lungs, phago-
cytic activity
and oxygen
consumption
of alveolar
macrophages | Cell counts, macrophage viabilities at isolation, and oxygen consumption of macrophages unaffected. In vitrophagocytic activity reduced in animals exposed intermittently at 0.5/2 ppm for 3 1/2 or 7 mon. No such change noted in animals exposed continuously at 2 ppm. Changes in morphology of macrophages noted in animals exposed intermittently at 0.5/2 ppm. No such changes observed in other exposure groups | Aranyi and
Port [147] | | 0.5-2.0 | ti . | Up to 40 wks | Continuous at 2.0 ppm or inter- mittent (5 days/wk) at 0.5 ppm with 1-hr peaks at 2.0 ppm (0.5/2) | Immune re-
sponse | No difference between experimental and control animals in HI antibody titers. SN titers significantly depressed in animals exposed at 0.5/2. Significant increase in IgA, IgM, IgG, and IgG2 immunoglobin levels in animals exposed to nitrogen dioxide, particularly in those animals exposed at 0.5/2 ppm | Erlich et
al [158] | | 1-1.5 | •• | l Mon | Continuous | Microscopic
changes in
trachea and
lungs | Desquamative bron- chitis observed in animals killed immediately after exposure. Infiltra- tion of lymphocytes seen in lungs of animals killed I and 3 months after exposure. No controls | Chen et
al [133] | | 1 | Guinea pigs | 180 days | 8 hrs/day | Macro- and
microscopic
changes in
the lung.
Hematologic,
urinary, and
immunologic
changes | Evidence of chronic respiratory disease such as bronchitis bronchopneumonia, extravasation of blood in lungs, and foci of emphysema. Urinary hydroxproline and acid mucopolysaccharides were increased. Decreased serum proteins, immunoglobulins, and weight gain | Kosmider
et al [71] | | Concentration
in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |---|---------------------|------------------------------------|---------------------|---|---|------------------------| | 1,0 | Rabbits | l hr | Continuous | Changes in
protein struc-
ture of lung
tissue | Peak shift in absorbance spectrum in animals killed immediately after exposure. Absorbance spectrum returned to normal in animals killed 24-48 hrs after exposure | Buell et
al [151] | | 1.0 | Rats | 1-6 days | 4 hrs/day | Changes in
lung lipid
structure | Absorption spectra indicative of dienne conjugation | Thomas et
al [153] | | 1.0 | Squirrel
monkeys | 493 days | Continuous | Microscopic changes in lung tissue and immune responses resulting from challenge with A/PR18/34 virus | No difference between experimental and control animals in hemaglutination-inhibition antibody titers, body temperatures, respiratory function, body weights, hematologic values, and ultrastructural changes. Monkeys exposed to nitrogen dioxide produced serum neutralization antibody within 21 days of exposure as well as signs of chronic pulmonary obstructive disease by the end of exposure. | Fenters et
al [157] | | 0.5-1.0 | Rats | l hr at 1 ppm,
4 hrs at 0.5 ppm | " | Changes in
mast cells of
lung | Exposure at 1 ppm resulted in loss of cytoplasmic granules, rupture, and reduction in number of mast cells. Exposure at 0.5 ppm for 4 hours resulted in degranulation of mast cells. | Thomas et al [152] | | 0.2-1.0 in combination with 0.2-2.0 ppm. nitric oxide. | Dogs | 4 1/2 years | 16 hrs/day | Cardiovascular
changes | No significant effects | Bloch et
al [149] | | 0.1-1.0 in
combination with
0.1-2.0 ppm
nitric oxide | | 18 mon | n | Pulmonary
function | No change in single-
breath carbon
monoxide diffusing
capacity, dynamic
pulmonary compliance,
or total pulmonary
resistance. | al [148] | | 0.8 | Rats | Natural
lifetime | Continuous | Respiratory
physiology
and micro-
scopic changes
of lung tis-
sue | Sustained tachypnes
20% above controls.
Minimal morphologic
changes. No gross
or microscopic signs
of obstructive
disease | Freeman et
al [144] | | Concentration
in ppm | Species | Duration of
Exposure | Type of
Exposure | Dependent
Variable(s) | Results | Reference | |-------------------------|-------------|-------------------------|---|---|---|------------------------------| | 0.5 | Mice | 3-12 mon | 6, 18, 24
hrs/day | Alveolar size | Lung alveoli ex-
panded in all mice
exposed to nitrogen
dioxide as compared
with controls | Blair et
al [146] | | 0.5 | n | 1-12 mon | Continuous
or intermit-
tent (6 or
18 hrs/day) | Mortality, rate of bac- terial clearance, serum lactic dehydrogenase resulting from exposure to Klebsiella pneumoniae | Reduced rate of clearance. LDH showed shift from anaerobic to aerobic bands. Significant increase in mortality in animals continuously exposed for 3 mon or longer, and in animals intermittently exposed for 6 mon | Ehrlich and
Henry [156] | | 0.4 | Guinea pigs | 1 wk | Continuous | Protein level
in lung lavage
fluid | Animals exposed to
nirrogen dioxide
showed higher
protein levels in
lung lavage fluid
than controls | Sherwin and
Carlson [154] | TABLE XIII-11 INCIDENCE OF PULMONARY TUMORS IN NO2 EXPOSED AND IN CONTROL MICE | Duration | 5 ppm NO2 | | Control | % Difference
of Tumor | | |------------------------|------------------------------|----------------------|------------------------------|--------------------------|---| | of
Exposure
(MO) | No. with Tumors No. Examined | % Tumor
Incidence | No. with Tumors No. Examined | | Incidence in
Exposed versus
Control Animals | | 12 | 7
10 | 70 | $\frac{4}{10}$ | 40 | +30 | | 14 | $\frac{7}{15}$ | 47 | $\frac{8}{15}$ | 53 | - 6 | | 16 | 1 <u>5</u> 24 | 62 | 1 <u>5</u>
24 | 62 | 0 | From Wagner et al [93] TABLE XIII-12 CORRELATION OF OXIDES OF NITROGEN WITH TORCH SIZE | Size
of Tip | Acetylene
Consumption
(cu ft/hr)(1) | Time After
Ignition of
Torch
(minutes) | Concen-
tration
of Nitrogen
(as NO2)
(ppm) | Average
Concen-
tration
(ppm) | |----------------|---|---|--|--| | #4 | 15.9 | 1 3 | 25
50 | | | | | 4 | 40 | 38 | | #6 | 31.6 | 1 | 65 | | | | | 3
4 | 75
100 | 80 | | #8 | 60.0 | 1 | 150 | | | | | 2 3 | 210
240 | | | | | 4 | 240 | 210 | | #10 | 88.5 | 1 | 210 | | | | | 2
3 | 270
320 | | | | | 4 | 320 | 280 | | #12 | 175 | 1 | 240 | | | | | 4
5 | 370
430 | | | | | 5
7 | 370 | 352 | ⁽¹⁾ Rated capacity of tip From Adley [11] TABLE XIII-13 OXIDES OF NITROGEN IN LARGE, VENTILATED COMPARTMENTS | Volume of | | Number of | Oxides of Nitrogen
(Expressed as NO2) | | | |-------------|---|----------------------|--|--|--| | Compartment | Remarks | Number of
Samples | Average
Concen-
tration
(ppm) | Maximum
Concen-
tration
(ppm) | | | 7200 | Operator shrinking intermittently.
Fair natural ventilation. | 5 | 48 | 89 | | | 8700 | Operator working on deck plates adjacent to fresh air supply hose. | 5 | 19 | 32 | | | 8700 | Operator shrinking in compartment having one fresh air supply hose about 20 feet away. | 3 | 34 | 38 | | | 9000 | Operator shrinking near outside hatch. Good natural ventilation. | 3 | 4 | 4 | | | 10000 | Two operators shrinking. Two fresh air supply hoses introducing a total of about 1,000 cfm. | 12 | 17 | 27 | | Note: #10 torch tips being used during all sampling. From Adley [11] TABLE XIII-14 NITROGEN OXIDES EXPOSURES FROM WELDING OPERATIONS IN SEVEN SHIPYARDS | 7 | ation | Total
Number | | Nitrogen Oxides (ppm) | | | | | | |----------|--|-----------------|-----|-----------------------|-------|------------|-------|---------------|------| | Major | Minor | Samples | 0-4 | 5-9 | 10-14 | 15-19 | 20-24 | 25 or
over | Mean | | Hull | Inner bottoms | 172 | 98 | 51 | 18 | 1 | 1 | 3 | 5.2 | | | Fore- and after-
peaks and small
tanks | 166 | 90 | 43 | 22 | 7 | 3 | 1 | 5.8 | | | Cargo holds,
superstructure and
other large spaces | 661 | 364 | 180 | 68 | 22 | 13 | 14 | 5.9 | | | Top deck and outside shell | 104 | 58 | 23 | 10 | 6 | 1 | 6 | 7.3 | | Sub- | Inner bottoms | 48 | 22 | 11 | 5 | 4 | 1 | 5 | 8.9 | | assembly | ,
Fore- and after-
peaks | 136 | 87 | 34 | 11 | 2 | 1 | 1 | 4.6 | | | Superstructure | 69 | 34 | 24 | 4 | 7 · | 0 | 0 | 5.8 | | | Open, flat sheets | 257 | 170 | 59 | 13 | 10 | 3 | 2 | 4.7 | | Shop | Fabrication | 295 | 176 | 67 | 39 | 9 | 3 | 1 | 5.2 | | | Pipe | 111 | 56 | 30 | 11 | 3 | 6 | 5 | 7.4 | From Dreessen et al [13] ⇔USGPO: 1976 — 657-696/5536 Region 5-II 195 OFFICIAL BUSINESS MENALTY FOR PRIVATE USE. 5806