Methane Recovery from Hydrate-bearing Sediments

Prime Recipients

J. Carlos Santamarina Costas Tsouris Carolyn Ruppel Georgia Tech ORNL/Georgia Tech USGS (no cost)

Agreement Number

DE-PS26-06NT42820

NETL Project Manager Timothy Grant

Objective - Expected Benefits

Energy resource

• Climate change: green house effect

sediments

Seafloor instability

Challenge

Keys: Energy Forms + Scales + Sediment

	Mineral surface	Porous network	Sediment
	1D - interface	2D - sub mm	3D - m
Mechanical - Pressure Thermal Chemical Electromagnetic Coupled Energy	Kinetics Formation Dissociation Surface effects Miner+hydr+fluid	Confinement Bubble formation Conduction prop. Mass transport	Formation Dissociation Granular media Mass transport THM coupling

Project Organizational Structure

Team

Technical Approach

Main Tasks

- Task 1. Research Management Plan
- Task 2. Technology Status Assessment Report
- Task 3. Continuous Literature Research/Updating
- Task 4. 1D Single Mineral Surface: Experimental and Analytical Studies
- Task 5. 2D Porous Network Experimental Studies and Model Development
- Task 6. 3D Sediment: Experimental Study Using Effective Stress Cells

----- check point ------

Task 7. 3D Sediment: Experiments in Seafloor Process Simulator - Analyses

•effect of mineral surface on formation and dissociation?

- •effects of different potentials?
- •most relevant phenomena during dissociation?
- •can robust & simple models capture observed response?

4.1: Single mineral 1-D experiments

4.2: Intrinsic kinetic model development

Intrinsic kinetics of hydrate dissociation

Hydrate dissociation ⇒ system is driven outside of hydrate equilibrium & stability zone

$$r_{dis} \propto \left[\mu(P,T,x,...) - \mu_{equil} \right] driving force$$

Equilibrium criteria:

$$T' = T'' = T''' = \dots$$

$$P' = P'' = P''' = \dots$$

$$\mu'_{i} = \mu''_{i} = \mu'''_{i} = \dots$$

experimental study of dissociation kinetics

Task 5: 2D Porous Network

- •phenomena that deviate from convex process
 - (self-preservation, percolation, fingering, gas migration)?
- •evolution of dissociation, spatial variability, connectivity
- •implications to gas recovery? for modeling?
- •production strategies: low vs. high hydrate conc.?
- •effect of different potentials
- robust models to capture observed response
- 5.1: 2-D porous matrix experiments
- 5.2: 2-D porous matrix model development

Hydrate dissociation and CH4 transport

Hydrate dissociation :

- "shrinkage" of hydrate phase
- changes in phase distribution
- local thermal variations

Analysis of <u>multiphase flow with thermal gradients</u> \Rightarrow coupled momentum, mass, and energy balances

Task 6: 3D Sediment – σ ' Cell

•poro-mechanical 3D effects

•suitable production strategies

•effect of specimen preparation on gas recovery

•promising production strategies to facilitate recovery control ?

•criteria for the experiments in Task 7.0

Instrumentation

Sand

Pressure [MPa]

Phase Transformation – V_p and V_s (Kaolinite + THF + H_2O)

Phase Transformation - Real Permittivity

(Kaolinite + THF + H₂O)

Experimental Results

3-D transport and CH4 production

3-D Extension of coupled momentum, mass, & energy balances

CH₄ production rate:

$$Q = \iint_{S} \left(\stackrel{\bullet}{N}_{CH_4} \cdot \vec{n} \right) dS$$

Task 7: 3D Sediment – SPS and Model

- •specimen preparation and gas recovery
- •evolution of de-stabilization fronts all potentials
- •role of reservoir geometry? optimal production strategies?
- •emergent phenomena? HF, percolation/coning, compaction/collapse?
- •simple yet predictive models (include THF coupling)

- 7.1: Hydrate formation
- 7.2: 3D Sediment Experiments
- 7.3: Analysis and model

Model Verification \rightarrow Instrumentation

Analyses at different length scales

Why Use Chemical Potential?

Fundamental Equation of Thermodynamics

$$du = Tds - Pdv + \sum_{j} \left[\delta W_{rev} \right]_{j} + \sum_{i} \mu_{i} dN_{i}$$

Surface: $\sigma \leftrightarrow a$ Electric: $E \leftrightarrow D$ Magnetic: $H \leftrightarrow B$

Hydrate Equilibrium Thermodynamics

Solving the model

Schedule

Milestones Deliverables

Calendar Year	06		20	07			20	08			20	09			2010)	
	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	Dec	Mar	Jun	Sept	
Task 1.0: Research Management Plan																	
Task 2.0: Initial Technology Status Assessment																	
Task 3.0: Continuous Literature Research/Updating																	
Task 4.0: 1D Single Mineral Surface																	
Subtask 4.1: Experimental studies																	
1. Design and manufacture the instrumented pressure vessel																	
2. Prototype and first set of data																	
3. Complete the experiments and data analysis																	
Subtask 4.2: Analytical studies																	
1. Intrinsic kinetic model																	
Development of theoretical framework for kinetic model																	
Formulation of general mathematical expressions																	
Derivation of particular expressions for formation/dissociation																	
2. Validation of modeling results with experimental data																	
Task 5.0: 2D Porous Network - Single Grain Layer																	
Subtask 5.1: Experimental studies																	
1. Design the instrumented pressure vessel																	
2. Prototype and first set of data																	
3. Complete the experiments and data analysis																	
4. Supplement tests tasks 4 and 5																	
Subtask 5.2: Analytical study																	
1. Thermodynamic model, mass transport and energy coupled mode																	
Mathematical modeling of confinement effects																	
Development of coupled equations of mass and energy transport																	
Development of numerical solution strategies for the 2-D model																	
2. Validation of 2-D model																	
Task 6.0: 3D - Effective Stress Cell																	
1. Design and manufacture the instrumented pressure vessel																	
2. Prototype and first set of data																	
3. Complete the experiments and data analysis																	
Task 7.0: 3D - SPS Cell and Analyses																	
Subtask 7.1: Hydrate formation in SPS																	
Subtask 7.2: Experimental studies in SPS																	
1. ORNL's SPS Production Studies																	
First data set with selected formation																	
Complete experiments study and data analysis																	
Subtask 7.3: Analytical study																	
1. 3-D mathematical model																	
Extension of the 2-D model and numerical solution to 3-D																	
2. Validation of 3-D model via comparison																	
4. Integration of analyses of hydrate formation																	
4. Simulation of different scenarios																	

Checkpoint

Checkpoint

Milestones

2006	December	Experimental: 1D cell machined
2007	March	Experimental: First formation/production test in 1D cell (+instr.)
		Experimental: First formation/production test in 2D cell (+instr.)
2007	December	Analytical: Model for 1D production – coupled energy
2008	September	Experimental: First formation/production test in σ ' cell (+instr.)
2009	March	Experimental: Results coupled energy production in 2D cell
2009	June	Analytical: Model for production in 2D networks
2009	December	Experimental: First production study in ORNL's SPS
		Experimental: Insightful production-related results from SPS cell
2010	June	Analytical: Predict & optimize 3D production results
2010	September	PROJECT COMPLETION

Deliverables

Deliverable	Approx. Submission Date
Research Management Plan	10/31/2006
Technology Status Assessment Report	11/30/2007
Pressurized vessel design	
Quarterly Report	02/28/2007
Annual Report	08/31/2007
Quarterly Report	02/28/2008
Annual Report	08/31/2008
Quarterly Report	02/28/2009
Annual Report	08/31/2009
Recommendation	08/31/2009
Review of Recommendation	09/30/2009
Quarterly Report	02/28/2010
Final Report	09/30/2010

Problems and Risks

Hydrate formation in sediments - history

Instrumentation

System identification / Inversion

Model verification

Laboratory \rightarrow field? (field test with MBARI?)

Unknowns!

. . .

Possible opportunities

Production test – India cores

Field tests (e.g., with MBARI)?

Budget Period Slide

Budget: Government and Cost Share

Task	Task Description	DOE	Cost Share	Task Total
1.0	Research Management Plan			
2.0	Technology Status Assessment			
3.0	Continuous Literature Research/Updating			
4.0	1D Single Mineral Surface: Experimental and Analytical Studies	368,550	114,420	482,970
5.0	2D Porous Network – Single Grain Layer: Experimental and Analytical Studies	277,675	86,205	363,880
6.0	3D Sediment: Experiments in Effective Stress Cell	40,388	12,538	52,926
7.0	3D Sediment: Experiments in SPS Cell – Analyses	100,972	31,347	132,319
8.0	Final Report / Deliverables			
	Total	787,585	244,510	1,032,095

BP 1 - 9 months BP 2 - 12 m		- 12 m	onths	BP 3	- 12 m	onths	BP 4	- 15 mc	onths	Totals				
DOE	GIT	Total	DOE	GIT	Total	DOE	GIT	Total	DOE	GIT	Total	DOE	GIT	Total
155319	49170	<mark>204490</mark>	184260	63401	<mark>247661</mark>	187670	60004	<mark>247673</mark>	260336	71935	<mark>332271</mark>	787585	244510	<mark>1032095</mark>

Final Products

Main Products:

- Technology to recover natural gas from hydrates
- Predictive models Analysis/design/optimization
- Unprecedented database of production-related parameters

Groundwork:

...towards field demonstration with Industry

Byproducts:

- Enhanced understanding of hydrate bearing sediments
- Algorithm and software for process simulation
- Possible implications to seafloor stability, climate