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ABSTRACT 
 

 
CartaBlanca is an object-oriented nonlinear simulation and prototyping software package whose main 
functions are to assist both analysts and code developers in solving a wide range of hydrodynamics 
and fluid/structure-interaction problems.  
 
The CartaBlanca User’s Guide provides comprehensive instruction on the use of CartaBlanca to 
obtain and analyze results for the broad range of problem domains the code is applicable to.  The 
User’s Guide includes a description of CartaBlanca’s capabilities, a “quick start” to using the code, 
complete input specifications (including description of a graphical user interface that assists in 
preparing input files), and sections on the running of CartaBlanca, modeling guidelines, and the 
code’s output files and printouts. 
 
This manual is one of three documents that comprise the main CartaBlanca documentation set. The 
other two are the Theory Manual  [12] and the Programmer’s Manual [13]. 
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1. INTRODUCTION 
 
This document provides a comprehensive guide to the use of the CartaBlanca computer program to 
obtain and analyze results for the broad range of problem domains in hydrodynamics and fluid-
structure interaction for which the code is applicable.  An overview of CartaBlanca’s capabilities is 
given in Section 2, where the reader is also directed to the CartaBlanca website for additional 
information. 
 
Section 3 gives a “quick start” to using CartaBlanca. Complete input specifications are given in 
Section 4; in addition, Section 4 describes a graphical user interface that has been developed to assist 
in preparing input files. Section 5 describes the running of CartaBlanca, including the platforms 
supported. The form of CartaBlanca’s output files and printouts, and their analysis, are discussed in 
Section 6. Guidelines for use of the code’s many input options and features are given in Section 7. 
 
This manual is one of three documents that comprise the main CartaBlanca documentation set. The 
other two are the CartaBlanca Theory Manual [12] and the CartaBlanca Programmer’s Manual [13]. 
The Theory Manual gives a detailed description of the code’s physics and numerical basis, including 
the governing conservation equations, their closure models and discretization, available constitutive 
models, and the numerical solution methods. The Programmer’s Manual describes the code’s 
structure, computational flow, and database; it references relevant sections of the Theory Manual.  
 
 
2. CartaBlanca OVERVIEW 
 
CartaBlanca is an object-oriented component-based simulation and prototyping software package that 
enables both analysts and code developers to solve a wide range of nonlinear hydrodynamics and 
fluid/structure-interaction problems on unstructured grids and graphs. Although the user of 
CartaBlanca does not need to know the details of the code’s implementation, she or he should be 
aware that CartaBlanca was designed to be readily extendable to new physical models. CartaBlanca is 
written entirely in Java; therefore it provides scientists and engineers with developer-friendly, 
modular software to use in producing large-scale computational models. CartaBlanca allows users to 
solve a wide variety of nonlinear physics problems, including multiphase flows, interfacial flows, 
solidifying flows, and complex material responses. CartaBlanca makes use of the powerful, state-of-
the-art Jacobian-free Newton-Krylov method to solve nonlinear equations in a flexible unstructured 
grid finite-volume scheme. CartaBlanca couples a Material Point Method (MPM) implementation of 
the Particle-in-Cell (PIC) method (a technique used to model discrete objects), with its Arbitrary 
Lagrangian Eulerian (ALE) multiphase flow treatment, to model fluid interaction with solid materials 
that can undergo deformation, damage, and failure. The MPM/PIC method can also be used to model 
solid-solid interactions. 
 
Calculations can be run in 1-D, 2-D, or 3-D on a wide variety of unstructured grids with triangular, 
quadrilateral, tetrahedral, and hexahedral elements.  This design allows CartaBlanca to handle 
complex geometrical shapes and mathematical domains. Cartesian, cylindrical, or spherical 
coordinates can be used. 
  
Because CartaBlanca is written entirely in Java, it is highly portable and readily installed on any 
platform with a Java runtime environment available. CartaBlanca has been run on platforms ranging 
from Windows laptops to supercomputers. Runtime performance is close to that of Fortran 
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hydrodynamics codes. Parallel computation is built into the code: CartaBlanca is designed around 
Java’s built-in multi-thread capability, where processes can be run simultaneously and can 
communicate with each other, but are controlled from the same program. Both shared and distributed 
memory architectures are supported. 
 
The preparation of input files is greatly facilitated by a graphical user interface that is provided with 
the code. Also, an extensive set of test problems is provided; these problems can be used as templates 
for the creation of other input models. 
 
Output is written to text files in both Tecplot [11] format and ParaView [9] format (Note: The 
ParaView capability is currently under development). 
 
2.1. CartaBlanca Website 
 
A good introduction to CartaBlanca’s motivation, design, and capabilities can be found at the 
CartaBlanca website: 
 
 http://www.lanl.gov/projects/CartaBlanca/ 
 
 
3. CartaBlanca QUICK START 
 
Here we provide “quick start” guidance on installing CartaBlanca, the code’s input requirements, 
running the code, the CartaBlanca test suite, creating a new problem, and viewing the output. 
 
CartaBlanca is very easy to install and run. We provide scripts to compile and run the code from the 
Unix command line (which can be easily modified for Windows/DOS). Alternatively, the user may 
wish to use one of the integrated development environments (IDEs) for Java (NetBeans, Eclipse, 
JBuilder, etc.), which are available at no cost on the Internet.    
 
3.1. Computer Platforms and Installation 
 
CartaBlanca is distributed as a single .zip file that contains the executable code, source code, 
scripts for building and running the code (we describe building and running CartaBlanca below), an 
extensive set of sample input-specification files that spans a wide range of applications, and 
documentation. 
  
Functionally, the code is comprised of four elements: (1) the solution engine (“main code”) that reads 
and processes input (problem specification) files and writes the output, (2) a graphical user interface 
(GUI) that assists the user in preparing an input-specification, (3) a set of routines (“methods” in Java 
parlance) that sets up and drives an extensive test suite for the code that is based on the Java JUnit 
facility, and (4) a set of Java methods that can be used to generate mesh files that specify a problem 
domain. While these four code elements are functionally distinct, the CartaBlanca software is written 
and organized as a single integrated set of program source files; essentially, different entry points are 
specified at run time to select the desired functionality (much of the code is also shared). A large set 
of mesh files that specify computational grids in 1-D, 2-D, and 3-D is included in the distribution. 
The distribution also includes Unix scripts to build and run CartaBlanca, JBuilder projects to do the 
same (see below), and an XML file to build the code with the ant utility.  
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Because CartaBlanca is written entirely in Java, it can be run on any computer platform with a Java 
runtime environment (e.g., Unix/Linux/Solaris, Windows, Mac OS).  The CartaBlanca package itself 
is less than 400 MB; all the test cases in the distribution package have been run with the Java 
parameter –mx64m (maximum memory of 64MB).  The code has been run on platforms ranging from 
laptops to supercomputer clusters. Currently at Los Alamos, Java versions 1.4.n are being used for 
CartaBlanca development and applications. 
 
Java is available at no cost at 
 
http://java.sun.com/ (Windows, Linux, Solaris). 
 
For the Macintosh, Java is bundled with Mac OS X. 
 
We recommend that a complete Java software development kit (SDK) be obtained, to allow both 
code execution and compilation  (e.g., for compiling the JUnit test suite drivers). 
 
CartaBlanca’s main output is in a text file format that is compatible with the commercial Tecplot 
package [11]; this format is readily adaptable to other graphics software. Optionally, the user may 
select output in the format read by the free ParaView package [9] (Note: The ParaView capability is 
currently under development). 
 
As discussed in the following section, the user may wish to run CartaBlanca with one the integrated 
development environments (IDEs) for Java (NetBeans, Eclipse, JBuilder, Idea,  etc.), some of which 
are available at no cost.  NetBeans is available at no cost at 
 
http://www.netbeans.org/  (Windows, Linux, Solaris, Mac OS X) 
 
A convenient bundle of Java and NetBeans is available at no cost at  
 
http://java.sun.com/ (Windows, Linux, Solaris). 
 
A basic version of JBuilder (entirely adequate for CartaBlanca) is available at no cost at 
 
http://www.borland.com/downloads/download_jbuilder.html (Windows, Linux, Solaris, Mac OS) 
(download Foundation 2005 version). 
 
We run the CartaBlanca test suite with JUnit [5], which is also available at no cost. We include a 
JUnit executable in the distribution. Currently we typically run JUnit either as a JBuilder project (the 
project file is included in the distribution), or from the Unix command line; JUnit is also bundled 
with NetBeans and Eclipse. 
 
3.1.1. Overview of Release Package 
 
CartaBlanca is distributed as a self-contained .zip file, which contains a top-level directory with 
several individual files, and a number of sub-directories (which in turn can have sub-directories). All 
supported platforms (i.e., Java-enabled) can use this .zip file. The top-level directory is called 
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cartablanca; it contains a number of useful support files that provide a quick means to get 
CartaBlanca running, including 
 

• JBuilder projects (suffix .jpr) that compile and run the GUI, the JUnit test suite, and the 
main code:  rungui.jpr, cbtests.jpr, and cbphysmain.jpr. 

 
• Windows .cmd file to run the GUI: rungui.cmd. 

 
• .xml file for the user who wishes to use the ant utility to build the code: build.xml. 

 
 

• Unix scripts for building and running the GUI, test suite, and main code, in directory 
scripts/unix. 

 
The rest of this quick start makes use of files in the following directories: 
 

• src: the complete set of CartaBlanca source code files, organized according to CartaBlanca’s 
Java package hierarchy. 

 
• testIO: CartaBlanca input-specifier files that are generated by running the test suite. 

 
• meshes: files that specify a large set of sample computational grids in 1D, 2D, and 3D. 

 
• output: graphics output files and binary restart dumps from a calculation. 

  
There are many other directories and files in the distribution that support the code or help the 
CartaBlanca user, including the documentation set, reports, and sample graphics stylesheets and 
macros. An overview of the directories and files in the distribution .zip file is given in Appendix B. 
 
3.2. Input Files 
 
The numerical and physical specifications that define a problem are contained in a text file that is 
named, by default, 
 
                           InputSpecifier.IO 
 
File InputSpecifier.IO is used to specify, e.g., time-step controls, files containing the 
computational grid, physics packages to be solved, solution algorithms, initial and boundary 
conditions, and material properties. Guidance on quickly preparing an InputSpecifier.IO is 
given below in Sections 3.4 (“Test Suite”) and 3.5 (“Sample Project”). Complete specifications are 
given in Section 4 (“Input Preparation and Specifications”). 
 
In addition to file InputSpecifier.IO, CartaBlanca can read six additional files that are called 
collectively a problem’s Mesh Input Files; two of these are required and four are optional. The two 
required files specify the problem domain’s computational node locations and mesh (node) 
connectivity. A third file is required to specify mesh partitions for parallel runs. Three additional files 
can be provided at the user’s option. The six Mesh Input Files are: 
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      NodeDataFile, node coordinates (required), 
      MeshFile, the mesh connectivity (required), 
      MeshPartitionFile, mesh partitioning (required for parallel runs), 
      ParticleFile, particle-model data (optional, an automatic calculation can be chosen), 
      BoundaryFile, boundary conditions (optional, can be given in InputSpecifier.IO), and 
      InitialConditionsFile, initial conditions (optional, can be given in 
                                                                                        InputSpecifier.IO)                            
                             
These file names are not required; each of the Mesh Input Files can be named according to the user’s 
wishes. All are text files. MeshFile,  NodeDataFile, and MeshPartitionFile are in the 
format of the METIS mesh-partitioning code [6]. Creation and use of a simple MeshFile and 
NodeDataFile are described in Section 3.5 (“Sample Project”). Input of the six Mesh Input Files 
to a CartaBlanca calculation is described in Section 4.1 (“General Information”), and complete 
specifications are given in Section 4.1.1 (“Mesh Input Files”). 
 
 
3.3. Running CartaBlanca  
 
CartaBlanca can be compiled and run from the Unix/Linux or Windows (DOS) command line, or 
with a button-click from a Java IDE (NetBeans, Eclipse, JBuilder, Idea, etc.). 
 
To compile and run from the Unix command line (assuming that the CartaBlanca package has been 
installed in  ~myhome/cartablanca, and that Java is installed): 
 
• Set an environment variable CBROOT, e.g. in a C shell: 
 

     setenv CBROOT ~myhome/cartablanca 
 

• Go to ~myhome/cartablanca: 
 
      If the program ant is installed in the system, enter: 
 

 >ant 
 

    to compile the package (where > is the system prompt). 
 
    If ant is not installed, enter  
 
             >cp scripts/unix/*  .  
   
    to copy all the Unix scripts under the directory cartablanca, then, enter 
 
            >compPhysMain.unix 
 
     >compPhysTests.unix 
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    to compile the main code and the test code, respectively. 
 

• Now the Unix script runPhysTests.unix can be used to run the CartaBlanca test suite, and 
the script runPhysMain.unix to run the main code for a specific problem. Section 3.2 
described the basic input-file requirements. Sections 3.4 and 3.5 show how to obtain a set of 
sample input files (by running the test suite), and how to customize an input problem. 

 
Los Alamos has made extensive use of the Borland JBuilder IDE. The distribution package includes 
files cartablanca.jpr, cbphysmain.jpr, rungui.jpr, and cbtests.jpr in directory 
~myhome/cartablanca. These are JBuilder project files that can be used to build and run the 
main code, the GUI, and the test suite (the short-running problems, see Section 3.4). If another IDE is 
used, specify the following targets: 
 

gov.lanl.cartablanca.main.PhysMain (main code for a specific problem) 
gov.lanl.cartablanca.main.RunGUI(GUI) 
gov.lanl.cartablanca.test.AllTests(test suite’s short-running problems). 

 
3.4. Test Suite 
 
The CartaBlanca distribution package includes a test suite that is run by developers to check code 
modifications. There are 47 standard short-running problems that have been developed to check 
many aspects of the code’s logic, insuring that code changes do not have unintended effects. These 
tests are run using JUnit, which is available at no cost [5], and is included in the CartaBlanca 
distribution and in many IDE packages (e.g., JBuilder, NetBeans, etc.). The entire short-running test 
suite is set up and run by executing a single CartaBlanca Java method (see runPhysTests.unix, 
or the target of cbtests.jpr); typically the 47 problems run in 1 – 2 minutes on a desktop 
computer.  
 
We recommend that the test suite be run to obtain an introduction to CartaBlanca and to generate a 
set of sample input problems. The test logic automatically writes 47 “.IO” files in the format of an 
inputSpecifier.IO file, to directory testIO; it then proceeds to execute these files. Success 
or failure of a given problem’s results is specified in the CartaBlanca source code, according to JUnit 
protocols, and is automatically tested by JUnit. All required mesh files are in the distribution, in 
subdirectories under directory meshes. 
 
On the Unix command line, enter 
 

>runPhysTests.unix 
 
Or, if an IDE is used, run 
 

 gov.lanl.cartablanca.test.AllTests  
 
(this is the target of cbtests.jpr). 
 
A JUnit window will show the test status as the problems automatically execute. The two displays in 
Figure 1 show success and failure.  
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Figure 1. JUnit test displays. 
 
Of course, a CartaBlanca distribution should run the test suite successfully. 
 
In addition to the 47 short-running test problems, there are five “longer-running” problems that we 
typically run with a Unix script; the code that generates these problems, and their mesh files, are also 
included in the distribution (one of the longer-running problems is currently maintained as a 
standalone .IO file, which is also included).   
 
The tests are grouped in several sets, which correspond to Java code-packages where they are written. 
Appendix A gives descriptions of all 47 short tests and the five long tests. Here, we give a brief 
description of the test packages: 
 

• advection: Six advection tests. 
 
• analyticsoln:  Four tests of analytic solutions. 
 
• energy: Two tests that solve the energy equation, without or with the momentum equation, 

with liquid water and ice, treated as fluids.  
 

• heattransfer:  Four heat transfer cases. 
 
• mpflow:  Twelve tests of various multiphase flow cases. 
 
• particle: Thirteen short-running  tests of solid materials, twelve of which use the 

MPM/PIC particle method. Also, the five longer-running problems, all of which use 
MPM/PIC. 

 
• species: Two tests of species transport. 

 
• miscellaneous:  Four additional tests. 
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As discussed in Section 3.5, an easy way to create an input file for a new project is to use one of the 
“.IO” files created from running the tests. 
 
3.5. Sample Project 
 
In this section we create and run a problem that involves a solid projectile (solid 1) impacting a target 
(solid 2), with air in the background, on a 2D grid of rectangles. We first create our desired 
computational grid in the form of two “mesh files” that specify the grid nodes’ coordinates and their 
connectivity; then we pick a suitable input file from the test suite to use as an initial template, and 
modify that file with CartaBlanca’s Graphical User Interface (GUI) according to our desired problem 
specifications. 
  
CartaBlanca has a set of Java methods that create mesh files for simple geometries, including 1D 
lines, 2D rectangular regions, and 3D boxes.  At this time, the code does not have a GUI interface to 
create mesh files, or the capability to convert files from common mesh-generators to the METIS 
mesh format that the code uses. 
 
The main CartaBlanca input file that specifies a problem to be run with the mesh is, by default, called 
inputSpecifier.IO.  Creation of inputSpecifier.IO files is facilitated by use of the 
CartaBlanca Graphical User Interface (GUI). One can create a new input file by using the GUI to 
modify an existing inputSpecifier.IO file, or start from scratch and use the GUI to create a 
brand new inputSpecifier.IO. File inputSpecifier.IO includes the names and locations 
of the problem’s mesh files.   
 
The distribution includes directory 
 
cartablanca/meshes/2D/QUADS/ 
 
To create mesh files for a 2-D region [0, 5] by [0, 5] ( 0 5, 0x y 5≤ ≤ ≤ ≤ ) with uniform spacing 0.5, 
and put them under cartablanca/meshes/2D/QUADS/my5x5/, first create the subdirectory 
my5x5. Then, edit the file Create2DMesh.java in the directory 
 
cartablanca/src/gov/lanl/cartablanca/main/generatemesh,  to set 
 
xleng = 5.0 
yleng = 5.0 
numxnodes = 11 
numynodes = 11 
String dir = "meshes/2D/QUADS/my5x5/" 
 
Compile and run Create2DMesh.java from the Unix (or Windows/DOS) command line, or use 
an IDE; the procedure is analogous to compiling and running the main code or the GUI. For example, 
a script to run Create2DMesh.java from the Unix command line could include the single line: 
 
java -mx512m -classpath $CBROOT/classes 
gov.lanl.cartablanca.main.generatemesh.Create2DMesh 
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After the mesh files are created, the second step is to create a suitable inputSpecifier.IO for 
the project. An easy way for this task is to modify one of the .IO files written to directory testIO 
by the test code.  In CartaBlanca, solid-fluid interaction simulation is done using the particle-in-cell 
method. Thus, if one considers the package gov.lanl.cartablanca.test.particle (see 
Appendix A), it appears that the test BulletPlateTest is similar to the problem we wish to 
model. This test is a case where a bullet penetrates a plate with air in the background. Therefore, one 
goes to directory  ~myhome/cartablanca/testIO, and enters 
 
>cp testBulletPlate.IO ../inputSpecifier.IO 
 
This copied file testBulletPlate.IO into a file inputSpecifier.IO in directory 
cartablanca, which can be used as the input to the GUI and the main code. This name is the 
default input file name in the script runPhysMain.unix. The default output directory is “output” 
under dir cartablanca/. You can overwrite it by attaching it as second arguments after inputSpecifier. 
 
Next, one needs to modify file inputSpecifier.IO for the current problem. The CartaBlanca 
GUI is very useful for doing this. To run the GUI from the Unix command line, go to directory 
~myhome/cartablanca, and enter 
 
>./scripts/unix/runRunGUI.unix 
 
(Note that the environment variable CBROOT must be defined; see the comments in the script.)  
 
In a Windows system, one can double-click file rungui.cmd in directory cartablanca to run 
the GUI, or with a software development tool (IDE), run your project with Main class 
gov.lanl.cartablanca.main.RunGUI, VM parameter -mx512m, and with Application 
parameter inputSpecifier (this is the configuration of the JBuilder project file rungui.jpr; 
other IDEs will have similar options). The GUI’s startup display should look like Figure 2. 
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Figure 2. Graphical User Interface startup display. 
 
 
Section 4 of this document gives complete details on CartaBlanca’s input specifications and the use 
of the GUI; here we give a basic introduction. 
 
Before modifying the input specification file with the GUI, one can run the problem given by the 
current inputSpecifier.IO (testBulletPlate.IO) to get an introduction to running 
CartaBlanca and further test the setup and environment. From the Unix command line, under 
cartablanca, enter: 
 
>./scripts/unix/runPhysMain.unix 
 
In an IDE, set the Main class to gov.lanl.cartablanca.main.PhysMain, set the VM 
parameters to –mx512m and –server  (the Java –server option improves runtime), set the 
Application parameter to inputSpecifier, and run your project (this is the configuration of the 
JBuilder project file cbphysmain.jpr; other IDEs will have similar options). 
 
It takes only a few seconds to run this test problem. 
 
As a calculation proceeds, CartaBlanca sends status messages to standard output. The last few lines 
of this output for testBulletPlate.IO should look like 
 
… 
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… 
… 

 
  n = 00020  t =  4.00000E-008  dt =  2.00000E-009,  (0)   
 
Dumping to file E:\cartablanca\output\dump.0.00001.dfl 
 
Just wrote E:\cartablanca\output\dump.0.00001.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00001.dfl 
 
Just wrote E:\cartablanca\output\dump.gridPhase2.0.00001.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00001.dfl 
 
Just wrote E:\cartablanca\output\dump.gridPhase3.0.00001.dfl 
 
Done in Partition 0 
 
Time for executing the problem: 8093 milliseconds. 
 
Grind Time is 240 microseconds/cycle/node 

 
 
Assuming PhysMain runs ok with the current input file testBulletPlate.IO, one now is 
ready to create a new input file by modifying testBulletPlate.IO (as 
inputSpecifier.IO) with the GUI. In all of the following, be sure to press the “Enter” key after 
entering data. 
 
On the first panel of the GUI (General Information), enter for the input parameters 
 
  MeshFileName, MeshPartitionFileName, NodeDataFileName,  
 
  meshes\2D\QUADS\my5x5\myMeshFile.txt, 

meshes\2D\QUADS\my5x5\myPartitionFile.txt, and 
meshes\2D\QUADS\my5x5\myNodeDataFile.txt, respectively. 

 
This will use the computational mesh created above; CartaBlanca will read the files in directories 
relative to its execution directory. Figure 3 shows the part of the General Information panel that 
provides overall control of a calculation. Parameters Maximum Cycles and Maximum Time specify 
the duration of the calculation (in problem-time seconds), according to whichever is reached first. 
Parameters Initial Time Step, MinimumTime Step, and Maximum Time Step may need to be 
modified based on requirements of accuracy and stability. Graphics Time Interval controls how 
often to output data files. Figure 3 shows a problem set to run from 0.0 s to 2.0 x 10-6 s, with 11 
graphics edits. Also, note that on the first line of the first panel, the checkbox Particles On is 
checked because the bullet-plate problem uses CartaBlanca’s Particle-In-Cell method to represent 
solids. 
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Figure 3. Calculation control parameters. 
 
The second tab of the GUI (Physics) brings up a panel that specifies the physical processes to be 
modeled and the CartaBlanca algorithms to be used for their solution (e.g., choice of flow system for 
momentum transport), as well as supporting data such as physical constants. Parameters 
numNonParticleMaterials and numParticleMaterials specify the number of phases that are to be 
modeled with CartaBlanca’s ALE algorithm and PIC (MPM) algorithm, respectively. (A total of four 
phases can be modeled, each of which can contain a number of species.) The current input file uses 
two particle materials (an aluminum plate and a lead bullet) and one fluid material (air); it also 
assumes that only mechanical properties such as velocity, deformation, etc. are of interest, so only the 
momentum equation is solved.  If temperature is to be considered, one needs to check the item 
solveEnergyTransport, and choose an energy system by selecting a suitable model from the list 
under Choose energySystem (the default is NLEnergyBasic). The PIC method should be used to 
model solid materials; in this case flowSystem should be NLMultiPhaseFlowPexp (pressure 
solution is explicit in time). Currently, an implicit particle method is not available. A complete 
description of the models available in the Physics panel is given in Section 4.  
 
The sixth panel of the GUI (Initial Conditions) is used to specify the problem’s initial geometry, 
material composition, and starting material properties (velocities, temperatures, etc.). Initial 
Conditions contains two subpanels: Regions Definition and Regions Data. Figure 4 shows the 
Regions Definition subpanel, which is used to break up the computational domain into sub-regions 
that are occupied by the individual problem components at the start of a calculation. 
 
As an example, assume that the projectile originally occupies the region [2.5, 3.5] by [3, 4] 
( ), and the target occupies the region [0, 5] by [0, 2]. We are going to define 3
initial regions: the entire domain (grid), the projectile, and the target. The initial regions are defined 
by combining surfaces in 3-D space; these basic surfaces are specified with the surface table, the top 
table on the sub-panel Regions Definition. We will use 6 surfaces to define our 3 regions; therefore, 
in Regions Definition, set numDefiningSurfaces to 6, and numRegions to 3.  The surface table will 
have 6 rows, for Surfaces 1-6. The SurType (surface type) for all rows should be Conic, which is a 
simple way to define a surface. A conic surface in 3-D space is described by the following expression 
with coefficients A, B, C, D, E, F, G, H, I, J: 

2.5 3.5, 3 4x≤ ≤ ≤ ≤y  

 
h(x,y,z) = Ax 2 + By 2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J  . 
 
This expression will be used to define regions in which the points obey one or more of the relations 
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 , 0 h(.0),,(,0.0),,( ≤< zyxhzyxh x,y,z) = 0.0, . 0.0),,(,0.0),,( >≥ zyxhzyxh
 
For example, the region [0, 5] by [0, 2] can be defined as:  2 0y − ≤ , for all x in our domain. 
Therefore, a row of the surface table should have H =1, J = -2 (in our example, to define surface 6; 
see Figure 4), and the region definition table (the bottom table in Regions Definition), defines a 
corresponding region (region 3 in our example) with 6 in the le column. Using this logic, the 3 initial 
regions are defined as shown in Figure 4. 
 
 

 
Figure 4. GUI "Regions Definition" sub-tab. 
 
 
In the surface table, surface 1 defines  x – 0 ; surface 2,  x  - 2.5 ; surface 3, x - 3.5 ; surface 4,  y – 
3.0 ; surface 5,  y – 4.0 ; and surface 6,  y – 2.0. The six surfaces are used to define 3 initial regions in 
the lower region definition table. Region 1 is defined with the value 1 in the ge column, and -1 in all 
other columns; this specifies that only surface 1 is used, with >= , defining a region , or the 
entire grid. Region 2 has values 3,5 in the le column, and 2,4 under ge; this specifies surfaces 3 
and 5 with , and surfaces 2 and 4 with , defining a region 

. Similarly, region 3 is 

0 0x − ≥

( , , ) 0.0h x y z ≤
.5, 3 4x y≤ ≤

( , , ) 0.0h x y z ≥
2.5 3≤ ≤ 2y ≤ .  
 
The starting regions defined above are initialized with the Regions Data subpanel of the Initial 
Conditions panel. This in turn contains subpanels RD: Material 1, RD: Material 2, RD: Material 
3, RD: Material 4, and RD: All Materials.  The first four tabs are used to set material (phase)-
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specific initial conditions, where again we note that a CartaBlanca phase can contain more than one 
species. (The materials and species themselves are specified in the Species Properties panel of the 
GUI.) RD: All Materials is used to set initial values for the common pressure and for the turbulence 
K, ε model, for each of the regions. The material-specific tabs are used to set initial values for volume 
fraction (e.g., vfrac1 for material 1), velocity (U1, V1, etc), temperature (e.g., T1), and species mass 
fraction (s1MF1, etc.) if a phase contains more than one species. The variables DX1, etc. (for 
displacements), are now only used in a special physics module. Again, these values are all set for 
each individual initial region. 
 
Initialization is done sequentially, in the order region 1, …, region N. Thus, although in our example 
region 1 includes regions 2 and 3, any initialization done to regions 2 and 3 during the initialization 
of region 1 will be overwritten when initializing regions 2 and 3. In other words, the initialization 
done to region 1 has effect only in the part of region 1 that does not overlap region 2 or 3. 
 
The new problem is ready for a trial run. The third button in the GUI’s toolbar (Figure 5) must be 
pressed to update the current inputSpecifier.IO (the original will be overwritten). Figure 6 (in 
Section 3.6) shows the starting configuration of the problem. 
 
 

 
Figure 5. Saving the new input file. 
 
In the remainder of this section we give an overview of the Boundary Conditions panel, which is 
closely related to Initial Conditions, and show an alternate way to input initial and boundary data.  
 
Problem boundary conditions are specified with the GUI Boundary Conditions panel, using surfaces and 
regions that are defined in the BcDefinitions subpanel, in a manner similar to the initial conditions surfaces 
and regions. In addition, the type and kind of the boundary condition regions are specified, where type can 
be internal or external, and kind can be wall, reflective, reflcorner, inflow, 
outflow, inflow-outflow, pressure, or vel-direction. The boundary conditions are specified 
with the BcData subpanel, which has tabs AllFluids, Material 1, Material 2, Material 3, and Material 4. 
 
If no boundary region is set, all the geometric boundaries in the problem geometry are considered to be 
default wall boundaries. For wall boundaries, by default the outward normal velocity is set to zero and 
inward normal velocity and tangential velocity are allowed. For the energy module, a wall boundary is 
adiabatic unless otherwise specified by the user. The wall boundary condition for temperature T is assumed 
to have the form 

                                  ( )Tk h T T
n ∞

∂
= − − +

∂
q  

where k is the heat conductivity as given in the energy equation, n is the outward normal direction, h is the 
heat transfer coefficient, T  is the ambient temperature,  and is the heat flux. On BcData subpanel 
Material 1, Table I has columns labeled TempH, TempPhi, and TempFl, which correspond to , T

∞ q
h ∞ , and 
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q respectively in the temperature boundary condition. Suppose one only wants to solve the energy transport 
equation and wants to set the boundary temperatures to T = 300 and T = 500, say, in the two 
regions  and  for material 1 and material 2, respectively (assuming only two materials are 
used): enter a large number such as 1.0E20 in the first and second rows under TempH, and enter 300.0 
and 500.0 under TempPhi.  This effectively sets the boundary temperatures to the desired values. A 
description of CartaBlanca boundary condition usage is given in Section 4.7. 

0 0y − = 1 0y − =

 
If an initial region or boundary region has a complicated geometry, one can also optionally create an initial 
or boundary data file to set the region. An example is in file Poiseulle1_RF.IO, which is written by 
test-suite problem testPoiseuille1_RF_Test. Its GUI Boundary Conditions panel has, for region 2, 
-1 entered for all columns lt, le, etc. This triggers the use of a boundary data file, which is specified in the 
General Information panel, where BoundaryFileName is 
 
 meshes\2D\QUADS\Poiseuille\myBCFile.txt 
 
This file contains 
 
 1 
 1 wall 2 
 10.0 0.0 0.0 
 10.0 1.0 0.0 
 
The first line gives the number of boundary sections in the file, in this case, 1. In the second line, the first 
number, 1, indicates the boundary section index; these indexes start at 0, thus, this boundary section is the 
second boundary section. The name wall is the boundary kind, and 2 gives the number of nodes in this 
boundary section. The following two lines give the coordinates of the nodes (x, y, z). The initial condition 
data files have a similar format, but without the boundary-kind specification. 
 
3.6. Calculation Results 
 
As a calculation proceeds, CartaBlanca writes graphics-output files in Tecplot format in directory 
cartablanca/output, according to the edit interval specified by the Graphics Time Interval 
field in the General Information panel. The sample problem was originally set to write 11 edits over 
the time interval 0.0 s – 2.0 x 10-6 s. After (or while) running the problem, opening the files 
 
cartablanca/output/gridPhase2partition0-00000.dat 
 
and 
 
cartablanca/output/gridPhase3partition0-00000.dat 
 
in Tecplot brings up time = 0.0 s plots of the projectile and target, respectively, as shown in Figure 6. 
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Figure 6. Sample problem projectile and target. 
 
 
Here we have used Tecplot’s scatter mode, to show the actual calculational particles CartaBlanca 
used for its particle-in-cell representation of the projectile and target. Figure 5 only shows their initial 
locations, which were specified according to the discussion above on initial conditions. (The actual 
number of particles is determined by the specified mesh and the GUI Particle Properties panel.) 
Many other parameters are written out to the graphics files.  
 
A complete description of CartaBlanca’s output is given in Section 6. 
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4. INPUT PREPARATION AND SPECIFICATIONS 
 
The main input that specifies and controls a CartaBlanca calculation is contained in a text file called, 
by default, inputSpecifier.IO. File inputSpecifier.IO also contains the names of 
six additional (“Mesh Input”) files, two of which the user must provide to specify the computational 
nodalization, one of which is required for parallel runs to provide the mesh partitioning, and three of 
which are optional files that give particle, initial condition, and boundary condition data. While an 
inputSpecifier.IO file can always be edited by hand (and we encourage users to have a look at 
one), the CartaBlanca GUI makes development of an input file vastly easier and less error-prone. The 
GUI can read and modify an existing inputSpecifier.IO, and it also can create one from 
scratch starting with a set of default parameters. 
 
The GUI is organized in a hierarchy of standard, familiar tools (buttons, tabs, and menus). Figure 7 
shows the highest level, which consists of three rows: 
 

 “File” and “Help” provide standard menus (currently only “File”  “Exit” is 
available). 

 
 Twelve buttons are on the second row (the toolbar). The first (leftmost) button is a new 

feature in the GUI: it runs the inputSpecifier.IO in the user directory 
(cartablanca, by default). The second button is currently not operational: it would open a 
desired file. The third must be pressed (clicked) by the user to save the current 
inputSpecifier.IO to the user directory. The fourth button also brings up “help” 
(currently not implemented). The fifth button (also new) stops the run. The following six 
buttons bring up file browsers for selection of the Mesh Input files (which can, alternatively, 
be specified elsewhere in the GUI; see Section 4.1). The last button on the toolbar, “Post-
Process” (also new), brings up an explorer in the running directory, so that  post-processing 
macros can be activated conveniently. The format and contents of the Mesh Input files are 
described in Section 4.4.1. 
 

 The third row is the main entry into the GUI; it contains tabs (currently 11) that display panels 
for input of the problem’s physics and control data. These panels are organized to contain data 
related to the various aspects of CartaBlanca’s logic and capabilities, and most of them 
contain sub-panels.   

 
 

 
Figure 7. GUI's highest control level. 
 
 
The 11 highest-level tabs (and corresponding panels) are: 
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 General Information – specifications of global problem data (e.g., use of the particle-in-cell 
method, names of the Mesh Input files, time step size, edit frequency). 

 
 Physics – the physical processes to be modeled and the solution algorithms (e.g., choice of 

flow system); physical constants. 
 

 Solver – selection of equation solver(s) and related parameters. 
 

 Numerical Options – switches for specific options for the ALE and PIC/MPM numerics (e.g., 
artificial viscosity); advection Courant number. 

 
 Preconditioner – selection of quantities to precondition to reduce the number of Krylov 

iterations; setting the preconditioner algorithms and related parameters. 
 

 Initial Conditions – specification of regions in the problem domain and their initial (time = 0) 
setup (e.g., materials and their velocities, pressures, etc.). 

 
 Boundary Conditions – specification of regions and boundary conditions to be applied. 

 
 Exchange Parameters – momentum, energy, and mass exchange data, according to the number 

materials (fields) in the problem. 
 

 Chemical Reaction – data for any reactions to be modeled (e.g., Arrhenius activation energy, 
specification of reaction and product phases). 

 
 Particle Properties – number of particles per cell (for PIC/MPM calculations), damage-

calculation switch. 
 

 Species Properties – selection from built-in material constitutive models (e.g., Kelvin, 
Johnson-Cook), and assignment of constitutive-model data. 

 
The input specifications that follow, in Sections 4.1 – 4.11, are organized according to the 
CartaBlanca GUI tabs. Section 4.1.1 describes the Mesh Input Files. 
 
The GUI data are comprised of text fields (either keywords or user-supplied, such as file names), 
reals (floating point), integers, and booleans (typically entered with checkboxes). Keyword entry is in 
most instances facilitated by selection from built-in dropdown lists. Where an input parameter 
requires a real value, exponential notation may optionally be used (e.g., 1.678E12). 
 
If the GUI is started without an inputSpecifier.IO file, the GUI input parameters will be 
initially set to default values that are specified in the CartaBlanca coding. 
 
4.0.1. Systems of Units 
 
CartaBlanca makes no assumptions as to a units system; there is no switch in the input file for units 
selection. The only user requirement is that all input for a model adhere to a self-consistent system. 
Most input models developed at Los Alamos have been in the cgs system. 
 
 

 24



4.1. General Information  
 
The General Information tab brings up a panel that is used to specify the global controlling 
parameters for a CartaBlanca calculation, such as mesh files, calculation length, time-step size, and 
data output interval. Other data entered on the General Information panel include choice of a 
parallel (multiprocessor) calculation with mesh partitions, use of the MPM/PIC particle method, and 
the coordinate system. Also, a restart from a previous run can be indicated, and the user directory and 
an output directory relative to the user directory can be specified. Figure 8 shows a typical General 
Information panel. 
 
Following are specifications for the General Information input data. 
 
 

 
Figure 8. GUI  "General Information" tab. 
  
 
Use Partitions: boolean; if checked, the input will specify a partitioned mesh, and a parallel 
calculation will be run. Otherwise, a serial calculation will be run. Running CartaBlanca in parallel 
mode is described in Section 5.3. 
 
Particles On: boolean; if checked, the run will utilize the PIC (MPM) algorithm for solution of at 
least one material (phase). Otherwise, the ALE method will be used for all materials (phases). 
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ReStart: boolean; if checked, the run will be a restart from the results (dump file or files) of a 
previous run. The initialization of a restart run from dump files is described in Section 5.2 (see also 
input variable initGraphic, below in this section). 
 
coordinateSystem: keyword text; the coordinate system to be used, either cartesian, 
cylindrical, or spherical. By default, in a 2D cylindrical coordinate system, the y-axis is the 
axis of rotational symmetry. 
 
userDirectory: text; the absolute path of the CartaBlanca directory where the problem will be run. 
Automatically set to the current GUI directory. 
 
relative outputDir: text; the output directory path relative to userDirectory. The default is output. 
This can be overwritten in a run script by adding a new output directory as the second argument (after 
the input file; command line arguments for running the code are described in Section 5.). This is a 
new feature in the GUI. 
 
Mesh Input Files: Six text fields that give the directory locations and names of files that specify the 
computational domain and related data. Directories may be relative to userDirectory. Alternately, 
one or more of these files can be chosen by using the six correspondingly-named buttons in the main 
toolbar at the top (second line) of the GUI. Specifications for the Mesh Input Files are given in 
Section 4.1.1. Note that, while use of some of these files is optional, none of the six fields here should 
be entirely blank. 
 

MeshFileName: file that defines the computational mesh elements (e.g., 2-D quadrilaterals, 3-D 
hexahedra), by their individual vertex nodes. 

 
MeshPartitionFileName: file that assigns each of the mesh elements to one of two or more 
partitions of the domain, which are assigned to parallel processors; only needs to be specified for 
a parallel calculation. A discussion of CartaBlanca’s parallel processing capabilities is given in 
Section 5.2. 

 
 NodeDataFileName: file that provides the coordinates of the mesh-element vertex nodes. 
 

ParticleFileName: file that provides initialization data for computational particles; only required 
for calculations that use the PIC (MPM) method. Alternately, the keyword text automatic can 
be entered for default settings. Additional particle input is described in Section 4.10.  

 
BoundaryFileName: file that specifies boundary condition locations. Section 4.7 gives details on 
boundary condition specifications and usage, including an alternate way to provide the boundary 
condition location information, using the GUI.  

 
InitialConditionsFileName: file that specifies initial condition locations. Section 4.6 describes 
an alternate way to specify this information, using the GUI. Section 4.6 gives details on 
CartaBlanca’s initial condition setup. 

 
Running Parameters: Nine fields, four integer and five real (floating point), that specify overall 
calculation behavior. 
 

 26



Maximum Cycles: integer; the maximum number of time steps for this run; calculation will 
terminate when this is exceeded, or Running Parameter Maximum Time is exceeded (see below) 
- whichever is satisfied first. 
  
Graphics Time Interval: real; the time interval between writing of graphics edit files. Section 
6.2 describes CartaBlanca’s graphics-edit files. Also, in conjunction with Running Parameter, 
Graphics/Binary Dump Ratio (see below), specifies interval between writing of restart dumps. 

 
Initial Time Step: real; the time step size to try for the calculation’s first cycle (time step). 

 
Minimum Time Step: real; the minimum time step size allowed; the calculation will be aborted 
if the time step size falls below this value. 

 
Maximum Time Step: real; the maximum time step size allowed. 

 
Maximum Time: real; calculation will be stopped at this time, or when Running Parameter 
Maximum Cycles is exceeded - whichever is satisfied first. 
 
initGraphic: integer; used for restart calculations to specify the dump file(s) used to initialize the 
calculation, and the running sequence number for the first graphics and dump edits. The 
initialization of a restart run from dump files is described in Section 5.2. 

 
printlnStep: integer; the time step interval for status edits to the standard output (the screen, or as 
redirected to a file). Section 6.1 describes these edits. 

 
Graphics/Binary Dump Ratio: integer; the time interval for binary dumps as a multiplier on the 
graphics-edit time interval (Running Parameter Graphics Time Interval). 

 
Section 4.1.1 gives descriptions of the Mesh Input Files that are specified in the General 
Information panel. Section 4.1.2 describes standalone files in the CartaBlanca release package that 
can be used to generate node, mesh, and partition files for various geometries. Section 4.1.3 describes 
a code option to apply a periodic boundary condition to a mesh.  
 
4.1.1. Mesh Input Files 
 
In addition to file inputSpecifier.IO, CartaBlanca reads three required input files that specify 
the computational node locations, mesh (node) connectivity, and node-edge mesh partitions for 
parallel computation (required only for a parallel run), and optionally three files that specify 
boundary conditions, initial conditions, and the distribution and properties of computational particles 
for calculations that use the PIC/MPM logic. These files are called collectively a problem’s Mesh 
Input Files. The six Mesh Input Files are: 
 
      NodeDataFile, node coordinates (required), 
      MeshFile, the mesh connectivity (required), 
      MeshPartitionFile, mesh partitioning (required for parallel runs), 
      ParticleFile, particle-model data (optional, an automatic calculation can be chosen), 
      BoundaryFile, boundary condition nodes and types (optional, can be given in 
                                    InputSpecifier.IO), and 
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      InitialConditionsFile, initial condition nodes (optional, can be given in 
                                                          InputSpecifier.IO)                                                                  
                             
These file names are not required; each of the Mesh Input files can be named according to the user’s 
wishes, as described in Section 4.1. All are text files; their specifications are as follows: 
 
NodeDataFile, MeshFile, and MeshPartitionFile 
 
These three files define the geometry of CartaBlanca’s computational grid. Their formats follow from 
those required by the METIS mesh-partitioning program [6].  The three files contain the mesh 
connectivity, the node coordinates and the partitioning of the mesh elements. Please see the METIS 
manual [6] for additional description of these files. 

The node coordinates file (e.g., NodeDataFile) has the format (in this case coordinates are given 
for a 3-D calculation): 
 
 
    1    5.000000e+00  0.000000e+00  5.000000e+00 
    2    5.000000e+00  5.000000e+00  5.000000e+00 
    3    5.000000e+00  1.000000e+00  5.000000e+00 
    4    5.000000e+00  2.000000e+00  5.000000e+00 
    5    5.000000e+00  3.000000e+00  5.000000e+00 
    6    5.000000e+00  4.000000e+00  5.000000e+00 
    7    5.000000e+00  5.000000e+00  0.000000e+00 
    8    5.000000e+00  5.000000e+00  4.000000e+00 
    9    5.000000e+00  5.000000e+00  3.000000e+00 
    10   5.000000e+00  5.000000e+00  2.000000e+00 
    11   5.000000e+00  5.000000e+00  1.000000e+00 
     .   .  .  .   .   .   .   . 
     .   .  .  .   .   .   .   . 
     .   .  .  .   .   .   .   . 
 
The real numbers in the file have a free format. A 2-D mesh has the same format as the 3D with the 
last coordinate equal to zero. 
 
The connectivity file MeshFile represents a mesh with n elements and has n+1 lines. The first line 
contains information about the size and the type of the mesh. The remaining lines contain the nodes 
that compose each element. The information in the first line consists of two integers: the first is the 
number of elements in the mesh, and the second denotes the type of elements in the mesh: 1 for 
triangles, 2 for tetrahedra, 3 for hexahedra and 4 for quadrilaterals. The number of nodes in each of 
the following lines depends on the kind of element with three for triangles, four for tetrahedra and 
quadrilaterals, and eight for hexahedra. As an example for hexahedra: 
 
 
          125 3  
    72 76 117 104 77 96 153 136 
    76 75 113 117 96 92 154 153 
    75 74 109 113 92 88 155 154 
    74 73 105 109 88 84 156 155 
    73 67 97 105 84 71 140 156 
    104 117 118 103 136 153 157 135 
    117 113 114 118 153 154 158 157 
    113 109 110 114 154 155 159 158 
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    109 105 106 110 155 156 160 159 
    105 97 98 106 156 140 139 160 
    103 118 119 102 135 157 161 134 
    118 114 115 119 157 158 162 161 
    114 110 111 115 158 159 163 162 
    110 106 107 111 159 160 164 163 
     .   .  .  .   .   .   .   . 
     .   .  .  .   .   .   .   . 
     .   .  .  .   .   .   .   . 
 
In the case of triangles and tetrahedra, the ordering of the nodes for each element is irrelevant. This is 
not the case for quadrilaterals and hexahedra for which the nodes must obey a specific order, as  
shown in Figure 9:  
 
                                 

 
 
Figure 9. Node ordering for quadrilaterals and hexahedra. 
 
 
CartaBlanca requires mesh partitioning to be done in such a way that elements (i.e., triangles, etc.) 
and not nodes are partitioned.  Referring to Figure 10, the mesh partitioning for CartaBlanca must be 
done along node-edge connections.  In the Figure, the heavier edge connections denote the boundary 
between partition A and partition B. To implement this mode of partitioning in CartaBlanca, nodes on 
the partition boundaries are duplicated. In the example in the Figure, the three nodes along the 
partition boundary would be present in each partition as duplicates.  
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Figure 10.  Partitioning in CartaBlanca; meshes must be partitioned along node connections. 
 
 
The partition file has n lines for a mesh with n elements; each line has an integer representing the 
partition in which the element resides. The partition integers start at 0. Usually, these numbers are 
obtained using Metis (see also Section 4.1.2).. 
 
To illustrate further how mesh partitioning works in CartaBlanca, a two-dimensional mesh is shown 
in Figure 11. 
 

 
Figure 11. Two-dimensional partitioned mesh. 
 
 
The mesh partitioning shown in Figure 11 was performed using the Metis program and the Metis 
output was then fed to CartaBlanca for computations. The actual plot was generated using the Tecplot 
program which operates on graphics output files from CartaBlanca (Section 6.2 gives a description of 
the graphics output). A further example mesh is shown in Figure 12 for the case of a three-
dimensional tetrahedral mesh.  
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Figure 12. Three-dimensional tetrahedral element mesh. The shading denotes the 4 partitions that were computed 
by Metis. 
 
 
 
Additional examples of CartaBlanca mesh partitions are shown in Figure 13. 
 
Sections 5.2 and 7.4 have additional material on CartaBlanca parallel computing.  
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Figure 13. Additional mesh-partition examples. 
 
The CartaBlanca distribution contains a large number of sample mesh files, in directories under the 
directory cartablanca/meshes. Often, these files are called myNodeDataFile, 
myMeshFile, and myPartitionFile, and their actual contents are indicated by the names of 
the directories that contain them. For example, directory 
 
          cartablanca/meshes/2D/QUADS/201nx144n 
 
contains three mesh files that specify a two-dimensional grid of quadrilaterals, with 201 nodes for the 
x-coordinate and 144 nodes for the y-coordinate. Section 3.5 of this Manual shows the use of 
CartaBlanca itself to generate relatively simple node and mesh files. The generation of node, mesh, 
and partition files is further discussed below in Section 4.1.2. 
 
 
ParticleFile (optional) 
 
CartaBlanca uses the Material Point Method (MPM), an advanced version of the PIC method, for 
solid mechanics modeling. There are two ways to initialize an MPM calculation for a material 
(phase). One can provide a ParticleFile, and give its name and location in the General 
Information panel’s ParticleFileName field (or browse to it using the Particle Data File button at 
the top of the GUI). Or, one can use the code’s defaults, entering “automatic” in the 
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ParticleFileName field, and specifying the number of computational particles per mesh cell in the 
Particle Properties panel (see Section 4.10). The distribution package contains a sample 
ParticleFile 
 
cartablanca/particles/2d/waves.txt  , 
 
a snippet of which is 
 
grid phase number: 1 
Number of particicles: 867 
Particle coordinates 
  3.75100E-001  3.00100E-001 
  3.75100E-001  3.12100E-001 
  3.75100E-001  3.24100E-001 
  3.75100E-001  3.36100E-001 
  3.75100E-001  3.48100E-001 
  3.75100E-001  3.60100E-001 
  3.75100E-001  3.72100E-001 
  3.75100E-001  3.84100E-001 
  3.75100E-001  3.96100E-001 
. 
. 
. 
  6.25100E-001  8.64100E-001 
  6.25100E-001  8.76100E-001 
  6.25100E-001  8.88100E-001 
  6.25100E-001  9.00100E-001 
number of state varibales per particle: 13 
particle state variables 
Mass Volume U V Pressure StressXx StressXy StressYx StressYy DisplacementGradientXx 
DisplacementGradientXy DisplacementGradientYx DisplacementGradientYy 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
. 
. 
. 
  1.87500E-004  1.87500E-004  0.00000E+000 -1.00000E-002  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000 -1.00000E-002  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000 -1.00000E-002  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000 
  1.87500E-004  1.87500E-004  0.00000E+000 -1.00000E-002  0.00000E+000  0.00000E+000  0.00000E+000  
0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  0.00000E+000  

 
 
BoundaryFile and InitialConditionsFile (both optional) 
 
The specification of regions in the computational domain for applying initial and boundary conditions 
is described in Sections 4.6 (initial conditions) and 4.7 (boundary conditions). The most convenient 
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method for such specification is the use of the GUI to set up geometries that are built-in to 
CartaBlanca (including conics). For initial condition regions that have shapes not suitable to this 
method, the user has the option to supply a file that contains node coordinates. Also, the user may 
wish to supply a file with boundary condition parameters (node coordinates and types), instead of 
using the GUI. The formats of these files are also given in Sections 4.6 and 4.7.  
 
4.1.2. Generation of  NodeDataFile, MeshFile, and MeshPartitionFile 
 
The CartaBlanca release package includes a number of Java source files that can be modified, 
compiled, and run to generate the three files that specify the nodalization and partitioning of a 
problem. They are limited in the geometries that are handled, but can be quite useful nevertheless. 
These Java files are contained in directory 
 
 src/gov/lanl/cartablanca/main/generatemesh 
 
Figure 14 shows the contents of generatemesh. 
 

 
 
Figure 14. Directory generatemesh. 
 
Section 3.5 includes an example that modifies, compiles, and runs file Create2DMesh.java. Java 
comments, near the start of each file, explain the file’s use. 
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The logic for partition assignment in these files is very simple; elements are equally divided 
according to the number of requested partitions. Depending on the problem configuration, this may 
not give optimal parallel performance (see Section 7.4). Directory generatemesh also contains 
file CreateHexPartitions.java, which can be used to generate partitions for meshes 
composed of hexahedra; its use is explained by Java comments. 
 
4.1.3. Periodic Boundary Conditions 
 
CartaBlanca has a built-in optional mechanism to apply a periodic boundary condition to a computational 
mesh (essentially, the mesh can “wrap-around” itself). One reason to use a periodic boundary condition is to 
avoid artificial surface effects that can arise in a finite computational domain. Also, one of the code’s periodic 
boundary condition options can be used to compute 3-D sections of a cylinder. Periodic boundary conditions 
are specified with the GUI Physics panel, using the booleans (checkboxes) PeriodicInX, PeriodicInY, 
PeriodicInZ, and PeriodicInTheta (see Section 4.2). For example, if PeriodicInX is selected, then the ends 
of the region in the x-direction are set as internal nodes by the code, and all pairs of partner nodes which are 
the periodic boundary nodes are determined. All fluxes going into the two nodes of the pair are added 
together and assigned to the pair. At the final state, each of the partner nodes should have the same physical 
values, which is implemented by averaging the values of the partner nodes and then assigning the average to 
them. 
 
PeriodicInTheta is for a 3-D cartesian problem such as a cylinder in which one is only 
computing on a section (e.g., a quarter section); it imposes periodicity in the azimuthal angle. The 
problem is in Cartesian coordinates and neither x, y, or z is equivalent to the theta coordinate. One of 
the Cartesian axes is specified as an axis of rotation (using the axisOfRotation field in the Physics 
Panel). CartaBlanca will automatically find the appropriate periodic pairs. 
 
CartaBlanca’s general boundary conditions are described in Section 4.7. A problem can use a 
periodic boundary condition with a general boundary condition, as indicated in two of the following 
examples.  
 

Examples: periodic boundary conditions: The CartaBlanca Test Suite contains seven problems that 
use a periodic boundary condition. For example,  

 
 testLongVibration1d.IO is a 1-D cartesian problem that uses PeriodicInX. 

 
 Couette.IO is a 2-D cartesian problem that uses PeriodicInY; external wall 

boundary conditions (see Section 4.7) are specified for velocities at the x-axis bounds. 
 

 DisOpsWithPeriodicity.IO is a 3-D cartesian problem that uses PeriodicInX. 
 

 PoiseuilleCylind.IO is a 2-D cylindrical problem that uses PeriodicInY; an 
external reflective boundary condition is applied at the cylindrical symmetry 
axis (x = 0), and an external wall boundary condition is applied for velocity 
specification at the end of the x-axis (see Section 4.7). 

 
 DisOpsWPInTheta.IO is a 3-D cartesian problem that uses PeriodicInTheta. 
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4.2. Physics 
 
The Physics panel is used to specify the physical processes to be modeled and the CartaBlanca algorithms to 
be used for their solution, such as selection of momentum transport and choice of a flow system for its 
solution. Also, supporting data such as physical constants are entered, and periodic boundary conditions 
(Section 4.1.3) can be selected. 
 
Figure 15 shows the Physics panel. At the top of the panel there are six windows that can provide choices for 
solution algorithms (“solution systems”, e.g., Choose flowSystem). The six windows allow choices for flow, 
energy, species, momentum, stress, and turbulence systems.  The CartaBlanca Programmer’s Manual shows a 
simple way to add new Java classes to the currently available choices (note that some of the current systems 
were developed for special cases). Below the solution-system windows are fields that are used to provide the 
physics parameters, and a set of checkboxes for selection of physics options (including the physical processes 
to be modeled). 
 

 
Figure 15. GUI "Physics" tab. 
 
The currently available solution algorithms (systems) are (where the prefix “NL” indicates “non-linear”): 
 
Flow System 
 
Note: To use a Flow System, the Physics panel boolean solveMomentumTransport must be checked. 
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NLMultiPhaseFlowBasic: Solves the momentum equation implicitly in pressure; the treatment of 
velocity is explicit. In the Newton-Krylov solver, the residual is basically the sum of volume fractions minus 
one. This class is used with implicit solvers, such as Gmres (see Solver panel description, Section 4.3). 

 
NLMultiPhaseFlowBasicNMT: similar to NLMultiPhaseFlowBasic, used for a specific 
application. 
 
NLMultiPhaseFlowImpl: Implicit time-advancement solution of the momentum equation. Currently 
under development. 
 
NLMultiPhaseFlowImplicitStress: Implicit time-advancement solution of the momentum 
equation. Currently under development. 
 
NLMultiPhaseFlowImplNMT: similar to NLMultiPhaseFlowImpl, used for a specific application. 
 
NLMultiPhaseFlowImplStressNMT: similar to NLMultiPhaseFlowImplicitStress, used for 
a specific application. 
 
NLMultiPhaseFlowPexp: Solves the momentum equation explicitly with solver NLExplicit (see 
Solver panel description, Section 4.3).  
 
Note: Currently, NLMultiPhaseFlowPexp must be selected for problems that use the particle MPM/PIC 
method. 
 
ThinPlate: solves deformation of thin plates under static or dynamic loads; temporary location in GUI to 
use this logic.  

 
Energy System 
 
Note: To use an Energy System, the Physics panel boolean solveEnergyTransport must be checked. 
 
NLEnergyBasic: The basic system for solving the energy equation; can be used with implicit solvers or 
the NLExplicit solver (Section 4.3). However, even if NLExplicit is used, the treatment of the 
coupling term and the flux boundary condition term are still implicit. 
 
NLEnergyBasicPointSources: Special application of the energy equation. 
 
NLEnergyBasicWithPhCh: Extension of NLEnergyBasic with treatment for phase changes. 
 
NLEnergyHE1: Special application of the energy equation for high explosive simulations with chemical 
reactions. 
 
NLEnergyHE2: Special application of the energy equation for high explosive simulations with chemical 
reactions. 

 
Species System 
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Note: To use a Species System, the Physics panel boolean solveSpeciesTransport must be checked. 
 
NLSpeciesBasic: The basic system for solving the species equation. 
 
NLSpeciesBA: Special application of the species equation. 
 
NLSpeciesHE1: Special application of the species equation for high explosive simulations with chemical 
reactions. 
 
NLSpeciesHE2: Special application of the species equation for high explosive simulations with chemical 
reactions. 
 
NLSpeciesPM: Special application of the species equation. 
 
NLSpeciesTransferSp: Extension of  NLSpeciesBasic with species mass exchange. 

 
Momentum System 
 
This is a placeholder; currently there are no choices for this window (see Flow System). 
 
Stress System 
 
This is a placeholder; currently there are no choices for this window. Section 4.11 and the Theory Manual 
describe the material models available in CartaBlanca 
 
Turbulence System 
 
Note: To use the available Turbulence System, the Physics panel boolean solveTurbulenceTransport must be 
checked. 
 
NLTurbulence: CartaBlanca uses the K-epsilon model for turbulent flow, where transport equations are 
solved for the turbulent kinetic energy (K) and the turbulent dissipation (ε).  

 
 
The bottom of the Physics panel contains fields and checkboxes that are used to set values of physics-related 
parameters (including physical constants) and to select physics-related options (including physical processes to 
model). As indicated in Section 4.0.1, any units system can be used for the physical constants. These fields and 
checkboxes are as follows. 
 
numParticleMaterials: integer; the number of materials (phases) to be modeled with the MPM/PIC 
method. A total of four materials (phases) is allowed, including non-particle materials (see 
numNonParticleMaterials). A material (phase) can comprise more than one species. Sections 4.10 
and 4.11 describe input for the particle and material/species properties, respectively. The Particles 
On checkbox in the General Information panel must be checked if numParticleMaterials > 0. 
 
numNonParticleMaterials: integer; the number of materials (phases) to be modeled with the ALE method. A 
total of four materials (phases) is allowed (numNonParticleMaterials + numParticleMaterials <= 4). A 
material (phase) can comprise more than one species. 
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gravity components: 3 reals, default values = 0.0; the components of the gravitational acceleration. 
 
gravitationalConstant, lightSpeed, StefanBoltzmann, gasConstant, AvogadroNumber, PlanckConstant, 
electronCharge: 7 reals; self-explanatory. Any units system can be used (of course, it must be consistent with 
the rest of the model). 
 
Note: The units of the universal gas constant and the activation energy in the Arrhenius chemical reaction term 
must be consistent; default value for the gas constant is 8.31439 J/mole-K (see Chemical Reaction panel 
description, Section 4.9). 
 
fuzz: real; currently not used. 
 
frameAngularVelocity: real; used for the angular velocity of an optional rotating coordinate system, for 
which the user must specify also the rotation axis; see Physics panel field axisOfRotation. The unit of angular 
velocity is so chosen that the resulting velocity is consistent with the unit of velocity. 
 
axisOfRotation: keyword text; used in three cases, (1) for a PeriodicInTheta periodic boundary condition, to 
determine the x, y, z-axis, (2) for a cylindrical coordinate system, to determine the radial dimension, and  (3) 
for a rotating coordinate frame, to determine how to add the centrifugal and Coriolis forces. Either x, y, or z 
(lower case). 
 
Note: The Physics panel’s PeriodicInTheta boolean must be checked to use that periodic boundary condition. 
 
Note:  Cylindrical coordinates are chosen with the coordinateSystem field in the General Information panel 
(Section 4.1). 
 
Note: For a rotating coordinate system, the Physics panel parameter frameAngularVelocity must be set.  
 
energyUnitFactor: real; used to make the terms pressure-dot and viscous dissipation in the energy equation 
consistent with other terms. The energyUnitFactor parameter was used during early code development, and is 
now obsolete; a value of 1.0 should always be used. 
 
useEquilibriumPressure: boolean; if checked, the equilibrium pressure is used in the multiphase flow 
calculations. See also Physics panel field phaseOfPforNonEquilP. 
 
phaseOfPforNonEquilP: integer; used for non-equilibrium pressure model (Physics panel checkbox 
useEquilibriumPressure is not checked). Specifies the phase (material) to use for the auxiliary pressure, as 
discussed in Chapter 3 of the Theory Manual. The phase to use is normally the fluid phase in the case of fluid-
solid interactions. If only fluid phases exist, the equilibrium pressure model can be used. Here the phase 
number starts from 1.  
 
solveEnergyTransport: boolean; if checked, energy equation is solved. One may also want to choose a 
suitable Energy System for the problem; otherwise, the Energy System currently in the input file is used. 
 
solveMomentumTransport: boolean; if checked, momentum equation is solved. One may also want to 
choose a suitable Flow System for the problem; otherwise, the Flow System currently in the input file is used. 
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solveSpeciesTransport: boolean; if checked, species transport equation is solved. One may also want to 
choose a suitable Species System for the problem; otherwise, the Species System currently in the input file is 
used. 
 
solveScalarTransport: boolean; if checked, a special scalar transport physics system is solved. This is in a test 
developed in the early days of the code. 
 
solveTurbulenceTransport: boolean; if checked, the K-epsilon model will be used, with Turbulence System 
NLTurbulence, which must be specified in the input. See also input parameters turbK and turbE in the 
Initial Conditions panel (Section 4.6), and tkH, tkPhi, tkFl, tlH, tlPhi, and tlFl in the Boundary Conditions 
panel (Section 4.7). 
 
solveStress: boolean; if checked, the code will solve for stress on the Eulerian grid; otherwise the code will 
only solve stress on MPM/PIC particles. Typically, particles are used to solve for stress in solid materials, and 
before the solveStress option was implemented, particles were the only choice for a solid phase. With the 
solveStress option, we do not need particles if we prefer only to use the Eulerian grid to solve the problem. 
 
Note: The solveStress parameter does not use the Physics panel’s “Choose stressSystem:” window; it 
is planned to change its name to solveStressOnGrid. 
 
chemicalReactionOn: boolean; if checked, the chemical reaction model will be used. Input specifications for 
modeling chemical reactions are described in Section 4.9 (“Chemical Reaction”). See also Physics panel field 
numChemicalReactions.  
 
numChemicalReactions: integer; the number of chemical reactions to be modeled. See Physics panel 
checkbox chemicalReactionOn. 
 
PeriodicInX, PeriodicInY, PeriodicInZ, PeriodicInTheta: 4 booleans; if checked, a periodic boundary 
condition is used for the indicated coordinate. See Section 4.2.1 for a description of CartaBlanca’s periodic 
boundary conditions. 
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4.3. Solver 
 
The Solver panel is used to specify and configure the solvers of the field equations used by the 
model. All data are entered in a single scrollable table. Figure 16 shows the startup display of the 
Solver panel’s table. The first column identifies the various properties (parameters) for each solver to 
be used. Up to six solvers may be used for a given model; the data for each solver are entered in each 
of the next six columns (“Solver1” ….. “Solver6”). The solver data are comprised of text fields 
(keywords), reals, integers, and booleans (checkboxes). Keyword entry is facilitated by selection 
from dropdown lists. 
 

 
Figure 16. GUI "Solver" tab. 
 
 
 
The input parameters for the Solver panel are as follows: 
 
Field: keyword text; the field to be solved, either Species, Energy, P, PV, V, Turbulence, or none, 
where P is pressure and V is velocity. In case of more than one solver, the order must be P, Energy, and 
Species. The code will indicate an error and abort if the fields are specified in a different order. Also, the 
code will point out an error and abort if an inconsistency is detected (for example, checking 
solveEnergyTransport in the Physics panel and not assigning an energy solver). 
 
Figure 17 shows selection of a solver’s Field using the panel table’s built-in dropdown list for that parameter. 
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Figure 17. Selecting a solver field. 
 
 
Type: keyword text; the solver algorithm, either Gmres, FGmres, CG, NLExplicit, or Explicit, 
where Gmres is the Generalized Minimum RESidual method, FGmres is the Flexible Generalized Minimum 
RESidual method, CG is the Conjugate Gradient method, NLExplicit is the NonLinear EXPLICIT 
method, and Explicit is the EXPLICIT method. Each of these solver methods corresponds to a Java class 
in the solver package. These are the available methods for users to choose to solve the resulting algebraic 
equations after numerical discretization. The optimal choice depends on the specific physical problem. 
 
Figure 18 shows selection of a solver’s Type using the panel table’s built-in dropdown list for that parameter. 
(Of course a Field must also be selected, and the Fields’ order must be correct.) 
 

 
Figure 18. Selecting a solver type. 
 
 
linearAbsoluteTolerance: real; tolerance in the solver. 
 
NLAbsoluteTolerance: real; absolute tolerance in the Newton-Krylov solver. 
 
NLRelativeTolerance: real; relative tolerance in the Newton-Krylov solver. 
 
NLForcingFactor: real; will be the relative tolerance in the specified solvers. 
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NLPerturbationParameter: real; currently not used. 
 
 
The following four variables, changeLimitHi, changeLimitLo, damperCeiling, and damperFloor, are used 
in the calculation of the damping coefficient in the Newton-Krylov solver. They allow increasing the radius of 
convergence for an initial guess by employing a damped iteration (see [7]). See also the useDamper 
checkbox in this panel. 
 
changeLimitHi: real; used in the calculation of the damping coefficient in the Newton-Krylov solver. 
 
changeLimitLo: real; used in the calculation of the damping coefficient in the Newton-Krylov solver.. 
 
damperCeiling: real; used in the calculation of the damping coefficient in the Newton-Krylov solver. 
 
damperFloor: real; used in the calculation of the damping coefficient in the Newton-Krylov solver. 
 
solverMaxIterations: integer; maximum number of solver iterations. 
 
solverMaxKrylovVectors: integer; maximum number of vectors in the Newton-Krylov solver. 
 
NLMaxNewtonIterations: integer; maximum number of Newton-Krylov iterations. 
 
verboseInKrylovSolver: boolean; if checked, print details on the convergence of the solver at each iteration. 
 
verboseInNewtonKrylov: boolean; if checked, print details on the convergence at each Newton-Krylov 
iteration. 
 
usePreconditioner: boolean; if checked, use the preconditioner specified in the Preconditioner panel (see 
Section 4.5). 
 
useDamper: boolean; if checked, use the damper. In this case, it is necessary to specify the four variables in 
this panel used in the calculation of the damping coefficient.  
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4.4. Numerical Options 
 
The Numerical Options panel contains parameters that affect the behavior of the ALE and 
MPM/PIC numerics. There are three checkboxes (and four others that are currently not used) and one 
field for a real. 
 
Figure 19 shows the Numerical Options panel. 

 
Figure 19. GUI "Numerical Options" tab. 
 
 
The input parameters for the Numerical Options panel are as follows: 
 
useInterfaceTracking: boolean; currently not used. 
 
futureUse_4: boolean; currently not used. 
 
useImplicitExplicitAdvection: boolean; currently not used. 
 
maxAdvectionCourantNumber: real, default value = 0.5; Courant number is defined as speed /t x×Δ Δ , 
where the speed is the maximum of the material speeds of the all the phases and the speed of sound for 
explicit calculations. A smaller Courant number usually results in a more stable calculation but causes longer 
run time. 
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donorCellAdvection: boolean; if checked, the upwind scheme will be used to advect transport quantities 
across the computational cells. This scheme is quite diffusive but often provides stability to a calculation. 
 
useArtificialViscosity: boolean; if checked, CartaBlanca adds artificial viscosity terms to the pressure on cell 
surfaces. Its use is recommended to damp unphysical oscillations for shock wave problems. However, its use 
causes unphysical dissipation and therefore is not recommended for problems not involving strong 
discontinuities. 
 
useSumDeltaVfractionZero: boolean; currently we suggest this box be checked whenever the MPM/PIC 
method is used and unchecked whenever the MPM/PIC method is not used. 
 
Note: It is planned to remove the option useSumDeltaVfractionZero from the user input in a future code 
version. 
 
futureUse_3: boolean; currently not used. 
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4.5. Preconditioner 
 
The Preconditioner panel is used to specify and configure the Newton-Krylov preconditioners. The Theory 
Manual gives a detailed discussion on CartaBlanca’s preconditioning logic. The Preconditioner panel is 
composed of five sub-panels: All Materials, Material 1, Material 2, Material 3, and Material 4. Sub-panel 
All Materials is used for preconditioning quantities that are common to all materials in the model. The other 
sub-panels are used for quantities that are specific to a material (phase), where up to four materials can be 
defined in a given model (in the Preconditioner panel, input is provided for up to four species per material). 
 
The data for a sub-panel are entered in a scrollable table for that sub-panel. The first column of each 
table lists the parameters (properties) of the preconditioners. These parameters are the same in all five 
tables. The remaining columns are for data entry for each preconditioner; the quantity to be 
preconditioned appears in the column heading.  The preconditioner data are comprised of text fields 
(keywords), reals, integers, and booleans (checkboxes). Keyword entry is facilitated by selection 
from dropdown lists. 
 
Figure 20 shows the All Materials (sub-)panel, at the top of the panel’s table. Figure 21 shows the same table 
scrolled to the bottom. Columns 2, 3, and 4 are for entry of data for pressure (P) and the K-ε turbulence 
model  (turbK and turbE). 
 

 
Figure 20. GUI "Preconditioner" tab, "All Materials" sub-tab. 
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Figure 21. Preconditioner "All Materials" sub-tab, bottom of table. 
 
 
Figure 22 shows the Material 1 panel. 
 
The material-specific quantities for which a preconditioner can be specified are, for Materialn (where n can be 
1, 2, 3, or 4): 
 
Un,   X component of the velocity, 
Vn,   Y component of the velocity, 
Wn,  Z component of the velocity, 
RhoMacn, macroscopic density, 
Tn,   temperature, 
Hn,   enthalpy, 
DXn,   X component of the displacement, 
DYn,  Y component of the displacement, 
DZn,   Z component of the displacement, 
s1MFn, mass fraction of species 1 in Materialn, 
s2MFn, mass fraction of species 2 in Materialn, 
s3MFn, mass fraction of species 3 in Materialn, and 
s4MFn, mass fraction of species 4 in Materialn. 
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Figure 22. Preconditioner "Material 1" sub-tab. 

 
 
The input parameters (properties) for each preconditioned quantity on each sub-panel of the Preconditioner 
panel are as follows: 
 
Solver: keyword text; the preconditioner solution algorithm, either Jacobi, CG, diagonal, SSOR, ILU0, 
or none. The optimal choice depends on the specific physical problem. These methods are implemented in 
the Java solver package. 
 
Figure 23 shows selection of the pressure preconditioner solver from a built-in dropdown list. Figure 24 
shows selection of the Material 1 velocity (Z component) preconditioner solver from a built-in dropdown list. 
 
Note: The SSOR and ILU0 methods cannot be used for parallel calculations. The code will write an error 
message and shut down in this circumstance. 

 
 

 
Figure 23. Selecting a preconditioner solver for pressure. 
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Figure 24. Selecting a preconditioner solver for Material 1 velocity (Z component). 

 
 
AbsTol: real; absolute tolerance. 
 
RelTol: real; relative tolerance. 
 
RelxFac: real; currently not used. 
 
Scales: real; value for scaling the preconditioner variable. 
 
Param1: real; currently not used. 
 
Param2: real; currently not used. 
 
NOfIter: integer; number of iterations. 
 
NewtonUp: boolean; if checked, update every Newton iteration. 
 
TimeStepUp: boolean; if checked, update every time step. 
 
LinSolUp: boolean; if checked, update every linear solve. 
 
Verbose: boolean; if checked, print detailed diagnostics (e.g., L2-norms). 
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4.6. Initial Conditions 
 
The Initial Conditions panel is used to specify the initial locations of the problem’s materials and 
their initial velocities, temperatures, etc. Also, the species mass fractions of the materials are 
specified here. The initial conditions are set by first breaking the problem domain up into geometric 
regions, and then assigning time = 0 properties to the regions. A region is defined by using one or 
more surfaces in the problem’s one-, two-, or three-dimensional space. The Initial Conditions panel 
consists of two sub-panels: Regions Definition, where the surfaces and regions are defined, and 
Regions Data, where the region properties are specified. Note that the layout of the Boundary 
Conditions panel (Section 4.7) is very similar to that of the Initial Conditions panel. 
 
Section 3.5 gives an example of using the Regions Definition panel to set up surfaces and regions for 
a 2-D problem. Figure 25 shows the Regions Definition panel; it contains two tables and two integer 
fields that set the number of rows in the tables. The upper table is used to define the surfaces and the 
lower table defines the regions by referring to the surfaces. At the top of the panel, the 
numDefiningSurfaces field sets the number of rows in the upper (surface) table. If 
numDefiningSurfaces is 0 (the default), the surface table will be empty. Otherwise, the code 
automatically fills in the Surface id number(s) in the table’s first column. Three types of surface are 
available: Conic, HollowBox, and FilledBox. The surface type is entered in the last (12th) 
column of the table. Figure 26 shows selection of the type of Surface 3 from a built-in dropdown list. 
 

 
Figure 25. GUI "Initial Conditions" tab ("Regions Definition" sub-tab). 
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Figure 26. Setting initial conditions: selecting a surface type for Surface 3. 

 
For Conic surfaces, the 2nd through 11th columns are used to enter coefficients A,…,J to define the 
surface: 
 
h(x,y,z) = Ax 2 + By 2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J  . 
 
The FilledBox option is used to define a rectangular parallelepiped with opposite vertices (x1, y1, z1) 
and (x , y , z ), by specifying A = x1, B = y1, C = z1, D = x 2, E = y 2, and F = z 2. In this case, G, H, I, and 
J are not used.  The HollowBox option is used to define a rectangular parallelepiped with an inner 
parallelepiped inside it. The values of A through F are defined exactly in the same way as for the 
FilledBox, and the variable G is used for defining the distance between the outer box and the inner box. 

2 2 2

FilledBox and HollowBox surfaces are used in the regions table in a manner similar to Conic 
surfaces, as described below (where the inner box and the outer box together define a HollowBox). In a 
2-D problem, the variables C and F are not used and should be set to zero. 
 
The field numRegions specifies the number of initial regions; the code creates the appropriate number of 
rows in the bottom (regions) table, and fills in the Region id number(s). In each row, we indicate how the 
region is positioned with respect to the surfaces by entering Surface id numbers in columns 2 – 6, which 
specify the relations lt, le, eq, ge, and gt, respectively (“less than”, etc.). The Conic surfaces h(x,y,z) are 
used in the regions table to define regions in which the points obey one or more of the relations 

, 0.0),,(,0.0),,( ≤< zyxhzyxh h(x,y,z) = 0.0, . One or more Surface id 
numbers are entered in the appropriate columns to obtain the desired relations (see Section 3.5). With 
FilledBox and HollowBox surfaces, the columns labeled lt, le, ge, and gt are also used to define a 
region, where “lt” indicates a point is in

0.0),,(,0.0),,( >≥ zyxhzyxh

 the region (as far as that surface is concerned), and the other 
relations have a corresponding sense (“eq” should not be used). The number –1 is used when a relation 
does not apply for any of the surfaces (i.e., no surface satisfies the relation). Surface types can be mixed in 
a given relation. If there is more than one surface in a relation, the id numbers must be separated by 
commas, with no embedded blanks. Note that, in the code, the checks for and 

are actually done using 
( , ,h x y

)
) 0.0z ≤

( , , ) 0.0h x y z ≥ ( , ,h x y z ε<  and  ( , , )h x y z ε> −  respectively, where ε  is a small 
tolerance, entered in the GUI as the tolerance field in the BcDefinitions sub-panel of the Boundary 
Conditions panel (Section 4.7). This is to account for possible error in the node data file (Section 4.1.1) 
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due to round-off error. For example, in a 1D case, a node intended to have the value 0.3 may be printed as 
0.300000000000000001 in the node data file but one does not notice this. Thus, if one wants to use an 
initial region  by only checking 0.3x ≤ 0.3x ≤ , the node will not be in the region, which is not the user’s 
intention. Similarly, the check h(x,y,z) = 0.0 is done using ( , , )h x y z ε< . 
 
If all the entries are –1 for a region, the region is not defined by surfaces; the region’s node coordinates 
must be provided in an input text file that is specified by the General Information panel’s field 
InitialConditionsFileName. An example of such a file is: 
 
 2                             
 0 753 
 0.3 2.5 0.0 
 0.3 2.75 0.0 
 0.3 3.0 0.0 
 0.3 3.25 0.0 
 0.3 3.5 0.0 
 ……… 
 ……… 
 ……… 
 
where the first line gives the number of initial regions specified in the file (2 in this case), the second line 
specifies the index of the first initial region in the file (starting from 0) and the number of computational 
(mesh) nodes in this initial region (753 here), and the next 753 lines give the x, y, z coordinates of the 
nodes. A second data block gives the next index and node count, and the node coordinates. Note that the 
code, internally, starts the region indexing at 0 (Java arrays start at 0), but the GUI presents region ids that 
start at 1. 
 
The initial regions can be overlapping; if a node appears in two or more initial regions, the initial condition 
specified in the region with the largest index is in effect. The initialization proceeds from initial region 0 to 
the highest-numbered one. For each initial region, the code loops through all the nodes in the whole region 
to determine if a node is in this initial region, and if it is, the code then assigns initial values to the node 
according to the initial data of this initial region, thus, overwriting the node’s current values. 
 
The Regions Data panel is used to initialize each region. Regions Data comprises five sub-panels: RD: 
Material 1, RD: Material 2, RD: Material 3, RD: Material 4, and RD: All Materials. The first four of 
these panels are used to enter material (phase)-dependent data, and the fifth is used for material-
independent data. 
 
Figure 27 shows Regions Data -- RD: Material 1. Each material panel has two tables. The upper table 
accepts, for each region, the initial value of the volume fraction, the initial values of the components of the 
velocity (U, V, and W), the initial value of the temperature, and the initial values of the components of the 
displacement (DX, DY, and DZ). The last five columns (F10 through F14) are not used and serve as 
placeholders for future variables. 
 

 52



 
Figure 27. Initial Conditions "Regions Data" sub-tab ("RD: Material 1" sub-tab). 
 
 
The lower table accepts, for each region, the species mass fractions for up to four species per material. The 
last nine columns (P1 through P9) are not used and serve as placeholders for future variables. 
 
Figure 28 shows Regions Data -- RD: All Materials. There is a single table that accepts, for each region, 
the initial values of the pressure (P) and the input parameters for the K-epsilon turbulence model (turbK and 
turbE). The last 10 columns (var04,…,var13) are not used and serve as placeholders for future variables. 
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Figure 28. Initial Conditions "Regions Data" sub-tab ("RD: All Materials" sub-tab). 
 
 
The input parameters for the Initial Conditions panel are as follows: 
 
Regions Definition panel 
 
 numDefiningSurfaces: integer; number of surfaces that will be used to specify the initial regions. 
 
 numRegions: integer; number of initial regions. 
 

SurType: keyword text; the surface type, either Conic, FilledBox, or HollowBox. Entered for each 
surface in the surface table. 
 
A, B, C, D, E, F, G, H, I, J: ten reals; one set of values for each surface. For SurType Conic, the 
coefficients of the 3-D conic surface 
h(x,y,z) = Ax 2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J . 
For SurType FilledBox, the opposite vertices (x1, y1, z1) and (x 2, y 2, z 2) of a rectangular 
parallelepiped, where A = x1, B = y1, C = z1, D = x 2, E = y 2, and F = z 2 (G, H, I, and J are not used). For 
SurType HollowBox, the opposite vertices (x1, y1, z1) and (x 2, y 2, z 2) of an outer rectangular 
parallelepiped, where A = x1, B = y1, C = z1, D = x 2, E = y 2, and F = z 2, and G is the distance from the 
outer rectangular parallelepiped to an inner rectangular parallelepiped (H, I, and J are not used). For both 
FilledBox and HollowBox, in a 2-D problem, C and F are not used and should be set to zero. 

 
lt, le, eq, ge, gt: five text fields; one set of entries for each region. For SurType Conic, the surface id 
numbers are entered to specify the relations h(x,y,z) < 0.0, h(x,y,z) = 0.0, or h(x,y,z) > 0.0. For SurType 
FilledBox and SurType HollowBox, the surface id numbers are used to specify if a point is in the 
box, where “lt” has the sense of including the point, “gt” is used to exclude the point, etc. (“eq” should not 
be used). For Conic, FilledBox, and HollowBox surfaces, where more than one surface is used for a 
relation, the id numbers must be separated by commas, with no embedded blanks; if a relation does not 
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apply for a region (i.e., no surface satisfies the relation), “-1” should be entered. Surface types may be 
mixed in a given relation. If all five relations have “-1” for a region, a file that gives the region’s nodes 
must be provided (see discussion above in this section, and Section 4.1).  
 

Regions Data panel 
 
 RD: Material 1, RD: Material 2, RD: Material 3, and RD: Material 4 panels 
 
 vfrac1, vfrac2, vfrac3, or vfrac4: real; for each region, initial volume fraction of Material 1, 2, 3, or 4. 
 
 U1, U2, U3, or U4: real; for each region, initial X-component of velocity of Material 1, 2, 3, or 4. 
 
 V1, V2, V3, or V4: real; for each region, initial Y-component of velocity of Material 1, 2, 3, or 4. 
 
 W1, W2, W3, or W4: real; for each region, initial Z-component of velocity of Material 1, 2, 3, or 4. 
 
 T1, T2, T3, or T4: real; for each region, initial temperature of Material 1, 2, 3, or 4. 
 

DX, DY, and DZ: three reals; for each region, initial X, Y, and Z component of displacement of Material 
1, 2, 3, or 4. 
 
F10, F11, F12, F13, and F14: five reals; currently not used. 
 
s1MF1, s1MF2, s1MF3, or s1MF4: real; for each region, initial species-number 1 mass fraction in 
Material 1, 2, 3, or 4. 
 
s2MF1, s2MF2, s2MF3, or s2MF4: real; for each region, initial species-number 2 mass fraction in 
Material 1, 2, 3, or 4. 
 
s3MF1, s3MF2, s3MF3, or s3MF4: real; for each region, initial species-number 3 mass fraction in 
Material 1, 2, 3, or 4. 
 
s4MF1, s4MF2, s4MF3, or s4MF4: real; for each region, initial species-number 4 mass fraction in 
Material 1, 2, 3, or 4. 
 
P1, P2, P3, P4, P5, P6, P7, P8, and P9: nine reals; currently not used. 

 
 RD: All Materials panel 
 
 P: real; for each region, initial pressure. 
 

turbK: real; for each region, initial K-parameter (turbulent kinetic energy) for K-epsilon turbulence 
model. 
 
turbE: real; for each region, initial ε-parameter (turbulent dissipation) for K-epsilon turbulence model. 
 
var04, var05, var06, var07, var08, var09, var10, var11, var12, and var13: ten reals; currently not 
used. 
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4.7. Boundary Conditions 
 
This section describes the setup of computational boundary conditions and the applicable boundary condition 
variables. CartaBlanca applies boundary conditions at computational nodes that are specified by the user. 
Typically, these nodes are on the outer border of the computational domain (“external” nodes), but the option 
is available to specify internal nodes for special situations. In either case, the boundary condition nodes can 
be specified by identifying geometric regions in the domain that contain the nodes, and/or by supplying a file 
that has node coordinates. Note that the GUI Physics panel (Section 4.2) is used to specify periodic boundary 
conditions (see also Section 4.1.3). 
 
Boundary conditions are specified with the Boundary Conditions panel, which is very similar to the Initial 
Conditions panel (Section 4.6). There are two Boundary Conditions sub-panels: BcDefinitions and 
BcData. Figure 29 shows the BcDefinitions panel. BcDefinitions is used in the same manner as the Initial 
Conditions panel’s Regions Definition panel: there are upper and lower tables that define surfaces and 
regions in the computational domain, respectively, where here the regions are used to apply specific 
boundary conditions. The numbers of surfaces and regions are specified with numBCConics and 
numBCRegions, respectively. In addition, the tolerance for accepting a point as part of a region is specified 
in the tolerance field. Again, if the surface type, SurType, is Conic, the coefficients in the upper table 
define one or more surfaces: 
 
h(x,y,z) = Ax 2 + By2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J  . 
 
These surfaces are used to define regions in which the points obey one or more of the relations 

, ( , , ) 0.0, ( , , ) 0.0h x y z h x y z< ≤ h(x, y,z) = 0.0
0.0 ( ,h x

,  The code tests for 
and using 

.0.0),,(,0.0),,( >≥ zyxhzyxh
, )y z( , , ) 0.0h x y z ≤ ( , , )h x y z ≥ ε<  and  ( , , )h x y z ε> − respectively, where ε  is a small 

value entered in the tolerance field. This is to account for possible error in the node data file (Section 4.1.1) 
due to round-off. For example, in a 1-D case, a node intended to have the value x=0.3 may be printed as 
0.300000000000000001 in the node data file but one does not notice this. Thus, if one wants to use a 
boundary region , the node would not be in the region, an unintended result. Similarly, the check 0.3x ≤
h(x,y,z) = 0.0 is done using ( , , )h x y z ε< . The value of tolerance is also used for the Initial Conditions 
regions (Section 4.6). 
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Figure 29. GUI "Boundary Conditions" tab ("BcDefinitions" sub-tab). 
 
In addition to Conic, SurType can be FilledBox, as described in Section 4.6 (HollowBox is not 
allowed). Figure 30 shows the selection of a surface type from a built-in dropdown list. 
 
 

 
Figure 30. Selecting a boundary condition surface type. 
 
 
In the lower table, for each of the regions the type of boundary condition (internal or external) and 
the kind of boundary condition (wall, reflective, reflcorner, inflow, outflow, pressure, 
inflow-outflow, or vel-direction) are entered. Figures 31 and 32 show the selection of a 
boundary region type and kind, respectively, from dropdown lists. The type indicates whether the region’s 
nodes are to be treated by the code as on the outer (external) border of the mesh, or inside the mesh 
(internal). The eight kinds of boundary condition are used to specify different physical properties at the 
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boundary condition nodes (e.g., the uses of wall, inflow, outflow, and pressure are apparent from 
their names). Descriptions of the type and kind options are given in Section 4.7.1. Again, as with the Initial 
Conditions panel, we indicate how each region is positioned with respect to each of the surfaces using the lt, 
le, eq, ge, and gt columns. The entry “–1” is used when a relation does not apply to any of the surfaces. The 
reader is referred to Section 4.6 for additional details on specifying surfaces and regions. 
 
 
 
 
 
 
 

                                            
                                                    Figure 31. Selecting a boundary region type. 
 
 
 
 
 
 
 

 
Figure 32. Selecting a boundary region kind. 
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If all the entries for a boundary-condition region are –1, the region is not defined by surfaces; the 
computational-node coordinates of the region must be provided in an input file that is specified in the 
General Information panel’s BoundaryFileName field (Section 4.1). An example of such a file is: 
 
 3 
 0 pressure 1 
 1.2500000000000002 18.25 0.0 
 1 outflow 1 
 3.5 17.75 0.0 
 2 inflow 2 
 0.425 2.5 0.0 
 0.55 2.5 0.0  
 
The first line gives the number of boundary regions specified in the file (3 in this case). Following are sets of 
data for each of the regions. The second line in the example specifies the index of the first boundary region 
in the file (0 in this case), the kind of the boundary region (pressure), and the number of nodes in the 
boundary region (1). The following line gives the X, Y, Z coordinates of the single node. This is followed by 
a 1-node outflow region and a 2-node inflow region. Note that, as with the initial conditions data file, the 
region indices start at 0. Also, the boundary condition “kind” specification in the file is currently not used 
(but a dummy entry must be made to allow parsing of the file); the actual kind is read from the GUI’s region 
table. An example of the use of a boundary file is in the CartaBlanca Test Suite problem 
testPoiseuille1_RF_Test, which writes .IO file Poiseulle1_RF.IO, where boundary region 2 
has “-1” for the items lt, le, eq, ge, and gt; this triggers the use of a boundary data file. In the General 
Information panel, BoundaryFileName has the file  
meshes\2D\QUADS\Poiseuille\myBCFile.txt, which has: 
 
 1 
 1 wall 2 
 10.0 0.0 0.0 
 10.0 1.0 0.0  
 
where one boundary region is specified, with index 1 (indicating the second region in the problem), and 
coordinates for two nodes are given. Boundary files can be convenient when the region has a complex 
geometry. 
 
The boundaries are ordered by the boundary region number, followed by a possible default boundary (of 
kind wall), which includes all external nodes that do not belong to boundaries specified in the boundary 
region table (or as periodic).  If a node has been claimed by a boundary, then it is out of consideration by 
the boundaries that follow; that is, a node cannot belong to more than one boundary. 
 
The BcData panel is used to specify the boundary conditions in each boundary condition region. BcData 
comprises five sub-panels: AllFluids, Material 1, Material 2, Material 3, and Material 4. The AllFluids 
panel is used to enter boundary condition data that are common to all materials (phases) in the problem; the 
other four panels are for material (phase)-specific boundary condition data. In each of the five BcData 
panels, each of the boundary condition variables has three terms, identified by the suffixes H, Phi and Fl, 
that are used for calculating the variable’s boundary flux (e.g., temperature Temp has input for TempH, 
TempPhi, and TempFl). Using these terms, the boundary condition flux of variable Var is defined as 
 
 BCFlux = FaceArea*VarH *(VarPhi −Var) + FaceArea*VarFl  . 
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The use of the H, Phi and Fl parameters by the various boundary kinds is discussed in Section 4.7.1. 
 
Figure 33 shows BcData -- AllFluids. There is a single table that accepts, for each boundary condition 
region (BR), data sets for pressure (P) and for the K-epsilon turbulence model (tk and tl) (Note: Currently 
the tk and tl cells are placeholders). 
 

 
Figure 33. GUI Boundary Conditions "BcData" sub-tab ("AllFluids" sub-tab). 
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Figure 34 shows BcData -- Material 1. Each material panel has two tables. The upper table accepts, for each 
boundary condition region (BR), data sets for volume fraction (Theta), temperature (Temp), velocity 
components (Vx, Vy, Vz), and displacement components (Dx, Dy, Dz). The lower table accepts, for each 
region, the species mass fractions for up to four species per material (s1MF, s2MF, s3MF, s4MF); variables 
v1, v2, v3, and v4 are currently unused. 
 
 

 
Figure 34. GUI Boundary Conditions "BcData" sub-tab ("Material 1" sub-tab). 
 
 
Section 4.7.1 describes the available boundary condition types and kinds. Section 4.7.2 gives a 
complete listing of the Boundary Condition panel input specifications. 
 
4.7.1. Boundary Condition Types and Kinds 
 
type: keyword text; either external or internal. 
CartaBlanca can apply boundary conditions either at nodes which are on the border of the 
computational mesh, or are at interior locations. These basic types of boundary condition are 
specified with the keywords external and internal for the type parameter, respectively. 
Normally, a boundary is external, however, an internal boundary can be used for some 
special purposes. For example, if one wants to set velocity to zero for some internal nodes (“sticky 
nodes”), then one can put those nodes in a boundary section with type internal and kind wall, 
and set a large value (such as1.0E20) for VxH, VyH, VzH, and 0.0 for VxPhi, VyPhi, VzPhi (see 
the discussion on wall boundaries below). 
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kind: keyword text; either wall, inflow, outflow, pressure, inflow-outflow, 
reflective, vel-direction, or reflcorner. 
CartaBlanca supports eight different boundary condition algorithms, which gives a great deal of 
flexibility for problem definition. A specific algorithm is chosen with the kind parameter keywords; 
the algorithms are listed in Table 1, after which detailed descriptions for each are given. All nodes on 
the border of the computational mesh (“external” nodes) that are not explicitly included in a boundary 
condition region by the problem input are included in a default boundary of  kind wall. If there are 
no boundary regions at all in the input, then all external nodes are in this default wall boundary 
(with the exception of any nodes that treated by a periodic boundary condition (see Section 4.1.3). 
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Algorithm (kind-parameter keyword) Description 
wall Specifies a constant boundary temperature 

(or heat flux) and velocity. By default, the 
wall is adiabatic and outward velocity 
component is 0.0. Can be used to hold 
materials fixed in space, including internal 
barriers. Default kind. 

inflow Specifies flows of mass, momentum, 
enthalpy, and species-mass into the 
problem domain. 

outflow Specifies flows of mass, momentum, 
enthalpy, and species-mass out of the 
problem domain. 

pressure Sets a constant pressure at the boundary. 
See discussion for special use of input  
parameter ThetaH. 

inflow-outflow Alternative method to set a constant 
pressure at the boundary. See discussion 
for special use of input parameter ThetaH. 

reflective Used in special cases for problem 
symmetry, such as the axis of the 
cylindrical coordinate system in the 
axisymmetric case. 

vel-direction For nodes in a vel-direction 
boundary, velocity, if any, is constrained to 
a specified direction. Used for special 
locations, such as corner nodes in a 
cylindrical coordinate system. 

reflcorner Allows both positive and negative 
component of a vector (velocity, pressure 
gradient, etc.) in a specified direction. Used 
for special locations. 

Table 1. Boundary conditions. 
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Internally, the boundaries are ordered by the boundary region number, followed by the default wall 
boundary.  If a node has been claimed by a boundary, then it is out of consideration by the boundaries that 
follow that boundary, that is, a node cannot belong to more than one boundary. 
 
In general, if a flux condition in a boundary condition is applicable (as described below), then it is defined as 
 
      BCFlux = FaceArea *VarH * (VarPhi − Var) + FaceArea *VarFl  .                                                  
 
For example, energy flux at a boundary is calculated in the code by using, with the variable Temp 
(temperature), the relation 
 

BCFlux = FaceArea*TempH*(TempPhi – Temp) + FaceArea*TempFl  . 
 
 
kind wall 
 
wall boundary conditions are used to specify a constant boundary temperature (or heat flux) and velocity. 
By default, a wall boundary is adiabatic (if energy transport is solved), the outward normal velocity is set to 
0.0, and inward normal and tangential velocity are allowed. A wall boundary can be used to hold materials 
fixed in space, including the creation of internal barriers. 
 
The wall boundary condition for temperature T is assumed to have the form 

                                  ( )Tk h T T
n ∞

∂
= − − +

∂
q    , 

where k is the heat conductivity as used in the energy equation, n is the outward normal direction, h is the 
heat transfer coefficient, T  is the ambient temperature,  and is the heat flux. The BcData panel’s 
temperature parameters TempH, TempPhi, and TempFl correspond to h, T

∞ q

∞ , and respectively in the 
temperature boundary condition differential equation. 

q

 
Internally, the code currently sets a Dirichlet-type boundary condition flag (dependent variable’s value is 
specified at the boundary) when TempH is greater than 109, and directly sets the boundary node 
temperatures to TempPhi (a very large value of the heat transfer coefficient would have the same effect 
using the differential equation). Alternatively, wall can be used to specify a boundary heat flux with the 
“Temp” parameters. By default a wall boundary is adiabatic. 
 

Example: set fixed-temperature boundaries: If the energy transport equation is solved (Physics panel), to 
set the boundary temperatures at, say, fixed values T = 300 and T = 500 for boundary regions 1 and 2 for 
phases 1 and 3, in the Material 1 and Material 3 panels enter a large number (such as 1.0E20) in the first 
and second rows under TempH, enter 300.0 and 500.0 under TempPhi, and enter 0.0 under TempFl. This 
sets the boundary temperatures to the desired values. 

 
Example: set adiabatic boundary: If the energy transport equation is solved (Physics panel), to set an 
adiabatic boundary for boundary region 5, for phase 4, in the BcData panel’s Material 4 panel set the 5th 
row’s TempH, TempPhi, and TempFl to 0.0 (this is the default). 
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Example: set velocity at a boundary: Specify velocity on a wall  by setting VxH, VyH, and VzH to a large 
value (such as 1.0E30), use VxPhi, VyPhi, and VzPhi to specify the desired velocity on the boundary, and 
set VxFl, VyFl, and VzFl to 0.0. 
 
Example: default wall velocity behavior: If VxH, VxPhi, VxFl, VyH, VyPhi, VyFl, VzH, VzPhi, and 
VzFl are 0.0 (the default values) on a wall boundary, the treatment of velocity on the boundary nodes is 
to set the outward (in the normal direction of the boundary face) velocity to zero. The code will still 
calculate tangential velocity and inward velocity.  
 
Most of the problems in the CartaBlanca Test Suite have explicit definition of at least one wall boundary 
condition.   
       
wall boundary condition treatment for species  transport and turbulence transport are currently not 
available. 
 
wall is the default boundary condition kind. All external computational nodes that are not explicitly 
included in a boundary condition region of the problem geometry are included by the code in a wall 
boundary, using default settings. 
  
kind inflow 
 
The inflow boundary condition is used to specify flows (fluxes) of mass, momentum, enthalpy, and 
species-mass into the problem domain at boundary nodes, using “Phi” parameters from the BcData 
panel. The velocity parameters VxPhi, VyPhi, and VzPhi must be provided (depending of course on 
the problem’s dimensionality) for each material (phase); they are used to calculate a volumetric flux 
into the problem domain through the face of a boundary node. The fluxed quantities for mass, 
momentum, enthalpy, and species-mass are calculated using the volumetric flux. The mass flux is 
calculated using, for each material (phase) ThetaPhi (volume fraction) and (if energy transport is 
being solved) TempPhi (temperature), and, from the AllFluids subpanel, PPhi (pressure). 
Momentum flux is calculated using the mass flux and VxPhi, VyPhi, and VzPhi. Enthalpy flux is 
calculated using the mass flux, TempPhi, and the species mass fraction parameters (again, for each 
material (phase)) s1MFPhi …. s4MFPhi. Species-mass flux is calculated using s1MFPhi …. 
s4MFPhi. 
 

Examples: inflow boundary condition: The CartaBlanca Test Suite contains seven problems that 
use an inflow boundary condition; these are all coupled with a corresponding pressure 
boundary condition (see discussion below on the pressure boundary condition). For example, 
testParticleTranslation.IO is a 1-D two-phase (solid and air) problem that only solves 
for momentum transport. At the start of the problem the solid (modeled with particles) and air move 
to the left (-x direction) at the same velocity. There is an external pressure boundary 
condition at x = 0, set to the pressure in the problem domain, and an external inflow 
boundary condition at x = 1.0 that sends-in air at the initial air/solid problem velocity. The solid and 
air translate to the left at their initial velocity. 

 
kind outflow 
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The outflow boundary condition is used to specify flows (fluxes) of mass, momentum, enthalpy, 
and species-mass out of the problem domain at boundary nodes. The user must provide values in the 
BcData panel for VxPhi, VyPhi, and VzPhi. All other quantities needed for the flux calculations are 
taken by the code from the current state of the outflow boundary node(s). 
 
kind pressure 
 
The pressure boundary condition is used to specify the pressure at a boundary. Internally, for numerical 
reasons, in addition to setting the specified pressure at the boundary node(s), the code must adjust material 
densities at pressure nodes by bringing in materials (inflow) or ejecting materials (outflow). 
 
The user supplies the desired pressure for each boundary condition region with kind pressure, in the GUI 
BcData panel’s AllFluids subpanel, with parameter PPhi (pressure). Also, for the code’s inflow/outflow 
logic for pressure boundaries, the user supplies volume fraction information for each material (phase) with 
the ThetaPhi and ThetaH parameters. Parameter ThetaPhi specifies each material’s volume fraction to use 
when the code detects that inflow is required. Parameter ThetaH is only used as a special flag to control the 
choice of volume fractions to use if outflow is required. If ThetaH is equal-to or greater-than 1.0E99 for at 
least one of the materials, the code will use the inflow ThetaPhi values also for the outflow case (for all of 
the materials). For a solid-gas problem, typically only the gas would be expected to leave the system, and the 
ThetaH flag can be used to enforce this. If ThetaH is less than 1.0E99 (for all of the materials), the code will 
use the boundary node’s current volume fractions for the outflow condition. As a final step in the pressure 
logic, the code adjusts, for inflow conditions, the node-values of enthalpy, momentum, and species mass 
using user-supplied values of  temperature (TempPhi), velocity (VxPhi, VyPhi, and VzPhi), and species 
mass fractions (s1MFPhi …. s4MFPhi).     
 

Examples: pressure boundary condition: The CartaBlanca Test Suite contains eight problems that use a 
pressure boundary condition; seven of these are coupled with an inflow boundary condition (see 
discussion above on the inflow boundary condition). 
For example, as described above for inflow,  testParticleTranslation.IO is a 1-D two-phase 
(solid and air) problem that only solves for momentum transport. At one end of the problem domain there is 
an external pressure boundary condition, and at the other end an external inflow boundary 
condition (see additional discussion above for inflow). Problem 
testParticleSinglePhaseTranslation.IO is similar to testParticleTranslation.IO, 
but there is only a single (particle) phase, and a single external pressure boundary condition at x = 0, 
set to the pressure in the problem domain. The solid translates to the left at its initial velocity. 

 
kind inflow-outflow 
 
The inflow-outflow boundary condition is also used to specify the pressure at a boundary; it is 
an alternative way to implement a pressure boundary condition in special circumstances. In the 
code’s implementation of the inflow-outflow boundary condition, the specified pressure is not 
set on the node directly, rather, it is used to determine boundary fluxes for adjusting material 
densities, and the equation of state is used to adjust the pressure. In this way, the resulting pressure 
may not be exactly the specified pressure. 
 
The inflow-outflow input parameters are used in a manner that is analogous to the pressure 
boundary condition logic. The user supplies the desired pressure for each boundary condition region 
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with kind inflow-outflow, in the GUI BcData panel’s AllFluids subpanel, with parameter PPhi 
(pressure). 
 
For the boundary-flux logic that is used to adjust the material densities, the user supplies volume 
fraction information for each material (phase) with the ThetaPhi and ThetaH parameters. Parameter 
ThetaPhi specifies each material’s volume fraction to use when the code detects that inflow is 
required. The material density to use for the inflow flux density is calculated from the user-supplied 
boundary pressure, temperatures (TempH parameter, if energy transport is solved), and species mass 
fractions (s1MFPhi …. s4MFPhi). Parameter ThetaH is used as a special flag to determine the flux 
density if outflow is required. If ThetaH is equal-to or greater-than 1.0E99 for at least one of the 
materials, the code will calculate the outflow flux density as the (old-time) local density times the 
ThetaPhi value (for all of the materials). For a solid-gas problem, typically only the gas would be 
expected to leave the system, and the ThetaH flag can be used to enforce this. If ThetaH is less than 
1.0E99 (for all of the materials), the code will use the boundary node’s (old-time) local material 
densities for the outflow condition. 
 
As a final step in the inflow-outflow logic, the code adjusts, for inflow conditions, the node-
values of enthalpy, momentum, and species mass using user-supplied values of  temperature 
(TempPhi), velocity (VxPhi, VyPhi, and VzPhi), and species mass fractions (s1MFPhi …. 
s4MFPhi). 
 

Usage note: Although the coding is intended for general cases, currently the inflow-outflow 
boundary condition has been used only with two phases, and for the outflow case using the ThetaH 
flag ≥   1.0 x 1099, with ThetaPhi = 1 or 0. 

 
kind reflective 
 
The reflective boundary is used in special cases for problem symmetry, such as the axis of the 
cylindrical coordinate system in the axisymmetric case. The normal component of the velocity is set to 
zero, as well as the normal directional derivative of the velocity components used in calculating viscous 
stress, and the normal directional derivative of the pressure. For energy transport, a reflective boundary 
is treated as adiabatic. See also discussions below on the vel-direction and reflcorner boundary 
conditions.  
 

Examples: reflective boundary condition: The CartaBlanca Test Suite contains six problems 
that use either one or two reflective boundary conditions; five of these problems are in 
cylindrical coordinates, and one is cartesian. For example, problem 
testParticleCylindrical.IO calculates the impact of a projectile onto a target in 2-D 
cylindrical coordinates, where x = 0 is a rotational symmetry axis. An external 
reflective boundary condition is specified for nodes at x = 0, y > 0 (the point x = y = 0 is 
treated as a special case with a vel-direction boundary condition, as described below). Note 
that testParticleCylindrical.IO also specifies a reflective boundary condition for x > 0,  
y = 0; the x-axis is not a symmetry axis, and a wall boundary could also be used here (the 
reflective boundary suppresses a wall-rebound). 

 
kind vel-direction 
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The vel-direction boundary condition is used to restrict velocities to a direction that is 
specified with the VxPhi, VyPhi, and VzPhi parameters in the BcData panel for each material. (The 
code automatically normalizes the resultant direction vectors to have magnitude one.) Only velocity 
in the positive direction of the specified direction is allowed for vel-direction boundary nodes. 
This would be used, for example, at a corner node which is the intersection of the axisymmetric axis 
(in the y direction) and a wall (in the x direction) in the cylindrical coordinate system. For such 
a node, we should allow only positive y-velocity, and the vel-direction boundary condition can 
be used. Note that, for this boundary condition, the normal component of the pressure gradient and 
the normal directional derivative of the velocity components used in calculating viscous stress are not 
set to zero. 

Example: vel-direction boundary condition: Test Suite problem 
testParticleCylindrical.IO is in 2-D cylindrical coordinates, where the y-axis is a 
rotational-symmetry axis (see discussion above on the reflective boundary condition). The 
point x = y = 0 is treated with an external vel-direction boundary condition; for each 
phase (projectile, target, and air), in the BcData panel, VxPhi = 0.0 and VyPhi = 1.0. Note that x = 
y = 0 is specified with boundary region 3; it is only necessary to specify boundary region 3 as y = 0, 
because region 2 has claimed y = 0, x > 0. 

 
kind reflcorner 
 

The reflcorner boundary condition is similar to the vel-direction boundary, but it allows both 
positive and negative components of a vector (velocity, pressure gradient, etc.) on the specified direction. As 
with vel-direction, this direction is given with the VxPhi, VyPhi, and VzPhi parameters for each 
material in the BcData panel. Only the component of pressure gradient and velocity gradient in the specified 
direction is allowed. The reflcorner boundary is used, for example, at the intersection line of two 
symmetry planes represented as reflective boundaries.  
 

Example: reflcorner boundary condition in 3-D: In a 3-D case, if the planes x = 0,  y = 0, and z 
= 0 are symmetry planes and we model an eighth part of a sphere , then the yz-
plane (x = 0, y > 0, z > 0) is reflective, as are the xz- and xy-planes. The positive x-axis can be 
specified as reflcorner, with VxPhi = 1.0, VyPhi = VzPhi = 0.0; the positive y-axis and the 
positive z-axis can be specified as reflcorner similarly. The origin can be specified as 
reflcorner with VxPhi = VyPhi = VzPhi = 0.0. In the case of the origin, the velocity, pressure 
gradient, and velocity gradient will be set to zero. If not all VxPhi, VyPhi, and VzPhi are equal to 
zero, the code normalizes the direction so the magnitude of the direction is one. 

)0,0,0( ≥≥≥ zyx

 
 
4.7.2. Input Specifications 
 
The input parameters for the Boundary Conditions panel are as follows: 
 
BcDefinitions panel 
 
 numBCConics: integer; number of surfaces that will be used to specify the boundary condition regions. 
 
 numBCRegions: integer; number of boundary condition regions. 
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tolerance: real, default value = 1.0 x 10-8; tolerance for accepting a point as part of a boundary condition 
region. 

 
 Note: The value of tolerance is also used for the Initial Conditions regions (Section 4.6). 
 

SurType: keyword text; the surface type, either Conic or FilledBox. Entered for each surface in the 
surface table. 
 
A, B, C, D, E, F, G, H, I, J: ten reals; one set of values for each surface. For SurType Conic, the 
coefficients of the 3-D conic surface 
h(x,y,z) = Ax 2 + By 2 + Cz2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J . 
For SurType FilledBox, the opposite vertices (x1, y1, z1) and (x 2, y 2, z 2) of a rectangular 
parallelepiped, where A = x1, B = y1, C = z1, D = x 2, E = y 2, and F = z 2 (G, H, I, and J are not used). For 
FilledBox in a 2-D problem, C and F are not used and should be set to zero. 

 
lt, le, eq, ge, gt: five text fields; one set of entries for each boundary condition region. For SurType 
Conic, the surface id numbers are entered to specify the relations h(x, y,z) < 0.0, h(x, y,z) = 0.0, or 
h(x,y,z) > 0.0. For SurType FilledBox, the surface id numbers are used to specify if a point is in the 
box, where “lt” has the sense of including the point, “gt” is used to exclude the point, etc. (“eq” should not 
be used). For Conic and FilledBox surfaces, where more than one surface is used for a relation, the id 
numbers must be separated by commas, with no embedded blanks; if a relation does not apply for a region 
(i.e., no surface satisfies the relation), “-1” should be entered. Surface types may be mixed in a given 
relation. If all five relations have “-1” for a region, a file that gives the region’s nodes must be provided 
(see discussion above in this section, and Section 4.1). 
 
type: keyword text; the boundary region type, either internal or external. See Section 4.7.1. 
 
kind: keyword text; the boundary region kind, either wall, reflective, reflcorner, inflow, 
outflow, pressure, inflow-outflow, or vel-direction. See Section 4.7.1. 
 

BcData panel 
 
 AllFluids panel 
 
 PH, PPhi, PFl: three reals; for each boundary condition region, pressure flux terms. 
 

tkH, tkPhi, tkFl: three reals; for each boundary condition region, K-parameter (turbulent kinetic energy) 
flux terms for K-epsilon turbulence model. 
 
tlH, tlPhi, tlFl: three reals; for each boundary condition region, ε-parameter (turbulent dissipation) flux 
terms for K-epsilon turbulence model. 
 
Note: Currently, input cells for the tk and tl parameters are placeholders. 

 
 Material 1, Material 2, Material 3, and Material 4 panels 
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ThetaH, ThetaPhi, ThetaFl: three reals; for each boundary condition region, volume fraction flux terms 
for Material 1, 2, 3, or 4. 
 
TempH, TempPhi, TempFl: three reals; for each boundary condition region, temperature flux terms for 
Material 1, 2, 3, or 4. 
 
VxH, VxPhi, VxFl: three reals; for each boundary condition region, X-component of velocity flux terms 
for Material 1, 2, 3, or 4. 
 
VyH, VyPhi, VyFl: three reals; for each boundary condition region, Y-component of velocity flux terms 
for Material 1, 2, 3, or 4. 
 
VzH, VzPhi, VzFl: three reals; for each boundary condition region, Z-component of velocity flux terms 
for Material 1, 2, 3, or 4. 
 
DxH, DxPhi, DxFl: three reals; for each boundary condition region, X-component of displacement flux 
terms for Material 1, 2, 3, or 4. 
 
DyH, DyPhi, DyFl: three reals; for each boundary condition region, Y-component of displacement flux 
terms for Material 1, 2, 3, or 4. 
 
DzH, DzPhi, DzFl: three reals; for each boundary condition region, Z-component of displacement flux 
terms for Material 1, 2, 3, or 4. 
 
s1MFH, s1MFPhi, s1MFFl: three reals; for each boundary condition region, species-1 mass fraction 
flux terms for Material 1, 2, 3, or 4. 
 
s2MFH, s2MFPhi, s2MFFl: three reals; for each boundary condition region, species-2 mass fraction 
flux terms for Material 1, 2, 3, or 4. 
 
s3MFH, s3MFPhi, s3MFFl: three reals; for each boundary condition region, species-3 mass fraction 
flux terms for Material 1, 2, 3, or 4. 
 
s4MFH, s4MFPhi, s4MFFl: three reals; for each boundary condition region, species-4 mass fraction 
flux terms for Material 1, 2, 3, or 4. 
 
v1H, v1Phi, v1Fl, v2H, v2Phi, v2Fl, v3H, v3Phi, v3Fl, v4H, v4Phi, v4Fl:12 reals; currently not used. 
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4.8. Exchange Parameters 
 
CartaBlanca can solve transport equations for up to four independent phases (each of which can consist of 
more than one species), which are typically identified as Material 1, 2, 3, and 4 in the GUI. Physical 
interactions between the phases are specified with the GUI Exchange Parameters panel, which has three 
sub-panels: Momentum Exchange, Energy Exchange and Mass Exchange; these are shown in Figures 35, 
36, and 37, respectively. 
 

 
Figure 35. GUI  "Exchange Parameters" tab ("Momentum Exchange" sub-tab). 
 

 
Figure 36. GUI  "Exchange Parameters" tab ("Energy Exchange" sub-tab). 
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Figure 37. GUI  "Exchange Parameters" tab ("Mass Exchange" sub-tab). 
 
 
Each of these panels contains a table, where each row is used to specify various interactions (exchange 
coefficients) between two of the problem’s phases; the number of rows is automatically set by the code 
according to the number of materials (phases) in the problem, allowing for all possible combinations of the 
phases. In general, the number of rows (or phase pairs) is  
 
 2/)1(* −= lsnumMaterialsnumMateriawsnumberOfRo  , 
 
where numMaterials is the total number of phases (numNonParticleMaterials + numParticleMaterials, as 
specified with the Physics panel (Section 4.2)). For problems with 1, 2, 3, and 4 materials, each of the three 
tables has 0, 1, 3, and 6 rows, respectively. 
 
The rows in each table are labeled by their indices in the first column (heading NoCoef), starting at 1. Each 
row is used to enter exchange parameters between phase i and phase j, where the relations between row 
number and i, j are listed here in Table 2 (i and j both start at 1, corresponding to Material 1, 2, 3, and 4). 
 
CartaBlanca’s phase interaction models are discussed in Chapter 3 of the Theory Manual. The input 
parameters for momentum exchange are applied to the equation for the force fik  between phases i and k: 
 

  ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅∇−

∂
∂

−⋅∇+
∂

∂
+−= ii

i
k

k
ikikiikikkiik tt

AK uu
u

uu
u

uuf kk
~~

~
~~

~
~~ 00 ρρθθ        , 

where iθ and kθ are the volume fractions of phases i and k, Kik = Kki is the momentum exchange coefficient, Aik 
= Aki is the added mass coefficient,  is a reference density specified in the user input, and 0

ikρ iu~  and ku~  are 
average velocities of phases i and k. Currently the added mass coefficient Aik  is an input parameter and the 
momentum exchange coefficient is calculated as 
 
  

 72



 
 

                                   Two Phase Problem 
        phase i         phase j      Row (NoCoef) 

            1              1              2 
 
                                   Three Phase Problem 
     Row (NoCoef)         phase i         phase j 
            1              1              2 
            2              1              3 
            3              2              3 
 
                                   Four Phase Problem 
     Row (NoCoef)         phase i         phase j 
            1              1              2 
            2              1              3 
            3              1              4 
            4              2              3 
            5              2              4 
            6              3              4 

                                   Table 2. Phase pairs for exchange coefficient rows. 
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where the drag coefficient for infinite Reynolds number, the length scale dik, and the kinematic 
viscosity

∞dC

ikυ  are input parameters. 
 
In the following discussion on energy exchange, subscripts i and j again refer to phases i and j. 
 
Currently, energy exchange is restricted in applicability; the basic model is derived from the literature for 
fluidized catalytic-cracking, where a thermal coupling (energy exchange) coefficient Ke is calculated as: 
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where kik is a user-input thermal conductivity, Nu a Nusselt number, and dik a user-input length scale. The 
Nusselt number is calculated as: 
 

  3
1

p PrReNu 6.02 +=     , 
 
where Pr is a Prandtl number and 
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where slip is the phasic slip speed (magnitude of the relative velocity), and ikυ  is a user-input kinematic 
viscosity. The Prandtl number is: 
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where ikρ  and are user-input density and specific heat (constant pressure), respectively. ikC
 
There is also a special model for phasic heat exchange that was derived for study of the ignition of solid 
explosives. This model is invoked by selection of special energy and species systems in the Physics Panel: 
either NLEnergyHE1 or NLEnergyHE2, and NLSpeciesHE1. In this case the solid-gas heat exchange is 
derived from the fluidized bed literature; the thermal coupling (energy exchange) coefficient Ke is calculated 
as: 
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where and are as defined above, ikk ikd gθ is the gas volume fraction, and Nu is a Nusselt number that is 
calculated as: 
 
        ( ), 3.103.02 pReNu += 2≥Nu
 
where  is as calculated above. pRe
Currently the modeling of phase change (mass exchange) is limited to several experimental phase change 
models implemented for chemical reactions related to high explosive materials. 
 
The input parameters for the Exchange Parameters panel are as follows: 
 
Momentum Exchange panel 
 
 D: real; length scale dik, a characteristic particle diameter. 
 
 Note: Parameter D is also used in the currently available energy exchange models. 
 
 CdInf: real; drag coefficient for infinite Reynolds number. ∞dC
 

CFRho: real; reference density . If there is at least one continuous fluid phase, it is recommended that 
the density of one of those phases be chosen for CFRho. 

0
ikρ

 
 Nu: real; kinematic viscosity ikυ . 
 
 AMass: real; added mass coefficient Aik. 
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 MEx6, MEx7, MEx8, MEx9, MEx10, MEx11, MEx12: seven reals; currently not used. 
 
Energy Exchange panel 
 
Note: The energy exchange parameters K, C, Rho, and Nu have either suffix “c” or suffix “d”, where “c” 
refers to a continuous phase and d to a disperse phase. 
 
Note: Parameter D in the Momentum Exchange panel is also used by the energy exchange models. 
 
 Kc: real; thermal conductivity kik , continuous phase. 
 
 Cc: real; specific heat at constant pressure , continuous phase. ikC
 
 Rhoc: real; density ikρ , continuous phase. 
 
 Nuc: real; kinematic viscosity ikυ , continuous phase. 
 
 Kd: real; thermal conductivity, disperse phase. Currently not used. 
 
 Cd: real; specific heat, disperse phase. Currently not used. 
 
 Rhod: real; density, disperse phase. Currently not used. 
 
 Nud: kinematic viscosity, disperse phase. Currently not used. 
 
 EEx9, EEx10, EEx11, EEx12: four reals; currently not used. 
 
Mass Exchange panel 
 
 Tpc: real; phase change temperature. 
 
 LatHt: real; latent heat. 
 
 PhCh: boolean; true if there is a change of phase.  
 

MaEx4, MaEx5, MaEx6, MaEx7, MaEx8, MaEx9, MaEx10, MaEx11, MaEx12: nine reals; currently 
not used. 
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4.9. Chemical Reaction 
 
Chemical reactions can be modeled either with a rate constant equal to the Arrhenius term with a mixture 
temperature, or with a specialized gas-enhanced reaction model that was developed for study of solid 
explosive ignition. The Arrhenius term is 
 
  Z exp(-E/RT) , 
 
where Z is the frequency factor (pre-exponential factor, or steric factor), E is the activation energy, R is the 
universal gas constant, and T is the temperature.  
 
Modeling of chemical reactions is enabled on the GUI Physics panel with the boolean 
chemicalReactionOn; if this is true, the number of chemical reactions to model in the problem is specified 
on the Physics panel with numChemicalReactions (see Section 4.2). 
          
Data for the reactions are entered on the Chemical Reaction panel, which is shown in Figure 38. All data are 
entered in a single table, where each row is used for a reaction, and the rows are created automatically by the 
code according to the value of numChemicalReactions on the Physics panel. 
 

 
Figure 38. GUI  "Chemical Reaction" tab. 
 
 
The input parameters for the Chemical Reaction panel are as follows: 
 
Note: Currently chemical reactions have only been modeled in CartaBlanca for cases using special species 
systems NLSpeciesHE1 and NLSpeciesHE2, which are selected in the Physics panel. NLSpeciesHE1 
can only treat one reaction; NLSpeciesHE2 treats two reactions with one reaction between gas species. 
The “HE” in these systems stands for high explosive. The basic Arrhenius reaction rate is available for these 
systems, but the actual high explosive modeling has been done with extensions to the simple Arrhenius term 
to model the explosive’s thin combustion wave front; these extensions are invoked with the parameters 
useMixT and pDepend, as indicated below. 
 
 Z: real; frequency factor (pre-exponential factor, or steric factor) in Arrhenius reaction term. 
 
 ActE: real; activation energy in Arrhenius reaction term. 
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Note: In the Arrhenius reaction expression the units of the activation energy and the gas constant R must be 
consistent. R is specified in the Physics panel (Section 4.2); the default value is 8.31439 J/mole-K. 
 

Hreaction: real; heat of reaction. Currently, Hreaction is not used; Species Properties-panel parameter 
HForm (Section 4.11) is used for heat release. 

 
 ReactPh: integer; index of the reaction phase, starting at 0 (e.g., for Material 1, ReactPh = 0).  
 

ProdPh: integer; index of the product phase, starting at 0, indicating a reaction in which the phase 
ReactPh goes into ProdPh. 

 
useMixT: boolean; if checked, use the Arrhenius term with a mixture temperature; if false, use the gas-
enhanced chemical reaction model for high explosive modeling.  

 
 Reaction: boolean; currently not used. 
 

pDepend: boolean; if checked, use a pressure-dependent reaction model. This is part of the high explosive 
modeling logic, and is only considered if useMixT is false. 

 
 Part4, Part5, Part6, Part7, Part8, Part9: six reals; currently not used. 
 

 77



4.10. Particle Properties 
 
The Particle Properties panel, which is shown in Figure 39, is used for data for phases modeled with the 
PIC/MPM method. There are two tables, each having up to four rows, where each row is used for one of the 
problem’s PIC/MPM phases. The rows are created and numbered automatically, according to the value of 
numParticleMaterials in the Physics panel (Section 4.2). 
 
The row-numbering requires some extra explanation. The first column of each table is labeled “Phase”; these 
values start at 1, but do not correspond to Material 1, 2, 3, 4 in the problem, but rather to the nth  particle 
phase. For example, in a problem with Materials 1, 2, 3, and 4 being air (non-particle), steel (particle), water 
(non-particle), and aluminum (particle) respectively, the steel would be in the row labeled 1, and the 
aluminum in row 2. 
 

 
Figure 39. GUI "Particle Properties" tab. 
 
Currently most of the cells in the tables are unused placeholders. The user must specify the number of 
computational particles per element (e.g., 2-D quad, 3-D hex) for the X, Y, and Z coordinates, and the use of 
one of the code’s damage models. Note that additional material properties, including the damage model, are 
specified in the Species Properties panel (Section 4.11). 
 
The input parameters for the Particle Properties panel are as follows: 
 

nx: integer; number of computational particles per element for X-coordinate, for 1-D, 2-D, and 3-D 
problems. 
 
ny: integer; number of computational particles per element for Y-coordinate, for 2-D, and 3-D problems. 
 
nz: integer; number of computational particles per element for Z-coordinate, for 3-D problems. 

 
 Damage: boolean; if true, use one of the code’s damage models (see Species Properties (Section 4.11)). 
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 stress: keyword text; currently not used (see Species Properties (Section 4.11)). 
 
 failure: keyword text; currently not used (see Species Properties (Section 4.11)). 
 
 Empty3, Empty4, Empty5, Empty6: four booleans; currently not used. 
 
 EqPlstcStrn: boolean; currently not used. 
 
 Empty8,...…., Empty26: 19 booleans; currently not used. 
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4.11. Species Properties 
 
Constitutive material properties, including equation-of-state and solid-stress modeling and data, are specified 
with the GUI Species Properties panel, which is shown in Figure 40. 
 
 

 
Figure 40. GUI "Species Properties" tab ("Material 2" sub-tab). 
  
 
Species Properties comprises four sub-panels: Material 1, Material 2, Material 3, and Material 4. Each 
material panel has two areas for entering data: General Information and Species Data. 
 
General Information is used for data that are global for that material (phase): Number of Species and the 
Use Particles checkbox (the variable Keep Pressure is currently unused). All species in a given phase have 
the same velocity and temperature fields, but each species may have its own constitutive model, and be 
specified individually in the initial and boundary conditions. The CartaBlanca Theory Manual describes the 
logic that treats a phase as a composite of its species’ constitutive models. In principle there is no limit on the 
number of species that may be included in a phase, although the GUI currently does have an upper limit of 
four in the initial and boundary conditions panels. If Use Particles is checked, the MPM/PIC method is used 
for the phase; otherwise, the ALE method is used.  
 
Species Data has a table that has a row for each species in the material (phase); the user can enter a name for 
the species and select a constitutive model from a built-in dropdown list (see Figure 41). Currently, the 
Comments table cells are not operational. 
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Figure 41. Selecting a species model. 
 
 
With a model selected (and the species-row selected), the Species Data -- Select Model Parameters button 
(Figure 41) can be clicked to bring up a window for model-data entry (Figure 42). 
 
 

 
Figure 42. Entering data for a species model. 
 
The data-entry window has a table on its right side, where each row is used to enter a value for a parameter 
used by the desired constitutive model (the Comments cells are currently not operational). Section 4.11.1 
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gives the top level of the Species Properties input specifications. Descriptions of the available material 
constitutive models, and their specific input specifications, are given in Section 4.11.2. 
 
4.11.1. Input Specifications – Top Level 
 
The input parameters for the Species Properties panel, for the Material 1, 2, 3, and 4 panels, are as follows: 
 
General Information 
 
 Number of Species: integer; number of species included in the material (phase). 
 
 Use Particles: boolean; if true, use MPM/PIC method for phase. If false, use ALE.  
 
 Keep Pressure: boolean; currently not used. 
 
Species Data – for each species in the phase 
 
 Name: text; any species identifying name user wishes to enter. No embedded blanks. 
 
 Model: keyword text; constitutive model for the species. See Table 3. 
 
 Comments: text; user-supplied comments. Currently not operational. 
 
 Select Model Parameters button 

 
The Select Model Parameters button brings up a frame for data entry for the specific model selected. 
Section 4.11.2 contains complete lists of the parameters used by all of the available models.  

  
4.11.2. Constitutive Models and their Input Specifications 
 
The material constitutive models available in CartaBlanca are listed in Table 3, after which a more detailed 
description of each model, including its input specifications, is given. 
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         Model                                                        Description 
  
Rigidbody Solid material with constant density and no deformation.  
Incompressible Constant density. 
Linear Density linear in pressure (also 1/temperature term when energy equation solved).

Used for fluids only. 
NobleAbel Used for gas. 
MieGruneisen Can be used for condensed matter and for materials under shock. 
Maxwell Constitutive model for solid stress in a Maxwell-type viscoelastic material. 
Kelvin Constitutive model for solid stress in a Kelvin-Voigt-type viscoelastic 

material [14]. 
JohnsonCook Adds plasticity model to the Kelvin (Kelvin-Voigt) model [4]. 
Tepla “Tensile Plasticity” model: plastic deformation with porosity growth [1, 2, 3]. 
Sesame The Los Alamos SESAME Equation-of-State and Materials Properties 

Library [10]. 
FortranModelOne Placeholder for user-provided Fortran model. 
GammaGas Only used when energy transport is solved; uses ratio of specific heats. 
ViscousSolid Experimental model used for code testing. 
Table 3. Material models. 
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Rigidbody 
 
This is a special constitutive relation; it is used when there is only one species in the phase and the 
deformation of the phase is negligible. In this constitutive relation the density of the material is a 
constant specified by user input in the data-entry window: 
 

0ρ = constant   , 
 
where 
 
 ρ0  =  material density, and 
 
 constant  =  EOSa. 
 
Also, the sound speed is set to zero so that the time step will not be affected by this phase. 
 
The Rigidbody input parameters are as follows: 
 
 EOSa: real; material density (constant). 
 
   EOSb: real; not used. 
 
   EOSc: real; not used. 
 
   EOSd: real; not used. 
 
   CpRef: real; see Maxwell parameters. 
                              

pressureWork: real; see Maxwell parameters. 
 

HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters. 
  

Bsq: real; see Maxwell parameters. 
 
 Csp: real; see Maxwell parameters. 
 

Thsp: real; see Maxwell parameters. 
 
 
Incompressible 
 
For an incompressible material the density is set to be a constant specified by user input in the data-
entry window: 
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 = constant   , 0ρ
 
where 
 
 ρ0  =  material density, and 
 
 constant  =  EOSa. 
 
Also, the square of the sound speed is set to machine infinity (1064). 
 
The Incompressible input parameters are as follows: 
 
 EOSa: real; material density (constant). 
 
 EOSb: real; not used. 
 
   EOSc: real; not used. 
 
   EOSd: real; not used. 
 
   CpRef: real; see Maxwell parameters. 
                              

pressureWork: real; see Maxwell parameters. 
 

HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters. 
  

Bsq: real; see Maxwell parameters. 
 
 Csp: real; see Maxwell parameters. 
 
 Thsp: real; see Maxwell parameters. 
 
 shearViscosity: real; see Kelvin parameters. 
 
 KRef: real; see Maxwell parameters. 
    
 Darcy: real; see Maxwell parameters. 
 
 
Linear 
 
This is a constitutive model for a fluid with the following equation of state: 
 

( )DTC
BpA
−+

+
=

1
0ρ , 
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where  
 
 ρ0  =  material density, 
 

A, B, C and D are model parameters specified by user input in the data-entry window, 
 
 A  =  EOSa, 
 B  =  EOSb, 
 C  =  EOSc, 
 D  =  EOSd, 
 
and 
 
  p  =  pressure, and 
 T  =  temperature. 
 
When energy transport is not solved (see Section 4.2), the equation of state is calculated as 
 
  . BpA +=0ρ
 
The Linear input parameters are as follows: 
 
 EOSa: real; A-term in equation of state. 
 
 EOSb: real; B-term in equation of state. 
 
 EOSc: real; C-term in equation of state, only used when energy transport is solved. 
 
 EOSd: real; D-term in equation of state, only used when energy transport is solved. 
 
 CpRef: real; see Maxwell parameters. 
                              

pressureWork: real; see Maxwell parameters. 
 

HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters. 
  

Bsq: real; see Maxwell parameters. 
 
 Csp: real; see Maxwell parameters. 
 
 Thsp: real; see Maxwell parameters. 
 
 shearViscosity: real; see Kelvin parameters. 
 
 KRef: real; see Maxwell parameters. 
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 Darcy: real; see Maxwell parameters. 
 
 
NobleAbel gas 
 
This is a constitutive model for a gas with the following equation of state: 
 

 
BTAp

p
+

=0ρ   , 

 
where 
 
 ρ0  =  material density, 
 

A and B are model parameters specified by user input in the data-entry window, 
 
 A  =  EOSa, 
 B  =  EOSb, 
 
and 
 
  p  =  pressure, and 
 T  =  temperature. 
 
When energy transport is not solved (see Section 4.2), the equation of state is calculated as 
 

 
BAp

p
+

=0ρ   . 

 
The NobleAbel input parameters are as follows: 
 
 EOSa: real; A-term in equation of state. 
 
 EOSb: real; B-term in equation of state. 
 
 EOSc: real; not used. 
 
   EOSd: real; not used. 
 
   CpRef: real; see Maxwell parameters. 
                              

pressureWork: real; see Maxwell parameters. 
 

HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters. 
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Bsq: real; see Maxwell parameters. 

 
 Csp: real; see Maxwell parameters. 
 
 Thsp: real; see Maxwell parameters. 
 
 ReferenceTemperature: real; initial system temperature when not solving energy transport. 
 
 
MieGruneisen equation of state 
 
Mie-Gruneisen equations are often used for condensed matter and for materials under shock and 
impact. In this equation of state the density, enthalpy and pressure are related as 
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γ, A, h0, K1, K2 and K3 are model parameters specified by user input in the data-entry window, 
 
 γ   =   gamma, 
 A  =   EOSa, 
 h0  =  EOSb, 
 K1 =  K1, 
 K2  =  K2, and 
 K3  =  K3. 
 
and 
 
  p  =  pressure, 
 ρ0  =  density, and 
 h   =  enthalpy. 
 
The MieGruneisen input parameters are as follows: 
  
 EOSa: real; A-term in equation of state. 
 
 EOSb: real; reference enthalpy (h0) in equation of state. 
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 EOSc: real; not used. 
 
   EOSd: real; not used. 
 
 gamma: real; γ in equation of state. 
 
 K1: real; K1 term in equation of state. 
 
 K2: real; K2 term in equation of state. 
 
 K3: real; K3 term in equation of state. 
 
 CpRef: real; see Maxwell parameters. 
                              

pressureWork: real; see Maxwell parameters. 
 

HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters. 
  

Bsq: real; see Maxwell parameters. 
 
 Csp: real; see Maxwell parameters. 
 
 Thsp: real; see Maxwell parameters. 
 
 shearViscosity: real; see Kelvin parameters. 
 
 KRef: real; see Maxwell parameters. 
    
 Darcy: real; see Maxwell parameters. 
 
 ReferenceTemperature: real; see NobleAbel parameters. 
 
 
Maxwell 
 
Viscoelastic materials can be modeled in CartaBlanca with either a Maxwell or Kelvin-Voigt model. 
Maxwell materials can be considered as a viscous damper (dashpot) in series with an elastic spring. 
The stress σ in this model is decomposed into pressure p and a deviatoric part s as 
 

σ  =  −pI + s. 
 
The pressure is calculated as 
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 ( ) d
p

trBp
dt
dp εs :γ++

τ
−= ε   , 

 
where τp is the relaxation time for pressure, B is the bulk modulus, ε  is the strain rate, γ is the 
Gruneisen coefficient, and  is the rate of change of the deviatoric strain rate. dε
 
The evolution equation for the deviatoric stress s is 
 

 d
d

G
dt
d ε2+

τ
−=⋅−⋅+
ssss

ΩΩ   , 

where ( )[ Tuu ~~
2

1
∇−∇=Ω ] is the spin tensor, u~  is the average velocity, τd is the relaxation time for 

deviatoric stress,  is the deviatoric strain rate, and G is the shear modulus. dε
 
Density is calculated using the same equation of state as in the Linear model. 
 
The Maxwell parameters specified by user input in the data-entry window are as follows: 
 
 YoungModulus: real, default value = 0.0; Young’s modulus. 
 
 PoissonRatio: real, default value = 0.0; Poisson’s ratio. 
  
 bulkModulus: real, default value = 0.0; bulk modulus. 

   
  shearModulus: real, default value = 0.0; shear modulus of elasticity. 
   

Note: If both YoungModulus and PoissonRatio are entered, the code internally calculates 
bulkModulus and shearModulus from their values. Otherwise, if both bulkModulus and 
shearModulus are entered, the code internally calculates YoungModulus and PoissonRatio from 
their values. 
 
GruneisenCoefGammas: real, default value = 0.0; Gruneisen coefficient. 
 
RelaxationTimeForPressure: real, default value = 1.0 x 1099; relaxation time for pressure. 
 
RelaxationTimeForDeviatoricStress: real, default value = 1.0 x 1099; relaxation time for 
deviatoric stress. 
 
Note: With the default values of RelaxationTimeForPressure and 
RelaxationTimeForDeviatoricStress, the Maxwell model is purely elastic. 
. 
failure: keyword text, default value = none; failure model, either ductile, brittle, or none. 

 
Note: If a failure model is used, the Damage checkbox in the Particle Properties panel must be 
checked for the particle phase (Section 4.10). 

  

 90



 elasticStressLim: real, default value = 9.5 x 109; elastic stress limit. 
 
 EOSa: real; A-term in equation of state (see Linear model). 
 
 EOSb: real; B-term in equation of state (see Linear model). 
 

EOSc: real; C-term in equation of state (see Linear model), only used when energy transport is 
solved. 

 
EOSd: real; D-term in equation of state (see Linear model), only used when energy transport is 
solved. 

 
 CpRef: real; specific heat at constant pressure. 
 
 CvRef: real; specific heat at constant volume. 
 

pressureWork: real; There is a term for total derivative of pressure in the energy equation with 
enthalpy as the variable. Setting pressureWork to one enables this term. This should normally not 
be used. 

 
HForm: real; enthalpy of formation. In general, the enthalpy of a material is expressed as: 
enthalpy = HForm + Cp(temperature – TForm), where Cp is the specific heat at constant pressure. 
See input parameters TForm and CpRef. 

 
 TForm: real; temperature of formation. See input parameter HForm. 
  

Bsq: real; Boussinesq beta parameter. If Bsq > 1.0x10-32, the Boussinesq approximation is used; this 
is for buoyancy-driven flow in cases where density differences are negligible, except where they 
appear in gravity terms.  

 
 Csp: real; close pack sound speed. 
 

Thsp: real; volume fraction at close pack, also used in the calculation of the effective viscosity in 
the stress logic. 
 
KRef: real; thermal conductivity. 
 
Darcy: real; Darcy K-factor for interphase drag. Normally, Darcy is set to zero. If its value is set to 
a large value, say, 1.0x1030, then it essentially fixes the phase (with zero velocity).  
 
Note: A single Darcy factor is used for each phase; the value from the highest-numbered species in 
a phase will be used for that phase. 
 

 
Kelvin (Kelvin-Voigt model) 
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Kelvin-Voigt materials can be considered as a viscous damper (dashpot) in parallel with an elastic 
spring. The CartaBlanca Kelvin-Voigt model is referred to simply as Kelvin in the input 
specifications. 
 
In the Kelvin-Voigt model, the stress σ  is separated into an elastic part Eσ  and a viscous part Vσ , 
 
  . EV σσσ +=
 
The viscous part  is calculated as Vσ
 
 ( ) εεσ μ+μ= 2ItrbV    , 
 
where  is the bulk viscosity, μ  is the shear viscosity and bμ ε  is the strain rate. 
 
The elastic part is calculated by solving the following evolution equation 
 

 ( ) ( ) εεσεσΩΩσ
σ GtrBtr
dt

d
EEE

E 2
2
1

+=+⋅−⋅+ I    , 

 
where B is the bulk modulus, G is the shear modulus and ε  is the strain rate. The last term on the left 
hand side is necessary to ensure energy conservation by accounting for the effect of volume change 
in cases of large deformation (see the CartaBlanca Theory Manual [12] for additional details). 
 
Density is initialized according to the equation of state 
 
    . ( ) ( )( )( )DTCBp meA −−= /0ρ
 
where  
 
 ρ0  =  material density, 
 

A, Bm, C and D are model parameters specified by user input in the data-entry window, 
 
 A  =  EOSa, 
 Bm  =  material bulk modulus, bulkModulus, 
 C  =  EOSc, 
 D  =  EOSd, 
 
and 
 
  p  =  pressure, and 
 T  =  temperature. 
 
When energy transport is not solved (see Section 4.2), the density is initialized as 
 
  .  mBpeA /0 =ρ
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The Kelvin parameters specified by user input in the data-entry window are as follows: 
 
 YoungModulus: real, default value = 0.0; Young’s modulus. 
 
 PoissonRatio: real, default value = 0.0; Poisson’s ratio. 
  
 bulkModulus: real, default value = 0.0; bulk modulus. 

   
  shearModulus: real, default value = 0.0; shear modulus of elasticity. 
   

Note: If both YoungModulus and PoissonRatio are entered, the code internally calculates 
bulkModulus and shearModulus from their values. Otherwise, if both bulkModulus and 
shearModulus are entered, the code internally calculates YoungModulus and PoissonRatio from 
their values. 
. 

 bulkViscosity: real; bulk viscosity. 
   

shearViscosity: real; shear viscosity. 
 
failure: keyword text, default value = none; failure model, either ductile, brittle, 
penhanced, or none. 

 
Note: If a failure model is used, the Damage checkbox in the Particle Properties panel must be 
checked for the particle phase (Section 4.10). 
 
Note: Currently the penhanced option is not implemented for 3D. 

  
 elasticStressLim: real, default value = 9.5 x 109; elastic stress limit. 
 
 EOSa: real; A-term in equation of state. 
 

EOSc: real; C-term in equation of state, only used when energy transport is solved. 
 

EOSd: real; D-term in equation of state, only used when energy transport is solved. 
 
 CpRef: real; specific heat at constant pressure. 
 
 CvRef: real; specific heat at constant volume. 
 
 pressureWork: real; see Maxwell parameters. 
 
 HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters. 
 
 Bsq: real; see Maxwell parameters. 
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 Csp: real; see Maxwell parameters. 
 

Thsp: real; see Maxwell parameters. 
 
KRef: real; see Maxwell parameters. 
 
Darcy: real; see Maxwell parameters. 

 
 
JohnsonCook 
 
The Johnson-Cook model [4] adds a plasticity model to the Kelvin-Voigt model. Stress calculation 
for this constitutive model contains two parts, an elastic part and a plastic flow part. 
 
The elastic stress increases as in the Kelvin-Voigt model. The plastic flow part starts by 
calculating the yield stress σeq as 
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where C, n, m, Y0 and Bjc are material parameters and 0ε  is the characteristic strain rate, 
T is the temperature, Tm is the melting temperature, T0 is the reference temperature and  pε

and  are the effective plastic strain and the rate of the plastic strain. For many practical pε
applications with large deformation, CartaBlanca approximates the effective plastic strain 
by an effective strain . The rate of the effective strain is calculated as eε
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where ,  and  are the three principal rates of strain, and the 1ε 2ε 3ε ε ’s with double subscripts 
are the components of the rates of strain under the coordinate system used. The effective 
strain is the time integration of this effective strain rate. The effective stress eσ  is calculated 
similarly as 
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where σ1, σ2, and σ3 are the three principal stress rates, and the σ’s with double subscripts 
are the components of the stress under the coordinate system used. If the effective stress  eσ
is greater than the yield stress calculated from (4.12) then each deviatoric component of the 
stress is reduced by a factor eeq σσ  to make the effective stress equal to the yield stress . eqσ
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The pressure, or the isotropic component of the stress, is kept unaltered in this step. 
 
Density is initialized according to the equation of state 
 

( )DTC
BpA
−+

+
=

1
0ρ , 

  
where  
 
 ρ0  =  material density, 
 

A, B, C and D are model parameters specified by user input in the data-entry window, 
 
 A  =  EOSa, 
 B  =  EOSb, 
 C  =  EOSc, 
 D  =  EOSd, 
 
and 
 
  p  =  pressure, and 
 T  =  temperature. 
 
When energy transport is not solved (see Section 4.2), the equation of state is initialized as 
 
  , mBpeA /0 =ρ
 
where Bm =  material bulk modulus, bulkModulus. 
 
The JohnsonCook parameters specified by user input in the data-entry window are as follows: 
 
 YoungModulus: real, default value = 0.0; Young’s modulus. 
 
 PoissonRatio: real, default value = 0.0; Poisson’s ratio. 
  
 bulkModulus: real, default value = 0.0; bulk modulus. 

   
  shearModulus: real, default value = 0.0; shear modulus of elasticity. 
   

Note: If both YoungModulus and PoissonRatio are entered, the code internally calculates 
bulkModulus and shearModulus from their values. Otherwise, if both bulkModulus and 
shearModulus are entered, the code internally calculates YoungModulus and PoissonRatio from 
their values. 
. 

 bulkViscosity: real; bulk viscosity. 
   

shearViscosity: real; shear viscosity. 
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Note: The default values for the following eight parameters (A, B, n, C, m, thetam, sigmaFail, and 
enthalpy0) are for 4340 steel. 

 
A: real, default value = 0.792; Y0-term in plastic flow yield stress calculation. 
 
B: real, default value = 0.510; Bjc-term in plastic flow yield stress calculation. 
 
n: real, default value = 0.26; n-term in plastic flow yield stress calculation. 
 
C: real, default value = 0.014; C-term in plastic flow yield stress calculation. 
 
m: real, default value = 1.03; m-term in plastic flow yield stress calculation. 
 
thetam: real, default value = 1793.0 K; melting point, Tm-term in plastic flow yield stress calculation.  
 
sigmaFail: real, default value = 2.0 x 1010; failure stress used in plastic flow ductile failure model. 
 
enthalpy0: real, default value = 1.8 x 109; initial enthalpy used in plastic flow ductile failure model. 
 
failure: keyword text, default value = none; failure model, either ductile, brittle, or none. 

 
Note: If a failure model is used, the Damage checkbox in the Particle Properties panel must be 
checked for the particle phase (Section 4.10). 
 
Note: To use the Johnson Cook plastic flow logic, enter ductile for failure. 

  
 elasticStressLim: real, default value = 9.5 x 109; elastic stress limit. 
 
 EOSa: real; A-term in equation of state. 
 
 EOSb: real; B-term in equation of state, only used when energy transport is solved. 
 

EOSc: real; C-term in equation of state, only used when energy transport is solved. 
 

EOSd: real; D-term in equation of state, only used when energy transport is solved. 
 
 CpRef: real; specific heat at constant pressure. 
 
 CvRef: real; specific heat at constant volume. 
 
 pressureWork: real; see Maxwell parameters. 
 
 HForm: real; see Maxwell parameters. 
 

TForm: real; temperature of formation, also reference temperature (T0-term) in yield stress model.  
 
 Bsq: real; see Maxwell parameters. 
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 Csp: real; see Maxwell parameters. 
 

Thsp: real; see Maxwell parameters. 
 
KRef: real; see Maxwell parameters. 
 
Darcy: real; see Maxwell parameters. 

 
 
Tepla (tensile plasticity model) 
 
Note: The CartaBlanca implementation of the Tepla model is currently under development. 
 
The CartaBlanca Tepla model is an implementation of the equations for plastic deformation with porosity 
growth given by Addessio et al. [1], which were based on the original TEPLA-F model of Johnson and 
Addessio [2, 3] for tensile plasticity and void growth in ductile fracture under general tensile loading 
conditions. In the following we use the notation of Addessio et al. 
 
The code calculates a plastic yield stress τp according to 
 
  φYY p

s
p =τ  , 

 
where is the plastic flow stress (“no-void” yield stress) and p

sY φY  is the degradation of the strength of the 
material as a result of porosity growth. Currently  is calculated with the Johnson-Cook model [4]:  p

sY
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where c1, c2, c3, n, and m are user-input material parameters, 0ε  is a user-input  characteristic 
(reference) strain rate, T is the temperature, Tm is the user-input melting temperature of the material, 
T0 is a user-input reference temperature, and and  are the equivalent plastic strain and the 
equivalent plastic strain rate in the solid material. Currently, CartaBlanca sets the equivalent plastic 
strain rate equal to the reference strain rate. The strength degradation factor 

p
sε p

sε

φY  is 
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where q and  are user-input material constants, 0Y φ  is the porosity, and P is the pressure. 
 
The code calculates an elastic effective stress using CartaBlanca’s Maxwell model (with its 
relaxation times set to their defaults, giving a purely elastic result), and compares that stress with the 
plastic yield stress τp. If the effective elastic stress is less than or equal to τp, the stress and pressure 
are updated according to the elastic-Maxwell calculation. If the plastic yield stress is exceeded, the 
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code uses equations (IV.4), (IV.5), and (IV.6) of Addessio et al. [1] to find a new porosity, including 
the relation in equation IV.5 
 
    , ( ) 022 =− φYY p

sτ
 
where τ  is the von Mieses stress and, again,  and p

sY φY  are the plastic flow stress and the strength 
degradation factor, respectively. The code then uses equation (IV.4) of [1] to update the pressure, and 
equations (IV.5) and (IV.6) to update the stress tensor and to find a new equivalent plastic strain. In 
addition to the user-input parameters given above, the logic for the plastic regime uses the material’s 
bulk modulus, shear modulus, and a Gruneisen coefficient for the material. The Gruneisen coefficient 
is taken directly from user-input. The bulk modulus and shear modulus are calculated internally from 
user-input values for the Young’s modulus and Poisson ratio. 
 
Note that the Tepla model’s elastic-Maxwell calculation also uses a bulk modulus and a 
Gruneisen coefficient; the bulk modulus is also calculated from the Tepla-input Young’s modulus 
and Poisson ratio, and the Gruneisen coefficient is used directly from the Tepla input.  
 
CartaBlanca’s Tepla model uses the input parameters EOSa and EOSb to initialize the density. 
Density is initialized according to 
 
    , BpA +=0ρ
 
where 
 
 ρ0  =  material density, 
 

A and B are model parameters specified by user input in the data-entry window, 
 
 A  =  EOSa, 
 B  =  EOSb, 
 
and 
 
  p  =  pressure. 
 
This expression is used whether or not energy transport is solved.  
 
The Tepla input parameters are as follows: 
 
 Note: There is no failure model implemented in the Tepla model. 
 

EOSa: real; constant term (A) in density initialization. 
 
EOSb: real; pressure multiplier (B) in density initialization. 
 
YoungModulus: real; Young’s modulus. 
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PoissonRatio: real; Poisson ratio. 
 

 CpRef: real; see Maxwell parameters. 
 
 pressureWork: real; see Maxwell parameters. 
 
 HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters.  
 
 Bsq: real; see Maxwell parameters. 
 
 Csp: real; see Maxwell parameters. 
 

Thsp: real; see Maxwell parameters. 
 
KRef: real; see Maxwell parameters. 
 
Darcy: real; see Maxwell parameters. 

 
c1: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook). 
 
c2: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook). 
 
c3: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook). 
 
nyield: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook). 
Equivalent plastic strain exponent (n). 
 
myield: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook). 
Exponent m of ratio of temperature differences. 
 
strainRate0: real; characteristic (reference) strain rate, used in plastic flow stress (“no-void” 
yield stress) calculation (Johnson-Cook). 
 
temp0: real; reference temperature, used in plastic flow stress (“no-void” yield stress) calculation 
(Johnson-Cook). 
 
meltTemp: real; melting temperature, used in plastic flow stress (“no-void” yield stress) calculation 
(Johnson-Cook). 
 
qDagradation: real; constant porosity multiplier in strength degradation calculation. 
 

 Y0: real; constant in strength degradation calculation (cosh term). 
 
GruneisenCoefGammas: real; Gruneisen coefficient. 
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Sesame table 
 
Note: The CartaBlanca implementation of the SESAME Library is currently under development. 
 
The CartaBlanca Sesame constitutive model is an implementation of the Los Alamos SESAME Equation-
of-State and Materials Properties Library [10]. 
 
 
FortranModelOne 
 
FortranModelOne is a placeholder for any model written in Fortran.` 
 
 
GammaGas 
 
The GammaGas model is only used when energy transport is solved. Density is calculated according 
to 
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where 
 
 ρ0  =  material density, 
 

A is a model parameter specified by user input in the data-entry window, 
 
 A  =  EOSa, 
 

γ  is the ratio of specific heats (constant pressure to constant volume), set internally to1.4, for 
an ideal diatomic gas (a good approximation for air at standard conditions), 

 
and 
 
 h = enthalpy, 
 
 and 
 
  p   =   pressure. 
 
 
The GammaGas input parameters are as follows: 
 
 EOSa: real; A-term in equation of state.  
 
 EOSb: real; not used. 
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   EOSc: real; not used. 
 
   EOSd: real; not used. 
 
   CpRef: real; see Maxwell parameters. 
                              

pressureWork: real; see Maxwell parameters. 
 

HForm: real; see Maxwell parameters. 
 
 TForm: real; see Maxwell parameters. 
  

Bsq: real; see Maxwell parameters. 
 
 Csp: real; see Maxwell parameters. 
 
 Thsp: real; see Maxwell parameters. 
 
 shearViscosity: real; see Kelvin parameters. 
 
 KRef: real; see Maxwell parameters. 
    
 Darcy: real; see Maxwell parameters. 
 

ReferenceTemperature: real; see NobleAbel parameters. 
 
 
ViscousSolid 
 
The ViscousSolid model is currently only used for testing code numerics. 
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5. RUNNING CartaBlanca 
 
A CartaBlanca calculation requires files inputSpecifier.IO, NodeDataFile, and 
MeshFile, and, optionally, MeshPartitionFile (required for parallel runs), 
ParticleFile, BoundaryFile, and InitialConditionsFile. The code is launched by 
running its Java class  
 
 gov.lanl.cartablanca.main.PhysMain 
 
This can be done from the Unix (or Windows) command line, where a Unix script (or Windows 
.cmd) file is helpful, or from within an IDE (such as JBuilder, NetBeans, or Eclipse). There are two 
optional arguments for running PhysMain, which must be in order: (1) the name of the input- 
specifier file, and (2) the output-directory (1 must be included if 2 is to be used). 
 
The calculation will run to a normal completion if either of the General Information parameters 
Maximum Time or Maximum Cycles is exceeded. An abnormal termination will happen if the code 
must reduce the time step size below General Information parameter Minimum Time Step; such a 
termination does not necessarily indicate a fundamental error (in code or model), but perhaps only 
that the current physical conditions require a smaller step size for the given mesh and transport 
algorithm(s). The status of a running calculation, including time step size, is sent in periodic edits to 
standard output (see Section 6.1). A discussion on CartaBlanca’s time step control logic and 
suggestions for the time step user input are given in Section 7.2. Section 6.2 describes the code’s 
major output (graphics) files. 
 
Note that the GUI has two new toolbar buttons, “Run” and “STOP”, which can be used to run/stop a 
calculation from within the GUI (see Section 4). 
 
Two important code-running capabilities are Dump/Restart, which can add a great deal of flexibility 
to an analysis, and parallel computation, which can dramatically speed-up runtime. These are 
described in Sections 5.1 and 5.2, respectively. 
 
5.1. Dump/Restart Capability 
 
Often it may be desirable to break up a very long calculation into a series of two or more shorter runs. 
Also, one may wish to run a set of parametric studies from a common branch state, or restart a run 
with a smaller time step size. Or, one may simply wish to “see what happens” by extending a given 
calculation. CartaBlanca provides this capability by periodically writing binary dump files that 
capture a calculation’s state at the problem time of a dump; these dump files can be used to restart a 
run. 
. 
The restart dump files are written to directory output; they are of the form 
 
 dump.N.MMMMM.dfl for ALE-mesh-specific state data, and 
 
 dump.gridPhaseI.N.MMMMM.dfl for PIC/MPM (particle)-specific state data, 
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where N is an integer that specifies the partition (0 for serial runs), MMMMM is a running sequence 
number that identifies the edit (with leading 0’s), and I is an integer that identifies the particle-
material (phase). For example, directory output would contain the following files from a run that 
had 80 edits, 4 partitions, and 2 particle materials: 
 
 dump.0.00000.dfl 
 dump.0.00001.dfl 

… 
… 
… 
dump.0.00080.dfl 
… 
… 
… 
dump.3.00000.dfl 
… 
… 
… 
dump.3.00080.dfl 
dump.gridPhase2.0.00000.dfl 
… 
… 
… 
dump.gridPhase2.0.00080.dfl 
… 
… 
… 
dump.gridPhase2.3.00000.dfl 
… 
… 
… 
dump.gridPhase3.3.00080.dfl 

 
where the particle-materials (phases) are materials 2 and 3 in this particular calculation. 
 
CartaBlanca writes restart dump files according to a dump interval that is specified by the GUI 
General Information panel’s Running Parameters Graphics Time Interval and Graphics/Binary 
Dump Ratio, where the latter is a multiplier applied to Graphics Time Interval. 
 
A restart run is specified with the GUI General Information panel, by checking the Restart 
checkbox and setting Running Parameter initGraphic to the desired dump sequence number (any 
leading 0’s are not necessary). All relevant dump and dump.gridPhaseI files must be in 
directory output (i.e., files for the grid, for all particle materials, and for all partitions). 
 
 
5.2. Parallel Runs 
 
Parallel computation is built into the code; CartaBlanca is designed around Java’s built-in multi-
thread capability, where processes can be run simultaneously (or share a single CPU) and can 
communicate with each other, but are controlled from the same program. Both shared and distributed 
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memory architectures are supported. To do parallel computation with either shared or distributed 
memory, a partition file must be provided; this file is specified in the General Information panel, 
where also the usePartitions checkbox must be checked (see Section 4.1). Setting up a partition file 
is the only requirement for CartaBlanca shared memory computation.  
 
For distributed memory machines, the MPJ package [8] is used. (Previously, we used the JavaParty 
extension to Java; although Los Alamos no longer supports distributed CartaBlanca computation via 
JavaParty, it should not be difficult to reimplement it.) MPJ is an extension to standard Java; it can be 
downloaded from 
 

 http://dsg.port.ac.uk/projects/mpj/soft/download.php 
 
Step by step instructions for MPJ installation and usage are available at 
 
  http://dsg.port.ac.uk/projects/mpj/soft/readme.php 
 
Following are the steps for user CBuser to run CartaBlanca under MPJ on a UNIX platform, using 
the C shell (csh). 
   
Add to CBuser’s .cshrc startup file 
 

setenv MPJ_HOME ~/mpj-v0_23 
setenv PATH $MPJ_HOME/bin:/home/CBuser/apache-ant-1.6.5/bin:$PATH 

 
To install MPJ, un-tar the downloaded zip file (MPJ is already compiled, to recompile type “ant” in 
directory $MPJ_HOME). 
 
To run CartaBlanca, we need to edit and recompile three CartaBlanca source files: 
 

src/gov/lanl/cartablanca/main/PhysMain.java   , 
  src/gov/lanl/cartablanca/comm/Communication.java   , and 
  src/gov/lanl/cartablanca/mesh/GlobalMesh.java 
 
Near the top of each file, comment-out the line 
 
import gov.lanl.cartablanca.comm.mpi.*; and un-comment the line 
 
import mpi.*;   
 
To recompile CartaBlanca, enter 
  
javac  -d classes -cp jars/swing-layout-
1.0.jar:$MPJ_HOME/lib/mpj.jar  src/gov/lanl/cartablanca/*/*.java 
src/gov/lanl/cartablanca/*/*/*.java  
src/gov/lanl/cartablanca/*/*/*/*.java 
 
where the javac command is all on one line. 
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CartaBlanca is run with the following steps: 
 
Set the running directory to the present directory, 
 
setenv runDir `pwd` 
 
Generate a file named machines in the running directory that contains a list of the names of the 
cluster nodes, in a column, on which CartaBlanca will run. For the Los Alamos epiphany machine, 
using the vi editor, we enter 
 
vi machines (in  $runDir) 
E01 
E02 
… 
… 
 
Make an MPJ-Daemon on each of the cluster nodes listed in file machines: 
 
mpjboot machines 
 
If this is successful, the UNIX list command 
 
ls -rtl $MPJ_HOME/bin/ should show files such as MPJ-DaemonE02.pid, etc., in 
directory $MPJ_HOME/bin/    . 
 
Run CartaBlanca in the background: 
 
nohup mpjrun.sh -np 2  -sport 15002  -wdir $runDir -mx2048m -cp 
classes:$MPJ_HOME/lib/mpj.jar gov.lanl.cartablanca.main.PhysMain 
inputSpecifier > & outA & 
 
where again the command (nohup here) is all on a single line. 
 
After the calculation has run to completion, delete the MPJ-Daemons on the cluster nodes listed in 
file machines: 
 
mpjhalt machines 
 
The files DaemonE02.pid, etc., should no longer be in directory $MPJ_HOME/bin/   . 
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6. CartaBlanca RESULTS 
 
CartaBlanca provides two types of output periodically as a problem runs: 
 

 short edits to the standard output stream; by default to the console/screen, or as redirected to a 
file. These edits give status reports on a run, such as the current problem time and time step 
size. Also, at the start of a run, detailed reports on the problem initialization are written, which 
can be useful for training and diagnostic purposes. 

 
 major edits of the problem state, written as text files to directory output. These are intended 

mainly for graphics postprocessing of the problem’s results. 
 
Sections 6.1 and 6.2 describe these two types of CartaBlanca output.  
 
6.1. Console Status Prints 
 
As a calculation proceeds, CartaBlanca sends status messages to standard output. Before the problem 
starts running, details on the problem’s initialization are written, such as for 
testBulletPlate.IO: 
… 
… 
… 
In GlobalMesh, MeshFile is E:\cartablanca\meshes\2D\QUADS\41nx41n_10\myMeshFile.txt 
 
In GlobalMesh, NodeDateFile is E:\cartablanca\meshes\2D\QUADS\41nx41n_10\myNodeDataFile.txt 
 
In GlobalMesh, PartitionFile is E:\cartablanca\meshes\2D\QUADS\41nx41n_10\myPartitionFile.txt 
 
Coordinate system is cartesian 
 
 done reading elements 

… 
… 
…  
 

From MaterialResponse   <<=== user material input for Aluminum target. 
 
 gridPhaseNum: 1 number of Species: 1 
 
Material properties, from GenericSpecieResponse 
 
 eosA eosB eosC eosD speciesName  Mattype eosType Cp k Visc closePackSSpeed close:ackVfrac 
 
 2.7 3.934E-12 1.0 1.0 Aluminum flipParticles Kelvin 1.0 0.0 500.0 0.0 0.0  
… 
… 
…  
 

InitializeFields: doing momentum transport  <<=== bullet starts at -500 m/s.  
 
  init region: 0, U1 = 0.0, V1 = 0.0, U2 = 0.0, V2 = 0.0, U3 = 0.0, V3 = 0.0, P = 100.0 
 
  init region: 1, U1 = 0.0, V1 = 0.0, U2 = 0.0, V2 = 0.0, U3 = 0.0, V3 = 0.0, P = 100.0 
 
  init region: 2, U1 = 0.0, V1 = -50000.0, U2 = 0.0, V2 = -50000.0, U3 = 0.0, V3 = -50000.0, P = 
100.0 
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  init region: 3, U1 = 0.0, V1 = -50000.0, U2 = 0.0, V2 = -50000.0, U3 = 0.0, V3 = -50000.0, P = 
100.0 

… 
… 
… 
 
The standard output edits are written according to a problem time step interval that is specified by the 
GUI General Information panel’s Running Parameter printlnStep. Included are the time step 
number (n), problem time (t), time step size (dt), and solver and Newton Krylov iterations.  Also, 
reports on restart dumps (Section 5.1) and graphics edits (Section 6.2) are written. As 
testBulletPlate.IO starts up, runs, and terminates, we see: 
 
Dumping to file E:\cartablanca\output\dump.0.00000.dfl 
 
Just wrote E:\cartablanca\output\dump.0.00000.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00000.dfl 
 
Just wrote E:\cartablanca\output\dump.gridPhase2.0.00000.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00000.dfl 
 
Just wrote E:\cartablanca\output\dump.gridPhase3.0.00000.dfl 
 

  n = 00010  t =  2.00000E-008  dt =  2.00000E-009,  (0)  <<=== printlnStep = 10.    
 
  n = 00020  t =  4.00000E-008  dt =  2.00000E-009,  (0)   
 
Dumping to file E:\cartablanca\output\dump.0.00001.dfl 
 
Just wrote E:\cartablanca\output\dump.0.00001.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00001.dfl 
 
Just wrote E:\cartablanca\output\dump.gridPhase2.0.00001.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00001.dfl 
 
Just wrote E:\cartablanca\output\dump.gridPhase3.0.00001.dfl 
 
Done in Partition 0 
 
Time for executing the problem: 7595 milliseconds. 
 
Grind Time is 225 microseconds/cycle/node 

 
(testBulletPlate.IO uses solver NLExplicit for its pressure solution, and no iteration data 
are printed.) 
 
The content of the standard output can be configured by input switches, such as the Verbose 
checkbox in the Preconditioner input (Section 4.5). 
 
There are numerous error messages that can be printed for abnormal conditions, either during 
problem initialization (e.g., missing mesh file, or inconsistent specifications) or execution (e.g., time 
step size hits lower limit and must be reduced). 
 
For long production runs, it is recommended that the standard output be redirected to a file, in order 
to ensure that a complete record exists for the problem. 
 
6.2. Graphics Output Files 
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The major-edit graphics text files are written to directory output, with naming conventions similar 
to the binary restart files (Section 5.1). They are of the form 
 
 plot.N.MMMMM.dat for ALE-mesh-specific state data, and 
 
 gridPhaseIpartitionN-MMMMM.dat for PIC/MPM (particle)-specific state data, 
 
where N is an integer that specifies the domain partition (0 for serial runs), MMMMM is a running 
sequence number that identifies the edit (with leading 0’s), and I is an integer that identifies the 
particle-material (phase). 
 
The graphics edits are written according to an edit interval that is specified by the GUI General 
Information panel’s Running Parameter Graphics Time Interval. 
 
Here we have set up the bullet-plate problem to run for 1000 time steps at a fixed step size =  2.0 x 
10-9 s, with graphics edits (in Tecplot format) every 100 time steps (2.0 x 10-7 s): 
 

 
 
The resulting graphics edits are written to directory output: 
 
Graphics dump number 00009 at time =  1.80000E-006 cycleNumber = 900 
 
  n = 00900  t =  1.80000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00910  t =  1.82000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00920  t =  1.84000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00930  t =  1.86000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00940  t =  1.88000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00950  t =  1.90000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00960  t =  1.92000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00970  t =  1.94000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00980  t =  1.96000E-006  dt =  2.00000E-009,  (0)   
 
  n = 00990  t =  1.98000E-006  dt =  2.00000E-009,  (0)   
 
Dumping to file E:\cartablanca\output\dump.0.00010.dfl 
 
Just wrote E:\cartablanca\output\dump.0.00010.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00010.dfl 
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Just wrote E:\cartablanca\output\dump.gridPhase2.0.00010.dfl 
 
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00010.dfl 
 
Just wrote E:\cartablanca\output\dump.gridPhase3.0.00010.dfl 
 
Graphics dump number 00010 at time =  2.00000E-006 cycleNumber = 1000 
 
  n = 01000  t =  2.00000E-006  dt =  2.00000E-009,  (0)   
 
Done in Partition 0 
 
Time for executing the problem: 50302 milliseconds. 
 
Grind Time is 29 microseconds/cycle/node 

 
 
 
 

 
 
A total of 10 graphics dumps are written. For this case, the graphics files are of two types: 
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where the “gridPhase……” files contain graphics data that is “attached” to the individual particles 
that are used to model the bullet and the plate, and the “plot……” files contain data that is associated 
with the underlying Eulerian grid. A “gridPhase……” file is written and named for each particle-
material, for each computational partition, and for each graphics edit. The “plot……” files are written 
for each partition and edit. (Note that dump/restart files are also written to directory output, with 
suffix .dfl) 
 
The Windows command script delplot.cmd provides a convenient way to clean up directory 
output: 
 

 
 
 
 
 
6.2.1. ParaView-compatible Output 
 
Graphics output that is compatible with the ParaView package is currently not available. 
 
6.2.2. Time-History Plots 
 
The standard CartaBlanca Tecplot-format output is a series of files, each of which contains state 
variable values at a specific time. CartaBlanca also contains a standalone postprocessing code that 
can read those files and produce a Tecplot time-history file for a user-specified CartaBlanca variable. 
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The time-history file is called y.dat, where "y" is the name of the dependent variable selected by 
the user; it is written to the directory that contains the original CartaBlanca Tecplot graphics files. 
The time-history code also writes a file called y-summary.txt, which contains diagnostic and 
other information for the current run. 
 
A typical .cmd file that starts-up the time-history plot-file generator on Windows is 
 
@echo off 
rem 
rem DOS batch file to run gov.lanl.cartablanca.graphics.XYPlotsFrame 
rem 
 
Title Console 
java -mx512m -classpath E:\cartablanca\classes;E:\cartablanca\jars\swing-layout-1.0.jar 
gov.lanl.cartablanca.graphics.XYPlotsFrame 
 
pause 

 
(where there is no line-break on the java command). 
 
This brings up the frame shown in Figure 43. 
 

 
Figure 43. Frame for creating a time-history plot. 
 
A “start file” must be specified; this is the first CartaBlanca time-edit for the time-history (x-y) plot 
you are making. Typically it would be a gridPhaseNpartitionN-00000.dat or 
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plot.N.00000.dat file, or the initial file for a restart run, but you can start anywhere if you wish 
(splicing together multiple calculations from restarts is currently not supported). The button Select 
Start File shows a file chooser with file-type filter “.dat”. To navigate your file system change  
“.dat files” to “All Files” in the chooser frame. At the desired directory you may wish to 
go back to “.dat files”.  
 
The number of consecutive CartaBlanca edits to include after the start file is entered, the dependent 
variable is selected from a dropdown list (currently only “time” is available for the x-axis), and an 
optional plot label is entered. 
 
The location to plot is specified in the bottom portion of the frame. For particle files, an ID number 
(the PID in the original CartaBlanca Tecplot files) or (X, Y, Z) coordinates may be entered; if both 
are entered, PID will override the (X, Y, Z). Entering only (X, Y, Z) will result in the particle with 
initial coordinates closest to the entered (X, Y, Z) being followed. For Eulerian plot file data, the 
node closest to the entered (X, Y, Z) coordinates will be plotted.  
 
The Write Plot File button generates the time-history .dat file and summary .txt file. A 
completion message is written to standard output: 
 
Time-history file generator 
 
***** Finished file E:\CB_output_files\3D\18Oct06\TotalDisplacement.dat 
 
and the Tecplot-ready (x,y) plot will be in the directory that contains the original CartaBlanca 
graphics files: 
 

 
 
The summary file contains time and file stamps, coordinate information, and (for particle files) 
displacement information. 
 
6.2.3. Animation 
 
The Tecplot-format graphics output can be readily presented as movies using Tecplot macro files. 
Directory output/StyleSheetsAndMacros in the CartaBlanca distribution contains several 
sample macro files (with file extension “.mcr”) that can be read by Tecplot to generate movies in 
avi format.  
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7. MODELING GUIDELINES 
 
 
7.1. CartaBlanca Test Suite 
 
The CartaBlanca test problems provide many examples of self-consistent models that can serve as 
training tools, and as the basis for further model development. They are organized in Java packages, 
according to the major physical process to be tested. Appendix A gives a detailed description of the 
test suite. 
 
7.2. Time Step Size 
 
In the input file, there are 3 time steps: Initial Time Step, Minimum Time Step and Maximum Time 
Step. For the NLExplicit solver, the flow system and energy system have a time step control to satisfy 
stability condition. For implicit solver, it can also reduce the time step to achieve convergence. 
Nevertheless, it is desirable to specify good choice of Initial Time Step.  The Minimum Time Step is 
normally a small number like 1.0E-22 in our tests. However, if the time step is reduced to a very 
small number from the time step control and takes an unacceptable time to run, the user should 
increase the Minimum Time Step to stop the execution in the case. If NLExplicit is used, the user can 
do a rough estimate to find a reasonable Initial Time Step and Maximum Time Step. The user may 
also put in some number as the Initial and Maximum Time Step and run it for a few steps, let the 
code find the time step and then change the input. 
 
7.3. Mesh and Particle Specification 
 
7.4. Partitions for Parallel Computation 
 
In order to achieve the best speedup for parallel calculations (i.e., to approach a speedup by a factor 
of N, where N is the number of processors), it is essential to balance the computational load across 
the parallel processors. For solid-structure calculations that use the Material Point Method (PIC 
method), the total number of computational particles may dominate the runtime; in such cases the 
user should be careful to distribute the particles in the computational domain evenly across the 
partitions. If the particle and mesh calculations both have significant impact on the runtime, it may be 
possible to exploit any symmetry in the problem to set up the partitions. 
 
 
7.5. Guidelines for GUI Input Panels 
 
Sections 7.5.1 – 7.5.11 give additional observations and recommendations on modeling options and 
input values, for each of the GUI input panels. 
 
7.5.1. General Information 
 
The binary restart dumps, although not especially time-consuming, can use up a lot of storage space, 
and typically not as many as the graphics edits will be needed. Therefore, it is usually a good idea to 
set Graphics/Binary Dump Ratio to, say, 5 or 10. 
 
A good value for standard output (console output) Running Parameter initGraphic is 10 time steps. 
Also, it is a good idea to redirect the standard output edits to a file, to keep a permanent (and 
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complete) record of a run; the console edits can be pasted into an editor, but they can easily overflow 
a window’s text buffer. 
 
7.5.2. Physics 
 
Currently the Material Point Method in CartaBlanca does not support implicit time advancement. 
Therefore, when computational particles are used to track material interfaces (for example, for fluid-
structure or structure-structure interactions) or history-dependent material effects, the flowSystem 
should be NLMultiPhaseFlowPexp (explicit in pressure). 
 
7.5.3. Solver 
 
7.5.4. Numerical Options 
 
7.5.5. Preconditioner 
 
The SSOR and ILU0 solver methods cannot be used for parallel calculations. The code will write an error 
message and shut down in this circumstance. 
 
7.5.6. Initial Conditions 
 
7.5.7. Boundary Conditions 
 
7.5.8. Exchange Parameters 
 
7.5.9. Chemical Reaction 
 
7.5.10. Particle Properties 
 
7.5.11. Species Properties 
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APPENDIX A: CartaBlanca Test Suite 
 
The CartaBlanca Test Suite comprises two sets of problems: 
 

 47 fast-running problems that are typically run with the JUnit testing framework [5]  (see also 
Section 3.4). Each of these problems executes in a few seconds on desktop hardware. 

 
 5 longer-running problems that are typically run with batch scripts. 

 
The Test Suite provides many examples of CartaBlanca use, and its problems can serve as the basis for 
development of new problems. 
 
Note: parameter physicsType: The CartaBlanca inputSpecifier.IO input file includes a String 
parameter called physicsType. Parameter physicsType is used internally to set the high-level physics 
solution driver; its default value is NLMultiPhysicsDriver, and it is not part of the GUI. 
NLMultiPhysicsDriver is the most commonly used physicsType; it provides a general way to set up 
for solving the (multiphase) Navier-Stokes equations, and it controls CartaBlanca physics systems such as 
flow system NLMultiPhaseFlowPexp and its Java extensions, energy system NLEnergyBasic and its 
Java extensions, species system NLSpeciesBasic and its Java extensions, and turbulence system 
NLTurbulence (see Section 4.2 on the Physics panel). Normally, if the multiphase flow system is to be 
solved, physicsType should be NLMultiPhysicsDriver. Other physicsTypes can be specified; 
these are used for special applications or were developed for early code testing. The Test Suite includes a 
few such cases, which are indicated below (of course the inputSpecifier.IO input file can always be 
edited by hand to use a non-default physicsType). 
 
CartaBlanca is set up to automatically create inputSpecifier.IO input files for each of the fast-running 
problems, which are passed to the JUnit testing framework (see Section 3.4). In the following, each such file 
is identified by a unique filename.IO that is specified by the code. Four of the five longer-running 
problems can also be written by CartaBlanca methods; the fifth is maintained as a .IO file (see discussion 
below). 
 
Fast-Running Problems 
 
When JUnit is launched, each input file for the fast-running problems is automatically written by a separate 
Java routine (method); these methods are built-in to CartaBlanca, and are organized into Java packages 
according to the main physical process or code logic that is being tested (all are under 
gov.lanl.cartablanca.test). In the following we group the fast-running problems into their 
respective Java packages. All input files have extension .IO, and are written to directory testIO. (The 
Java classes (.java files) that write the input files typically have similar names, with Test appended.) 
 

 advection: AdvZigZagP, cadvexpl, nlcadvntngmres, nlscadvntngmres, 
onedcadvexp, scadvgmres. Each is a test of advection, each with its own physicsType: 
NLMultiPhysicsDriver, CompatibleAdvection, NLCompatibleAdvection,  
NLScalarAdvection, ScalarAdvectionOneD, and ScalarAdvection, 
respectively. AdvZigZagP is the newest of the package; it tests advection to equilibrate 
pressure in the case where the initial pressures and densities are in a zig-zag pattern. 
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 analyticsoln: Couette, Poiseuille1, PoiseuilleCylind, 
Poiseuille1_RF. Test analytic solutions including Couette flow and Poiseuille flow in a 
2-D region and in a 2-D cylindrical region. These tests are for single-phase viscous 
incompressible flows. They use NLMultiPhysicsDriver as the physicsType. These 
tests only solve the momentum equation. The PeriodicInY boundary condition is used (see 
Section 4.1.3). Poiseuille1_RF reads a boundary condition data file to set a boundary 
condition region.   

 
 energy: testNLEnergyBasic, testNLEnergyBasicWithFlowBasic.  Both 

problems use NLMultiPhysicsDriver as the physicsType; they solve the energy 
equation, without or with the momentum equation, with two phases, water and ice, treated as 
fluids. Both problems have the same geometry in a 2-D pipe, with cooling sections on the top 
and bottom boundaries, and have phase transition from water to ice. 
testNLEnergyBasicWithFlowBasic has a background flow in the pipe. 

 
 heattransfer: htpcg, htpgmres, htpgmres4thds, nlhtpntngmres. Heat 

transfer cases. Each problem has its own physicsType. 
 

 miscellaneous: DisOps, DisOpsWithPeriodicity, DisOpsWPInTheta, 
Poisson_equation. The first three problems test discrete operators in 3-D, using 
physicsType DisOps. DisOps and DisOpsWithPeriodicity use partitions. 
DisOpsWithPeriodicity uses PeriodicInX. DisOpsWPInTheta uses 
PeriodicInTheta. Poisson_equation tests for Maxwell-equations solution in the 
electrostatic limit by solving Poisson's equation in 2-D. The physicsType of 
Poisson_equation is ESMaxwell, and the Solver1 Field parameter is Special. Note 
that the Java code that writes Poisson_equation.IO is in file 
MaxwellEquationsTest.java. 

 
 mpflow:  these tests are multiphase flow cases, all use NLMultiPhysicsDriver as the 

physicsType, to solve the momentum equation only. They have either one or two (or in one 
case, three) incompressible fluid phases. They can be put in several groups:  

 
      BrokenDamTris1pBasic, BrokenDamTris2pBasic, DamComparison. Broken  
      dam tests with different geometries.  
 
     nlmultiphaseflowbasic. A 2-D square box is filled with two incompressible inviscid  
      fluids, the heavy fluid is on the left half and the light one is on the right, the motion is from 
      gravity.  

 
      NLMultiPhaseFlowViscous1Basic, NLMultiPhaseFlowViscous1Impl.   
      Both are single phase incompressible viscous flow in a rectangular pipe [0, 5] by [0, 1],  
      the fluid is at rest initially. The left side has an inflow boundary condition, with volume    

fraction and velocity specified, the right side has a pressure boundary condition with pressure 
specified. The fluid moves accordingly. They use flow systems 
NLMultiPhaseFlowBasic and NLMultiPhaseFlowImpl, respectively. 
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NLMultiPhaseFlowViscous2Basic, 
NLMultiPhaseFlowViscous2ImplStress,  
NLMultiPhaseFlowViscous2Impl. NLMultiPhaseFlowViscous2Basic has 
two-phase incompressible viscous flow in a rectangular pipe [0, 5] by [0, 1]. (However, the 
second fluid is set to an initial volume fraction of 0.0). The fluid is at rest initially. The left 
side has an inflow boundary condition, with volume fraction and velocity specified (the 
second fluid has volume fraction 0.0), the right side has a pressure boundary condition. The 
fluid moves accordingly. Along part of the top and bottom of the pipe, there are boundary 
conditions of type wall, with velocity set to zero (“sticky” boundaries). 
NLMultiPhaseFlowViscous2ImplStress and   
NLMultiPhaseFlowViscous2Impl have one fluid phase in a [0, 1] by [0, 1] grid; along 
the top (Y = 1.0) the X-velocity is set at 1.0 cm s-1 with a wall boundary condition. These 
problems use flow systems NLMultiPhaseFlowBasic, 
NLMultiPhaseFlowImplicitStress, and NLMultiPhaseFlowImpl, respectively. 

 
SmallHGLayerT4pBasic, SmallHourGlassT4pBasic, trickleBasic. The first 
two problems have two-phase incompressible flow in an hourglass geometry; a heavy fluid is 
above a light fluid, and flow is from gravity. Triangle elements are used for the mesh. 
trickleBasic has three fluids with different densities in a rectangular grid with 
quadrilateral elements. 

 
 particle: All use the MPM/PIC particle method (with the exception of problem 
testParticlePiston, as described below) with physicsType 
NLMultiPhysicsDriver, and use flow system NLMultiPhaseFlowPexp (explicit 
for solving the momentum equation), with two or more phases. Phases represented by 
particles are solid materials. A fluid phase (air, or other gas) is also present. In most cases, 
only the momentum equation is solved. In testParticleWithFlowAndEnergyPexp 
the momentum and energy equations are solved. In 
testParticleWithFlowAndReaction1 and 
testParticleWithFlowAndReaction2 momentum, energy, and species equations 
are solved, with chemical reaction. The following tests are in this group: 

 
      testBulletPlate. A lead bullet penetrates an aluminum plate in a 2-D box with air in the 
      background.     
       

testParticleCylindrical. A tungsten projectile penetrating a target in 2-D 
cylindrical geometry. 

  
      testParticleDamage. A lead projectile penetrating a concrete target in a 2-D box, to test  
      solid damage. 
 
      ParticleOps. A simple case to test some basic particle operations. 
 

testParticleTranslation. A uniform translation of a solid phase in air in 1-D; uses 
inflow and pressure boundary conditions. 
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testParticleWithFlowAndEnergyPexp. Two phase case with one particle phase 
and one fluid phase. Both phases are present initially, with zero velocity and uniform 
temperature; the problem should remain steady. 

             
testParticleWithFlowAndReaction1. One particle phase of high explosive and one 
fluid phase of a product gas. There is a simplified one-step chemical reaction from the 
explosive to the fluid phase. 

  
testParticleWithFlowAndReaction2. Dump/restart test. Restarts the calculation 
from a dump file written by testParticleWithFlowAndReaction1 and continues for 
additional steps. 

       
            testParticleWithFlowPexp. A solid bar with initial velocity drops in air in a 2-D box. 
 

testParticleWithFlowPexp4p. A parallel run of testParticleWithFlowPexp 
with 4 processors (it runs even if there is only one CPU). 
 
testParticlePiston. Solves the momentum equation for a piston in gas, in 1-D, using 
the solveStress option (see Physics panel, Section 4.2). This is an alternative way to solve for 
stresses in solid materials, where only the ALE grid is used (particles are not used). Note that 
the current selection of Use Particles for the problem’s ViscousSolid material is not 
necessary.  

 
shortTungstenParallel. Two solid phases in air, using a partition file for parallel 
calculation. Note that the Java code that writes shortTungstenParallel.IO is in file 
ParticleParallelTest.java. 
 
testParticleSinglePhaseTranslation. Translation of a solid phase in 1-D (no 
fluid is present); uses a single pressure boundary condition. 

     
 species: nlspecies, nlmasstransfer. nlspecies uses the 

solveSpeciesTransport option (see Physics panel, Section 4.2), with a single, one-species, 
incompressible fluid. nlmasstransfer has two phases, with two species in each phase. 

 
Longer-Running Problems 
 
The five longer-running problems, which provide very detailed code tests, are typically not run as 
part of the JUnit testing, but rather by Los Alamos-developed batch scripts. Input files for four of the 
five longer-running problems are written by CartaBlanca methods, similar to the fast-running 
problems; the fifth input file, LongTungsten, is maintained separately as a .IO file that is read (and 
slightly modified) by a CartaBlanca Java method that creates the version that is tested. The five 
methods that create the five longer-running .IO input files are in package 
gov.lanl.cartablanca.test.particle. 
 
The five longer-running problems are: 
 

testLongSpalling. A spalling problem, in which a short plate impacts a long plate, and the  
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combined stress wave breaks the long plate in the middle. A 2-D quadrilateral mesh is used. 
  
LongTungsten. A tungsten projectile penetrating a target. A 2-D quadrilateral mesh is used. 
The basic input specifications are maintained in file LongTungsten .IO, in directory testIO. 
 
testLongVibrationShell. Tests a vibrating shell, formed by two concentric spheres. A 
polar coordinate shape QUADS mesh is used with a cylindrical coordinate system. Initially 
an inward radial velocity of 5000 cm s-1 is applied to the particles that comprise the shell. The 
resulting vibration period is compared to the theoretically expected value. 
 
testLongVibration. Originally developed to test energy conservation over time. A 2-D 
quadrilateral mesh is used. 
 
testLongVibration1d. Originally developed to test the convergence of the MPM/PIC 
method, in 1-D. 
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APPENDIX B: CartaBlanca Release Package 
 
The top-level files and directories in the unzipped CartaBlanca release file are shown in Fig. 44. 
 
 

 
Figure 44. CartaBlanca release directories and files (top level). 
 
Directories that have been used in this document are: 
 
cartablanca: The top-level directory. Includes JBuilder project files rungui.jpr, 
cbphysmain.jpr, and cbtests.jpr, that run the GUI, the main code, and the JUnit short-
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running test suite, respectively. By default, the GUI and main code will read file 
inputSpecifier.IO from this directory. Also has Windows/DOS command file rungui.cmd 
to run the GUI without the JBuilder interface. 
 
meshes: A large collection of node, mesh, and partition files for 1-D, 2-D, and 3-D problems, 
organized in subdirectories according to the various geometries included. All meshes used by the test 
suites are included here. Typically, a user will put a new set of mesh files in a new subdirectory in the 
meshes hierarchy. 
 
output: By default, the code will write dump and graphics files to directory output. Includes 
Windows/DOS command file delplot.cmd, which can be used (with care) to clean up the 
directory. 
 
particles: Includes a single sample file that specifies particle coordinates for MPM/PIC input. 
Typically, the user will choose automatic particle generation in the General Information panel, 
specifying the number of particles in the Particle Properties panel. 
 
scripts: Unix scripts, some of which run the GUI, the main code, and the JUnit short-running test suite.  
 
src: Java source code for the main code and the GUI. Also has package 
gov.lanl.cartablanca.main.generatemesh and file 
gov/lanl/cartablanca/graphics/XYPlotsFrame.java. 
 
testIO: The .IO files for the fast-running test problems are written here by the JUnit framework. Also has 
the main specification of the LongTungsten test problem. 
 
tstsrc: Java source code to generate the fast-running and four of the longer-running test problems. Also 
has code that controls generation of the LongTungsten test problem. Uses code from directory src. 
 
                          
 


	4.3. Solver
	4.4. Numerical Options
	4.7. Boundary Conditions
	4.8. Exchange Parameters

