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ABSTRACT

CartaBlanca is an object-oriented nonlinear simulation and prototyping software package whose main
functions are to assist both analysts and code developers in solving a wide range of hydrodynamics
and fluid/structure-interaction problems.

The CartaBlanca User’s Guide provides comprehensive instruction on the use of CartaBlanca to
obtain and analyze results for the broad range of problem domains the code is applicable to. The
User’s Guide includes a description of CartaBlanca’s capabilities, a “quick start” to using the code,
complete input specifications (including description of a graphical user interface that assists in
preparing input files), and sections on the running of CartaBlanca, modeling guidelines, and the
code’s output files and printouts.

This manual is one of three documents that comprise the main CartaBlanca documentation set. The
other two are the Theory Manual [12] and the Programmer’s Manual [13].
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1. INTRODUCTION

This document provides a comprehensive guide to the use of the CartaBlanca computer program to
obtain and analyze results for the broad range of problem domains in hydrodynamics and fluid-
structure interaction for which the code is applicable. An overview of CartaBlanca’s capabilities is
given in Section 2, where the reader is also directed to the CartaBlanca website for additional
information.

Section 3 gives a “quick start” to using CartaBlanca. Complete input specifications are given in
Section 4; in addition, Section 4 describes a graphical user interface that has been developed to assist
in preparing input files. Section 5 describes the running of CartaBlanca, including the platforms
supported. The form of CartaBlanca’s output files and printouts, and their analysis, are discussed in
Section 6. Guidelines for use of the code’s many input options and features are given in Section 7.

This manual is one of three documents that comprise the main CartaBlanca documentation set. The
other two are the CartaBlanca Theory Manual [12] and the CartaBlanca Programmer’s Manual [13].
The Theory Manual gives a detailed description of the code’s physics and numerical basis, including
the governing conservation equations, their closure models and discretization, available constitutive
models, and the numerical solution methods. The Programmer’s Manual describes the code’s
structure, computational flow, and database; it references relevant sections of the Theory Manual.

2. CartaBlanca OVERVIEW

CartaBlanca is an object-oriented component-based simulation and prototyping software package that
enables both analysts and code developers to solve a wide range of nonlinear hydrodynamics and
fluid/structure-interaction problems on unstructured grids and graphs. Although the user of
CartaBlanca does not need to know the details of the code’s implementation, she or he should be
aware that CartaBlanca was designed to be readily extendable to new physical models. CartaBlanca is
written entirely in Java; therefore it provides scientists and engineers with developer-friendly,
modular software to use in producing large-scale computational models. CartaBlanca allows users to
solve a wide variety of nonlinear physics problems, including multiphase flows, interfacial flows,
solidifying flows, and complex material responses. CartaBlanca makes use of the powerful, state-of-
the-art Jacobian-free Newton-Krylov method to solve nonlinear equations in a flexible unstructured
grid finite-volume scheme. CartaBlanca couples a Material Point Method (MPM) implementation of
the Particle-in-Cell (PIC) method (a technique used to model discrete objects), with its Arbitrary
Lagrangian Eulerian (ALE) multiphase flow treatment, to model fluid interaction with solid materials
that can undergo deformation, damage, and failure. The MPM/PIC method can also be used to model
solid-solid interactions.

Calculations can be run in 1-D, 2-D, or 3-D on a wide variety of unstructured grids with triangular,
quadrilateral, tetrahedral, and hexahedral elements. This design allows CartaBlanca to handle
complex geometrical shapes and mathematical domains. Cartesian, cylindrical, or spherical
coordinates can be used.

Because CartaBlanca is written entirely in Java, it is highly portable and readily installed on any
platform with a Java runtime environment available. CartaBlanca has been run on platforms ranging
from Windows laptops to supercomputers. Runtime performance is close to that of Fortran



hydrodynamics codes. Parallel computation is built into the code: CartaBlanca is designed around
Java’s built-in multi-thread capability, where processes can be run simultaneously and can
communicate with each other, but are controlled from the same program. Both shared and distributed
memory architectures are supported.

The preparation of input files is greatly facilitated by a graphical user interface that is provided with
the code. Also, an extensive set of test problems is provided; these problems can be used as templates

for the creation of other input models.

Output is written to text files in both Tecplot [11] format and ParaView [9] format (Note: The
ParaView capability is currently under development).

2.1. CartaBlanca Website

A good introduction to CartaBlanca’s motivation, design, and capabilities can be found at the
CartaBlanca website:

http://www.lanl _.gov/projects/CartaBlanca/

3. CartaBlanca QUICK START

Here we provide “quick start” guidance on installing CartaBlanca, the code’s input requirements,
running the code, the CartaBlanca test suite, creating a new problem, and viewing the output.

CartaBlanca is very easy to install and run. We provide scripts to compile and run the code from the
Unix command line (which can be easily modified for Windows/DOS). Alternatively, the user may
wish to use one of the integrated development environments (IDEs) for Java (NetBeans, Eclipse,
JBuilder, etc.), which are available at no cost on the Internet.

3.1. Computer Platforms and Installation

CartaBlanca is distributed as a single . zip file that contains the executable code, source code,
scripts for building and running the code (we describe building and running CartaBlanca below), an
extensive set of sample input-specification files that spans a wide range of applications, and
documentation.

Functionally, the code is comprised of four elements: (1) the solution engine (“main code”) that reads
and processes input (problem specification) files and writes the output, (2) a graphical user interface
(GUI) that assists the user in preparing an input-specification, (3) a set of routines (“methods” in Java
parlance) that sets up and drives an extensive test suite for the code that is based on the Java JUnit
facility, and (4) a set of Java methods that can be used to generate mesh files that specify a problem
domain. While these four code elements are functionally distinct, the CartaBlanca software is written
and organized as a single integrated set of program source files; essentially, different entry points are
specified at run time to select the desired functionality (much of the code is also shared). A large set
of mesh files that specify computational grids in 1-D, 2-D, and 3-D is included in the distribution.
The distribution also includes Unix scripts to build and run CartaBlanca, JBuilder projects to do the
same (see below), and an XML file to build the code with the ant utility.


http://www.lanl.gov/projects/CartaBlanca/

Because CartaBlanca is written entirely in Java, it can be run on any computer platform with a Java
runtime environment (e.g., Unix/Linux/Solaris, Windows, Mac OS). The CartaBlanca package itself
is less than 400 MB; all the test cases in the distribution package have been run with the Java
parameter -mxX64m (maximum memory of 64MB). The code has been run on platforms ranging from
laptops to supercomputer clusters. Currently at Los Alamos, Java versions 1.4.n are being used for
CartaBlanca development and applications.

Java is available at no cost at

http://java.sun.com/ (Windows, Linux, Solaris).

For the Macintosh, Java is bundled with Mac OS X.

We recommend that a complete Java software development kit (SDK) be obtained, to allow both
code execution and compilation (e.g., for compiling the JUnit test suite drivers).

CartaBlanca’s main output is in a text file format that is compatible with the commercial Tecplot
package [11]; this format is readily adaptable to other graphics software. Optionally, the user may
select output in the format read by the free ParaView package [9] (Note: The ParaView capability is
currently under development).

As discussed in the following section, the user may wish to run CartaBlanca with one the integrated
development environments (IDEs) for Java (NetBeans, Eclipse, JBuilder, Idea, etc.), some of which

are available at no cost. NetBeans is available at no cost at

http://www.netbeans.org/ (Windows, Linux, Solaris, Mac OS X)

A convenient bundle of Java and NetBeans is available at no cost at

http://java.sun.com/ (Windows, Linux, Solaris).

A basic version of JBuilder (entirely adequate for CartaBlanca) is available at no cost at

http://www.borland.com/downloads/download_jbuilder.html (Windows, Linux, Solaris, Mac OS)
(download Foundation 2005 version).

We run the CartaBlanca test suite with JUnit [5], which is also available at no cost. We include a
JUnit executable in the distribution. Currently we typically run JUnit either as a JBuilder project (the
project file is included in the distribution), or from the Unix command line; JUnit is also bundled
with NetBeans and Eclipse.

3.1.1. Overview of Release Package
CartaBlanca is distributed as a self-contained . z1p file, which contains a top-level directory with

several individual files, and a number of sub-directories (which in turn can have sub-directories). All
supported platforms (i.e., Java-enabled) can use this . zip file. The top-level directory is called


http://java.sun.com/
http://www.netbeans.org/
http://java.sun.com/
http://www.borland.com/downloads/download_jbuilder.html

cartablanca; it contains a number of useful support files that provide a quick means to get
CartaBlanca running, including

e JBuilder projects (suffix - Jpr) that compile and run the GUI, the JUnit test suite, and the
main code: rungui . jpr, cbtests. jpr, and cbphysmain. jpr.

e Windows .cmd file to run the GUI: rungui .cmd.

e _xml file for the user who wishes to use the ant utility to build the code: bui Id.xml.

e Unix scripts for building and running the GUI, test suite, and main code, in directory
scripts/unix.

The rest of this quick start makes use of files in the following directories:

e src: the complete set of CartaBlanca source code files, organized according to CartaBlanca’s
Java package hierarchy.

e testlO: CartaBlanca input-specifier files that are generated by running the test suite.
e meshes: files that specify a large set of sample computational grids in 1D, 2D, and 3D.
e output: graphics output files and binary restart dumps from a calculation.

There are many other directories and files in the distribution that support the code or help the
CartaBlanca user, including the documentation set, reports, and sample graphics stylesheets and
macros. An overview of the directories and files in the distribution .z 1p file is given in Appendix B.

3.2. Input Files

The numerical and physical specifications that define a problem are contained in a text file that is
named, by default,

InputSpecifier.10

File InputSpecifier. 10 is used to specify, e.g., time-step controls, files containing the
computational grid, physics packages to be solved, solution algorithms, initial and boundary
conditions, and material properties. Guidance on quickly preparing an InputSpecifier._10is
given below in Sections 3.4 (“Test Suite”) and 3.5 (“Sample Project”). Complete specifications are
given in Section 4 (“Input Preparation and Specifications”).

In addition to file InputSpeciftier. 10, CartaBlanca can read six additional files that are called
collectively a problem’s Mesh Input Files; two of these are required and four are optional. The two
required files specify the problem domain’s computational node locations and mesh (node)
connectivity. A third file is required to specify mesh partitions for parallel runs. Three additional files
can be provided at the user’s option. The six Mesh Input Files are:

10



NodeDataFi le, node coordinates (required),

MeshFi le, the mesh connectivity (required),

MeshPartitionFile, mesh partitioning (required for parallel runs),

ParticleFile, particle-model data (optional, an automatic calculation can be chosen),

BoundaryFi le, boundary conditions (optional, can be given in InputSpecifier.10), and

InitialConditionsFile, initial conditions (optional, can be given in
InputSpecifier.10)

These file names are not required; each of the Mesh Input Files can be named according to the user’s
wishes. All are text files. MeshFi le, NodeDataFile, and MeshPartitionFile are in the
format of the METIS mesh-partitioning code [6]. Creation and use of a simple MeshFi le and
NodeDataFi le are described in Section 3.5 (“Sample Project”). Input of the six Mesh Input Files

to a CartaBlanca calculation is described in Section 4.1 (“General Information”), and complete
specifications are given in Section 4.1.1 (“Mesh Input Files”).

3.3. Running CartaBlanca

CartaBlanca can be compiled and run from the Unix/Linux or Windows (DOS) command line, or
with a button-click from a Java IDE (NetBeans, Eclipse, JBuilder, Idea, etc.).

To compile and run from the Unix command line (assuming that the CartaBlanca package has been
installed in ~myhome/cartablanca, and that Java is installed):

e Set an environment variable CBROOT, e.g. in a C shell:
setenv CBROOT ~myhome/cartablanca
e Goto ~myhome/cartablanca:
If the program ant is installed in the system, enter:
>ant
to compile the package (where > is the system prompt).
If ant is not installed, enter
>cp scripts/unix/* .
to copy all the Unix scripts under the directory cartablanca, then, enter
>compPhysMain.unix

>compPhysTests.unix

11



to compile the main code and the test code, respectively.

e Now the Unix script runPhysTests.uniX can be used to run the CartaBlanca test suite, and
the script runPhysMain.uniX to run the main code for a specific problem. Section 3.2
described the basic input-file requirements. Sections 3.4 and 3.5 show how to obtain a set of
sample input files (by running the test suite), and how to customize an input problem.

Los Alamos has made extensive use of the Borland JBuilder IDE. The distribution package includes
files cartablanca. jpr, cbphysmain. jpr, rungui . jpr, and cbtests. jpr in directory
~myhome/cartablanca. These are JBuilder project files that can be used to build and run the
main code, the GUI, and the test suite (the short-running problems, see Section 3.4). If another IDE is
used, specify the following targets:

gov.lanl _cartablanca.main.PhysMain (main code for a specific problem)
gov. lanl .cartablanca.main.RunGUI (GUI)
gov.lanl .cartablanca.test.Al ITests(test suite’s short-running problems).

3.4. Test Suite

The CartaBlanca distribution package includes a test suite that is run by developers to check code
modifications. There are 47 standard short-running problems that have been developed to check
many aspects of the code’s logic, insuring that code changes do not have unintended effects. These
tests are run using JUnit, which is available at no cost [5], and is included in the CartaBlanca
distribution and in many IDE packages (e.g., JBuilder, NetBeans, etc.). The entire short-running test
suite is set up and run by executing a single CartaBlanca Java method (see runPhysTests._unix,
or the target of cbtests. Jpr); typically the 47 problems run in 1 — 2 minutes on a desktop
computer.

We recommend that the test suite be run to obtain an introduction to CartaBlanca and to generate a
set of sample input problems. The test logic automatically writes 47 “. 10 files in the format of an
inputSpecifier. 10 file, to directory testlO; it then proceeds to execute these files. Success
or failure of a given problem’s results is specified in the CartaBlanca source code, according to JUnit
protocols, and is automatically tested by JUnit. All required mesh files are in the distribution, in
subdirectories under directory meshes.
On the Unix command line, enter

>runPhysTests.unix
Or, if an IDE is used, run

gov.lanl.cartablanca.test_AllTests

(this is the target of cbtests. jpr).

A JUnit window will show the test status as the problems automatically execute. The two displays in
Figure 1 show success and failure.

12



J1 SURE S I=1E34 7 Junit — ol x|
JUnit Junit
§ Test class name: Test class name:
govlanl.cartablanca.test.AllTests |~ ||~ | [ Rn || |sovaant.cartabtancatestaurests =] « |[ R |
[¥] Reload classes eveny run [v] Reload classes every run
[ U ___________________________________| U
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4] [ B | D |
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at gov.lanl cartablanca test paricle ParticleTranslationTest testPartic 55
= at sun.reflect MativeMethodAccessorlmplinvokeO{Native Method)
4] N [*]
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Figure 1. JUnit test displays.

Of course, a CartaBlanca distribution should run the test suite successfully.

In addition to the 47 short-running test problems, there are five “longer-running” problems that we
typically run with a Unix script; the code that generates these problems, and their mesh files, are also

included in the distribution (one of the longer-running problems is currently maintained as a
standalone . 10 file, which is also included).

The tests are grouped in several sets, which correspond to Java code-packages where they are written.
Appendix A gives descriptions of all 47 short tests and the five long tests. Here, we give a brief
description of the test packages:

e advection: Six advection tests.
e analyticsoln: Four tests of analytic solutions.

e energy: Two tests that solve the energy equation, without or with the momentum equation,
with liquid water and ice, treated as fluids.

e heattransfer: Four heat transfer cases.
o mpfTlow: Twelve tests of various multiphase flow cases.

e particle: Thirteen short-running tests of solid materials, twelve of which use the

MPM/PIC particle method. Also, the five longer-running problems, all of which use
MPM/PIC.

e species: Two tests of species transport.

e miscellaneous: Four additional tests.

13



As discussed in Section 3.5, an easy way to create an input file for a new project is to use one of the
“_ 10 files created from running the tests.

3.5. Sample Project

In this section we create and run a problem that involves a solid projectile (solid 1) impacting a target
(solid 2), with air in the background, on a 2D grid of rectangles. We first create our desired
computational grid in the form of two “mesh files” that specify the grid nodes’ coordinates and their
connectivity; then we pick a suitable input file from the test suite to use as an initial template, and
modify that file with CartaBlanca’s Graphical User Interface (GUI) according to our desired problem
specifications.

CartaBlanca has a set of Java methods that create mesh files for simple geometries, including 1D
lines, 2D rectangular regions, and 3D boxes. At this time, the code does not have a GUI interface to
create mesh files, or the capability to convert files from common mesh-generators to the METIS
mesh format that the code uses.

The main CartaBlanca input file that specifies a problem to be run with the mesh is, by default, called
inputSpeciftier.10. Creation of inputSpecifier. 10 files is facilitated by use of the
CartaBlanca Graphical User Interface (GUI). One can create a new input file by using the GUI to
modify an existing inputSpecifier. 10 file, or start from scratch and use the GUI to create a
brand new InputSpecifier.10. File inputSpecifier. 10 includes the names and locations
of the problem’s mesh files.

The distribution includes directory
cartablanca/meshes/2D/QUADS/

To create mesh files for a 2-D region [0, 5] by [0, 5] (0 < x <5, 0< y <5) with uniform spacing 0.5,
and put them under cartablanca/meshes/2D/QUADS/my5x5/, first create the subdirectory
my5x5. Then, edit the file Create2DMesh. java in the directory

cartablanca/src/gov/lanl/cartablanca/main/generatemesh, to set

xleng = 5.0
yleng = 5.0
numxnodes = 11
numynodes = 11

String dir = "meshes/2D/QUADS/my5x5/""

Compile and run Create2DMesh . Java from the Unix (or Windows/DOS) command line, or use
an IDE; the procedure is analogous to compiling and running the main code or the GUI. For example,
a script to run Create2DMesh . java from the Unix command line could include the single line:

java -mx512m -classpath $CBROOT/classes
gov.lanl.cartablanca.main.generatemesh.Create2DMesh

14



After the mesh files are created, the second step is to create a suitable inputSpecifier. 10 for
the project. An easy way for this task is to modify one of the . 10 files written to directory testlO
by the test code. In CartaBlanca, solid-fluid interaction simulation is done using the particle-in-cell
method. Thus, if one considers the package gov. lanl _cartablanca.test.particle (see
Appendix A), it appears that the test Bul letPlateTest is similar to the problem we wish to
model. This test is a case where a bullet penetrates a plate with air in the background. Therefore, one
goes to directory ~myhome/cartablanca/testlO, and enters

>cp testBulletPlate.l10 ../inputSpecifier.I10

This copied file testBul letPlate. 10 into a file InputSpecifier. 10 in directory
cartablanca, which can be used as the input to the GUI and the main code. This name is the
default input file name in the script runPhysMain.uniX. The default output directory is “output”
under dir cartablanca/. You can overwrite it by attaching it as second arguments after inputSpecifier.

Next, one needs to modify file iInputSpecifier . 10 for the current problem. The CartaBlanca
GUI is very useful for doing this. To run the GUI from the Unix command line, go to directory
~myhome/cartablanca, and enter

>_/scripts/unix/runRunGUI .unix

(Note that the environment variable CBROOT must be defined; see the comments in the script.)

In a Windows system, one can double-click file rungui . cmd in directory cartablanca to run
the GUI, or with a software development tool (IDE), run your project with Main class

gov.lanl _cartablanca.main.RunGUI, VM parameter -mx512m, and with Application

parameter inputSpecifier (this is the configuration of the JBuilder project file rungui . jpr;
other IDEs will have similar options). The GUI’s startup display should look like Figure 2.
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Figure 2. Graphical User Interface startup display.

Section 4 of this document gives complete details on CartaBlanca’s input specifications and the use
of the GUI; here we give a basic introduction.

Before modifying the input specification file with the GUI, one can run the problem given by the
current inputSpecifier.10 (testBulletPlate.10) to get an introduction to running
CartaBlanca and further test the setup and environment. From the Unix command line, under
cartablanca, enter:

>_/scripts/unix/runPhysMain.unix

In an IDE, set the Main class to gov. lanl .cartablanca.main.PhysMain, set the VM
parameters to —mx512m and —server (the Java —server option improves runtime), set the
Application parameter to inputSpecifier, and run your project (this is the configuration of the
JBuilder project file cbphysmain. jpr; other IDEs will have similar options).

It takes only a few seconds to run this test problem.

As a calculation proceeds, CartaBlanca sends status messages to standard output. The last few lines
of this output for testBul letPlate. 10 should look like
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n = 00020 t = 4.00000E-008 dt = 2.00000E-009, (0)
Dumping to file E:\cartablanca\output\dump.0.00001.dfl
Just wrote E:\cartablanca\output\dump.0.00001.dfl
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00001.dfl
Just wrote E:\cartablanca\output\dump.gridPhase2.0.00001.dfl
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00001.dfl
Just wrote E:\cartablanca\output\dump.gridPhase3.0.00001.dfl
Done in Partition O
Time for executing the problem: 8093 milliseconds.

Grind Time is 240 microseconds/cycle/node

Assuming PhysMain runs ok with the current input file testBul letPlate. 10, one now is
ready to create a new input file by modifying testBul letPlate. 10 (as
inputSpeciftier.10) with the GUL In all of the following, be sure to press the “Enter” key after
entering data.

On the first panel of the GUI (General Information), enter for the input parameters
MeshFileName, MeshPartitionFileName, NodeDataFileName,

meshes\2D\QUADS\my5x5\myMeshFile.txt,
meshes\2D\QUADS\my5x5\myPartitionFile.txt, and
meshes\2D\QUADS\my5x5\myNodeDataFi le . txt, respectively.

This will use the computational mesh created above; CartaBlanca will read the files in directories
relative to its execution directory. Figure 3 shows the part of the General Information panel that
provides overall control of a calculation. Parameters Maximum Cycles and Maximum Time specify
the duration of the calculation (in problem-time seconds), according to whichever is reached first.
Parameters Initial Time Step, MinimumTime Step, and Maximum Time Step may need to be
modified based on requirements of accuracy and stability. Graphics Time Interval controls how
often to output data files. Figure 3 shows a problem set to run from 0.0 s to 2.0 x 10° s, with 11
graphics edits. Also, note that on the first line of the first panel, the checkbox Particles On is
checked because the bullet-plate problem uses CartaBlanca’s Particle-In-Cell method to represent
solids.
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tRmmjng Parameters:

Maximum Cycles: 1000

|Graphics Time Interval: 20ET
Initial Time Step: 2.0E9
Minimum Time Step: 20E9
Maximum Time Step: 20E9

IMaximum Time: 100.0

Figure 3. Calculation control parameters.

The second tab of the GUI (Physics) brings up a panel that specifies the physical processes to be
modeled and the CartaBlanca algorithms to be used for their solution (e.g., choice of flow system for
momentum transport), as well as supporting data such as physical constants. Parameters
numNonParticleMaterials and numParticleMaterials specify the number of phases that are to be
modeled with CartaBlanca’s ALE algorithm and PIC (MPM) algorithm, respectively. (A total of four
phases can be modeled, each of which can contain a number of species.) The current input file uses
two particle materials (an aluminum plate and a lead bullet) and one fluid material (air); it also
assumes that only mechanical properties such as velocity, deformation, etc. are of interest, so only the
momentum equation is solved. If temperature is to be considered, one needs to check the item
solveEnergyTransport, and choose an energy system by selecting a suitable model from the list
under Choose energySystem (the default is NLEnergyBasic). The PIC method should be used to
model solid materials; in this case flowSystem should be NLMultiPhaseFlowPexp (pressure
solution is explicit in time). Currently, an implicit particle method is not available. A complete
description of the models available in the Physics panel is given in Section 4.

The sixth panel of the GUI (Initial Conditions) is used to specify the problem’s initial geometry,
material composition, and starting material properties (velocities, temperatures, etc.). Initial
Conditions contains two subpanels: Regions Definition and Regions Data. Figure 4 shows the
Regions Definition subpanel, which is used to break up the computational domain into sub-regions
that are occupied by the individual problem components at the start of a calculation.

As an example, assume that the projectile originally occupies the region [2.5, 3.5] by [3, 4]
(2.5<x<3.5, 3<y<4),and the target occupies the region [0, 5] by [0, 2]. We are going to define 3
initial regions: the entire domain (grid), the projectile, and the target. The initial regions are defined
by combining surfaces in 3-D space; these basic surfaces are specified with the surface table, the top
table on the sub-panel Regions Definition. We will use 6 surfaces to define our 3 regions; therefore,
in Regions Definition, set numDefiningSurfaces to 6, and numRegions to 3. The surface table will
have 6 rows, for Surfaces 1-6. The SurType (surface type) for all rows should be Conic, which is a
simple way to define a surface. A conic surface in 3-D space is described by the following expression
with coefficients 4, B, C, D, E, F, G, H, I, J:

h(x,y,2)=Ax* + By’ + Cz* + Dxy + Exz+ Fyz+ Gx + Hy + Iz + J .

This expression will be used to define regions in which the points obey one or more of the relations
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h(x,y,z)<0.0, h(x,y,2)<0.0, h(x,y,2)=0.0, h(x,y,z) > 0.0, h(x,y,z) > 0.0.

For example, the region [0, 5] by [0, 2] can be defined as: y -2 <0, for all x in our domain.
Therefore, a row of the surface table should have H =1, J = -2 (in our example, to define surface 6;
see Figure 4), and the region definition table (the bottom table in Regions Definition), defines a
corresponding region (region 3 in our example) with 6 in the le column. Using this logic, the 3 initial
regions are defined as shown in Figure 4.

< Input for CartaBlanca
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Figure 4. GUI "Regions Definition" sub-tab.

In the surface table, surface 1 defines x — 0 ; surface 2, x - 2.5 ; surface 3, x - 3.5 ; surface 4, y —
3.0 ; surface 5, y —4.0 ; and surface 6, y —2.0. The six surfaces are used to define 3 initial regions in
the lower region definition table. Region 1 is defined with the value 1 in the ge column, and -1 in all
other columns; this specifies that only surface 1 is used, with >=, defining a region x — 0> 0, or the
entire grid. Region 2 has values 3,5 in the le column, and 2,4 under ge; this specifies surfaces 3
and 5 with A(x,y,z) <0.0, and surfaces 2 and 4 with A(x, y,z) > 0.0, defining a region

25<x<3.5, 3<y<4. Similarly, region3is y <2.

The starting regions defined above are initialized with the Regions Data subpanel of the Initial
Conditions panel. This in turn contains subpanels RD: Material 1, RD: Material 2, RD: Material
3, RD: Material 4, and RD: All Materials. The first four tabs are used to set material (phase)-
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specific initial conditions, where again we note that a CartaBlanca phase can contain more than one
species. (The materials and species themselves are specified in the Species Properties panel of the
GUL) RD: All Materials is used to set initial values for the common pressure and for the turbulence
K, € model, for each of the regions. The material-specific tabs are used to set initial values for volume
fraction (e.g., vfracl for material 1), velocity (U1, V1, etc), temperature (e.g., T1), and species mass
fraction (s1MF1, etc.) if a phase contains more than one species. The variables DX1, etc. (for
displacements), are now only used in a special physics module. Again, these values are all set for
each individual initial region.

Initialization is done sequentially, in the order region 1, ..., region N. Thus, although in our example
region 1 includes regions 2 and 3, any initialization done to regions 2 and 3 during the initialization
of region 1 will be overwritten when initializing regions 2 and 3. In other words, the initialization
done to region 1 has effect only in the part of region 1 that does not overlap region 2 or 3.

The new problem is ready for a trial run. The third button in the GUI’s toolbar (Figure 5) must be
pressed to update the current inputSpecifier . 10 (the original will be overwritten). Figure 6 (in
Section 3.6) shows the starting configuration of the problem.

Input for CartaBlanca

General Bformation | Physics | Sobver | Nuedcal Options | Preconditioner | Fritial Condidions | Boumdary Conditions || Buthange Fax:

Figure 5. Saving the new input file.

In the remainder of this section we give an overview of the Boundary Conditions panel, which is
closely related to Initial Conditions, and show an alternate way to input initial and boundary data.

Problem boundary conditions are specified with the GUI Boundary Conditions panel, using surfaces and
regions that are defined in the BeDefinitions subpanel, in a manner similar to the initial conditions surfaces
and regions. In addition, the type and kind of the boundary condition regions are specified, where type can
be internal or external, and kind can be wal l, reflective, reflcorner, inflow,
outflow, inflow-outflow, pressure, or vel-direction. The boundary conditions are specified
with the BeData subpanel, which has tabs AllFluids, Material 1, Material 2, Material 3, and Material 4.

If no boundary region is set, all the geometric boundaries in the problem geometry are considered to be
default wal I boundaries. For wal I boundaries, by default the outward normal velocity is set to zero and
inward normal velocity and tangential velocity are allowed. For the energy module, a wal I boundary is
adiabatic unless otherwise specified by the user. The wal I boundary condition for temperature T is assumed

to have the form

kﬁ—T: -WT-T,)+q
on

where £ is the heat conductivity as given in the energy equation, z is the outward normal direction, 4 is the
heat transfer coefficient, 7 is the ambient temperature, and g is the heat flux. On BeData subpanel

Material 1, Table I has columns labeled TempH, TempPhi, and TempF1, which correspond to #, T, and
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g respectively in the temperature boundary condition. Suppose one only wants to solve the energy transport
equation and wants to set the boundary temperatures to T = 300 and T = 500, say, in the two

regions y —0 =0 and y —1=0 for material 1 and material 2, respectively (assuming only two materials are
used): enter a large number such as 1. OE20 in the first and second rows under TempH, and enter 300.0
and 500. 0 under TempPhi. This effectively sets the boundary temperatures to the desired values. A
description of CartaBlanca boundary condition usage is given in Section 4.7.

If an initial region or boundary region has a complicated geometry, one can also optionally create an initial
or boundary data file to set the region. An example is in file Poiseul lel_RF. 10, which is written by
test-suite problem testPoiseuillel_RF_Test. Its GUI Boundary Conditions panel has, for region 2,
-1 entered for all columns It, le, etc. This triggers the use of a boundary data file, which is specified in the
General Information panel, where BoundaryFileName is

meshes\2D\QUADS\Poiseui l le\myBCFile.txt

This file contains

wal

PR R R
(@ N e
PO -
ooN

0. .0 0.0

0. .0 0.0

The first line gives the number of boundary sections in the file, in this case, 1. In the second line, the first
number, 1, indicates the boundary section index; these indexes start at 0, thus, this boundary section is the
second boundary section. The name wal I is the boundary kind, and 2 gives the number of nodes in this
boundary section. The following two lines give the coordinates of the nodes (x, y, z). The initial condition
data files have a similar format, but without the boundary-kind specification.

3.6. Calculation Results

As a calculation proceeds, CartaBlanca writes graphics-output files in Tecplot format in directory
cartablanca/output, according to the edit interval specified by the Graphics Time Interval
field in the General Information panel. The sample problem was originally set to write 11 edits over
the time interval 0.0 s — 2.0 x 10 s. After (or while) running the problem, opening the files
cartablancaZoutput/gridPhase2partition0-00000.dat

and

cartablancaZoutput/gridPhase3partition0-00000.dat

in Tecplot brings up time = 0.0 s plots of the projectile and target, respectively, as shown in Figure 6.
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Figure 6. Sample problem projectile and target.

Here we have used Tecplot’s scatter mode, to show the actual calculational particles CartaBlanca
used for its particle-in-cell representation of the projectile and target. Figure 5 only shows their initial
locations, which were specified according to the discussion above on initial conditions. (The actual
number of particles is determined by the specified mesh and the GUI Particle Properties panel.)
Many other parameters are written out to the graphics files.

A complete description of CartaBlanca’s output is given in Section 6.
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4. INPUT PREPARATION AND SPECIFICATIONS

The main input that specifies and controls a CartaBlanca calculation is contained in a text file called,
by default, inputSpecifier. 10. File inputSpecifier. 10 also contains the names of

six additional (“Mesh Input”) files, two of which the user must provide to specify the computational
nodalization, one of which is required for parallel runs to provide the mesh partitioning, and three of
which are optional files that give particle, initial condition, and boundary condition data. While an
inputSpeciftier. 10 file can always be edited by hand (and we encourage users to have a look at
one), the CartaBlanca GUI makes development of an input file vastly easier and less error-prone. The
GUI can read and modify an existing inputSpecifier. 10, and it also can create one from
scratch starting with a set of default parameters.

The GUI is organized in a hierarchy of standard, familiar tools (buttons, tabs, and menus). Figure 7
shows the highest level, which consists of three rows:

> “File” and “Help” provide standard menus (currently only “File” - “EXit” is
available).

» Twelve buttons are on the second row (the toolbar). The first (leftmost) button is a new
feature in the GUI: it runs the inputSpecifier. 10 in the user directory
(cartablanca, by default). The second button is currently not operational: it would open a
desired file. The third must be pressed (clicked) by the user to save the current
inputSpeciftier. 10 to the user directory. The fourth button also brings up “help”
(currently not implemented). The fifth button (also new) stops the run. The following six
buttons bring up file browsers for selection of the Mesh Input files (which can, alternatively,
be specified elsewhere in the GUI; see Section 4.1). The last button on the toolbar, “Post-
Process” (also new), brings up an explorer in the running directory, so that post-processing
macros can be activated conveniently. The format and contents of the Mesh Input files are
described in Section 4.4.1.

» The third row is the main entry into the GUI; it contains tabs (currently 11) that display panels
for input of the problem’s physics and control data. These panels are organized to contain data
related to the various aspects of CartaBlanca’s logic and capabilities, and most of them
contain sub-panels.

Input for CartaBlanca

General Infomation | Physics | Sobver | Mumerical Options | Precondii Tnitial Con i Boundary Condii Exchange Paramebers | Chemdcal Reaction | Farticle Broperties | Species Broperties

|
Figure 7. GUI's highest control level.

The 11 highest-level tabs (and corresponding panels) are:
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» General Information — specifications of global problem data (e.g., use of the particle-in-cell
method, names of the Mesh Input files, time step size, edit frequency).

» Physics — the physical processes to be modeled and the solution algorithms (e.g., choice of
flow system); physical constants.

» Solver — selection of equation solver(s) and related parameters.

» Numerical Options — switches for specific options for the ALE and PIC/MPM numerics (e.g.,
artificial viscosity); advection Courant number.

» Preconditioner — selection of quantities to precondition to reduce the number of Krylov
iterations; setting the preconditioner algorithms and related parameters.

» Initial Conditions — specification of regions in the problem domain and their initial (time = 0)
setup (e.g., materials and their velocities, pressures, etc.).

» Boundary Conditions — specification of regions and boundary conditions to be applied.

» Exchange Parameters — momentum, energy, and mass exchange data, according to the number
materials (fields) in the problem.

» Chemical Reaction — data for any reactions to be modeled (e.g., Arrhenius activation energy,
specification of reaction and product phases).

» Particle Properties — number of particles per cell (for PIC/MPM calculations), damage-
calculation switch.

» Species Properties — selection from built-in material constitutive models (e.g., Kelvin,
Johnson-Cook), and assignment of constitutive-model data.

The input specifications that follow, in Sections 4.1 —4.11, are organized according to the
CartaBlanca GUI tabs. Section 4.1.1 describes the Mesh Input Files.

The GUI data are comprised of text fields (either keywords or user-supplied, such as file names),
reals (floating point), integers, and booleans (typically entered with checkboxes). Keyword entry is in
most instances facilitated by selection from built-in dropdown lists. Where an input parameter
requires a real value, exponential notation may optionally be used (e.g., 1.678E12).

If the GUI is started without an InputSpecifier. 10 file, the GUI input parameters will be
initially set to default values that are specified in the CartaBlanca coding.

4.0.1. Systems of Units

CartaBlanca makes no assumptions as to a units system; there is no switch in the input file for units
selection. The only user requirement is that all input for a model adhere to a self-consistent system.
Most input models developed at Los Alamos have been in the cgs system.
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4.1. General Information

The General Information tab brings up a panel that is used to specify the global controlling
parameters for a CartaBlanca calculation, such as mesh files, calculation length, time-step size, and
data output interval. Other data entered on the General Information panel include choice of a
parallel (multiprocessor) calculation with mesh partitions, use of the MPM/PIC particle method, and
the coordinate system. Also, a restart from a previous run can be indicated, and the user directory and
an output directory relative to the user directory can be specified. Figure 8 shows a typical General
Information panel.

Following are specifications for the General Information input data.

Input for, CartaBlanca

fam' = B% B EEES]5 MeshFile Partition File Node Data File Particle Data File Boundary Data File InitialConditions Data File Post-Process

General Trd armation |ngms|: Selver | Nurnerical Opticns | Erecondifioner | Iritisl Conditions | Bomdary Conditions | Evchange Parameters || Chaical Reaction | Bartide Broperiies | Spedies Properties |

':l Use Partitions Particles On ’ijStan

i:uurdinateSyslem:

Elalive outputDir:

IuserDire:lory:

IMesh InputFiles:
finitial ConditionsFileName: |

IlerlingPammeters:

Moximum Cycles: |

imum Time:

E it Graphic:

rintlnStep:

(Graphics/Binary Dump Ratio:

Figure 8. GUI "General Information" tab.

Use Partitions: boolean; if checked, the input will specify a partitioned mesh, and a parallel
calculation will be run. Otherwise, a serial calculation will be run. Running CartaBlanca in parallel
mode is described in Section 5.3.

Particles On: boolean; if checked, the run will utilize the PIC (MPM) algorithm for solution of at
least one material (phase). Otherwise, the ALE method will be used for all materials (phases).
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ReStart: boolean; if checked, the run will be a restart from the results (dump file or files) of a
previous run. The initialization of a restart run from dump files is described in Section 5.2 (see also
input variable initGraphic, below in this section).

coordinateSystem: keyword text; the coordinate system to be used, either cartesian,

cylindrical, or spherical. By default, in a 2D cylindrical coordinate system, the y-axis is the
axis of rotational symmetry.

userDirectory: text; the absolute path of the CartaBlanca directory where the problem will be run.
Automatically set to the current GUI directory.

relative outputDir: text; the output directory path relative to userDirectory. The default is output.
This can be overwritten in a run script by adding a new output directory as the second argument (after
the input file; command line arguments for running the code are described in Section 5.). This is a
new feature in the GUL.

Mesh Input Files: Six text fields that give the directory locations and names of files that specify the
computational domain and related data. Directories may be relative to userDirectory. Alternately,
one or more of these files can be chosen by using the six correspondingly-named buttons in the main
toolbar at the top (second line) of the GUI. Specifications for the Mesh Input Files are given in
Section 4.1.1. Note that, while use of some of these files is optional, none of the six fields here should
be entirely blank.

MeshFileName: file that defines the computational mesh elements (e.g., 2-D quadrilaterals, 3-D
hexahedra), by their individual vertex nodes.

MeshPartitionFileName: file that assigns each of the mesh elements to one of two or more
partitions of the domain, which are assigned to parallel processors; only needs to be specified for
a parallel calculation. A discussion of CartaBlanca’s parallel processing capabilities is given in
Section 5.2.

NodeDataFileName: file that provides the coordinates of the mesh-element vertex nodes.

ParticleFileName: file that provides initialization data for computational particles; only required
for calculations that use the PIC (MPM) method. Alternately, the keyword text automatic can
be entered for default settings. Additional particle input is described in Section 4.10.

BoundaryFileName: file that specifies boundary condition locations. Section 4.7 gives details on
boundary condition specifications and usage, including an alternate way to provide the boundary
condition location information, using the GUI.

InitialConditionsFileName: file that specifies initial condition locations. Section 4.6 describes
an alternate way to specify this information, using the GUI. Section 4.6 gives details on
CartaBlanca’s initial condition setup.

Running Parameters: Nine fields, four integer and five real (floating point), that specify overall
calculation behavior.
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Maximum Cycles: integer; the maximum number of time steps for this run; calculation will
terminate when this is exceeded, or Running Parameter Maximum Time is exceeded (see below)
- whichever is satisfied first.

Graphics Time Interval: real; the time interval between writing of graphics edit files. Section
6.2 describes CartaBlanca’s graphics-edit files. Also, in conjunction with Running Parameter,
Graphics/Binary Dump Ratio (see below), specifies interval between writing of restart dumps.

Initial Time Step: real; the time step size to try for the calculation’s first cycle (time step).

Minimum Time Step: real; the minimum time step size allowed; the calculation will be aborted
if the time step size falls below this value.

Maximum Time Step: real; the maximum time step size allowed.

Maximum Time: real; calculation will be stopped at this time, or when Running Parameter
Maximum Cycles is exceeded - whichever is satisfied first.

initGraphic: integer; used for restart calculations to specify the dump file(s) used to initialize the
calculation, and the running sequence number for the first graphics and dump edits. The
initialization of a restart run from dump files is described in Section 5.2.

printinStep: integer; the time step interval for status edits to the standard output (the screen, or as
redirected to a file). Section 6.1 describes these edits.

Graphics/Binary Dump Ratio: integer; the time interval for binary dumps as a multiplier on the
graphics-edit time interval (Running Parameter Graphics Time Interval).

Section 4.1.1 gives descriptions of the Mesh Input Files that are specified in the General
Information panel. Section 4.1.2 describes standalone files in the CartaBlanca release package that
can be used to generate node, mesh, and partition files for various geometries. Section 4.1.3 describes
a code option to apply a periodic boundary condition to a mesh.

4.1.1. Mesh Input Files

In addition to file inputSpecifier. 10, CartaBlanca reads three required input files that specify
the computational node locations, mesh (node) connectivity, and node-edge mesh partitions for
parallel computation (required only for a parallel run), and optionally three files that specify
boundary conditions, initial conditions, and the distribution and properties of computational particles
for calculations that use the PIC/MPM logic. These files are called collectively a problem’s Mesh
Input Files. The six Mesh Input Files are:

NodeDataFi le, node coordinates (required),

MeshFi le, the mesh connectivity (required),

MeshPartitionFile, mesh partitioning (required for parallel runs),

ParticleFile, particle-model data (optional, an automatic calculation can be chosen),

BoundaryFi le, boundary condition nodes and types (optional, can be given in
InputSpecifier.10), and
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InitialConditionsFi le, initial condition nodes (optional, can be given in
InputSpecifier.10)

These file names are not required; each of the Mesh Input files can be named according to the user’s
wishes, as described in Section 4.1. All are text files; their specifications are as follows:

NodeDataFile, MeshFile, and MeshPartitionFile

These three files define the geometry of CartaBlanca’s computational grid. Their formats follow from
those required by the METIS mesh-partitioning program [6]. The three files contain the mesh
connectivity, the node coordinates and the partitioning of the mesh elements. Please see the METIS
manual [6] for additional description of these files.

The node coordinates file (e.g., NodeDataFi le) has the format (in this case coordinates are given
for a 3-D calculation):

1 5.000000e+00 0.000000e+00 5.000000e+00
2 5.000000e+00 5.000000e+00 5.000000e+00
3 5.000000e+00 1.000000e+00 5.000000e+00
4 5.000000e+00 2.000000e+00 5.000000e+00
5 5.000000e+00 3.000000e+00 5.000000e+00
6 5.000000e+00 4.000000e+00 5.000000e+00
7 5.000000e+00 5.000000e+00 0.000000e+00
8 5.000000e+00 5.000000e+00 4.000000e+00
9 5.000000e+00 5.000000e+00 3.000000e+00
10 5.000000e+00 5.000000e+00 2.000000e+00
11 5.000000e+00 5.000000e+00 1.000000e+00

The real numbers in the file have a free format. A 2-D mesh has the same format as the 3D with the
last coordinate equal to zero.

The connectivity file MeshF 1 e represents a mesh with n elements and has n+1 lines. The first line
contains information about the size and the type of the mesh. The remaining lines contain the nodes
that compose each element. The information in the first line consists of two integers: the first is the
number of elements in the mesh, and the second denotes the type of elements in the mesh: 1 for
triangles, 2 for tetrahedra, 3 for hexahedra and 4 for quadrilaterals. The number of nodes in each of
the following lines depends on the kind of element with three for triangles, four for tetrahedra and
quadrilaterals, and eight for hexahedra. As an example for hexahedra:

125 3

72 76 117 104 77 96 153 136

76 75 113 117 96 92 154 153

75 74 109 113 92 88 155 154

74 73 105 109 88 84 156 155

73 67 97 105 84 71 140 156

104 117 118 103 136 153 157 135
117 113 114 118 153 154 158 157
113 109 110 114 154 155 159 158
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109 105 106 110 155 156 160 159
105 97 98 106 156 140 139 160

103 118 119 102 135 157 161 134
118 114 115 119 157 158 162 161
114 110 111 115 158 159 163 162
110 106 107 111 159 160 164 163

In the case of triangles and tetrahedra, the ordering of the nodes for each element is irrelevant. This is
not the case for quadrilaterals and hexahedra for which the nodes must obey a specific order, as
shown in Figure 9:

4

Figure 9. Node ordering for quadrilaterals and hexahedra.

CartaBlanca requires mesh partitioning to be done in such a way that elements (i.e., triangles, etc.)
and not nodes are partitioned. Referring to Figure 10, the mesh partitioning for CartaBlanca must be
done along node-edge connections. In the Figure, the heavier edge connections denote the boundary
between partition A and partition B. To implement this mode of partitioning in CartaBlanca, nodes on
the partition boundaries are duplicated. In the example in the Figure, the three nodes along the
partition boundary would be present in each partition as duplicates.
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Partition

Partition
B

Figure 10. Partitioning in CartaBlanca; meshes must be partitioned along node connections.

The partition file has n lines for a mesh with n elements; each line has an integer representing the
partition in which the element resides. The partition integers start at 0. Usually, these numbers are
obtained using Metis (see also Section 4.1.2)..

To illustrate further how mesh partitioning works in CartaBlanca, a two-dimensional mesh is shown
in Figure 11.

.

Figure 11. Two-dimensional partltloned mesh.

The mesh partitioning shown in Figure 11 was performed using the Metis program and the Metis
output was then fed to CartaBlanca for computations. The actual plot was generated using the Tecplot
program which operates on graphics output files from CartaBlanca (Section 6.2 gives a description of
the graphics output). A further example mesh is shown in Figure 12 for the case of a three-
dimensional tetrahedral mesh.
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Figure 12. Three-dimensional tetrahedral element mesh. The shading denotes the 4 partitions that were computed
by Metis.

Additional examples of CartaBlanca mesh partitions are shown in Figure 13.

Sections 5.2 and 7.4 have additional material on CartaBlanca parallel computing.
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Figure 13. Additional mesh-partition examples.

The CartaBlanca distribution contains a large number of sample mesh files, in directories under the
directory cartablanca/meshes. Often, these files are called myNodeDataFile,
myMeshFi le, and myPartitionFile, and their actual contents are indicated by the names of
the directories that contain them. For example, directory

cartablanca/meshes/2D/QUADS/201nx144n

contains three mesh files that specify a two-dimensional grid of quadrilaterals, with 201 nodes for the
x-coordinate and 144 nodes for the y-coordinate. Section 3.5 of this Manual shows the use of
CartaBlanca itself to generate relatively simple node and mesh files. The generation of node, mesh,
and partition files is further discussed below in Section 4.1.2.

ParticleFile (optional)

CartaBlanca uses the Material Point Method (MPM), an advanced version of the PIC method, for
solid mechanics modeling. There are two ways to initialize an MPM calculation for a material
(phase). One can provide a ParticleFile, and give its name and location in the General
Information panel’s ParticleFileName field (or browse to it using the Particle Data File button at
the top of the GUI). Or, one can use the code’s defaults, entering “automatic” in the
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ParticleFileName field, and specifying the number of computational particles per mesh cell in the
Particle Properties panel (see Section 4.10). The distribution package contains a sample
ParticleFile

cartablanca/particles/2d/waves.txt

a snippet of which is

grid phase number: 1
Number of particicles: 867
Particle coordinates

3.75100E-001 3.00100E-001
3.75100E-001 3.12100E-001
3.75100E-001 3.24100E-001
3.75100E-001 3.36100E-001
3.75100E-001 3.48100E-001
3.75100E-001 3.60100E-001
3.75100E-001 3.72100E-001
3.75100E-001 3.84100E-001
3.75100E-001 3.96100E-001
6.25100E-001 8.64100E-001
6.25100E-001 8.76100E-001
6.25100E-001 8.88100E-001
6.25100E-001 9.00100E-001

number of state varibales per particle: 13
particle state variables
Mass Volume U V Pressure StressXx StressXy StressYx StressYy DisplacementGradientXx
DisplacementGradientXy DisplacementGradientYx DisplacementGradientYy

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 O.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 O.00000E+000 O.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000
0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 -1.00000E-002 0.00000E+000 0.00000E+000 0.00000E+000
0.0000OE+000 0.000OOE+000 0.0000OE+000 0.00000OE+000 0.00000OE+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 -1.00000E-002 0.0000OCE+000 0.00OOOE+000 0.000OOE+000
0.00000E+000 0.000OOOE+000 0.000OOE+000 0.0000OE+000 0.0000OE+000 0.0000OE+000

1.87500E-004 1.87500E-004 0.00000E+000 -1.00000E-002 0.00000E+000 0.00000E+000 0.00000E+000
0.00000OE+000 0.000OOE+000 0.0000OE+000 0.00000E+000 0.00000E+000 0.00000E+000

1.87500E-004 1.87500E-004 0.00000E+000 -1.00000E-002 0.00000E+000 0.00000E+000 0O.00000E+000
0.00000E+000 0.000OOOE+000 0.0000OE+000 0.0000OE+000 0.0000OE+000 0.0000OE+000

BoundaryFile and InitialConditionsFi le (both optional)

The specification of regions in the computational domain for applying initial and boundary conditions
is described in Sections 4.6 (initial conditions) and 4.7 (boundary conditions). The most convenient
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method for such specification is the use of the GUI to set up geometries that are built-in to
CartaBlanca (including conics). For initial condition regions that have shapes not suitable to this
method, the user has the option to supply a file that contains node coordinates. Also, the user may
wish to supply a file with boundary condition parameters (node coordinates and types), instead of
using the GUI. The formats of these files are also given in Sections 4.6 and 4.7.

4.1.2. Generation of NodeDataFile, MeshFile, and MeshPartitionFile

The CartaBlanca release package includes a number of Java source files that can be modified,
compiled, and run to generate the three files that specify the nodalization and partitioning of a
problem. They are limited in the geometries that are handled, but can be quite useful nevertheless.
These Java files are contained in directory

src/gov/lanl/cartablanca/main/generatemesh

Figure 14 shows the contents of generatemesh.

Figure 14. Directory generatemesh.

Address |[) Ercartablancalsrchigovilanlicarkablancalmainigeneratemesh
Folders x Mame Size | Type Date Modified

30 src ~ Dicvs File Falder 1/22/2007 2:54 PM
) cvs & Create1DMesh.java 4KE JAVA File 712712005 12:56 PM
3 ) gov & Create2D3bIMesh. java 9KE  JAVA File 712712005 12:56 PM
) cvs & CreatezDShIMesh. java 13KE  JAvA File 7127)2005 12:36 PM
= 153 larl tﬁ.CreateZDDiFFerent_y.java SKB JAVAFile 712712005 12:36 PM
= I3 cartablanca &CreateEDGrMesh.java 4 KB 1AVA File 712712005 12:36 PM
# 03 be I&CreateEDLennardPrep.java 13 KB JAvA File 71272005 12:36 PM
2 ) comm & Create2DMesh.java 4KE JAYA File 712712005 12:36 PM

3 cvs & Create3DzbaxMesh. java 1ZKE JAVA File 1/22/2007 2:54 FM
# ) DEM & Create3DMesh.java SKE JAVA File 71272005 12:36 PM
[ discrete I&.CreateCenteredWedge.java 14 KE  JAVA File FI2TI2005 12:36 PM
# T3 disslem I‘_ﬁCreateHexPartitinns.java 11 KE JAVA File 1071072006 3:54 AM
| |53 driver &CreatePrepNMTMesh.java SKE JAWA File FIZFI2005 12:36 PM
# I3 graph &CreatePrepNMTMesh\l‘.java TKE 1AWA File FI2FI2005 12:36 PM
3 ) graphics % DistortNMTMesh, java 10KB  JAYA File 712712005 12:36 FM
3 ) intislize & InclineBothsidestMT  java 9KB JAvAFile 727[2005 12:36 PM
3 ) input & InclineSideNMT1 java 10KE  JAYA File 71272005 12:36 PM
10 & InclineSideNMT2 java 10KE 1Y File 712712005 12:36 PM
= ) main o, MakeHoles205bIMesh, java 1ZKE 1AW File 712712005 12:36 PM
&) ovs & MakeHoles2DShIMeshb. java 1ZKE 1AW File 712712005 12:36 PM
& MakeHoles2DShIMeshH. java 1ZKE  JAYA File 71272005 12:36 PM
& MakeHoles2DShIMeshL . java 1ZKE  JAYA File 71272005 12:36 PM
5 I‘_ﬁMakeHoIesLennardMesh.java 13KE  JAVA File FI2TI2005 12:36 PM
3 B mesh & MakeHalesNMTMesh. java 14KE  JAYA File 712712005 12:36 PM

# |53 physics @j package. hkml 1 KE HTML Document &f16/2006 319 PM
|53 physprop &Reurder.java QKB 1AWA File FI2FI2005 12:36 PM
T ) sobver % RotatezDMesh. java ISKB 1AV Fils 712712005 12:36 FM

H () swing
) cvs

Section 3.5 includes an example that modifies, compiles, and runs file Create2DMesh. jJava. Java

comments, near the start of each file, explain the file’s use.
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The logic for partition assignment in these files is very simple; elements are equally divided
according to the number of requested partitions. Depending on the problem configuration, this may
not give optimal parallel performance (see Section 7.4). Directory generatemesh also contains
file CreateHexPartitions. java, which can be used to generate partitions for meshes
composed of hexahedra; its use is explained by Java comments.

4.1.3. Periodic Boundary Conditions

CartaBlanca has a built-in optional mechanism to apply a periodic boundary condition to a computational
mesh (essentially, the mesh can “wrap-around” itself). One reason to use a periodic boundary condition is to
avoid artificial surface effects that can arise in a finite computational domain. Also, one of the code’s periodic
boundary condition options can be used to compute 3-D sections of a cylinder. Periodic boundary conditions
are specified with the GUI Physics panel, using the booleans (checkboxes) PeriodicInX, PeriodicInY,
PeriodicInZ, and PeriodicInTheta (see Section 4.2). For example, if PeriodicInX is selected, then the ends
of the region in the x-direction are set as internal nodes by the code, and all pairs of partner nodes which are
the periodic boundary nodes are determined. All fluxes going into the two nodes of the pair are added
together and assigned to the pair. At the final state, each of the partner nodes should have the same physical
values, which is implemented by averaging the values of the partner nodes and then assigning the average to
them.

PeriodicInTheta is for a 3-D cartesian problem such as a cylinder in which one is only
computing on a section (e.g., a quarter section); it imposes periodicity in the azimuthal angle. The
problem is in Cartesian coordinates and neither x, y, or z is equivalent to the theta coordinate. One of
the Cartesian axes is specified as an axis of rotation (using the axisOfRotation field in the Physics
Panel). CartaBlanca will automatically find the appropriate periodic pairs.

CartaBlanca’s general boundary conditions are described in Section 4.7. A problem can use a
periodic boundary condition with a general boundary condition, as indicated in two of the following
examples.

Examples: periodic boundary conditions: The CartaBlanca Test Suite contains seven problems that
use a periodic boundary condition. For example,

> testLongVibrationld.10isa 1-D cartesian problem that uses PeriodicInX.

» Couette. 10 is a2-D cartesian problem that uses PeriodicInY; external wall
boundary conditions (see Section 4.7) are specified for velocities at the x-axis bounds.

» DisOpsWithPeriodicity. 10 isa3-D cartesian problem that uses PeriodicInX.

» PoiseuilleCylind.10isa2-Dcylindrical problem that uses PeriodicInY; an
external reflective boundary condition is applied at the cyl indrical symmetry
axis (x = 0), and an external wall boundary condition is applied for velocity
specification at the end of the x-axis (see Section 4.7).

» DisOpsWPInTheta. 10 is a 3-D cartesian problem that uses PeriodicInTheta.
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4.2. Physics

The Physics panel is used to specify the physical processes to be modeled and the CartaBlanca algorithms to
be used for their solution, such as selection of momentum transport and choice of a flow system for its
solution. Also, supporting data such as physical constants are entered, and periodic boundary conditions
(Section 4.1.3) can be selected.

Figure 15 shows the Physics panel. At the top of the panel there are six windows that can provide choices for
solution algorithms (“solution systems”, e.g., Choose flowSystem). The six windows allow choices for flow,
energy, species, momentum, stress, and turbulence systems. The CartaBlanca Programmer’s Manual shows a
simple way to add new Java classes to the currently available choices (note that some of the current systems
were developed for special cases). Below the solution-system windows are fields that are used to provide the
physics parameters, and a set of checkboxes for selection of physics options (including the physical processes
to be modeled).

= Input for CartaBlanca
File Help

ﬁ B Mesh File Pariition File Mode Data File Particle Data File Boundary Daia File InitialConditions Data File
| General Bformation | B3 | Sobver | Numerical Oiions | Ereconditioner | Irifial Condifions | Beundary Conditians | Exchange Parsmeters | Chemical Reaction | Fartide Iroperiiss | Spedies Broperties |

IClmwe flowSystem:

|C]uwse energy System: IC]wuse species System: |Clmnse momentumSystem: |C]wuse siress System: Choose turhulenceSysiem:

~| HLE ~|

NLTurbulence

ML Multi Ph:

| |

[numNonParticleM: [ 1 | jnumParticleMaterials: | 2 |
Jputure use: [StefanBoltzmann: | 5.6696E-8 |
kravity components: | o0 | 00 || 00 jgasConstant: | £.31430 |
loravitationalConstant: | 6.6TE-11 | [AvogadroNumber: | 6.02283E23 |
ffuzz: | LOE-32 | [Planck Constant: | 6.222E-34 |
lightSpeed: | 2.99T76E8 | lelectronCharge: | LGE-19 |
[frrame Angularvelocity: | 0.0 | jaxisOfRotation: | z |
[TsolveEnerevTransoort [TchemicalReactionOn fenergyUnitFactor: | 10 |
solveMomentumTransport | | useEquilibriumPressure [phase OfPforNonFquilP: | 1 |
[ Tsolve SpeciesTransport [ TPeriodicInX juum ChemicalReactions: | o |
[TsolveScalarTransport [TPeriodiciny

|| solve TurbulenceTransport | PeriodicInZ

|| solveStress || PeriodicInTheta

Figure 15. GUI "Physics" tab.

The currently available solution algorithms (systems) are (where the prefix “NL” indicates “non-linear”):

Flow System

Note: To use a Flow System, the Physics panel boolean solveMomentumTransport must be checked.
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NLMul tiPhaseFlowBasic: Solves the momentum equation implicitly in pressure; the treatment of
velocity is explicit. In the Newton-Krylov solver, the residual is basically the sum of volume fractions minus
one. This class is used with implicit solvers, such as Gmres (see Solver panel description, Section 4.3).

NLMul tiPhaseFlowBasicNMT: similar to NLMultiPhaseFlowBasic, used for a specific
application.

NLMul tiPhaseFlowlmpl: Implicit time-advancement solution of the momentum equation. Currently
under development.

NLMultiPhaseFlowlmplicitStress: Implicit time-advancement solution of the momentum
equation. Currently under development.

NLMultiPhaseFlowImpINMT: similar to NLMultiPhaseFlowImpl, used for a specific application.

NLMultiPhaseFlowImplStressNMT: similar to NLMultiPhaseFlowlmplicitStress, used for
a specific application.

NLMultiPhaseFlowPexp: Solves the momentum equation explicitly with solver NLExXplicit (see
Solver panel description, Section 4.3).

Note: Currently, NLMultiPhaseFlowPexp must be selected for problems that use the particle MPM/PIC
method.

ThinPlate: solves deformation of thin plates under static or dynamic loads; temporary location in GUI to
use this logic.

Energy System

Note: To use an Energy System, the Physics panel boolean solveEnergyTransport must be checked.
NLEnergyBasic: The basic system for solving the energy equation; can be used with implicit solvers or
the NLExp I icit solver (Section 4.3). However, even if NLEXpl icit is used, the treatment of the
coupling term and the flux boundary condition term are still implicit.
NLEnergyBasicPointSources: Special application of the energy equation.

NLEnergyBasicWithPhCh: Extension of NLEnergyBasic with treatment for phase changes.

NLEnergyHE1L: Special application of the energy equation for high explosive simulations with chemical
reactions.

NLEnergyHEZ2: Special application of the energy equation for high explosive simulations with chemical
reactions.

Species System
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Note: To use a Species System, the Physics panel boolean solveSpeciesTransport must be checked.
NLSpeciesBasic: The basic system for solving the species equation.
NLSpeciesBA: Special application of the species equation.

NLSpeciesHEL: Special application of the species equation for high explosive simulations with chemical
reactions.

NLSpeciesHE2: Special application of the species equation for high explosive simulations with chemical
reactions.

NLSpeciesPM: Special application of the species equation.
NLSpeciesTransferSp: Extension of NLSpeciesBasic with species mass exchange.

Momentum System

This is a placeholder; currently there are no choices for this window (see Flow System).

Stress System

This is a placeholder; currently there are no choices for this window. Section 4.11 and the Theory Manual
describe the material models available in CartaBlanca

Turbulence System

Note: To use the available Turbulence System, the Physics panel boolean solveTurbulenceTransport must be
checked.

NLTurbulence: CartaBlanca uses the K-epsilon model for turbulent flow, where transport equations are
solved for the turbulent kinetic energy (K) and the turbulent dissipation (¢).

The bottom of the Physics panel contains fields and checkboxes that are used to set values of physics-related
parameters (including physical constants) and to select physics-related options (including physical processes to
model). As indicated in Section 4.0.1, any units system can be used for the physical constants. These fields and
checkboxes are as follows.

numParticleMaterials: integer; the number of materials (phases) to be modeled with the MPM/PIC
method. A total of four materials (phases) is allowed, including non-particle materials (see
numNonParticleMaterials). A material (phase) can comprise more than one species. Sections 4.10
and 4.11 describe input for the particle and material/species properties, respectively. The Particles
On checkbox in the General Information panel must be checked if numParticleMaterials > 0.

numNonParticleMaterials: integer; the number of materials (phases) to be modeled with the ALE method. A
total of four materials (phases) is allowed (numNonParticleMaterials + numParticleMaterials <= 4). A
material (phase) can comprise more than one species.
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gravity components: 3 reals, default values = 0.0; the components of the gravitational acceleration.

gravitationalConstant, lightSpeed, StefanBoltzmann, gasConstant, AvogadroNumber, PlanckConstant,
electronCharge: 7 reals; self-explanatory. Any units system can be used (of course, it must be consistent with
the rest of the model).

Note: The units of the universal gas constant and the activation energy in the Arrhenius chemical reaction term
must be consistent; default value for the gas constant is 8.31439 J/mole-K (see Chemical Reaction panel
description, Section 4.9).

fuzz: real; currently not used.
frameAngularVelocity: real; used for the angular velocity of an optional rotating coordinate system, for

which the user must specify also the rotation axis; see Physics panel field axisOfRotation. The unit of angular
velocity is so chosen that the resulting velocity is consistent with the unit of velocity.

axisOfRotation: keyword text; used in three cases, (1) for a PeriodicInTheta periodic boundary condition, to
determine the x, y, z-axis, (2) for a cylindrical coordinate system, to determine the radial dimension, and (3)
for a rotating coordinate frame, to determine how to add the centrifugal and Coriolis forces. Either X, Yy, or Z
(lower case).

Note: The Physics panel’s PeriodicInTheta boolean must be checked to use that periodic boundary condition.

Note: Cylindrical coordinates are chosen with the coordinateSystem field in the General Information panel
(Section 4.1).

Note: For a rotating coordinate system, the Physics panel parameter frameAngularVelocity must be set.
energyUnitFactor: real; used to make the terms pressure-dot and viscous dissipation in the energy equation

consistent with other terms. The energyUnitFactor parameter was used during early code development, and is
now obsolete; a value of 1.0 should always be used.

useEquilibriumPressure: boolean; if checked, the equilibrium pressure is used in the multiphase flow
calculations. See also Physics panel field phaseOfPforNonEquilP.

phaseOfPforNonEquilP: integer; used for non-equilibrium pressure model (Physics panel checkbox
useEquilibriumPressure is not checked). Specifies the phase (material) to use for the auxiliary pressure, as
discussed in Chapter 3 of the Theory Manual. The phase to use is normally the fluid phase in the case of fluid-
solid interactions. If only fluid phases exist, the equilibrium pressure model can be used. Here the phase
number starts from 1.

solveEnergyTransport: boolean; if checked, energy equation is solved. One may also want to choose a
suitable Energy System for the problem; otherwise, the Energy System currently in the input file is used.

solveMomentumTransport: boolean; if checked, momentum equation is solved. One may also want to
choose a suitable Flow System for the problem; otherwise, the Flow System currently in the input file is used.
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solveSpeciesTransport: boolean; if checked, species transport equation is solved. One may also want to
choose a suitable Species System for the problem; otherwise, the Species System currently in the input file is
used.

solveScalarTransport: boolean; if checked, a special scalar transport physics system is solved. This is in a test
developed in the early days of the code.

solveTurbulenceTransport: boolean; if checked, the K-epsilon model will be used, with Turbulence System
NLTurbulence, which must be specified in the input. See also input parameters turbK and turbE in the
Initial Conditions panel (Section 4.6), and tkH, tkPhi, tkFl, tIH, tIPhi, and tIFl in the Boundary Conditions
panel (Section 4.7).

solveStress: boolean; if checked, the code will solve for stress on the Eulerian grid; otherwise the code will
only solve stress on MPM/PIC particles. Typically, particles are used to solve for stress in solid materials, and
before the solveStress option was implemented, particles were the only choice for a solid phase. With the
solveStress option, we do not need particles if we prefer only to use the Eulerian grid to solve the problem.

Note: The solveStress parameter does not use the Physics panel’s “Choose stressSystem:” window; it
is planned to change its name to solveStressOnGrid.

chemicalReactionOn: boolean; if checked, the chemical reaction model will be used. Input specifications for
modeling chemical reactions are described in Section 4.9 (““Chemical Reaction”). See also Physics panel field
numChemicalReactions.

numChemicalReactions: integer; the number of chemical reactions to be modeled. See Physics panel
checkbox chemicalReactionOn.

PeriodicInX, PeriodicInY, PeriodicInZ, PeriodicInTheta: 4 booleans; if checked, a periodic boundary
condition is used for the indicated coordinate. See Section 4.2.1 for a description of CartaBlanca’s periodic
boundary conditions.
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4.3. Solver

The Solver panel is used to specify and configure the solvers of the field equations used by the
model. All data are entered in a single scrollable table. Figure 16 shows the startup display of the
Solver panel’s table. The first column identifies the various properties (parameters) for each solver to
be used. Up to six solvers may be used for a given model; the data for each solver are entered in each
of the next six columns (“Solverl” ..... “Solver6”). The solver data are comprised of text fields
(keywords), reals, integers, and booleans (checkboxes). Keyword entry is facilitated by selection
from dropdown lists.
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Figure 16. GUI "Solver" tab.

The input parameters for the Solver panel are as follows:

Field: keyword text; the field to be solved, either Species, Energy, P, PV, V, Turbulence, or none,
where P is pressure and V is velocity. In case of more than one solver, the order must be P, Energy, and
Species. The code will indicate an error and abort if the fields are specified in a different order. Also, the
code will point out an error and abort if an inconsistency is detected (for example, checking
solveEnergyTransport in the Physics panel and not assigning an energy solver).

Figure 17 shows selection of a solver’s Field using the panel table’s built-in dropdown list for that parameter.
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General Fiformation | Prysics | 500 | Sorerical Options | Preconditioner | Fnit
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Figure 17. Selecting a solver field.

Type: keyword text; the solver algorithm, either Gmres, FGmres, CG, NLExplicit, or Explicit,
where Gmres is the Generalized Minimum RESidual method, FGmres is the Flexible Generalized Minimum
RESidual method, CG is the Conjugate Gradient method, NLEXp I icit is the NonLinear EXPLICIT
method, and Explicit is the EXPLICIT method. Each of these solver methods corresponds to a Java class
in the solver package. These are the available methods for users to choose to solve the resulting algebraic
equations after numerical discretization. The optimal choice depends on the specific physical problem.

Figure 18 shows selection of a solver’s Type using the panel table’s built-in dropdown list for that parameter.
(Of course a Field must also be selected, and the Fields’ order must be correct.)

General Enformation | Prysics | S0 | Nirnerical Options || Preconditioner | Fritial Conditions | Bom

Prop Salver] Salver3
Field P 1
Type INLExplicit !
linearAhsolute Tolerance LOE-§ 1L.OE-&
MLAhsolute Tolerance LOE-8|Fzimres 1.0E-&
MNLEelative Tolerance LOE-§| LOE-T
NLFnrcingFaj:tur 0.01 NLEXFI"CHI 0.01
MNLPerturhationParameter LOE-5 Explicit L.OES
changeLimitHi 20— zu 2.0
changeLimitlo 0.5 0.5 0.5

Figure 18. Selecting a solver type.

linearAbsoluteTolerance: real; tolerance in the solver.

NLAbsoluteTolerance: real; absolute tolerance in the Newton-Krylov solver.

NLRelativeTolerance: real; relative tolerance in the Newton-Krylov solver.

NLForcingFactor: real; will be the relative tolerance in the specified solvers.
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NLPerturbationParameter: real; currently not used.

The following four variables, changeLimitHi, changeLimitLo, damperCeiling, and damperFloor, are used
in the calculation of the damping coefficient in the Newton-Krylov solver. They allow increasing the radius of
convergence for an initial guess by employing a damped iteration (see [7]). See also the useDamper
checkbox in this panel.

changeLimitHi: real; used in the calculation of the damping coefficient in the Newton-Krylov solver.

changeLimitLo: real; used in the calculation of the damping coefficient in the Newton-Krylov solver..

damperCeiling: real; used in the calculation of the damping coefficient in the Newton-Krylov solver.

damperFloor: real; used in the calculation of the damping coefficient in the Newton-Krylov solver.

solverMaxlterations: integer; maximum number of solver iterations.

solverMaxKrylovVectors: integer; maximum number of vectors in the Newton-Krylov solver.

NLMaxNewtonlterations: integer; maximum number of Newton-Krylov iterations.

verboselnKrylovSolver: boolean; if checked, print details on the convergence of the solver at each iteration.

verboseInNewtonKrylov: boolean; if checked, print details on the convergence at each Newton-Krylov
iteration.

usePreconditioner: boolean; if checked, use the preconditioner specified in the Preconditioner panel (see
Section 4.5).

useDamper: boolean; if checked, use the damper. In this case, it is necessary to specify the four variables in
this panel used in the calculation of the damping coefficient.
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4.4. Numerical Options

The Numerical Options panel contains parameters that affect the behavior of the ALE and
MPM/PIC numerics. There are three checkboxes (and four others that are currently not used) and one
field for a real.

Figure 19 shows the Numerical Options panel.

File Help
& B MeshFile Partition File Node Data File Particle Data File Boundary Data File InitialConditions Data File

General Itenmnation, | Prysics | Soiver | Mumverical Opiions | Brecontitioner | Initial Conditions | Bownlary Contitions | Evchange Paramebers | Chanical Reaction | Fartidle Eroperties | Species Eroperties

|:| useInterfaceTracking

':| futurellse 4

[ useImplicitExplicitAdvection

knaxAdvectionCuuramNu.mber: | 0.1

donorCellAdvection

':\ use ArtificialViscosity

use SumDeltaVfractoZero

|:| futurelse 3

Figure 19. GUI "Numerical Options" tab.

The input parameters for the Numerical Options panel are as follows:

uselnterfaceTracking: boolean; currently not used.

futureUse_4: boolean; currently not used.

uselmplicitExplicitAdvection: boolean; currently not used.

maxAdvectionCourantNumber: real, default value = 0.5; Courant number is defined as speed xAz/ Ax,
where the speed is the maximum of the material speeds of the all the phases and the speed of sound for
explicit calculations. A smaller Courant number usually results in a more stable calculation but causes longer
run time.

44



donorCellAdvection: boolean; if checked, the upwind scheme will be used to advect transport quantities
across the computational cells. This scheme is quite diffusive but often provides stability to a calculation.

useArtificialViscosity: boolean; if checked, CartaBlanca adds artificial viscosity terms to the pressure on cell
surfaces. Its use is recommended to damp unphysical oscillations for shock wave problems. However, its use
causes unphysical dissipation and therefore is not recommended for problems not involving strong
discontinuities.

useSumDeltaVfractionZero: boolean; currently we suggest this box be checked whenever the MPM/PIC
method is used and unchecked whenever the MPM/PIC method is not used.

Note: It is planned to remove the option useSumDeltaVfractionZero from the user input in a future code
version.

futureUse_3: boolean; currently not used.
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4.5. Preconditioner

The Preconditioner panel is used to specify and configure the Newton-Krylov preconditioners. The Theory
Manual gives a detailed discussion on CartaBlanca’s preconditioning logic. The Preconditioner panel is
composed of five sub-panels: All Materials, Material 1, Material 2, Material 3, and Material 4. Sub-panel
All Materials is used for preconditioning quantities that are common to all materials in the model. The other
sub-panels are used for quantities that are specific to a material (phase), where up to four materials can be
defined in a given model (in the Preconditioner panel, input is provided for up to four species per material).

The data for a sub-panel are entered in a scrollable table for that sub-panel. The first column of each
table lists the parameters (properties) of the preconditioners. These parameters are the same in all five
tables. The remaining columns are for data entry for each preconditioner; the quantity to be
preconditioned appears in the column heading. The preconditioner data are comprised of text fields
(keywords), reals, integers, and booleans (checkboxes). Keyword entry is facilitated by selection
from dropdown lists.

Figure 20 shows the All Materials (sub-)panel, at the top of the panel’s table. Figure 21 shows the same table
scrolled to the bottom. Columns 2, 3, and 4 are for entry of data for pressure (P) and the K- ¢ turbulence
model (turbK and turbE).
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Figure 20. GUI "Preconditioner" tab, " All Materials'" sub-tab.
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Figure 21. Preconditioner " All Materials'" sub-tab, bottom of table.

Figure 22 shows the Material 1 panel.

The material-specific quantities for which a preconditioner can be specified are, for Materialn (where n can be
1,2,3,0r4):

Un, X component of the velocity,

Vn, Y component of the velocity,

Wnh, Z component of the velocity,
RhoMacn,  macroscopic density,

Tn, temperature,

Hn, enthalpy,

DXn, X component of the displacement,
DYn, Y component of the displacement,
DZn, Z component of the displacement,
sIMFn, mass fraction of species 1 in Materialn,
s2MFn, mass fraction of species 2 in Materialn,
s3MFn, mass fraction of species 3 in Materialn, and
s4MFn, mass fraction of species 4 in Materialn.
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Figure 22. Preconditioner "Material 1" sub-tab.

The input parameters (properties) for each preconditioned quantity on each sub-panel of the Preconditioner
panel are as follows:

Solver: keyword text; the preconditioner solution algorithm, either Jacobi, CG, diagonal, SSOR, 1LUO,
or none. The optimal choice depends on the specific physical problem. These methods are implemented in
the Java solver package.

Figure 23 shows selection of the pressure preconditioner solver from a built-in dropdown list. Figure 24
shows selection of the Material 1 velocity (Z component) preconditioner solver from a built-in dropdown list.

Note: The SSOR and ILUO methods cannot be used for parallel calculations. The code will write an error

message and shut down in this circumstance.

Ceneral Frifeomation | Physics | Scher Mampﬁm|hmnﬁﬁm Tritial Conditions

ATl Taberials

Mladerial 1 | hTaberial 2

Maberial 3 | Waberial 4

Prop P turbi kurbE
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Scales 10 1.0
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Figure 23. Selecting a preconditioner solver for pressure.
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Figure 24. Selecting a preconditioner solver for Material 1 velocity (Z component).

AbsTol: real; absolute tolerance.

RelTol: real; relative tolerance.

RelxFac: real; currently not used.

Scales: real; value for scaling the preconditioner variable.
Paraml: real; currently not used.

Param?2: real; currently not used.

NOflter: integer; number of iterations.

NewtonUp: boolean; if checked, update every Newton iteration.
TimeStepUp: boolean; if checked, update every time step.
LinSolUp: boolean; if checked, update every linear solve.

Verbose: boolean; if checked, print detailed diagnostics (e.g., L2-norms).



4.6. Initial Conditions

The Initial Conditions panel is used to specify the initial locations of the problem’s materials and
their initial velocities, temperatures, etc. Also, the species mass fractions of the materials are
specified here. The initial conditions are set by first breaking the problem domain up into geometric
regions, and then assigning time = 0 properties to the regions. A region is defined by using one or
more surfaces in the problem’s one-, two-, or three-dimensional space. The Initial Conditions panel
consists of two sub-panels: Regions Definition, where the surfaces and regions are defined, and
Regions Data, where the region properties are specified. Note that the layout of the Boundary
Conditions panel (Section 4.7) is very similar to that of the Initial Conditions panel.

Section 3.5 gives an example of using the Regions Definition panel to set up surfaces and regions for
a 2-D problem. Figure 25 shows the Regions Definition panel; it contains two tables and two integer
fields that set the number of rows in the tables. The upper table is used to define the surfaces and the
lower table defines the regions by referring to the surfaces. At the top of the panel, the
numDefiningSurfaces field sets the number of rows in the upper (surface) table. If
numDefiningSurfaces is 0 (the default), the surface table will be empty. Otherwise, the code
automatically fills in the Surface id number(s) in the table’s first column. Three types of surface are
available: Coniic, Hol lowBox, and Fi I ledBox. The surface type is entered in the last (12™)
column of the table. Figure 26 shows selection of the type of Surface 3 from a built-in dropdown list.
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Figure 25. GUI "Initial Conditions" tab (''Regions Definition' sub-tab).
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Figure 26. Setting initial conditions: selecting a surface type for Surface 3.

For Conic surfaces, the nd through 1 1™ columns are used to enter coefficients A,...,J to define the
surface:

h(x,y,2)= Ax* + By’ + Cz* + Dxy + Exz+ Fyz+ Gx + Hy + Iz + J .

The Fi I ledBox option is used to define a rectangular parallelepiped with opposite vertices (x,,y,, Z,)
and (x,,y,,Z,), by specifyingA=x,,B=y,,C=z,,D=x,,E=y,,and F =z,. In this case, G, H, I, and
J are not used. The Hol lowBoX option is used to define a rectangular parallelepiped with an inner
parallelepiped inside it. The values of A through F are defined exactly in the same way as for the
FilledBox, and the variable G is used for defining the distance between the outer box and the inner box.
FilledBox and Hol lowBoxX surfaces are used in the regions table in a manner similar to Conic
surfaces, as described below (where the inner box and the outer box together define a Hol lowBoxX). In a
2-D problem, the variables C and F are not used and should be set to zero.

The field numRegions specifies the number of initial regions; the code creates the appropriate number of
rows in the bottom (regions) table, and fills in the Region id number(s). In each row, we indicate how the
region is positioned with respect to the surfaces by entering Surface id numbers in columns 2 — 6, which
specify the relations It, le, eq, ge, and gt, respectively (“less than”, etc.). The Conic surfaces /(x,y,z) are
used in the regions table to define regions in which the points obey one or more of the relations
h(x,y,z)<0.0, h(x,y,2) <0.0, A(x,y,2)=0.0, h(x,y,z) 2 0.0, A(x,y,z) > 0.0. One or more Surface id
numbers are entered in the appropriate columns to obtain the desired relations (see Section 3.5). With
FilledBox and Hol lowBox surfaces, the columns labeled It, le, ge, and gt are also used to define a
region, where “It” indicates a point is in the region (as far as that surface is concerned), and the other
relations have a corresponding sense (“eq” should not be used). The number —1 is used when a relation
does not apply for any of the surfaces (i.e., no surface satisfies the relation). Surface types can be mixed in
a given relation. If there is more than one surface in a relation, the id numbers must be separated by
commas, with no embedded blanks. Note that, in the code, the checks for 4(x, y,z)<0.0 and

h(x,y,z) > 0.0 are actually done using A(x,y,z)<¢ and h(x,y,z)>—¢ respectively, where ¢ is a small

tolerance, entered in the GUI as the tolerance field in the BeDefinitions sub-panel of the Boundary
Conditions panel (Section 4.7). This is to account for possible error in the node data file (Section 4.1.1)
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due to round-off error. For example, in a 1D case, a node intended to have the value 0.3 may be printed as
0.300000000000000001 in the node data file but one does not notice this. Thus, if one wants to use an
initial region x < 0.3 by only checking x < 0.3, the node will not be in the region, which is not the user’s

intention. Similarly, the check A(x,y,z)=0.0 is done using |A(x, y,z)|<&.

If all the entries are —1 for a region, the region is not defined by surfaces; the region’s node coordinates
must be provided in an input text file that is specified by the General Information panel’s field
InitialConditionsFileName. An example of such a file is:

OOOOOON

where the first line gives the number of initial regions specified in the file (2 in this case), the second line
specifies the index of the first initial region in the file (starting from 0) and the number of computational
(mesh) nodes in this initial region (753 here), and the next 753 lines give the X, y, z coordinates of the
nodes. A second data block gives the next index and node count, and the node coordinates. Note that the
code, internally, starts the region indexing at 0 (Java arrays start at 0), but the GUI presents region ids that
start at 1.

The initial regions can be overlapping; if a node appears in two or more initial regions, the initial condition
specified in the region with the largest index is in effect. The initialization proceeds from initial region 0 to
the highest-numbered one. For each initial region, the code loops through all the nodes in the whole region
to determine if a node is in this initial region, and if it is, the code then assigns initial values to the node
according to the initial data of this initial region, thus, overwriting the node’s current values.

The Regions Data panel is used to initialize each region. Regions Data comprises five sub-panels: RD:
Material 1, RD: Material 2, RD: Material 3, RD: Material 4, and RD: All Materials. The first four of
these panels are used to enter material (phase)-dependent data, and the fifth is used for material-
independent data.

Figure 27 shows Regions Data -- RD: Material 1. Each material panel has two tables. The upper table
accepts, for each region, the initial value of the volume fraction, the initial values of the components of the
velocity (U, V, and W), the initial value of the temperature, and the initial values of the components of the
displacement (DX, DY, and DZ). The last five columns (F10 through F14) are not used and serve as
placeholders for future variables.
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Figure 27. Initial Conditions '""Regions Data" sub-tab ("RD: Material 1" sub-tab).

The lower table accepts, for each region, the species mass fractions for up to four species per material. The
last nine columns (P1 through P9) are not used and serve as placeholders for future variables.

Figure 28 shows Regions Data -- RD: All Materials. There is a single table that accepts, for each region,

the initial values of the pressure (P) and the input parameters for the K-epsilon turbulence model (turbK and
turbE). The last 10 columns (var04,...,var13) are not used and serve as placeholders for future variables.
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< Input for CartaBlanca
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Figure 28. Initial Conditions '""Regions Data' sub-tab (""RD: All Materials" sub-tab).

The input parameters for the Initial Conditions panel are as follows:

Regions Definition panel

numDefiningSurfaces: integer; number of surfaces that will be used to specify the initial regions.

numRegions: integer; number of initial regions.

SurType: keyword text; the surface type, either Conic, Fil ledBox, or Hol lowBox. Entered for each
surface in the surface table.

A.B.C.D.E. F, G, H. L J: ten reals; one set of values for each surface. For SurType Conic, the
coefficients of the 3-D conic surface

h(x,y,z)= Ax* + By’ + Cz> + Dxy + Exz+ Fyz+ Gx + Hy + Iz + J.

For SurType Fi I ledBox, the opposite vertices (x,,y,, z,) and (x,, y,, Z,) of a rectangular
parallelepiped, where A=x,,B=y,,C=z,,D=x,,E=y,,and F=z, (G, H, I, and J are not used). For
SurType Hol lowBox, the opposite vertices (x,,y,, z,) and (x,, ¥ ,, Z,) of an outer rectangular
parallelepiped, where A=x,,B=y,,C=z,,D=x,,E=y,,and F =z, and G is the distance from the
outer rectangular parallelepiped to an inner rectangular parallelepiped (H, I, and J are not used). For both
FilledBox and Hol lowBoX, in a 2-D problem, C and F are not used and should be set to zero.

It, le, eq, ge, gt: five text ficlds; one set of entries for each region. For SurType Conic, the surface id
numbers are entered to specify the relations 4(x,y,z) <0.0, A(x,y,z)=0.0, or A(x,y,z)>0.0. For SurType
FilledBox and SurType Hol lowBoX, the surface id numbers are used to specify if a point is in the
box, where “It” has the sense of including the point, “gt” is used to exclude the point, etc. (“eq” should not
be used). For Conic, Fi l ledBox, and Hol lowBox surfaces, where more than one surface is used for a
relation, the id numbers must be separated by commas, with no embedded blanks; if a relation does not
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apply for a region (i.e., no surface satisfies the relation), “-1” should be entered. Surface types may be
mixed in a given relation. If all five relations have “-1” for a region, a file that gives the region’s nodes
must be provided (see discussion above in this section, and Section 4.1).

Regions Data panel

RD: Material 1. RD: Material 2, RD: Material 3. and RD: Material 4 panels

viracl, vfrac2, vfrac3. or vfrac4: real; for each region, initial volume fraction of Material 1, 2, 3, or 4.

Ul, U2, U3, or U4: real; for each region, initial X-component of velocity of Material 1, 2, 3, or 4.

V1, V2, V3, or V4: real; for each region, initial Y-component of velocity of Material 1, 2, 3, or 4.

Wi1. W2. W3. or W4: real; for each region, initial Z-component of velocity of Material 1, 2, 3, or 4.

T1, T2, T3, or T4: real; for each region, initial temperature of Material 1, 2, 3, or 4.

DX, DY, and DZ: three reals; for each region, initial X, Y, and Z component of displacement of Material
1,2, 3, or4.

F10, F11, F12, F13, and F14: five reals; currently not used.

s1MF1, s1MF2, siMF3. or s1MF4: real; for each region, initial species-number 1 mass fraction in
Material 1, 2, 3, or 4.

s2MF1, s2MF2, s2MF3. or s2MF4: real; for each region, initial species-number 2 mass fraction in
Material 1, 2, 3, or 4.

s3MF1, s3MF2, s3MF3, or s3MF4: real; for each region, initial species-number 3 mass fraction in
Material 1, 2, 3, or 4.

s4MF1, s4MF2, s4MF3. or s4MF4: real; for each region, initial species-number 4 mass fraction in
Material 1, 2, 3, or 4.

P1, P2, P3. P4, P5, P6, P7, P8, and P9: nine reals; currently not used.

RD: All Materials panel

P: real; for each region, initial pressure.

turbK: real; for each region, initial K-parameter (turbulent kinetic energy) for K-epsilon turbulence
model.

turbE: real; for each region, initial e-parameter (turbulent dissipation) for K-epsilon turbulence model.

var04. var05. var06. var07. var08. var09. var10, varl1, var12. and var13: ten reals; currently not
used.
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4.7. Boundary Conditions

This section describes the setup of computational boundary conditions and the applicable boundary condition
variables. CartaBlanca applies boundary conditions at computational nodes that are specified by the user.
Typically, these nodes are on the outer border of the computational domain (“external” nodes), but the option
is available to specify internal nodes for special situations. In either case, the boundary condition nodes can
be specified by identifying geometric regions in the domain that contain the nodes, and/or by supplying a file
that has node coordinates. Note that the GUI Physics panel (Section 4.2) is used to specify periodic boundary
conditions (see also Section 4.1.3).

Boundary conditions are specified with the Boundary Conditions panel, which is very similar to the Initial
Conditions panel (Section 4.6). There are two Boundary Conditions sub-panels: BeDefinitions and
BceData. Figure 29 shows the BeDefinitions panel. BeDefinitions is used in the same manner as the Initial
Conditions panel’s Regions Definition panel: there are upper and lower tables that define surfaces and
regions in the computational domain, respectively, where here the regions are used to apply specific
boundary conditions. The numbers of surfaces and regions are specified with numBCConics and
numBCRegions, respectively. In addition, the tolerance for accepting a point as part of a region is specified
in the tolerance field. Again, if the surface type, SurType, is Conic, the coefficients in the upper table
define one or more surfaces:

h(x,y,z)= Ax* + By’ + Cz* + Dxy + Exz+ Fyz+ Gx + Hy + Iz+ J .

These surfaces are used to define regions in which the points obey one or more of the relations
h(x,y,2)<0.0,h(x,y,2)<0.0, A(x,y,2)=0.0, h(x,y,z) > 0.0, h(x,y,z) > 0.0. The code tests for
h(x,y,z)<0.0and A(x,y,z)>0.0using A(x,y,z) <& and h(x,y,z)>—¢respectively, where ¢ is a small
value entered in the tolerance field. This is to account for possible error in the node data file (Section 4.1.1)
due to round-off. For example, in a 1-D case, a node intended to have the value x=0.3 may be printed as
0.300000000000000001 in the node data file but one does not notice this. Thus, if one wants to use a
boundary region x < 0.3, the node would not be in the region, an unintended result. Similarly, the check

h(x,y,z)=0.0 is done using |h(x, v, z)| < ¢ . The value of tolerance is also used for the Initial Conditions

regions (Section 4.6).
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Figure 29. GUI "Boundary Conditions'" tab ("'BcDefinitions' sub-tab).

In addition to Conic, SurType can be Fi 1 ledBox, as described in Section 4.6 (Hol lowBox is not
allowed). Figure 30 shows the selection of a surface type from a built-in dropdown list.

Ceneral Bfomation. | Poedes | Solver | Mimerical Opticns | Freconditioner | Enitial Conditions | Boumdary Conditions | Buhange Farameters | Chendcal Reaction | Farticle Properties

BcDefnifioms | BeDada
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SurType can be Conic or FilledBox. Each Conic Boundary is determined by coefficients of the conic function:
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Surface iy B © 8] E F €] H | J SurType
| 0.0 0.0 0.0 0.0 0.0 0.0 L] 0.0 [
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Figure 30. Selecting a boundary condition surface type.

In the lower table, for each of the regions the type of boundary condition (internal or external) and
the kind of boundary condition (wall, reflective, reflcorner, inflow, outflow, pressure,
inflow-outflow, or vel-direction) are entered. Figures 31 and 32 show the selection of a
boundary region type and Kind, respectively, from dropdown lists. The type indicates whether the region’s
nodes are to be treated by the code as on the outer (external) border of the mesh, or inside the mesh
(internal). The eight kinds of boundary condition are used to specify different physical properties at the
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boundary condition nodes (e.g., the uses of wal I, inflow, outflow, and pressure are apparent from
their names). Descriptions of the type and kind options are given in Section 4.7.1. Again, as with the Initial
Conditions panel, we indicate how each region is positioned with respect to each of the surfaces using the It,
le, eq, ge, and gt columns. The entry “—~1” is used when a relation does not apply to any of the surfaces. The
reader is referred to Section 4.6 for additional details on specifying surfaces and regions.

kype kind

|externa| e |:reﬂ.ednre -

inkernal

Figure 31. Selecting a boundary region type.

by pe kind
extamal Ireflective v |

inflow-oukFlo
wel-direction

Figure 32. Selecting a boundary region kind.
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If all the entries for a boundary-condition region are —1, the region is not defined by surfaces; the
computational-node coordinates of the region must be provided in an input file that is specified in the
General Information panel’s BoundaryFileName field (Section 4.1). An example of such a file is:

pressure 1
-2500000000000002 18.25 0.0
outflow 1

.5 17.75 0.0

inflow 2

.425 2.5 0.0

.55 2.5 0.0

OONWKRPFPOW

The first line gives the number of boundary regions specified in the file (3 in this case). Following are sets of
data for each of the regions. The second line in the example specifies the index of the first boundary region
in the file (0 in this case), the kind of the boundary region (pressure), and the number of nodes in the
boundary region (1). The following line gives the X, Y, Z coordinates of the single node. This is followed by
a 1-node outflow region and a 2-node inflow region. Note that, as with the initial conditions data file, the
region indices start at 0. Also, the boundary condition “kind” specification in the file is currently not used
(but a dummy entry must be made to allow parsing of the file); the actual kind is read from the GUI’s region
table. An example of the use of a boundary file is in the CartaBlanca Test Suite problem

testPoiseuillel RF_Test, which writes . 10 file Poiseul lel_RF. 10, where boundary region 2
has “-1” for the items It, le, eq, ge, and gt; this triggers the use of a boundary data file. In the General
Information panel, BoundaryFileName has the file

meshes\2D\QUADS\Poiseui l le\myBCFi le. txt, which has:

wal

PR R
PO -
OON

a
0.0 0.0

0.0 0.0

where one boundary region is specified, with index 1 (indicating the second region in the problem), and
coordinates for two nodes are given. Boundary files can be convenient when the region has a complex
geometry.

The boundaries are ordered by the boundary region number, followed by a possible default boundary (of
kind wal l), which includes all external nodes that do not belong to boundaries specified in the boundary
region table (or as periodic). If a node has been claimed by a boundary, then it is out of consideration by
the boundaries that follow; that is, a node cannot belong to more than one boundary.

The BeData panel is used to specify the boundary conditions in each boundary condition region. BeData
comprises five sub-panels: AllFluids, Material 1, Material 2, Material 3, and Material 4. The AllFluids
panel is used to enter boundary condition data that are common to all materials (phases) in the problem; the
other four panels are for material (phase)-specific boundary condition data. In each of the five BcData
panels, each of the boundary condition variables has three terms, identified by the suffixes H, Phi and FI1,
that are used for calculating the variable’s boundary flux (e.g., temperature Temp has input for TempH,
TempPhi, and TempFl). Using these terms, the boundary condition flux of variable Var is defined as

BCFlux = FaceArea* VarH * (VarPhi — Var) + FaceArea* VarFI .
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The use of the H, Phi and F1 parameters by the various boundary Kinds is discussed in Section 4.7.1.

Figure 33 shows BeData -- AllFluids. There is a single table that accepts, for each boundary condition
region (BR), data sets for pressure (P) and for the K-epsilon turbulence model (tk and tl) (Note: Currently
the tk and tl cells are placeholders).

£ Input for CartaBlanca

ﬁ @ MeshFile Partition File Node Data File Particle Daia File Boundary Data File InitialConditions Data File

| AllLFluid Boundary Conditions

: ER: PH PPhi PFI tkH tkPhi tkFl tiH 1IPhi 1IFl
i 0.0 0.0] 0.q] 0.0 0.0] 0.0] 0.0 0.0 0o~ |

I The houndarveondition flux for each variable Var can be written as:

| BCFlux = FaceArea*VarH*(VarPhi - Var} + FaceArea*VarFl

Figure 33. GUI Boundary Conditions "BcData' sub-tab (" AllFluids" sub-tab).
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Figure 34 shows BeData -- Material 1. Each material panel has two tables. The upper table accepts, for each
boundary condition region (BR), data sets for volume fraction (Theta), temperature (Temp), velocity
components (VX, Vy, Vz), and displacement components (Dx, Dy, Dz). The lower table accepts, for each
region, the species mass fractions for up to four species per material (s1MF, s2MF, s3MF, s4MF); variables
vl, v2, v3, and v4 are currently unused.
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The houndary condition flux for each variable Var can be written as: BECFlux = FaceArea*VarH*(VarPhi - Var) + Face Area*VarFl

Figure 34. GUI Boundary Conditions "BcData' sub-tab ('""Material 1" sub-tab).

Section 4.7.1 describes the available boundary condition types and kinds. Section 4.7.2 gives a
complete listing of the Boundary Condition panel input specifications.

4.7.1. Boundary Condition Types and Kinds

type: keyword text; either external or internal.

CartaBlanca can apply boundary conditions either at nodes which are on the border of the
computational mesh, or are at interior locations. These basic types of boundary condition are
specified with the keywords external and internal for the type parameter, respectively.
Normally, a boundary is external, however, an internal boundary can be used for some
special purposes. For example, if one wants to set velocity to zero for some internal nodes (“sticky
nodes”), then one can put those nodes in a boundary section with type internal and kind wal l,
and set a large value (such as1.0E20) for VxH, VyH, VzH, and 0.0 for VxPhi, VyPhi, VzPhi (see
the discussion on wal I boundaries below).
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kind: keyword text; either wal l, inflow, outflow, pressure, inflow-outflow,
reflective, vel-direction, or reflcorner.

CartaBlanca supports eight different boundary condition algorithms, which gives a great deal of
flexibility for problem definition. A specific algorithm is chosen with the kind parameter keywords;
the algorithms are listed in Table 1, after which detailed descriptions for each are given. All nodes on
the border of the computational mesh (“external” nodes) that are not explicitly included in a boundary
condition region by the problem input are included in a default boundary of kind wal I. If there are
no boundary regions at all in the input, then all external nodes are in this default wal I boundary
(with the exception of any nodes that treated by a periodic boundary condition (see Section 4.1.3).
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Algorithm (kind-parameter keyword)

Description

wall

Specifies a constant boundary temperature
(or heat flux) and velocity. By default, the
wall is adiabatic and outward velocity
component is 0.0. Can be used to hold
materials fixed in space, including internal
barriers. Default kind.

inflow

Specifies flows of mass, momentum,
enthalpy, and species-mass into the
problem domain.

outflow

Specifies flows of mass, momentum,
enthalpy, and species-mass out of the
problem domain.

pressure

Sets a constant pressure at the boundary.
See discussion for special use of input
parameter ThetaH.

inflow-outflow

Alternative method to set a constant
pressure at the boundary. See discussion
for special use of input parameter ThetaH.

reflective

Used in special cases for problem
symmetry, such as the axis of the
cylindrical coordinate system in the
axisymmetric case.

vel-direction

For nodes in a vel-direction
boundary, velocity, if any, is constrained to
a specified direction. Used for special
locations, such as corner nodes in a
cylindrical coordinate system.

reflcorner

Allows both positive and negative
component of a vector (velocity, pressure
gradient, etc.) in a specified direction. Used
for special locations.

Table 1. Boundary conditions.
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Internally, the boundaries are ordered by the boundary region number, followed by the default wal |
boundary. If a node has been claimed by a boundary, then it is out of consideration by the boundaries that
follow that boundary, that is, a node cannot belong to more than one boundary.

In general, if a flux condition in a boundary condition is applicable (as described below), then it is defined as
BCFlux = FaceArea * VarH * (VarPhi — Var) + FaceArea * VarFl .

For example, energy flux at a boundary is calculated in the code by using, with the variable Temp
(temperature), the relation

BCFlux = FaceArea*TempH*(TempPhi — Temp) + FaceArea*TempFl .

kind wall

wal l boundary conditions are used to specify a constant boundary temperature (or heat flux) and velocity.
By default, a wal I boundary is adiabatic (if energy transport is solved), the outward normal velocity is set to
0.0, and inward normal and tangential velocity are allowed. A wal I boundary can be used to hold materials
fixed in space, including the creation of internal barriers.

The wal I boundary condition for temperature T is assumed to have the form
oT
k—=-h(T-T)+q ,
on
where £ is the heat conductivity as used in the energy equation, 7 is the outward normal direction, /4 is the
heat transfer coefficient, 7 is the ambient temperature, and ¢ is the heat flux. The BeData panel’s

temperature parameters TempH, TempPhi, and TempF1 correspond to /4, 7, , and g respectively in the
temperature boundary condition differential equation.

Internally, the code currently sets a Dirichlet-type boundary condition flag (dependent variable’s value is
specified at the boundary) when TempH is greater than 10°, and directly sets the boundary node
temperatures to TempPhi (a very large value of the heat transfer coefficient would have the same effect
using the differential equation). Alternatively, wal I can be used to specify a boundary heat flux with the
“Temp” parameters. By default a wal I boundary is adiabatic.

Example: set fixed-temperature boundaries: If the energy transport equation is solved (Physics panel), to
set the boundary temperatures at, say, fixed values T =300 and T = 500 for boundary regions 1 and 2 for
phases 1 and 3, in the Material 1 and Material 3 panels enter a large number (such as 1.0E20) in the first
and second rows under TempH, enter 300.0 and 500.0 under TempPhi, and enter 0.0 under TempF1. This
sets the boundary temperatures to the desired values.

Example: set adiabatic boundary: If the energy transport equation is solved (Physics panel), to set an
adiabatic boundary for boundary region 5, for phase 4, in the BeData panel’s Material 4 panel set the 5™
row’s TempH, TempPhi, and TempFI to 0.0 (this is the default).
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Example: set velocity at a boundary: Specify velocity on a wall by setting VxH, VyH, and VzH to a large
value (such as 1.0E30), use VxPhi, VyPhi, and VzPhi to specify the desired velocity on the boundary, and
set VxFI, VyFl, and VzFl to 0.0.

Example: default wal I velocity behavior: If VxH, VxPhi, VxFI, VyH, VyPhi, VyFl, VzH, VzPhi, and
VzFl1 are 0.0 (the default values) on a wal I boundary, the treatment of velocity on the boundary nodes is
to set the outward (in the normal direction of the boundary face) velocity to zero. The code will still
calculate tangential velocity and inward velocity.

Most of the problems in the CartaBlanca Test Suite have explicit definition of at least one wal I boundary
condition.

wal Il boundary condition treatment for species transport and turbulence transport are currently not
available.

wal l is the default boundary condition kind. All external computational nodes that are not explicitly
included in a boundary condition region of the problem geometry are included by the code in awal |
boundary, using default settings.

kind inflow

The inflow boundary condition is used to specify flows (fluxes) of mass, momentum, enthalpy, and
species-mass into the problem domain at boundary nodes, using “Phi” parameters from the BeData
panel. The velocity parameters VxPhi, VyPhi, and VzPhi must be provided (depending of course on
the problem’s dimensionality) for each material (phase); they are used to calculate a volumetric flux
into the problem domain through the face of a boundary node. The fluxed quantities for mass,
momentum, enthalpy, and species-mass are calculated using the volumetric flux. The mass flux is
calculated using, for each material (phase) ThetaPhi (volume fraction) and (if energy transport is
being solved) TempPhi (temperature), and, from the AllFluids subpanel, PPhi (pressure).
Momentum flux is calculated using the mass flux and VxPhi, VyPhi, and VzPhi. Enthalpy flux is
calculated using the mass flux, TempPhi, and the species mass fraction parameters (again, for each
material (phase)) sSIMFPhi .... s4MFPhi. Species-mass flux is calculated using sIMFPhi ....
s4MFPhi.

Examples: inflow boundary condition: The CartaBlanca Test Suite contains seven problems that
use an EnFlow boundary condition; these are all coupled with a corresponding pressure
boundary condition (see discussion below on the pressure boundary condition). For example,
testParticleTranslation. 10 isa 1-D two-phase (solid and air) problem that only solves
for momentum transport. At the start of the problem the solid (modeled with particles) and air move
to the left (-x direction) at the same velocity. There is an external pressure boundary
condition at x = 0, set to the pressure in the problem domain, and an external inflow
boundary condition at x = 1.0 that sends-in air at the initial air/solid problem velocity. The solid and
air translate to the left at their initial velocity.

kind outflow

65



The outFlow boundary condition is used to specify flows (fluxes) of mass, momentum, enthalpy,
and species-mass out of the problem domain at boundary nodes. The user must provide values in the
BceData panel for VxPhi, VyPhi, and VzPhi. All other quantities needed for the flux calculations are
taken by the code from the current state of the outFlow boundary node(s).

kind pressure

The pressure boundary condition is used to specify the pressure at a boundary. Internally, for numerical
reasons, in addition to setting the specified pressure at the boundary node(s), the code must adjust material
densities at pressure nodes by bringing in materials (inflow) or ejecting materials (outflow).

The user supplies the desired pressure for each boundary condition region with kind pressure, in the GUI
BceData panel’s AllFluids subpanel, with parameter PPhi (pressure). Also, for the code’s inflow/outflow
logic for pressure boundaries, the user supplies volume fraction information for each material (phase) with
the ThetaPhi and ThetaH parameters. Parameter ThetaPhi specifies each material’s volume fraction to use
when the code detects that inflow is required. Parameter ThetaH is only used as a special flag to control the
choice of volume fractions to use if outflow is required. If ThetaH is equal-to or greater-than 1.0E99 for at
least one of the materials, the code will use the inflow ThetaPhi values also for the outflow case (for all of
the materials). For a solid-gas problem, typically only the gas would be expected to leave the system, and the
ThetaH flag can be used to enforce this. If ThetaH is less than 1.0E99 (for all of the materials), the code will
use the boundary node’s current volume fractions for the outflow condition. As a final step in the pressure
logic, the code adjusts, for inflow conditions, the node-values of enthalpy, momentum, and species mass
using user-supplied values of temperature (TempPhi), velocity (VxPhi, VyPhi, and VzPhi), and species
mass fractions (s1MFPhi .... s4dMFPhi).

Examples: pressure boundary condition: The CartaBlanca Test Suite contains eight problems that use a
pressure boundary condition; seven of these are coupled with an infFlow boundary condition (see
discussion above on the inTlow boundary condition).

For example, as described above for inflow, testParticleTranslation. 10 s a 1-D two-phase
(solid and air) problem that only solves for momentum transport. At one end of the problem domain there is
an external pressure boundary condition, and at the other end an external inflow boundary
condition (see additional discussion above for inflow). Problem
testParticleSinglePhaseTranslation. 10 is similar to testParticleTranslation. IO,
but there is only a single (particle) phase, and a single external pressure boundary condition at x = 0,
set to the pressure in the problem domain. The solid translates to the left at its initial velocity.

kind inflow-outflow

The inflow-outflow boundary condition is also used to specify the pressure at a boundarys; it is
an alternative way to implement a pressure boundary condition in special circumstances. In the
code’s implementation of the InFlow-outflow boundary condition, the specified pressure is not
set on the node directly, rather, it is used to determine boundary fluxes for adjusting material
densities, and the equation of state is used to adjust the pressure. In this way, the resulting pressure
may not be exactly the specified pressure.

The inflow-outflow input parameters are used in a manner that is analogous to the pressure
boundary condition logic. The user supplies the desired pressure for each boundary condition region
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with kind inflow-outflow, in the GUI BeData panel’s AllFluids subpanel, with parameter PPhi
(pressure).

For the boundary-flux logic that is used to adjust the material densities, the user supplies volume
fraction information for each material (phase) with the ThetaPhi and ThetaH parameters. Parameter
ThetaPhi specifies each material’s volume fraction to use when the code detects that inflow is
required. The material density to use for the inflow flux density is calculated from the user-supplied
boundary pressure, temperatures (TempH parameter, if energy transport is solved), and species mass
fractions (s1IMFPhi .... s4dMFPhi). Parameter ThetaH is used as a special flag to determine the flux
density if outflow is required. If ThetaH is equal-to or greater-than 1.0E99 for at least one of the
materials, the code will calculate the outflow flux density as the (old-time) local density times the
ThetaPhi value (for all of the materials). For a solid-gas problem, typically only the gas would be
expected to leave the system, and the ThetaH flag can be used to enforce this. If ThetaH is less than
1.0E99 (for all of the materials), the code will use the boundary node’s (old-time) local material
densities for the outflow condition.

As a final step in the inFlow-outflow logic, the code adjusts, for inflow conditions, the node-
values of enthalpy, momentum, and species mass using user-supplied values of temperature
(TempPhi), velocity (VxPhi, VyPhi, and VzPhi), and species mass fractions (s1MFPhi ....
s4MFPhi).

Usage note: Although the coding is intended for general cases, currently the infFlow-outflow
boundary condition has been used only with two phases, and for the outflow case using the ThetaH

flag > 1.0 x 10”, with ThetaPhi =1 or 0.

kind reflective

The reflective boundary is used in special cases for problem symmetry, such as the axis of the
cylindrical coordinate system in the axisymmetric case. The normal component of the velocity is set to
zero, as well as the normal directional derivative of the velocity components used in calculating viscous
stress, and the normal directional derivative of the pressure. For energy transport, a reflective boundary
is treated as adiabatic. See also discussions below on the vel-direction and reflcorner boundary
conditions.

Examples: reflective boundary condition: The CartaBlanca Test Suite contains six problems
that use either one or two reflective boundary conditions; five of these problems are in
cylindrical coordinates, and one is cartesian. For example, problem
testParticleCylindrical . 10 calculates the impact of a projectile onto a target in 2-D
cylindrical coordinates, where x = 0 is a rotational symmetry axis. An external
reflective boundary condition is specified for nodes at x =0, y > 0 (the point x =y =0 is
treated as a special case with a ve l-d i rection boundary condition, as described below). Note
that testParticleCylindrical. 10 also specifies a reflective boundary condition for x > 0,
y = 0; the x-axis is not a symmetry axis, and a wal I boundary could also be used here (the
reflective boundary suppresses a wall-rebound).

kind vel-direction
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The vel-direction boundary condition is used to restrict velocities to a direction that is
specified with the VxPhi, VyPhi, and VzPhi parameters in the BcData panel for each material. (The
code automatically normalizes the resultant direction vectors to have magnitude one.) Only velocity
in the positive direction of the specified direction is allowed for ve l-d i rection boundary nodes.
This would be used, for example, at a corner node which is the intersection of the axisymmetric axis
(in the y direction) and a wall (in the x direction) in the cy I indrical coordinate system. For such
a node, we should allow only positive y-velocity, and the ve l-di rection boundary condition can
be used. Note that, for this boundary condition, the normal component of the pressure gradient and
the normal directional derivative of the velocity components used in calculating viscous stress are not
set to zero.

Example: vel-direction boundary condition: Test Suite problem
testParticleCylindrical . 10isin 2-D cylindrical coordinates, where the y-axis is a
rotational-symmetry axis (see discussion above on the reflective boundary condition). The
point x =y = 0 is treated with an external vel-direction boundary condition; for each
phase (projectile, target, and air), in the BeData panel, VxPhi = 0.0 and VyPhi = 1.0. Note that x =
y = 0 is specified with boundary region 3; it is only necessary to specify boundary region 3 as y =0,
because region 2 has claimed y =0, x > 0.

kind reflcorner

The reflcorner boundary condition is similar to the ve l-direction boundary, but it allows both
positive and negative components of a vector (velocity, pressure gradient, etc.) on the specified direction. As
with vel-direction, this direction is given with the VxPhi, VyPhi, and VzPhi parameters for each
material in the BeData panel. Only the component of pressure gradient and velocity gradient in the specified
direction is allowed. The reflcorner boundary is used, for example, at the intersection line of two
symmetry planes represented as reflective boundaries.

Example: reflcorner boundary condition in 3-D: In a 3-D case, if the planes x =0, y =0, and z
= 0 are symmetry planes and we model an eighth part of a sphere (x >0,y >0,z > 0), then the yz-

plane (x =0,y >0,z>0) is reflective, as are the xz- and xy-planes. The positive x-axis can be
specified as reflcorner, with VxPhi = 1.0, VyPhi = VzPhi = 0.0; the positive y-axis and the
positive z-axis can be specified as reflcorner similarly. The origin can be specified as
reflcorner with VxPhi = VyPhi = VzPhi = 0.0. In the case of the origin, the velocity, pressure
gradient, and velocity gradient will be set to zero. If not all VxPhi, VyPhi, and VzPhi are equal to
zero, the code normalizes the direction so the magnitude of the direction is one.

4.7.2. Input Specifications

The input parameters for the Boundary Conditions panel are as follows:

BcDefinitions panel

numBCConics: integer; number of surfaces that will be used to specify the boundary condition regions.

numBCRegions: integer; number of boundary condition regions.
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tolerance: real, default value = 1.0 x 10*; tolerance for accepting a point as part of a boundary condition
region.

Note: The value of tolerance is also used for the Initial Conditions regions (Section 4.6).

SurType: keyword text; the surface type, either Conic or Fi I ledBox. Entered for each surface in the
surface table.

A,.B.C.D.E.F, G, H, 1, J: ten reals; one set of values for each surface. For SurType Conic, the
coefficients of the 3-D conic surface

h(x,y,z)= Ax* + By’ + Cz* + Dxy + Exz+ Fyz+ Gx + Hy + Iz+ J .

For SurType Fi I ledBox, the opposite vertices (x,,y,, z,) and (x,, y,, Z,) of a rectangular
parallelepiped, where A=x,,B=y,,C=z,,D=x,,E=y,,and F =z, (G, H, I, and J are not used). For
FilledBox in a 2-D problem, C and F are not used and should be set to zero.

It, le, eq, ge, gt: five text fields; one set of entries for each boundary condition region. For SurType
Conic, the surface id numbers are entered to specify the relations 4(x,y,z) <0.0, A(x,y,z)=0.0, or
h(x,y,z)>0.0. For SurType Fi I ledBox, the surface id numbers are used to specify if a point is in the
box, where “It” has the sense of including the point, “gt” is used to exclude the point, etc. (“eq” should not
be used). For Conic and Fi I ledBox surfaces, where more than one surface is used for a relation, the id
numbers must be separated by commas, with no embedded blanks; if a relation does not apply for a region
(i.e., no surface satisfies the relation), “-1”” should be entered. Surface types may be mixed in a given
relation. If all five relations have “-1” for a region, a file that gives the region’s nodes must be provided
(see discussion above in this section, and Section 4.1).

type: keyword text; the boundary region type, either internal or external. See Section 4.7.1.

kind: keyword text; the boundary region kind, either wal I, reflective, reflcorner, inflow,
outflow, pressure, inflow-outflow, or vel-direction. See Section 4.7.1.

BcData panel

AllFluids panel

PH, PPhi, PFI: three reals; for each boundary condition region, pressure flux terms.

tkH, tkPhi, tkFI: three reals; for each boundary condition region, K-parameter (turbulent kinetic energy)
flux terms for K-epsilon turbulence model.

tIH, tIPhi, tIFl: three reals; for each boundary condition region, e-parameter (turbulent dissipation) flux
terms for K-epsilon turbulence model.

Note: Currently, input cells for the tk and tl parameters are placeholders.

Material 1, Material 2, Material 3, and Material 4 panels
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ThetaH. ThetaPhi, ThetaFI: three reals; for each boundary condition region, volume fraction flux terms
for Material 1, 2, 3, or 4.

TempH, TempPhi, TempFl: three reals; for each boundary condition region, temperature flux terms for
Material 1, 2, 3, or 4.

VxH, VxPhi, VxFI: three reals; for each boundary condition region, X-component of velocity flux terms
for Material 1, 2, 3, or 4.

VyH, VyPhi, VyFl: three reals; for each boundary condition region, Y-component of velocity flux terms
for Material 1, 2, 3, or 4.

VzH, VzPhi, VzFI: three reals; for each boundary condition region, Z-component of velocity flux terms
for Material 1, 2, 3, or 4.

DxH, DxPhi, DxFI: three reals; for each boundary condition region, X-component of displacement flux
terms for Material 1, 2, 3, or 4.

DyH. DyPhi, DyFI: three reals; for each boundary condition region, Y-component of displacement flux
terms for Material 1, 2, 3, or 4.

DzH, DzPhi, DzFI: three reals; for each boundary condition region, Z-component of displacement flux
terms for Material 1, 2, 3, or 4.

s1IMFH, s1MFPhi, sIMFFI: three reals; for each boundary condition region, species-1 mass fraction
flux terms for Material 1, 2, 3, or 4.

s2MFH, s2MFPhi, s2MFFI: three reals; for each boundary condition region, species-2 mass fraction
flux terms for Material 1, 2, 3, or 4.

s3IMFH. s3MFPhi, s3MFFI: three reals; for each boundary condition region, species-3 mass fraction
flux terms for Material 1, 2, 3, or 4.

s4MFH, s4MFPhi, s4MFFI: three reals; for each boundary condition region, species-4 mass fraction
flux terms for Material 1, 2, 3, or 4.

viH. v1Phi, viFl, v2H, v2Phi, v2Fl, v3H, v3Phi, v3Fl, v4H. v4Phi, v4Fl:12 reals; currently not used.
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4.8. Exchange Parameters

CartaBlanca can solve transport equations for up to four independent phases (each of which can consist of
more than one species), which are typically identified as Material 1, 2, 3, and 4 in the GUI. Physical
interactions between the phases are specified with the GUI Exchange Parameters panel, which has three
sub-panels: Momentum Exchange, Energy Exchange and Mass Exchange; these are shown in Figures 35,
36, and 37, respectively.

ﬁ B Mesh Fi]r\ Partition File Node Daia File Particle Daia File Boundary Data File InitialConditions Data File

| General nfommation. ics | Solver | Mumerical Optiens | Erecondffioner | Fnitial Conditions | Boundary Conditions | Exhange Farameters | Cherical Reaction | Partide Froperties | Species Froperties

The numhber of coefficients mMNoCoef is detemined by the value of the variable numMaterials through the expression
mMo Coef = numblaterials*(numMaterialz - 13/2
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Figure 35. GUI "Exchange Parameters" tab ("Momentum Exchange' sub-tab).
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Figure 36. GUI "Exchange Parameters" tab (""Energy Exchange' sub-tab).
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< Input for, CartaBlanca
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Figure 37. GUI "Exchange Parameters" tab (""Mass Exchange" sub-tab).

Each of these panels contains a table, where each row is used to specify various interactions (exchange
coefficients) between two of the problem’s phases; the number of rows is automatically set by the code
according to the number of materials (phases) in the problem, allowing for all possible combinations of the
phases. In general, the number of rows (or phase pairs) is

numberOfRows = numMaterials * (numMaterials —1)/2 ,

where numMaterials is the total number of phases (numNonParticleMaterials + numParticleMaterials, as
specified with the Physics panel (Section 4.2)). For problems with 1, 2, 3, and 4 materials, each of the three
tables has 0, 1, 3, and 6 rows, respectively.

The rows in each table are labeled by their indices in the first column (heading NoCoef), starting at 1. Each
row is used to enter exchange parameters between phase i and phase j, where the relations between row
number and i, j are listed here in Table 2 (i and j both start at 1, corresponding to Material 1, 2, 3, and 4).

CartaBlanca’s phase interaction models are discussed in Chapter 3 of the Theory Manual. The input
parameters for momentum exchange are applied to the equation for the force f; between phases i and £:

-~ ou, . _ .. ou __
- =00,K, p°(u, —u )+ A, p° ﬂ+u V-u —L—uV-u ,
S (O g Py \ By i ik Pik o k Py i i

where 6, and 6, are the volume fractions of phases i and k, K, = K}, is the momentum exchange coefficient, 4;

= A,, is the added mass coefficient, p; is a reference density specified in the user input, and #, and #, are

average velocities of phases i and k. Currently the added mass coefficient 4; is an input parameter and the
momentum exchange coefficient is calculated as
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Two Phase Problem

Row (NoCoef) phase i phase j
1 1 2
Three Phase Problem
Row (NoCoef) phase i phase j
1 1 2
2 1 3
3 2 3

Four Phase Problem
Row (NoCoef) phase i phase j
1 2

DN |WIN|—

NN [—|—
Ny NG [N NN {OV)

6 3

Table 2. Phase pairs for exchange coefficient rows.

3 . |u, —u, 24 6
Kik :_Cd|kd—| B Cd :Cdm‘f‘ + , Reik =,
ik

4

where the drag coefficient C,, for infinite Reynolds number, the length scale d;, and the kinematic

viscosity v, are input parameters.

In the following discussion on energy exchange, subscripts i and j again refer to phases i and ;.

Currently, energy exchange is restricted in applicability; the basic model is derived from the literature for
fluidized catalytic-cracking, where a thermal coupling (energy exchange) coefficient K, is calculated as:

_ 6k, Nu
° d. d

ik“ik

K

2

where £k, is a user-input thermal conductivity, Nu a Nusselt number, and d; a user-input length scale. The
Nusselt number is calculated as:

Pé
Nu=2+0.6\/Re, Pr°

where Pr is a Prandtl number and
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d.
Re, = slip(—’kJ ,
Ui

where slip is the phasic slip speed (magnitude of the relative velocity), andv,, is a user-input kinematic
viscosity. The Prandtl number is:
Ly P Cit

Pr=—tEwz
kik

where p, and C, are user-input density and specific heat (constant pressure), respectively.

There is also a special model for phasic heat exchange that was derived for study of the ignition of solid
explosives. This model is invoked by selection of special energy and species systems in the Physics Panel:
either NLEnergyHE1 or NLEnergyHEZ2, and NLSpeciesHEL. In this case the solid-gas heat exchange is
derived from the fluidized bed literature; the thermal coupling (energy exchange) coefficient K, is calculated
as:

_ 6k, Nu
“ d.d.6

ik"ikYg

2

where k, and d, are as defined above, 0, is the gas volume fraction, and Nu is a Nusselt number that is

calculated as:

Nu=2+0.03Re,”” (Nux2),

where Re B 1s as calculated above.

Currently the modeling of phase change (mass exchange) is limited to several experimental phase change
models implemented for chemical reactions related to high explosive materials.

The input parameters for the Exchange Parameters panel are as follows:

Momentum Exchange panel

D: real; length scale dy, a characteristic particle diameter.
Note: Parameter D is also used in the currently available energy exchange models.

CdlInf: real; drag coefficient C,_ for infinite Reynolds number.

CFRho: real; reference density p,, . If there is at least one continuous fluid phase, it is recommended that
the density of one of those phases be chosen for CFRho.

Nu: real; kinematic viscosity v, .

AMass: real; added mass coefficient 4.
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MEx6, MEx7, MEx8, MEx9, MEx10, MEx11, MEx12: seven reals; currently not used.

Energy Exchange panel

Note: The energy exchange parameters K, C, Rho, and Nu have either suffix “c” or suffix “d”, where “c”
refers to a continuous phase and d to a disperse phase.

Note: Parameter D in the Momentum Exchange panel is also used by the energy exchange models.
Ke: real; thermal conductivity k;, continuous phase.

Cec: real; specific heat at constant pressure C,, , continuous phase.
Rhoc: real; density p,, , continuous phase.
Nuc: real; kinematic viscosity v, , continuous phase.

Kd: real; thermal conductivity, disperse phase. Currently not used.
Cd: real; specific heat, disperse phase. Currently not used.

Rhod: real; density, disperse phase. Currently not used.

Nud: kinematic viscosity, disperse phase. Currently not used.

EEx9, EEx10, EEx11, EEx12: four reals; currently not used.

Mass Exchange panel

Tpc: real; phase change temperature.
LatHt: real; latent heat.
PhCh: boolean; true if there is a change of phase.

MaEx4, MaEx5, MaEx6, MaEx7, MaEx8, MaEx9, MaEx10, MaEx11, MaEx12: nine reals; currently
not used.

75



4.9. Chemical Reaction

Chemical reactions can be modeled either with a rate constant equal to the Arrhenius term with a mixture
temperature, or with a specialized gas-enhanced reaction model that was developed for study of solid
explosive ignition. The Arrhenius term is

Z exp(-E/RT) ,

where Z is the frequency factor (pre-exponential factor, or steric factor), E is the activation energy, R is the
universal gas constant, and T is the temperature.

Modeling of chemical reactions is enabled on the GUI Physics panel with the boolean
chemicalReactionOn,; if this is true, the number of chemical reactions to model in the problem is specified
on the Physics panel with numChemicalReactions (see Section 4.2).

Data for the reactions are entered on the Chemical Reaction panel, which is shown in Figure 38. All data are
entered in a single table, where each row is used for a reaction, and the rows are created automatically by the
code according to the value of numChemicalReactions on the Physics panel.

< Input for CartaBlanca
File Help
ﬁ B WFﬂe Partition File Node Data File Particle Data File Boundary Data File InitialConditions Data File

General nformation | Physics | Sohver | Nurerical Options | Breconditi Tritial Conditi Boundary Conditions | Exchange Parameters | Chemical Readion | Parfide Froperties | Species Broperties |

| The number of reaction pairs is determined by numChemicalReactions
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[ 0.0] 0.0] 0.0] 0.0] 0.0] 0.0] 0.0] 0.0] 0.0] 0] 1 1 ] [ T =
| 0.0] 0.0 0.0 0.0 0.0 0.0 0.0 0.0] 0.0] of 1 [T ] [l

Figure 38. GUI "Chemical Reaction" tab.

The input parameters for the Chemical Reaction panel are as follows:

Note: Currently chemical reactions have only been modeled in CartaBlanca for cases using special species
systems NLSpeciesHE1 and NLSpeciesHE2, which are selected in the Physics panel. NLSpeciesHEL
can only treat one reaction; NLSpeciesHE?2 treats two reactions with one reaction between gas species.
The “HE” in these systems stands for high explosive. The basic Arrhenius reaction rate is available for these
systems, but the actual high explosive modeling has been done with extensions to the simple Arrhenius term
to model the explosive’s thin combustion wave front; these extensions are invoked with the parameters
useMixT and pDepend, as indicated below.

Z: real; frequency factor (pre-exponential factor, or steric factor) in Arrhenius reaction term.

ActE: real; activation energy in Arrhenius reaction term.
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Note: In the Arrhenius reaction expression the units of the activation energy and the gas constant R must be
consistent. R is specified in the Physics panel (Section 4.2); the default value is 8.31439 J/mole-K.

Hreaction: real; heat of reaction. Currently, Hreaction is not used; Species Properties-panel parameter
HForm (Section 4.11) is used for heat release.

ReactPh: integer; index of the reaction phase, starting at 0 (e.g., for Material 1, ReactPh = 0).

ProdPh: integer; index of the product phase, starting at 0, indicating a reaction in which the phase
ReactPh goes into ProdPh.

useMixT: boolean; if checked, use the Arrhenius term with a mixture temperature; if false, use the gas-
enhanced chemical reaction model for high explosive modeling.

Reaction: boolean; currently not used.

pDepend: boolean; if checked, use a pressure-dependent reaction model. This is part of the high explosive
modeling logic, and is only considered if useMixT is false.

Part4, Part5, Part6, Part7, Part8, Part9: six reals; currently not used.
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4.10. Particle Properties

The Particle Properties panel, which is shown in Figure 39, is used for data for phases modeled with the
PIC/MPM method. There are two tables, each having up to four rows, where each row is used for one of the
problem’s PIC/MPM phases. The rows are created and numbered automatically, according to the value of
numParticleMaterials in the Physics panel (Section 4.2).

The row-numbering requires some extra explanation. The first column of each table is labeled “Phase”; these
values start at 1, but do not correspond to Material 1, 2, 3, 4 in the problem, but rather to the n™ particle
phase. For example, in a problem with Materials 1, 2, 3, and 4 being air (non-particle), steel (particle), water
(non-particle), and aluminum (particle) respectively, the steel would be in the row labeled 1, and the
aluminum in row 2.

£ Input for CartaBlanca
File Help
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Figure 39. GUI "Particle Properties" tab.

Currently most of the cells in the tables are unused placeholders. The user must specify the number of
computational particles per element (e.g., 2-D quad, 3-D hex) for the X, Y, and Z coordinates, and the use of
one of the code’s damage models. Note that additional material properties, including the damage model, are
specified in the Species Properties panel (Section 4.11).

The input parameters for the Particle Properties panel are as follows:

nx: integer; number of computational particles per element for X-coordinate, for 1-D, 2-D, and 3-D
problems.

ny: integer; number of computational particles per element for Y-coordinate, for 2-D, and 3-D problems.
nz: integer; number of computational particles per element for Z-coordinate, for 3-D problems.

Damage: boolean; if true, use one of the code’s damage models (see Species Properties (Section 4.11)).
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stress: keyword text; currently not used (see Species Properties (Section 4.11)).
failure: keyword text; currently not used (see Species Properties (Section 4.11)).

Empty3. Empty4, EmptyS. Empty6: four booleans; currently not used.

EqgPIstcStrn: boolean; currently not used.

Empty8......... Empty26: 19 booleans; currently not used.
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4.11. Species Properties

Constitutive material properties, including equation-of-state and solid-stress modeling and data, are specified
with the GUI Species Properties panel, which is shown in Figure 40.

File Help

= B MeshFile Pariition File Node Daia File Particle Daia File Boundary Data File InitialConditions Data File
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Material 1 | Material 2 | Material 3 | Waterial 4|
=Material 2 -- General Information

Humber of Species: 'ﬂ

Use Particles

=Material 2 -- Species Dat.

Species Matne Machel Cotnrents
f |&lurminum |Hehin

‘ Select Model Parameters

Figure 40. GUI "Species Properties" tab (""Material 2" sub-tab).

Species Properties comprises four sub-panels: Material 1, Material 2, Material 3, and Material 4. Each
material panel has two areas for entering data: General Information and Species Data.

General Information is used for data that are global for that material (phase): Number of Species and the
Use Particles checkbox (the variable Keep Pressure is currently unused). All species in a given phase have
the same velocity and temperature fields, but each species may have its own constitutive model, and be
specified individually in the initial and boundary conditions. The CartaBlanca Theory Manual describes the
logic that treats a phase as a composite of its species’ constitutive models. In principle there is no limit on the
number of species that may be included in a phase, although the GUI currently does have an upper limit of
four in the initial and boundary conditions panels. If Use Particles is checked, the MPM/PIC method is used
for the phase; otherwise, the ALE method is used.

Species Data has a table that has a row for each species in the material (phase); the user can enter a name for

the species and select a constitutive model from a built-in dropdown list (see Figure 41). Currently, the
Comments table cells are not operational.
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Figure 41. Selecting a species model.

With a model selected (and the species-row selected), the Species Data -- Select Model Parameters button
(Figure 41) can be clicked to bring up a window for model-data entry (Figure 42).

£ Material/Phase 2 -- Species 1 (Aluminum): Kelvin Model

» | =Set Kelvin-Model Parameters

MoungModulus+FoissonRatio override b

otherwize they are calculated from Parameter “alue Comiments
I ECSs 27 ~

ECsh 3.934E-12
ECSc
ECSd
CpRef 1.0 B
CuRef
pressurelfviork
HF arm
TFoarm
Ei=q e

[E03b: Recalculated internally as den
E0Sc:

E0Sd:

CpRef:

CvRef:

hressurelork:

HForm:

TForm:
[Eso:
Cap:
Thap:
oungModulus: ‘ ‘

PoizssonRatio: OK Cancel
bulkViscosity:
shearViscosity:
bulkModulus:
shearModulus:
elasticitresslim:

SCress:
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1 |

< >

Figure 42. Entering data for a species model.

The data-entry window has a table on its right side, where each row is used to enter a value for a parameter
used by the desired constitutive model (the Comments cells are currently not operational). Section 4.11.1
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gives the top level of the Species Properties input specifications. Descriptions of the available material
constitutive models, and their specific input specifications, are given in Section 4.11.2.

4.11.1. Input Specifications — Top Level

The input parameters for the Species Properties panel, for the Material 1, 2, 3, and 4 panels, are as follows:

General Information

Number of Species: integer; number of species included in the material (phase).

Use Particles: boolean; if true, use MPM/PIC method for phase. If false, use ALE.

Keep Pressure: boolean; currently not used.

Species Data — for each species in the phase
Name: text; any species identifying name user wishes to enter. No embedded blanks.
Model: keyword text; constitutive model for the species. See Table 3.
Comments: text; user-supplied comments. Currently not operational.

Select Model Parameters button

The Select Model Parameters button brings up a frame for data entry for the specific model selected.
Section 4.11.2 contains complete lists of the parameters used by all of the available models.

4.11.2. Constitutive Models and their Input Specifications

The material constitutive models available in CartaBlanca are listed in Table 3, after which a more detailed
description of each model, including its input specifications, is given.
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Model

Description

Rigidbody

Solid material with constant density and no deformation.

Incompressible

Constant density.

Linear

Density linear in pressure (also 1/temperature term when energy equation solved).
Used for fluids only.

NobleAbel Used for gas.

MieGruneisen Can be used for condensed matter and for materials under shock.

Maxwel 1 Constitutive model for solid stress in a Maxwell-type viscoelastic material.

Kelvin Constitutive model for solid stress in a Kelvin-Voigt-type viscoelastic
material [14].

JohnsonCook Adds plasticity model to the Kelvin (Kelvin-Voigt) model [4].

Tepla “Tensile Plasticity” model: plastic deformation with porosity growth [1, 2, 3].

Sesame The Los Alamos SESAME Equation-of-State and Materials Properties
Library [10].

FortranModelOne | Placeholder for user-provided Fortran model.

GammaGas Only used when energy transport is solved; uses ratio of specific heats.

ViscousSolid

Experimental model used for code testing.

Table 3. Material models.
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Rigidbody
This is a special constitutive relation; it is used when there is only one species in the phase and the

deformation of the phase is negligible. In this constitutive relation the density of the material is a
constant specified by user input in the data-entry window:

p’= constant ,
where
p’ = material density, and
constant = EQOSa.
Also, the sound speed is set to zero so that the time step will not be affected by this phase.
The Rigidbody input parameters are as follows:
EOSa: real; material density (constant).
EOSDb: real; not used.
EOSc: real; not used.
EOSd: real; not used.

CpRef: real; see Maxwe I I parameters.

pressureWork: real; see Maxwe I I parameters.

HForm: real; see Maxwe I I parameters.
TForm: real; see Maxwe l I parameters.
Bsq: real; see Maxwe l I parameters.
Csp: real; sece Maxwe I | parameters.

Thsp: real; sce Maxwe I | parameters.

Incompressible

For an incompressible material the density is set to be a constant specified by user input in the data-
entry window:
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p’= constant ,

where
p’ = material density, and
constant = EQOSa.
Also, the square of the sound speed is set to machine infinity (10%).
The Incompressible input parameters are as follows:
EOSa: real; material density (constant).
EOSDb: real; not used.
EOSc: real; not used.
EOSd: real; not used.

CpRef: real; see Maxwe I I parameters.

pressureWork: real; see Maxwe I | parameters.

HForm: real; see Maxwe I I parameters.
TForm: real; see Maxwe 1 I parameters.
Bsq: real; see Maxwe l I parameters.
Csp: real; see Maxwe l | parameters.
Thsp: real; see Maxwe l I parameters.

shearViscosity: real; see Ke lvin parameters.

KRef: real; see Maxwel | parameters.

Darcy: real; see Maxwe l | parameters.

Linear
This is a constitutive model for a fluid with the following equation of state:

o A+ Bp
1+Cc(r-D)

P
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where

p’ = material density,

A, B, C and D are model parameters specified by user input in the data-entry window,

= EOSa,
= EOSD,
EOSc,
EOSd,

TAOwa
|

and

p = pressure, and
T = temperature.

When energy transport is not solved (see Section 4.2), the equation of state is calculated as
p’=A+Bp .

The Linear input parameters are as follows:
EOSa: real; A-term in equation of state.
EOSb: real; B-term in equation of state.
EOSc: real; C-term in equation of state, only used when energy transport is solved.
EOSd: real; D-term in equation of state, only used when energy transport is solved.
CpRef: real; sece Maxwel | parameters.

pressureWork: real; see Maxwe l | parameters.

HForm: real; see Maxwe I | parameters.
TForm: real; see Maxwe I I parameters.
Bsq: real; see Maxwe l I parameters.
Csp: real; see Maxwe l | parameters.
Thsp: real; see Maxwe I I parameters.

shearViscosity: real; see Ke lvin parameters.

KRef: real; see Maxwe l | parameters.
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Darcy: real; see Maxwe l | parameters.

NobleAbel gas

This is a constitutive model for a gas with the following equation of state:

0 p
P Ap + BT

9
where

p’ = material density,

A and B are model parameters specified by user input in the data-entry window,

A EOSa,
B = EOSb,

and

p = pressure, and
T = temperature.

When energy transport is not solved (see Section 4.2), the equation of state is calculated as

o_ P
p Ap+ B

The NobleAbel input parameters are as follows:
EQOSa: real; A-term in equation of state.
EOSDb: real; B-term in equation of state.
EOSc: real; not used.
EOSd: real; not used.
CpRef: real; see Maxwe l | parameters.

pressureWork: real; see Maxwe I | parameters.

HForm: real; sce Maxwe I | parameters.

TForm: real; see Maxwe I I parameters.
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Bsq: real; see Maxwe I | parameters.
Csp: real; see Maxwe I I parameters.
Thsp: real; sce Maxwe I | parameters.

ReferenceTemperature: real; initial system temperature when not solving energy transport.

MieGruneisen equation of state

Mie-Gruneisen equations are often used for condensed matter and for materials under shock and
impact. In this equation of state the density, enthalpy and pressure are related as

p =ﬁ{p{l—g(%ﬁ—lj}7p°(h—ho)} :

0 0
K| 21 if £ <1
A A

P’ A P Y
K|—-1+K,|—-1| +K,| —~ otherwise ,
A Y| Y|

v, 4, ho, K, K, and K; are model parameters specified by user input in the data-entry window,

where

Y = gamma,
A = EOSa,
h = EOSDb,
K, = K1,

K, = K2, and
K = K3.

and

p = pressure,
p’ = density, and
h = enthalpy.

The MieGruneisen input parameters are as follows:
EOSa: real; 4-term in equation of state.

EOSDb: real; reference enthalpy (4,) in equation of state.
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EOSc: real; not used.

EOSd: real; not used.

gamma: real; y in equation of state.
K1: real; K, term in equation of state.
K2: real; K, term in equation of state.
K3: real; K; term in equation of state.
CpRef: real; see Maxwe l | parameters.

pressureWork: real; see Maxwe I | parameters.

HForm: real; sce Maxwe I | parameters.
TForm: real; see Maxwe I I parameters.
Bsq: real; see Maxwe l I parameters.
Csp: real; see Maxwe l | parameters.
Thsp: real; see Maxwe I I parameters.

shearViscosity: real; see Ke lvin parameters.

KRef: real; see Maxwe l | parameters.
Darcy: real; see Maxwe l | parameters.

ReferenceTemperature: real; see NobleAbel parameters.

Maxwell

Viscoelastic materials can be modeled in CartaBlanca with either a Maxwell or Kelvin-Voigt model.

Maxwell materials can be considered as a viscous damper (dashpot) in series with an elastic spring.
The stress ¢ in this model is decomposed into pressure p and a deviatoric part s as

o = —pl+s.

The pressure is calculated as
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%:_%+Btr(€)+}/s:§d )

P

where 1, is the relaxation time for pressure, B is the bulk modulus, € is the strain rate, v is the
Gruneisen coefficient, and €, is the rate of change of the deviatoric strain rate.

The evolution equation for the deviatoric stress s is

e -Qs=—S 1208,
dt T,

1o~ ~v] . . ~ . . . Y
where Q =— [Vu - (Vu )T] is the spin tensor, u is the average velocity, 7, is the relaxation time for
2

deviatoric stress, €, is the deviatoric strain rate, and G is the shear modulus.

Density is calculated using the same equation of state as in the L inear model.
The Maxwe I I parameters specified by user input in the data-entry window are as follows:

YoungModulus: real, default value = 0.0; Young’s modulus.

PoissonRatio: real, default value = 0.0; Poisson’s ratio.
bulkModulus: real, default value = 0.0; bulk modulus.

shearModulus: real, default value = 0.0; shear modulus of elasticity.

Note: If both YoungModulus and PoissonRatio are entered, the code internally calculates
bulkModulus and shearModulus from their values. Otherwise, if both bulkModulus and
shearModulus are entered, the code internally calculates YoungModulus and PoissonRatio from
their values.

GruneisenCoefGammas: real, default value = 0.0; Gruneisen coefficient.

RelaxationTimeForPressure: real, default value = 1.0 x 10”; relaxation time for pressure.

RelaxationTimeForDeviatoricStress: real, default value = 1.0 x 10%; relaxation time for
deviatoric stress.

Note: With the default values of RelaxationTimeForPressure and
RelaxationTimeForDeviatoricStress, the Maxwe l I model is purely elastic.

failure: keyword text, default value = none; failure model, either ductile, brittle, or none.

Note: If a failure model is used, the Damage checkbox in the Particle Properties panel must be
checked for the particle phase (Section 4.10).
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elasticStressLim: real, default value = 9.5 x 10°; elastic stress limit.

EQOSa: real; A-term in equation of state (see L inear model).
EOSDb: real; B-term in equation of state (see Linear model).

EOSc: real; C-term in equation of state (see Linear model), only used when energy transport is
solved.

EOSd: real; D-term in equation of state (see L inear model), only used when energy transport is
solved.

CpRef: real; specific heat at constant pressure.
CvRef: real; specific heat at constant volume.
pressureWork: real; There is a term for total derivative of pressure in the energy equation with

enthalpy as the variable. Setting pressureWork to one enables this term. This should normally not
be used.

HForm: real; enthalpy of formation. In general, the enthalpy of a material is expressed as:

enthalpy = HForm + Cp(temperature — TForm), where Cp is the specific heat at constant pressure.
See input parameters TForm and CpRef.

TForm: real; temperature of formation. See input parameter HForm.

Bsq: real; Boussinesq beta parameter. If Bsq > 1.0x107°, the Boussinesq approximation is used; this
is for buoyancy-driven flow in cases where density differences are negligible, except where they
appear in gravity terms.

Csp: real; close pack sound speed.

Thsp: real; volume fraction at close pack, also used in the calculation of the effective viscosity in
the stress logic.

KRef: real; thermal conductivity.

Darcy: real; Darcy K-factor for interphase drag. Normally, Darey is set to zero. If its value is set to
a large value, say, 1.0x10%, then it essentially fixes the phase (with zero velocity).

Note: A single Darcy factor is used for each phase; the value from the highest-numbered species in
a phase will be used for that phase.

Kelvin (Kelvin-Voigt model)
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Kelvin-Voigt materials can be considered as a viscous damper (dashpot) in parallel with an elastic
spring. The CartaBlanca Kelvin-Voigt model is referred to simply as Kelvin in the input
specifications.

In the Kelvin-Voigt model, the stress o is separated into an elastic part ¢, and a viscous part &,
6=0,+0, .

The viscous part G, is calculated as
o =u, tr(é)l+ 2ué ,

where i, is the bulk viscosity, p is the shear viscosity and € is the strain rate.

The elastic part is calculated by solving the following evolution equation

dc .
dt

+cE{L4}cE+-%w@bE::BW@ﬂ+2Gg,

where B is the bulk modulus, G is the shear modulus and € is the strain rate. The last term on the left
hand side is necessary to ensure energy conservation by accounting for the effect of volume change
in cases of large deformation (see the CartaBlanca Theory Manual [12] for additional details).

Density is initialized according to the equation of state

o7 = 4 /m)-cr-0))

where

p’ = material density,

A, B,,, C and D are model parameters specified by user input in the data-entry window,

= EOSa,

= material bulk modulus, bulkModulus,
EOSec,

= EOSd,

SESY-EN

and

p = pressure, and
T = temperature.

When energy transport is not solved (see Section 4.2), the density is initialized as
p’=Ade’ P
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The Kelvin parameters specified by user input in the data-entry window are as follows:

YoungModulus: real, default value = 0.0; Young’s modulus.

PoissonRatio: real, default value = 0.0; Poisson’s ratio.
bulkModulus: real, default value = 0.0; bulk modulus.

shearModulus: real, default value = 0.0; shear modulus of elasticity.

Note: If both YoungModulus and PoissonRatio are entered, the code internally calculates
bulkModulus and shearModulus from their values. Otherwise, if both bulkModulus and
shearModulus are entered, the code internally calculates YoungModulus and PoissonRatio from
their values.

bulkViscosity: real; bulk viscosity.

shearViscosity: real; shear viscosity.

failure: keyword text, default value = none; failure model, either ductile, brittle,
penhanced, or none.

Note: If a failure model is used, the Damage checkbox in the Particle Properties panel must be
checked for the particle phase (Section 4.10).

Note: Currently the penhanced option is not implemented for 3D.

elasticStressLim: real, default value = 9.5 x 10°; elastic stress limit.

EOSa: real; A-term in equation of state.

EOSc: real; C-term in equation of state, only used when energy transport is solved.
EOSd: real; D-term in equation of state, only used when energy transport is solved.
CpRef: real; specific heat at constant pressure.

CvRef: real; specific heat at constant volume.

pressureWork: real; see Maxwe I | parameters.

HForm: real; sce Maxwe I | parameters.
TForm: real; see Maxwe I I parameters.

Bsq: real; see Maxwe I | parameters.
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Csp: real; see Maxwel I parameters.
Thsp: real; see Maxwe I | parameters.
KRef: real; see Maxwe l | parameters.

Darcy: real; see Maxwe I | parameters.

JohnsonCook

The Johnson-Cook model [4] adds a plasticity model to the Kelvin-Voigt model. Stress calculation
for this constitutive model contains two parts, an elastic part and a plastic flow part.

The elastic stress increases as in the Kelvin-Voigt model. The plastic flow part starts by
calculating the yield stress c,, as

: T-T, )"
=, +B,& 1+Ch1%// 1- 0 :
e € T, -T,

where C, n, m, Y, and B,. are material parameters and ¢, is the characteristic strain rate,

T'is the temperature, 7,, is the melting temperature, 7 is the reference temperature and ¢ ,
and &, are the effective plastic strain and the rate of the plastic strain. For many practical

applications with large deformation, CartaBlanca approximates the effective plastic strain
by an effective strain ¢,. The rate of the effective strain is calculated as

=2l - (e — 6 )+ (6 - P ]/ 9

\/2‘2[# —68 €, +E.E +E€ € —€ €& —€ € —€ € ]/9 ,

xx ™ yy xx™zz Wz xy < xy xz%xz yz¥yz

where €,, €, and &, are the three principal rates of strain, and the ¢ ’s with double subscripts

are the components of the rates of strain under the coordinate system used. The effective
strain is the time integration of this effective strain rate. The effective stress o, is calculated

similarly as

c, =\/2[GI —62)2 +(02 —03)2 +((53 —01)2J/9

\/2 ‘2[tr ]—66 G, +6,0.+0,0, —nycxy—sxzcxz—GyZG)J/9 ,

where 6, 0,, and o; are the three principal stress rates, and the 6’s with double subscripts
are the components of the stress under the coordinate system used. If the effective stress o,

is greater than the yield stress calculated from (4.12) then each deviatoric component of the
stress is reduced by a factor o, / o, to make the effective stress equal to the yield stress o,
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The pressure, or the isotropic component of the stress, is kept unaltered in this step.
Density is initialized according to the equation of state

0 A+ Bp
1+Cc(r-D)

P

where
p’ = material density,

A, B, C and D are model parameters specified by user input in the data-entry window,

= EOSa,
= EOSb,
EOSc,
EOSd,

WHGNS-IN
Il

and

pressure, and
temperature.

p=
T =
When energy transport is not solved (see Section 4.2), the equation of state is initialized as
p’=Ade” [Bn
where B,, = material bulk modulus, bulkModulus.

The JohnsonCook parameters specified by user input in the data-entry window are as follows:

YoungModulus: real, default value = 0.0; Young’s modulus.

PoissonRatio: real, default value = 0.0; Poisson’s ratio.

bulkModulus: real, default value = 0.0; bulk modulus.

shearModulus: real, default value = 0.0; shear modulus of elasticity.

Note: If both YoungModulus and PoissonRatio are entered, the code internally calculates
bulkModulus and shearModulus from their values. Otherwise, if both bulkModulus and
shearModulus are entered, the code internally calculates YoungModulus and PoissonRatio from
their values.

bulkViscosity: real; bulk viscosity.

shearViscosity: real; shear viscosity.
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Note: The default values for the following eight parameters (A, B, n, C, m, thetam, sigmakFail, and
enthalpy0) are for 4340 steel.

A real, default value = 0.792; Y,-term in plastic flow yield stress calculation.

B: real, default value = 0.510; Bj-term in plastic flow yield stress calculation.

n: real, default value = 0.26; n-term in plastic flow yield stress calculation.

C: real, default value = 0.014; C-term in plastic flow yield stress calculation.

m: real, default value = 1.03; m-term in plastic flow yield stress calculation.

thetam: real, default value = 1793.0 K; melting point, 7, -term in plastic flow yield stress calculation.
sigmaFail: real, default value = 2.0 x 10'%; failure stress used in plastic flow ductile failure model.
enthalpy0: real, default value = 1.8 x 10°; initial enthalpy used in plastic flow ductile failure model.
failure: keyword text, default value = none; failure model, cither ductile, brittle, or none.

Note: If a failure model is used, the Damage checkbox in the Particle Properties panel must be
checked for the particle phase (Section 4.10).

Note: To use the Johnson Cook plastic flow logic, enter ducti le for failure.

elasticStressLim: real, default value = 9.5 x 10°; elastic stress limit.

EOSa: real; A-term in equation of state.

EOSDb: real; B-term in equation of state, only used when energy transport is solved.
EOSc: real; C-term in equation of state, only used when energy transport is solved.
EOSd: real; D-term in equation of state, only used when energy transport is solved.
CpRef: real; specific heat at constant pressure.

CvRef: real; specific heat at constant volume.

pressureWork: real; see Maxwe I | parameters.

HForm: real; see Maxwe I | parameters.
TForm: real; temperature of formation, also reference temperature (7,-term) in yield stress model.

Bsq: real; see Maxwe I | parameters.
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Csp: real; see Maxwel I parameters.
Thsp: real; see Maxwe I | parameters.
KRef: real; see Maxwe l | parameters.

Darcy: real; see Maxwe I | parameters.

Tepla (tensile plasticity model)

Note: The CartaBlanca implementation of the Tepla model is currently under development.

The CartaBlanca Tepla model is an implementation of the equations for plastic deformation with porosity
growth given by Addessio et al. [1], which were based on the original TEPLA-F model of Johnson and
Addessio [2, 3] for tensile plasticity and void growth in ductile fracture under general tensile loading
conditions. In the following we use the notation of Addessio et al.

The code calculates a plastic yield stress 7’ according to
r? = YSP [y? ,

where Y is the plastic flow stress (“no-void” yield stress) and Y? is the degradation of the strength of the

material as a result of porosity growth. Currently Y” is calculated with the Johnson-Cook model [4]:

7 ~ P - "
Ys”=(cl+c2(gf) 1+c31n(8/} 1-| L= ,
o T, -T,

where ¢, ¢,, ¢3, n, and m are user-input material parameters, €, is a user-input characteristic

(reference) strain rate, 7' is the temperature, 7,, is the user-input melting temperature of the material,
T, 1s a user-input reference temperature, and ¢/ and ¢” are the equivalent plastic strain and the
equivalent plastic strain rate in the solid material. Currently, CartaBlanca sets the equivalent plastic
strain rate equal to the reference strain rate. The strength degradation factor Y? is

b _ 2 _ _3P
Y? =1+(q9) 2q¢cosh( ZYJ ,

0

where g and Y, are user-input material constants, ¢ is the porosity, and P is the pressure.

The code calculates an elastic effective stress using CartaBlanca’s Maxwe I I model (with its
relaxation times set to their defaults, giving a purely elastic result), and compares that stress with the
plastic yield stress 77. If the effective elastic stress is less than or equal to 77, the stress and pressure
are updated according to the elastic-Maxwell calculation. If the plastic yield stress is exceeded, the
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code uses equations (IV.4), (IV.5), and (IV.6) of Addessio et al. [1] to find a new porosity, including
the relation in equation IV.5

- fre=o0 ,

where 7 is the von Mieses stress and, again, Y/ and Y are the plastic flow stress and the strength

degradation factor, respectively. The code then uses equation (IV.4) of [1] to update the pressure, and
equations (I'V.5) and (IV.6) to update the stress tensor and to find a new equivalent plastic strain. In
addition to the user-input parameters given above, the logic for the plastic regime uses the material’s
bulk modulus, shear modulus, and a Gruneisen coefficient for the material. The Gruneisen coefficient
is taken directly from user-input. The bulk modulus and shear modulus are calculated internally from
user-input values for the Young’s modulus and Poisson ratio.

Note that the Tepla model’s elastic-Maxwe I | calculation also uses a bulk modulus and a
Gruneisen coefficient; the bulk modulus is also calculated from the Tepla-input Young’s modulus
and Poisson ratio, and the Gruneisen coefficient is used directly from the Tepla input.

CartaBlanca’s Tepla model uses the input parameters EOSa and EOSDb to initialize the density.
Density is initialized according to

p’=A+Bp ,
where
p’ = material density,

A and B are model parameters specified by user input in the data-entry window,

A = EOSa,
B = EOSD,

and
p = pressure.
This expression is used whether or not energy transport is solved.
The Tepla input parameters are as follows:
Note: There is no failure model implemented in the Tep la model.
EOSa: real; constant term (A) in density initialization.
EOSb: real; pressure multiplier (B) in density initialization.

YoungModulus: real; Young’s modulus.
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PoissonRatio: real; Poisson ratio.
CpRef: real; see Maxwe l I parameters.

pressureWork: real; see Maxwe I | parameters.

HForm: real; see Maxwe I | parameters.

TForm: real; see Maxwe I I parameters.

Bsq: real; see Maxwe l I parameters.

Csp: real; see Maxwe l | parameters.

Thsp: real; see Maxwe I I parameters.

KRef: real; see Maxwe 1 I parameters.

Darcy: real; see Maxwe l I parameters.

cl: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook).
¢2: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook).
¢3: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook).

nyield: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook).
Equivalent plastic strain exponent (n).

myield: real; material parameter in plastic flow stress (“no-void” yield stress) calculation (Johnson-Cook).
Exponent m of ratio of temperature differences.

strainRate(: real; characteristic (reference) strain rate, used in plastic flow stress (“no-void”
yield stress) calculation (Johnson-Cook).

temp0: real; reference temperature, used in plastic flow stress (“no-void” yield stress) calculation
(Johnson-Cook).

meltTemp: real; melting temperature, used in plastic flow stress (“no-void” yield stress) calculation
(Johnson-Cook).

gDagradation: real; constant porosity multiplier in strength degradation calculation.
Y0: real; constant in strength degradation calculation (cosh term).

GruneisenCoefGammas: real; Gruneisen coefficient.
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Sesame table

Note: The CartaBlanca implementation of the SESAME Library is currently under development.

The CartaBlanca Sesame constitutive model is an implementation of the Los Alamos SESAME Equation-
of-State and Materials Properties Library [10].

FortranModelOne

FortranModelOne is a placeholder for any model written in Fortran.

GammaGas

The GammaGas model is only used when energy transport is solved. Density is calculated according
to

p’ = 4 :
=01
where
p’ = material density,
A is a model parameter specified by user input in the data-entry window,

A = EOSa,

y is the ratio of specific heats (constant pressure to constant volume), set internally to1.4, for
an ideal diatomic gas (a good approximation for air at standard conditions),

and
h = enthalpy,
and
)% = pressure.

The GammaGas input parameters are as follows:

EOQOSa: real; A-term in equation of state.

EOSDb: real; not used.
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EOSc: real; not used.
EOSd: real; not used.
CpRef: real; see Maxwe l I parameters.

pressureWork: real; see Maxwe l | parameters.

HForm: real; see Maxwe I | parameters.
TForm: real; see Maxwe I I parameters.
Bsq: real; see Maxwe l I parameters.
Csp: real; see Maxwe l | parameters.
Thsp: real; see Maxwe I I parameters.

shearViscosity: real; see Ke lvin parameters.

KRef: real; see Maxwe l | parameters.
Darcy: real; see Maxwe I | parameters.

ReferenceTemperature: real; see NobleAbel parameters.

ViscousSolid

The ViscousSol 1d model is currently only used for testing code numerics.
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5. RUNNING CartaBlanca

A CartaBlanca calculation requires files iInputSpecifier. 10, NodeDataFile, and
MeshFile, and, optionally, MeshPartitionFi le (required for parallel runs),
ParticleFile, BoundaryFile, and InitialConditionsFile. The code is launched by
running its Java class

gov.lanl .cartablanca.main.PhysMain

This can be done from the Unix (or Windows) command line, where a Unix script (or Windows
-cmd) file is helpful, or from within an IDE (such as JBuilder, NetBeans, or Eclipse). There are two
optional arguments for running PhysMain, which must be in order: (1) the name of the input-
specifier file, and (2) the output-directory (1 must be included if 2 is to be used).

The calculation will run to a normal completion if either of the General Information parameters
Maximum Time or Maximum Cycles is exceeded. An abnormal termination will happen if the code
must reduce the time step size below General Information parameter Minimum Time Step; such a
termination does not necessarily indicate a fundamental error (in code or model), but perhaps only
that the current physical conditions require a smaller step size for the given mesh and transport
algorithm(s). The status of a running calculation, including time step size, is sent in periodic edits to
standard output (see Section 6.1). A discussion on CartaBlanca’s time step control logic and
suggestions for the time step user input are given in Section 7.2. Section 6.2 describes the code’s
major output (graphics) files.

Note that the GUI has two new toolbar buttons, “Run” and “STOP”, which can be used to run/stop a
calculation from within the GUI (see Section 4).

Two important code-running capabilities are Dump/Restart, which can add a great deal of flexibility

to an analysis, and parallel computation, which can dramatically speed-up runtime. These are
described in Sections 5.1 and 5.2, respectively.

5.1. Dump/Restart Capability
Often it may be desirable to break up a very long calculation into a series of two or more shorter runs.
Also, one may wish to run a set of parametric studies from a common branch state, or restart a run
with a smaller time step size. Or, one may simply wish to “see what happens” by extending a given
calculation. CartaBlanca provides this capability by periodically writing binary dump files that
capture a calculation’s state at the problem time of a dump; these dump files can be used to restart a
run.
The restart dump files are written to directory output; they are of the form

dump .N.MMMMM . d ¥l for ALE-mesh-specific state data, and

dump.gridPhasel .N.MMMMM.dFI for PIC/MPM (particle)-specific state data,
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where N is an integer that specifies the partition (O for serial runs), MMMMM is a running sequence
number that identifies the edit (with leading O’s), and 1 is an integer that identifies the particle-
material (phase). For example, directory output would contain the following files from a run that
had 80 edits, 4 partitions, and 2 particle materials:

dump.0.00000.dFl
dump.0.00001.dfl

dump.0.00080. dfl

dump .3.00000.dFl

dump.3.00080.dFl
dump.gridPhase2.0.00000.dfl

aamp.gridPhase2.0.00080.dfl

dump.gridPhaseZ.3.00000.df|

dump.gridPhase3.3.00080.dfl
where the particle-materials (phases) are materials 2 and 3 in this particular calculation.

CartaBlanca writes restart dump files according to a dump interval that is specified by the GUI
General Information panel’s Running Parameters Graphics Time Interval and Graphics/Binary
Dump Ratio, where the latter is a multiplier applied to Graphics Time Interval.

A restart run is specified with the GUI General Information panel, by checking the Restart
checkbox and setting Running Parameter initGraphic to the desired dump sequence number (any
leading 0’s are not necessary). All relevant dump and dump . gr idPhasel files must be in
directory output (i.e., files for the grid, for all particle materials, and for all partitions).

5.2. Parallel Runs
Parallel computation is built into the code; CartaBlanca is designed around Java’s built-in multi-
thread capability, where processes can be run simultaneously (or share a single CPU) and can

communicate with each other, but are controlled from the same program. Both shared and distributed
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memory architectures are supported. To do parallel computation with either shared or distributed
memory, a partition file must be provided; this file is specified in the General Information panel,
where also the usePartitions checkbox must be checked (see Section 4.1). Setting up a partition file
is the only requirement for CartaBlanca shared memory computation.

For distributed memory machines, the MPJ package [8] is used. (Previously, we used the JavaParty
extension to Java; although Los Alamos no longer supports distributed CartaBlanca computation via
JavaParty, it should not be difficult to reimplement it.) MPJ is an extension to standard Java; it can be
downloaded from

http://dsg.port.ac.uk/projects/mpj/soft/download.php

Step by step instructions for MPJ installation and usage are available at

http://dsg.port.ac.uk/projects/mpj/soft/readme.php

Following are the steps for user CBuser to run CartaBlanca under MPJ on a UNIX platform, using
the C shell (csh).

Add to CBuser’s . cshrc startup file

setenv MPJ _HOME ~/mpj-v0_23
setenv PATH $MPJ_HOME/bin:/home/CBuser/apache-ant-1.6.5/bin:$PATH

To install MPJ, un-tar the downloaded zip file (MPJ is already compiled, to recompile type “ant” in
directory $MPJ_HOME).

To run CartaBlanca, we need to edit and recompile three CartaBlanca source files:
src/gov/lanl/cartablanca/main/PhysMain. java ,
src/gov/lanl/cartablanca/comm/Communication. java ,and
src/gov/lanl/cartablanca/mesh/GlobalMesh. java

Near the top of each file, comment-out the line

import gov.lanl_cartablanca.comm._mpi.*; and un-comment the line

import mpi.>;

To recompile CartaBlanca, enter

jJavac -d classes -cp jars/swing-layout-

1.0.jar-$MPJ_HOME/Nib/mpj.jar src/gov/lanl/cartablanca/*/*.java

src/gov/lanl/cartablanca/*/*/*.java

src/gov/lanl/cartablanca/*/*/*/*_java

where the Javac command is all on one line.
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CartaBlanca is run with the following steps:
Set the running directory to the present directory,
setenv runDir “pwd"

Generate a file named machines in the running directory that contains a list of the names of the

cluster nodes, in a column, on which CartaBlanca will run. For the Los Alamos ep i phany machine,

using the v editor, we enter
vi machines (in $runDir)

EO1
EO2

Make an MPJ-Daemon on each of the cluster nodes listed in file machines:
mpjboot machines
If this is successful, the UNIX list command

Is -rtl $MPJ_HOME/bin/ should show files such as MPJ-DaemonEO2.pid, etc., in
directory $MPJ_HOME/bin/

Run CartaBlanca in the background:
nohup mpjrun.sh -np 2 -sport 15002 -wdir $runDir -mx2048m -cp
classes:$MPJ HOME/lib/mpj.jar gov.lanl._cartablanca.main.PhysMain
inputSpecifier > & outA &

where again the command (nohup here) is all on a single line.

After the calculation has run to completion, delete the MPJ-Daemons on the cluster nodes listed in
file machines:

mpjhalt machines

The files DaemonEO2 . pid, etc., should no longer be in directory $MPJ_HOME/bin/ .
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6. CartaBlanca RESULTS
CartaBlanca provides two types of output periodically as a problem runs:

» short edits to the standard output stream; by default to the console/screen, or as redirected to a
file. These edits give status reports on a run, such as the current problem time and time step
size. Also, at the start of a run, detailed reports on the problem initialization are written, which
can be useful for training and diagnostic purposes.

» major edits of the problem state, written as text files to directory output. These are intended
mainly for graphics postprocessing of the problem’s results.

Sections 6.1 and 6.2 describe these two types of CartaBlanca output.
6.1. Console Status Prints

As a calculation proceeds, CartaBlanca sends status messages to standard output. Before the problem
starts running, details on the problem’s initialization are written, such as for
testBulletPlate. 10:

In GlobalMesh, MeshFile is E:\cartablanca\meshes\2D\QUADS\41nx41n_10\myMeshFile.txt

In GlobalMesh, NodeDateFile is E:\cartablanca\meshes\2D\QUADS\41nx41n_10\myNodeDataFile.txt
In GlobalMesh, PartitionFile is E:\cartablanca\meshes\2D\QUADS\41nx41n_l10\myPartitionFile.txt
Coordinate system is cartesian

done reading elements

From MaterialResponse <<=== user material input for Aluminum target.

gridPhaseNum: 1 number of Species: 1

Material properties, from GenericSpecieResponse

eosA eosB eosC eosD speciesName Mattype eosType Cp k Visc closePackSSpeed close:ackVfrac

2.7 3.934E-12 1.0 1.0 Aluminum flipParticles Kelvin 1.0 0.0 500.0 0.0 0.0

InitializeFields: doing momentum transport <<=== bullet starts at-500 m/s.

nit region: 0, Ul 0.0, V1 =0.0, U2 = 0.0, V2 = 0.0, U3

0.0, v3 = 0.0, P = 100.0

init region: 1, Ul 0.0, vi1 =0.0, U2 = 0.0, V2 = 0.0, U3 = 0.0, V3 =0.0, P =100.0

init region: 2, Ul
100.0

0.0, v1 = -50000.0, U2 = 0.0, V2 = -50000.0, U3 = 0.0, V3 = -50000.0, P =
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init region: 3, Ul = 0.0, V1 = -50000.0, U2 = 0.0, V2 = -50000.0, U3 = 0.0, V3 = -50000.0, P =
100.0

The standard output edits are written according to a problem time step interval that is specified by the
GUI General Information panel’s Running Parameter printlnStep. Included are the time step
number (N), problem time (), time step size (dt), and solver and Newton Krylov iterations. Also,
reports on restart dumps (Section 5.1) and graphics edits (Section 6.2) are written. As
testBulletPlate. 10 starts up, runs, and terminates, we see:

Dumping to file E:\cartablanca\output\dump.0.00000.dfl

Just wrote E:\cartablanca\output\dump.0.00000.dfl

Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00000.dfl
Just wrote E:\cartablanca\output\dump.gridPhase2.0.00000.dfl

Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00000.dfl

Just wrote E:\cartablanca\output\dump.gridPhase3.0.00000.dfl

n = 00010 t = 2.00000E-008 dt = 2.00000E-009, (0) <<===printlnStep = 10.
n = 00020 t = 4.00000E-008 dt = 2.00000E-009, (0)

Dumping to file E:\cartablanca\output\dump.0.00001.dfl

Just wrote E:\cartablanca\output\dump.0.00001.dfl

Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00001.dfl

Just wrote E:\cartablanca\output\dump.gridPhase2.0.00001.dfl

Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00001.dfl

Just wrote E:\cartablanca\output\dump.gridPhase3.0.00001.dfl

Done in Partition O

Time for executing the problem: 7595 milliseconds.

Grind Time is 225 microseconds/cycle/node

(testBulletPlate. 10 uses solver NLExplicit for its pressure solution, and no iteration data
are printed.)

The content of the standard output can be configured by input switches, such as the Verbose
checkbox in the Preconditioner input (Section 4.5).

There are numerous error messages that can be printed for abnormal conditions, either during
problem initialization (e.g., missing mesh file, or inconsistent specifications) or execution (e.g., time

step size hits lower limit and must be reduced).

For long production runs, it is recommended that the standard output be redirected to a file, in order
to ensure that a complete record exists for the problem.

6.2. Graphics Output Files
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The major-edit graphics text files are written to directory output, with naming conventions similar
to the binary restart files (Section 5.1). They are of the form

plot.N.MMMMM.dat for ALE-mesh-specific state data, and

gridPhaselpartitionN-MMMMM.dat for PIC/MPM (particle)-specific state data,

where N is an integer that specifies the domain partition (0 for serial runs), MMMMM is a running
sequence number that identifies the edit (with leading 0’s), and I is an integer that identifies the
particle-material (phase).

The graphics edits are written according to an edit interval that is specified by the GUI General
Information panel’s Running Parameter Graphics Time Interval.

Here we have set up the bullet-plate problem to run for 1000 time steps at a fixed step size = 2.0 x
10? s, with graphics edits (in Tecplot format) every 100 time steps (2.0 x 107 s):

ﬁhnnﬁngPhnnneunm

Pﬂaxinuun Cycles:

|Graphics Time Interval:

[Initial Time Step:

Minimum Time Step:

IMaximum Time Step:

IMaxinum Time:

1000

20ET

20E9

2.0E2

2.0E2

100.0

finitGraphic: 0
prinilnSiep: 10
|Graphics/Binary Dump Ratio: 5

The resulting graphics edits are written to directory output:

Graphics dump number 00009 at time =

n

n

n

n

n

00900

00910

00920

00930

00940

00950

00960

00970

00980

00990

t

t

t

t

t

1.

1.

1.

1.

1.

1

1.

80000E-006

82000E-006

84000E-006

86000E-006

88000E-006

.90000E-006

-92000E-006

.94000E-006

-96000E-006

98000E-006

dt =

dt =

dt =

dt =

dt =

dt =

dt =

dt =

dt =

dt =

2

2.

.00000E-009,
.00000E-009,
-00000E-009,
.00000E-009,
.00000E-009,
.00000E-009,
.00000E-009,
.00000E-009,

.00000E-009,

00000E-009,

©
()
()
©
©
©
©
)
©
)

Dumping to file E:\cartablanca\output\dump.0.00010.dfl

Just wrote E:\cartablanca\output\dump.0.00010.dfl

.80000E-006 cycleNumber = 900

Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase2.0.00010.dfl
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Just wrote E:\cartablanca\output\dump.gridPhase2.0.00010.dfl
Dumping Particle Data to file E:\cartablanca\output\dump.gridPhase3.0.00010.dfl
Just wrote E:\cartablanca\output\dump.gridPhase3.0.00010.dfl

Graphics dump number 00010 at time = 2.00000E-006 cycleNumber = 1000

n = 01000 t = 2.00000E-006 dt = 2.00000E-009, (0O)

Done in Partition O

Time for executing the problem: 50302 milliseconds.

Grind Time is 29 microseconds/cycle/node

EEX
l’:'

File Edit ‘Wew Favorites Tools  Help
@ Back - . ? P ! Search ‘ ll Folders -
Address |3 E:\cartablancaloutput B | S
Folders x Mame Size | Type Date Maodified -~
B @ Local Disk (E9) A Dcvs File: Foldsr 12142005 11:23 AM
O ) cartablanca ) 5tvlesheetsAndiacros File Folder 5/5/Z006 2:39 PM
B ) bak delplot.cmd 1KE Windows NT Command Script  7/27/2005 2:36 PM
% (5 CFOLBeomp durnp.,00000. dfl 302KB DFL File 5/17/2006 10:37 AM
& £ dasses [ dump 000001 dF 315KB DFLFils 5/17/2006 10:37 AM
:' oy dump.D.DDDDZ.dFl 315KE DFL Filz 5/17/2006 10:37 AM
Ij doe dump.D.DDDUS.dﬂ 315KB DFL File 5/17/2006 10:37 AM
3 docs durnp,0,00004, df| 315KB DFLFils 5/17/2006 10:37 AM
, erivindsrt durnp, 0,00005. dfl 315KB DFLFile 5/17/2006 10:37 AM
E o =] dump. 01 00006 315KB DFLFils 5/17/2006 10537 AM
0 B dump,0,00007.dF 315KB DFL File S/17/2006 10:37 &AM
5 jars dul‘np.D.UDDDS.dﬂ 315KE DFL File 5/17/2006 10037 AM
3 Javalan durnp,0,00009, dfl 315KB DFLFils 5/17/2006 10:37 AM
3 largemeshes durmp.0.00010. dfl 315KE DFLFile 5/17/2006 10:35 AM
& 3 manuals durnp. gridPhase. 0,00000.df £25KB DFLFile 5/17/2006 10:37 AM
H ) meshes dump. gridPhase2. 0.00001 .fl 625KE DFLFils 5/17/2006 10:37 AM
S — durnp. gridPhase. 000002 df £25KB DFL File 5/17/2006 1037 AM
Cotie dump. gridPhase2.0,00003.dfl 625KE DFLFils 5/17/2006 10:37 &M
dump.gridPhasez. 000004, dfl 625 KE DFL File S/17/2006 10:37 AM
:] WS dumnp.gridPhasez. 0.00005,dfl 625 KB DFL File 5/17/2006 10:37 AM
) StyleShestsandMacros durnp. gridPhase2.0,00006,df 625KB DFLFils 5/17/2006 1037 AM
3 particles dump. gridPhase2.0.00007.dfl 625KE DFLFils 5/17/2006 10:37 &M
|j pubs durnp. gridPhase2.0.00003. dfl 625 KB DFL Filz S5/17/2006 10:37 AM
dump.gridPhasez,0,00003,dfl 625 KB DFL File 5/17/2006 10:38 AM
dump.gridPhase2.0.00010.dF] 625 KB DFL File 5/17/2006 10:35 AM
dump.gridPhase3.0,00000,dfl 91KE DFLFile S/17/2006 10:37 &AM
- dump.gridPhaseS.D.DDDUl.-:IFI 91 KB DFLFile 5/17/2006 10037 AM

A total of 10 graphics dumps are written. For this case, the graphics files are of two types:

gridPhase3partition0-00009, dat
gridPhase3partition0-00010, dat

) plat.0.00009, dat
) plot.0.00010,dat

J0KE DATFile
J0KE DAT File

391 KB DAT File
391 KE DAT File




where the “gridPhase.....” files contain graphics data that is “attached” to the individual particles
that are used to model the bullet and the plate, and the “plot.....” files contain data that is associated
with the underlying Eulerian grid. A “gridPhase.....” file is written and named for each particle-
material, for each computational partition, and for each graphics edit. The “plot.....” files are written
for each partition and edit. (Note that dump/restart files are also written to directory output, with
suffix .dfl)

The Windows command script dellplot.cmd provides a convenient way to clean up directory
output:

File Edt View Favorites Tools Help

@ Back = () ? _/'_ ) Search v

Address |L} E:Ycartablancaloutput vl &0
Faolders x Mame Size  Type Date Modified
= G Local Disk (E:) P i.:jC'v'S File Folder 12/14)2005 11:29 AM
= ) cartablanca iStvIeSheetsAndMacros File Folder 5/5/2006 2:39 FM

# ) bak 3 delplok.cmd 1KE  Windows NT Command Scripk 7§2772005 2:36 PM
& 53 CFOLIBromp IE‘] readme. txt 1 KB Text Document 712712005 2:36 PM
H [ classes

Chcvs

) doc

|2 docs

[C5) enwiindent

(5 gifdir

|20 graphs

-,j jars

() Jawahan

|3 largemeshes

[C7) manuals

| meshes

[C5) movies

[5) native

| oukput

IC3 cvs

# [25) StylesheetsandMacros

) particles

5 pubs

|0 scripts

T sre

[ testIo

| ) ksksrc "

[lT_L' Folders

| B B

HE B B

¥ B H

OEBEBHBE

BEEHEE®BE

6.2.1. ParaView-compatible Qutput

Graphics output that is compatible with the ParaView package is currently not available.

6.2.2. Time-History Plots

The standard CartaBlanca Tecplot-format output is a series of files, each of which contains state
variable values at a specific time. CartaBlanca also contains a standalone postprocessing code that
can read those files and produce a Tecplot time-history file for a user-specified CartaBlanca variable.
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The time-history file is called y . dat, where "y" is the name of the dependent variable selected by
the user; it is written to the directory that contains the original CartaBlanca Tecplot graphics files.
The time-history code also writes a file called y-summary . txt, which contains diagnostic and
other information for the current run.

A typical .cmd file that starts-up the time-history plot-file generator on Windows is

@echo off

rem

rem DOS batch file to run gov.lanl_cartablanca.graphics.XYPlotsFrame
rem

Title Console
jJava -mx512m -classpath E:\cartablanca\classes;E:\cartablanca\jars\swing-layout-1.0.jar
gov.lanl.cartablanca.graphics.XYPlotsFrame

pause
(where there is no line-break on the java command).

This brings up the frame shown in Figure 43.

£ Make x-y Plot File

=Data Selection

Select Start File Humber of Edits: |

¥ Variable: |Kem 1 -
¥ Variable: |Hem 1 -
Plot Label: |

-l ocation Selection

Particle ID: |

1]

X
Y
Fd

Write Plot File

Figure 43. Frame for creating a time-history plot.

A “start file” must be specified; this is the first CartaBlanca time-edit for the time-history (x-y) plot
you are making. Typically it would be a gr idPhaseNpartitionN-00000.dat or
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plot.N.00000.dat file, or the initial file for a restart run, but you can start anywhere if you wish
(splicing together multiple calculations from restarts is currently not supported). The button Select
Start File shows a file chooser with file-type filter “.dat”. To navigate your file system change
“.dat files”to“All Files” inthe chooser frame. At the desired directory you may wish to
go back to “.dat files”.

The number of consecutive CartaBlanca edits to include after the start file is entered, the dependent
variable is selected from a dropdown list (currently only “time” is available for the x-axis), and an
optional plot label is entered.

The location to plot is specified in the bottom portion of the frame. For particle files, an ID number
(the PID in the original CartaBlanca Tecplot files) or (X, Y, Z) coordinates may be entered; if both
are entered, PID will override the (X, Y, Z). Entering only (X, Y, Z) will result in the particle with
initial coordinates closest to the entered (X, Y, Z) being followed. For Eulerian plot file data, the
node closest to the entered (X, Y, Z) coordinates will be plotted.

The Write Plot File button generates the time-history .dat file and summary . txt file. A
completion message is written to standard output:

Time-history file generator

*x*** Finished file E:\CB_output_files\3D\180ctO6\TotalDisplacement.dat

and the Tecplot-ready (x,y) plot will be in the directory that contains the original CartaBlanca
graphics files:

Tokalbisplacement . dat: 3KE DATFile 10/13/2006 11;13 AM
@ TotalDisplacement-surmmary bk 1KE Text Document 10/18/2006 11:13 AM

The summary file contains time and file stamps, coordinate information, and (for particle files)
displacement information.

6.2.3. Animation

The Tecplot-format graphics output can be readily presented as movies using Tecplot macro files.
Directory output/StyleSheetsAndMacros in the CartaBlanca distribution contains several
sample macro files (with file extension “.mcr”) that can be read by Tecplot to generate movies in
avi format.
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7. MODELING GUIDELINES

7.1. CartaBlanca Test Suite

The CartaBlanca test problems provide many examples of self-consistent models that can serve as
training tools, and as the basis for further model development. They are organized in Java packages,
according to the major physical process to be tested. Appendix A gives a detailed description of the
test suite.

7.2. Time Step Size

In the input file, there are 3 time steps: Initial Time Step, Minimum Time Step and Maximum Time
Step. For the NLExplicit solver, the flow system and energy system have a time step control to satisfy
stability condition. For implicit solver, it can also reduce the time step to achieve convergence.
Nevertheless, it is desirable to specify good choice of Initial Time Step. The Minimum Time Step is
normally a small number like 1.0E-22 in our tests. However, if the time step is reduced to a very
small number from the time step control and takes an unacceptable time to run, the user should
increase the Minimum Time Step to stop the execution in the case. If NLExplicit is used, the user can
do a rough estimate to find a reasonable Initial Time Step and Maximum Time Step. The user may
also put in some number as the Initial and Maximum Time Step and run it for a few steps, let the
code find the time step and then change the input.

7.3. Mesh and Particle Specification
7.4. Partitions for Parallel Computation

In order to achieve the best speedup for parallel calculations (i.e., to approach a speedup by a factor
of N, where N is the number of processors), it is essential to balance the computational load across
the parallel processors. For solid-structure calculations that use the Material Point Method (PIC
method), the total number of computational particles may dominate the runtime; in such cases the
user should be careful to distribute the particles in the computational domain evenly across the
partitions. If the particle and mesh calculations both have significant impact on the runtime, it may be
possible to exploit any symmetry in the problem to set up the partitions.

7.5. Guidelines for GUI Input Panels

Sections 7.5.1 —7.5.11 give additional observations and recommendations on modeling options and
input values, for each of the GUI input panels.

7.5.1. General Information

The binary restart dumps, although not especially time-consuming, can use up a lot of storage space,
and typically not as many as the graphics edits will be needed. Therefore, it is usually a good idea to
set Graphics/Binary Dump Ratio to, say, 5 or 10.

A good value for standard output (console output) Running Parameter initGraphic is 10 time steps.
Also, it is a good idea to redirect the standard output edits to a file, to keep a permanent (and
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complete) record of a run; the console edits can be pasted into an editor, but they can easily overflow
a window’s text buffer.

7.5.2. Physics

Currently the Material Point Method in CartaBlanca does not support implicit time advancement.
Therefore, when computational particles are used to track material interfaces (for example, for fluid-
structure or structure-structure interactions) or history-dependent material effects, the flowSystem
should be NLMul tiPhaseF lowPexp (explicit in pressure).

7.5.3. Solver

7.5.4. Numerical Options

7.5.5. Preconditioner

The SSOR and ILUO solver methods cannot be used for parallel calculations. The code will write an error
message and shut down in this circumstance.

7.5.6. Initial Conditions
7.5.7. Boundary Conditions
7.5.8. Exchange Parameters
7.5.9. Chemical Reaction
7.5.10. Particle Properties

7.5.11. Species Properties
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APPENDIX A: CartaBlanca Test Suite
The CartaBlanca Test Suite comprises two sets of problems:

» 47 fast-running problems that are typically run with the JUnit testing framework [5] (see also
Section 3.4). Each of these problems executes in a few seconds on desktop hardware.

» 5 longer-running problems that are typically run with batch scripts.

The Test Suite provides many examples of CartaBlanca use, and its problems can serve as the basis for
development of new problems.

Note: parameter physicsType: The CartaBlanca inputSpecifier. 10 input file includes a String
parameter called physicsType. Parameter physicsType is used internally to set the high-level physics
solution driver; its default value is NLMultiPhysicsDriver, and it is not part of the GUI.
NLMultiPhysicsDriver is the most commonly used physicsType; it provides a general way to set up
for solving the (multiphase) Navier-Stokes equations, and it controls CartaBlanca physics systems such as
flow system NLMu ltiPhaseFlowPexp and its Java extensions, energy system NLEnergyBasic and its
Java extensions, species system NLSpeciesBasic and its Java extensions, and turbulence system
NLTurbulence (see Section 4.2 on the Physics panel). Normally, if the multiphase flow system is to be
solved, physicsType should be NLMultiPhysicsDriver. Other physicsTypes can be specified;
these are used for special applications or were developed for early code testing. The Test Suite includes a
few such cases, which are indicated below (of course the inputSpecifier. 10 input file can always be
edited by hand to use a non-default physicsType).

CartaBlanca is set up to automatically create inputSpecifier .10 input files for each of the fast-running
problems, which are passed to the JUnit testing framework (see Section 3.4). In the following, each such file
is identified by a unique fi lename . 10 that is specified by the code. Four of the five longer-running

problems can also be written by CartaBlanca methods; the fifth is maintained as a - 10 file (see discussion
below).

Fast-Running Problems

When JUnit is launched, each input file for the fast-running problems is automatically written by a separate
Java routine (method); these methods are built-in to CartaBlanca, and are organized into Java packages
according to the main physical process or code logic that is being tested (all are under

gov. lanl .cartablanca. test). In the following we group the fast-running problems into their
respective Java packages. All input files have extension . 10, and are written to directory testl10. (The
Java classes (- jJava files) that write the input files typically have similar names, with Test appended.)

» advection: AdvZigZagP, cadvexpl, nlcadvntngmres, nlscadvntngmres,
onedcadvexp, scadvgmres. Each is a test of advection, each with its own physicsType:
NLMultiPhysicsDriver, CompatibleAdvection, NLCompatibleAdvection,
NLScalarAdvection, ScalarAdvectionOneD, and ScalarAdvection,
respectively. AdvZigZagP is the newest of the package; it tests advection to equilibrate
pressure in the case where the initial pressures and densities are in a zig-zag pattern.
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analyticsoln: Couette, Poiseuillel, PoiseuilleCylind,

Poiseuillel RF. Test analytic solutions including Couette flow and Poiscuille flow in a
2-D region and in a 2-D cylindrical region. These tests are for single-phase viscous
incompressible flows. They use NLMultiPhysicsDriver as the physicsType. These
tests only solve the momentum equation. The PeriodicInY boundary condition is used (see
Section 4.1.3). Poiseui I lel_RF reads a boundary condition data file to set a boundary
condition region.

energy: testNLEnergyBasic, testNLEnergyBasicWithFlowBasic. Both
problems use NLMultiPhysicsDriver as the physicsType; they solve the energy
equation, without or with the momentum equation, with two phases, water and ice, treated as
fluids. Both problems have the same geometry in a 2-D pipe, with cooling sections on the top
and bottom boundaries, and have phase transition from water to ice.
testNLEnergyBasicWithFlowBasic has a background flow in the pipe.

heattransfer: htpcg, htpgmres, htpgmres4thds, nlhtpntngmres. Heat
transfer cases. Each problem has its own physicsType.

miscel laneous: DisOps, DisOpsWithPeriodicity, DisOpsWPInTheta,
Poisson_equation. The first three problems test discrete operators in 3-D, using
physicsType DisOps. DisOps and DisOpsWithPeriodicity use partitions.
DisOpsWithPeriodicity uses PeriodicInX. DisOpsWP InTheta uses
PeriodicInTheta. Poisson_equation tests for Maxwell-equations solution in the
electrostatic limit by solving Poisson's equation in 2-D. The physicsType of
Poisson_equation is ESMaxwel I, and the Solverl Field parameter is Special. Note
that the Java code that writes Poisson_equation. 10 is in file

Maxwel lEquationsTest. java.

mpFlow: these tests are multiphase flow cases, all use NLMultiPhysicsDriver as the
physicsType, to solve the momentum equation only. They have either one or two (or in one
case, three) incompressible fluid phases. They can be put in several groups:

BrokenDamTrislpBasic, BrokenDamTris2pBasic, DamComparison. Broken
dam tests with different geometries.

nimultiphaseflowbasic. A 2-D square box is filled with two incompressible inviscid
fluids, the heavy fluid is on the left half and the light one is on the right, the motion is from
gravity.

NLMultiPhaseFlowViscouslBasic, NLMultiPhaseFlowViscouslimpl.
Both are single phase incompressible viscous flow in a rectangular pipe [0, 5] by [0, 1],

the fluid is at rest initially. The left side has an inflow boundary condition, with volume
fraction and velocity specified, the right side has a pressure boundary condition with pressure
specified. The fluid moves accordingly. They use flow systems
NLMultiPhaseFlowBasic and NLMultiPhaseFlowlmpl, respectively.
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NLMultiPhaseFlowViscous2Basic,
NLMultiPhaseFlowViscous2ImplStress,
NLMultiPhaseFlowViscous2Impl. NLMultiPhaseFlowViscous2Basic has
two-phase incompressible viscous flow in a rectangular pipe [0, 5] by [0, 1]. (However, the
second fluid is set to an initial volume fraction of 0.0). The fluid is at rest initially. The left
side has an inflow boundary condition, with volume fraction and velocity specified (the
second fluid has volume fraction 0.0), the right side has a pressure boundary condition. The
fluid moves accordingly. Along part of the top and bottom of the pipe, there are boundary
conditions of type wal I, with velocity set to zero (“sticky” boundaries).
NLMultiPhaseFlowViscous2ImplStress and
NLMultiPhaseFlowViscous2Impl have one fluid phase in a [0, 1] by [0, 1] grid; along
the top (Y = 1.0) the X-velocity is set at 1.0 cm s with a wal I boundary condition. These
problems use flow systems NLMultiPhaseFlowBasic,
NLMultiPhaseFlowImplicitStress, and NLMultiPhaseFlowlmpl, respectively

Smal lHGLayerT4pBasic, Smal lHourGlassT4pBasic, trickleBasic. The first
two problems have two-phase incompressible flow in an hourglass geometry; a heavy fluid is
above a light fluid, and flow is from gravity. Triangle elements are used for the mesh.
trickleBasic has three fluids with different densities in a rectangular grid with
quadrilateral elements.

particle: All use the MPM/PIC particle method (with the exception of problem
testParticlePiston, as described below) with physicsType
NLMultiPhysicsDriver, and use flow system NLMul tiPhaseFlowPexp (explicit
for solving the momentum equation), with two or more phases. Phases represented by
particles are solid materials. A fluid phase (air, or other gas) is also present. In most cases,
only the momentum equation is solved. In testParticleWithFlowAndEnergyPexp
the momentum and energy equations are solved. In
testParticleWithFlowAndReactionl and
testParticleWithFlowAndReaction2 momentum, energy, and species equations
are solved, with chemical reaction. The following tests are in this group:

testBulletPlate. A lead bullet penetrates an aluminum plate in a 2-D box with air in the
background.

testParticleCylindrical. A tungsten projectile penetrating a target in 2-D
cylindrical geometry.

testParticleDamage. A lead projectile penetrating a concrete target in a 2-D box, to test
solid damage.

ParticleOps. A simple case to test some basic particle operations.

testParticleTranslation. A uniform translation of a solid phase in air in 1-D; uses
inflow and pressure boundary conditions.
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testParticleWithFlowAndEnergyPexp. Two phase case with one particle phase
and one fluid phase. Both phases are present initially, with zero velocity and uniform
temperature; the problem should remain steady.

testParticleWithFlowAndReactionl. One particle phase of high explosive and one
fluid phase of a product gas. There is a simplified one-step chemical reaction from the
explosive to the fluid phase.

testParticleWithFlowAndReaction2. Dump/restart test. Restarts the calculation
from a dump file written by testParticleWithFlowAndReactionl and continues for
additional steps.

testParticleWithFlowPexp. A solid bar with initial velocity drops in air in a 2-D box.

testParticleWithFlowPexp4p. A parallel run of testParticleWithFlowPexp
with 4 processors (it runs even if there is only one CPU).

testParticlePiston. Solves the momentum equation for a piston in gas, in 1-D, using
the solveStress option (see Physics panel, Section 4.2). This is an alternative way to solve for
stresses in solid materials, where only the ALE grid is used (particles are not used). Note that
the current selection of Use Particles for the problem’s ViscousSol 1d material is not
necessary.

shortTungstenParal lel. Two solid phases in air, using a partition file for parallel
calculation. Note that the Java code that writes shortTungstenParallel . 10 is in file
ParticleParallelTest. java.

testParticleSinglePhaseTranslation. Translation of a solid phase in 1-D (no
fluid is present); uses a single pressure boundary condition.

» species: nlspecies, nlmasstransfter. nlspecies uses the
solveSpeciesTransport option (see Physics panel, Section 4.2), with a single, one-species,

incompressible fluid. nImasstransfer has two phases, with two species in each phase.

Longer-Running Problems

The five longer-running problems, which provide very detailed code tests, are typically not run as
part of the JUnit testing, but rather by Los Alamos-developed batch scripts. Input files for four of the
five longer-running problems are written by CartaBlanca methods, similar to the fast-running
problems; the fifth input file, LongTungsten, is maintained separately as a .IO file that is read (and
slightly modified) by a CartaBlanca Java method that creates the version that is tested. The five
methods that create the five longer-running . 10 input files are in package

gov.lanl _cartablanca.test._particle.

The five longer-running problems are:

testLongSpal ling. A spalling problem, in which a short plate impacts a long plate, and the
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combined stress wave breaks the long plate in the middle. A 2-D quadrilateral mesh is used.

LongTungsten. A tungsten projectile penetrating a target. A 2-D quadrilateral mesh is used.
The basic input specifications are maintained in file LongTungsten .10, in directory testlO.

testLongVibrationShell. Tests a vibrating shell, formed by two concentric spheres. A
polar coordinate shape QUADS mesh is used with a cy l indrical coordinate system. Initially
an inward radial velocity of 5000 cm s is applied to the particles that comprise the shell. The
resulting vibration period is compared to the theoretically expected value.

testLongVibration. Originally developed to test energy conservation over time. A 2-D
quadrilateral mesh is used.

testLongVibrationld. Originally developed to test the convergence of the MPM/PIC
method, in 1-D.
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APPENDIX B: CartaBlanca Release Package

The top-level files and directories in the unzipped CartaBlanca release file are shown in Fig. 44.
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Figure 44. CartaBlanca release directories and files (top level).

Directories that have been used in this document are:

cartablanca: The top-level directory. Includes JBuilder project files rungui . jpr,

cbphysmain. jpr, and cbtests. jpr, that run the GUI, the main code, and the JUnit short-




running test suite, respectively. By default, the GUI and main code will read file
inputSpeciftier. 10 from this directory. Also has Windows/DOS command file rungui .cmd
to run the GUI without the JBuilder interface.

meshes: A large collection of node, mesh, and partition files for 1-D, 2-D, and 3-D problems,
organized in subdirectories according to the various geometries included. All meshes used by the test
suites are included here. Typically, a user will put a new set of mesh files in a new subdirectory in the
meshes hierarchy.

output: By default, the code will write dump and graphics files to directory output. Includes
Windows/DOS command file delplot.cmd, which can be used (with care) to clean up the
directory.

particles: Includes a single sample file that specifies particle coordinates for MPM/PIC input.
Typically, the user will choose automatic particle generation in the General Information panel,
specifying the number of particles in the Particle Properties panel.

scripts: Unix scripts, some of which run the GUI, the main code, and the JUnit short-running test suite.

Src: Java source code for the main code and the GUI. Also has package
gov.lanl _cartablanca.main.generatemesh and file
gov/lanl/cartablanca/graphics/XYPlotsFrame. java.

testl0: The - 10 files for the fast-running test problems are written here by the JUnit framework. Also has
the main specification of the LongTungsten test problem.

tstsrc: Java source code to generate the fast-running and four of the longer-running test problems. Also
has code that controls generation of the LongTungsten test problem. Uses code from directory Src.
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