2005 R&D 100 Entry
Brian VanderHeyden

CartaBlanca

A High-Efficiency, Object-Oriented, General-Purpose
Computer Simulation Environment

Unlocks business-proven Java
efficiency for scientific computing

Integrates Extreme Programming’s JUnit
testing for efficient team development

Uses advanced numerical algorithms

;' .g ” ry f‘... i
UCEUFe interaction problems
<ALl
j »

irs

"
L
5 o

Yy
sighed for complex multiphase and

A

el

2005 R&D 100 Entry

CartaBlanca: A High-Efficiency,
Object-Oriented, General-Purpose
GComputer Simulation Environment

Brian VanderHeyden

ABOUT THE COVER

CartaBlanca, the first Java-based simulation software package,
can be used to simulate explosions of different kinds. Shown is

a simulation of an exploding cylindrical blast container, these
containers are used to dispose of an improvised explosive device
(IED). The simulation shows the motion of the broken IED
hemispherical case, blast wave through the gas (air), and deflection
and deformation of the cylinder. The colors show the different local
particle pressures. These results are being visualized at

Los Alamos National Laboratory’s RAVE (Reconfigurable
Advanced Visualization Environment) facility, where scientists can
see the data in a three-dimensional mode that provides greater

insight into the details of the simulation.

A
. E)ZAlamos

NATIONAL LABORATORY
EST.1943

The Regents of the University of California have rights in this submittal under their
contract with the DOE for operating Los Alamos National Laboratory. Distribution and
use of the submittal except for purposes of award review must receive prior approval
from The Regents of the University of California.

Features

Applications

Benefits

2005 R&D 100 Entry

Executive Summary

CartaBlanca: A High-Efficiency, Object-Oriented,
General-Purpose Computer Simulation Environment

CartaBlanca brings the tremendous efficiency of the Java
programming language to the world of scientific computing. The
first of its kind, CartaBlanca is a state-of-the-art, object-oriented
simulation software package poised to offer next-generation
modeling and simulation capabilities to scientists in a wide-

ranging number of disciplines. Written in the “developer friendly”
Java language, it enables computer code developers to simulate
complex nonlinear effects such as airflow through a turbo booster,
blast effects on buildings, or heat transfer along a semiconductor,

to name but a few of its many applications. Because CartaBlanca

is a Java-based software package, the code is much easier to use,
manipulate, and modify than are codes based on such programming
languages as FORTRAN or C++. CartaBlanca takes advantage of the
improved execution speed offered by the HotSpot™ compiler, which
allows performance on par with FORTRAN and C++. CartaBlanca
opens up the field of physical modeling to a much broader set of
programmers because Java is one of the most common and efficient
business software languages. CartaBlanca is modular and allows for
rapid software application or simulation code prototyping; strong,
extensive compiler checking; plug-and-play module insertion for
modeling physical systems; solutions with consistent results; and
integrated unit and regression testing.

* Aerospace engineering

* Animation and special effects
» Computational fluid dynamics
¢ Fluid/solid interactions

+ Automotive design

* Weapon/target interactions

* Pharmaceutical processing

* Homeland defense

* Provides accurate, physics-based computer simulations in Java

* Provides faster and lower-cost development

 Allows for easily modified and integrated code

* Runs on most hardware platforms without modification, from
single PCs and Macs to parallel-processing supercomputers

* Increases software developer productivity

* Allows state-of-the-art simulations for complex reactive flows

Page 3 CartaBlanca

2005 R&D 100 Award
Entry Form

1. Submitting organization

2. Joint submitter

3. Product name

4. Brief product description

5. Eligibility: When was this
product first marketed or
available for order?

6. Principal developer

2005 R&D 100 Entry

Organization
Address

City, State, ZIP
Country
Submitter
Phone

Fax

E-mail

AFFIRMATION:

Los Alamos National Laboratory
Mail Stop B216

Los Alamos, NM 87545

USA

W. Brian VanderHeyden

(505) 667-9099

(505) 665-5926

wbv@lanl.gov

I affirm that all information submitted as

a part of, or supplemental to, this entry is
a fair and accurate representation of this

product.

(Signature) W ' g .

N/A

o) Aéfh

CartaBlanca: A High-Efficiency, Object-Oriented, General-Purpose

Computer Simulation Environment

CartaBlanca is the first Java-based, object-oriented simulation
software package that provides simulation prototyping research
code to use in modeling a wide variety of physical systems such as
chemical reactors, projectile/target interactions, and urban bomb

blasts.

Month
Year

Name

Position
Organization
Address

City, State, ZIP
Country

Phone

Fax

E-mail

Page 4

December
2004

W. Brian VanderHeyden
Technical Staff Member

Los Alamos National Laboratory
Mail Stop B216

Los Alamos, NM 87545

USA

(505) 667-9099

(505) 665-5926

wbv@lanl.gov

CartaBlanca

7. Product price

8. Do you hold any patents or
patents pending on this product?

9. Primary function

2005 R&D 100 Entry

$10,000 per license (preliminary price)

YES Patent pending, and this technology is copyrighted.

Modern scientific and engineering simulation projects have
become large-scale and complex endeavors. Very often, simulation
projects involve the modification of existing software to produce
new capabilities. These projects typically require constant and
ongoing attention from a variety of code developers. In fact, on
some scientific projects, code developers outnumber the actual users
for a significant portion of the lifetime of the project. As such, it is
useful for scientific and engineering code developers to use modern
productive software languages to produce a “developer-friendly”
simulation code. It is just as important for such code to be developer-
friendly as it is to be user-friendly. This approach is different from
the mainstream approach where user-friendly interfaces are wrapped
around less-developer-friendly legacy code written in FORTRAN
or C++. Developers need to collaborate with each other and
simultaneously use the codes to develop large-scale simulations.
CartaBlanca is built for just such a purpose.

CartaBlanca is an object-oriented, nonlinear simulation and
prototyping software package whose primary function is to assist
code developers in solving a wide range of hydrodynamics and
fluid/structure interaction problems. Because CartaBlanca is written
entirely in Java, it provides scientists and engineers with developer-
friendly software to use in producing large-scale computational
models. CartaBlanca allows users to solve a variety of nonlinear
physics problems, including multiphase flows, interfacial flows,
solidifying flows, and complex material responses. CartaBlanca
makes use of the powerful, state-of-the-art Jacobian-free
Newton-Krylov method to solve nonlinear equations in a flexible
unstructured grid finite-volume scheme. CartaBlanca couples the
particle-in-cell (PIC) method—a technique used to model discrete
objects—with its multiphase flow treatment to model how fluids
interact with solid materials that can undergo deformation, damage,
and failure.

Because of Java’s marketplace strength, a wealth of third-party
off-the-shelf software components is available for use. One notable
example is the JUnit testing framework that allows users to write
repeatable tests and a series of typical problems. CartaBlanca uses
this third-party software to allow developers to see where the “bugs”
are or where their code breaks down. In fact, because CartaBlanca
is Java based, many other Java-based components can be used with

Page 5 CartaBlanca

10A. List of competitors

2005 R&D 100 Entry

the software package. Examples include existing databases and
computer-aided design tools.

The Java language includes a facility for spawning “threads” or
processes that run simultaneously and can communicate with each
other, but are controlled from the same program. CartaBlanca’s
software design uses this ability to enable data-parallel, shared-
memory, and distributed-memory computations on a wide variety
of unstructured grids with triangular, quadrilateral, tetrahedral,
and hexahedral elements. This design allows CartaBlanca to
handle complex geometrical shapes and mathematical domains.
Java’s simplicity greatly simplifies both code maintenance and
modification because the same code is used for both serial and
parallel calculations. Java’s object inheritance allows developers
to construct a hierarchy of physics-systems objects, linear and
nonlinear solver objects, and material response behavior objects.
This hierarchy simplifies code development while fostering software
reuse. CartaBlanca’s multithread nature permits easy portability
to networked computers with the help of third-party distributed
shared-memory systems such as JavaParty (http://www.ipd.uka.de/
JavaParty).

Finally, CartaBlanca employs Java’s powerful swing-graphics
facility to provide an extensive, user-friendly graphical interface, or
GUI, for problem specification and data input.

Details of the theoretical approaches used in the development
of CartaBlanca are provided in the appendix in “CartaBlanca—A
Pure-Java, Component-based Systems Simulation Tool for
Coupled Nonlinear Physics on Unstructured Grids” (excerpt)
and “Implementation and Performance of a Particle in Cell Code
Written in Java” (excerpt). The appendix also includes letters of
recommendation and examples of CartaBlanca’s structure and
capabilities.

CFDLib—A Los Alamos library of computer codes written in
FORTRAN 77. These codes are capable of solving a wide range of
computational fluid dynamics problems (http://www.lanl.gov./orgs/
t/t3/codes/cfdlib.shtml). The library is available (for a fee) from the
Energy Science and Technology Center (ESTSC) (phone
865-576-2606, estsc@adonis.osti.gov).

CHAD (Computational Hydrodynamics for Advanced Design)—
Another computer code developed at Los Alamos National
Laboratory. CHAD has been intensively used by the automobile
industry and in defense projects. It has been written to take full
advantage of parallel computers, specifically for chemically reactive
flows. For information, contact Manjit Sahota (sahota@lanl.gov).

Page 6 CartaBlanca

FLUENT—A commercial computational fluid dynamics software
package developed and marketed by Fluent, Inc., of Lebanon,
New Hampshire. Fluent, Inc., is the world’s largest provider of
computational fluid dynamics software and consulting services. The
FLUENT software is written in the C++ language and employs an
unstructured grid capability.

2005 R&D 100 Entry Page 7 CartaBlanca

‘swoqoid FurSue)-ysow pojeIoosse J0 SAYSAW FUIAOW

pareordwos noyyim padojoAdp oq UBD SUOIR[NWIIS ASAY) JO [V "SUe) XIw Ul siofjoduwr

JO $109}J9 9Y) SB [[oM SB ‘S[BLIJRW PI[OS [JIM SOABM)SB[q PIN[J PUB SPINJJ JO SUONOBIIUI
oY) dre[nwIS UBd ‘qIIAD 9! ‘Bour[geIR) WJIN Y4 UOHBUIQUIOD Ul poypaw DI)
Suisn Ag ‘eoue[gelie)) Ul 9[qB[IBAR 9INJBYJ PIJUBAPE Isow oy} st iYL, “(JNJIN) poyrouwt jutod
[eLId)eW 9y} pUB PoyIawWw DI Yyl suisn suonoeroul pmyj/oronted sjuowsdwr eouejgere)

ON

ON

SO

SO

JsuondeIdu
PIMg/pPnIRd SMO[IV

‘suoryenba Jo swdIsAs Jeauruou 10j suonnjos pajdnod AJny snqoi sopraoid
1e}) onbIuYo9) [EONRWSYILW B IOA[OS AO[ATS[-UOIMIN J9IJ-UBIqOJR[B SOSN BoUR[ENR))

ON

ON

ON

SO

LAOATY-U0IMAN
dIJ-ueIqode SIS

"OSUQJOpP puB[oWOY pue ANsSnpul

ur suonjeorjdde Auew yym ouo jng ASo[ouro9) JNOYJIP © SI uone[nwis Moy} aseydnny
“10Jem Ul s9[qqnq Ik 9q pinom mofj aseydnnw e jo ddwexa adwis suQ ‘saseyd
u2am3aq 93eddifs smoje pue moj aseydnnw oy} ur oseyd yoes 10J suorenbs wnuowow
ordnnw Jo uoneI3aul oy} SIA[OAUL YoIym ‘mopy oseydnnw ony sajeiodioour eouejgere)

SO

ON

SO

SO

(Morg dseydnniy

*IOYJOUE 0} QUIYOBW
QU0 WOIJ SUIAOW Ul POYIPOW 90IN0S Y} dAeY ‘Apjuonbaiy ‘pue pajiduiooar oq sAemie 3snw
soSenSue[J0UJ0 UI UYLIM SOPO)) "SOPOD OINOS I} INOYIIM UIAD d[qeiod S 0pood BAB[

ON

ON

ON

SO

Annqeriod supxy

‘sjuouodwod ur-doIp 10} SMO[[e OS[e 31 pue ‘A103031Ip Y} 0} S3UNIS UONBULIOJUL O} JABS

0} pasn 9q os[e ued 303[qo Yy, ‘uonewojul weidoid 10J papadu se paronb oq ueos s103[qO
‘wes3oid eae[FunnNo9x9 UL UNIM dWeU Aq pajendiuel pue poAdLIL 9q 0} SAINJONIS

BJEp PUB SOSSE[O 1N0qe UOTBULIOJUI Smo[[e ‘0fenSue| eAe[oY) 0} onbrun o1njes) € ‘Uonod[joy

ON

ON

ON

SO

Juonday

"s9[1J ysow oy} 10J 3dooxa syndur paseq-1xe) 10J podu oy} Suneulwi[e ‘A[pudLy-1osn
K1oa weidoad oy soxew Ajiqe Siy [, Areiqr Suims s eAe[Juisn A[Ised uopLIm 9q Ued [ND V

SO

N

oN

SO

¢(1ND) ddepu]
198 sydern

*opoo 1oy Sunse) pue urfidwiod ur eour[gele)) YIm Pasn 9q Ued U [S Yons SANIIoe]
3unse) Jjoys-oyi-jJo ‘vrqereae sofexoed aremijos Ayed-piry) Jo yjeom ay) Jo asnedoqg

ON

ON

ON

SO

(8unsay
apo)) Aseq SMoO[V

'sopoo [of[ered pue [eLIes Y10q

Jo ooueuojurew pue Jurwwerdordar gjeredas ‘Aaeay sa1nbal souryorw AI0WIW-PIINGLISIP
10 AJoWwawW-pateys ul 9pod [o[jeted Jo asn oy} ‘QrigAD Pue ‘AVHD ‘INANT] Ul "waisks
A1owouw pajnqgrnsIp & Ul 9pOJ BAE[B JO UOHNIIXI Y} MO][e 0) d[qe[TeAe ore sweidord
Kyred-pary 1, "souryoewr AIoWAW-paleys 10j uonezijd[jered pealy) ul-jIng e sasn edue[geie)

ON

ON

ON

SO

Juopezip[eIed
pEAIY L u-yIng

“BAR[PIJUSLIO-103[qO

JO saIned) AOUQIOLJO oY) WIOLJ J1JoUdq 10U Op Y nsal e sk ‘pue 9[A)s Jurwwer3ord 1onduwoo
eanpaooid JeuonudAuod asn INANTd Pue ‘AVHD ‘QUidd) Ananonpoid rowweidord
sQouRYU pue A[pudLy-1odojoadp oen3ue] 1o)ndwoos e sayew pjudLIo-103[qo Sureg

ON

ON

ON

SO

{PAUAIO-19[q0

‘suorjeordde o1J13udI0S pue ssaulsnq Yyjoq 10j
93en3ue] oannodwos e Jurooaq osye si eag[s[oo) owweidord Jo roqunu 93ny & 03 SPeI|
eAR[‘Qoudsaid ooejdiosrewt Suimoid pue Suons K194 € Jo asneodq "NV ILIO Pue ++) se

yons sagengue| [BUONUIAUOD 3im pateduwioo uoym judwudo[orsp 10j d5enJue] JUSIOIIJO dIOW
©9q 0} pojesIsUOWp Uddq sey eaer -oFen3ue] Sunndwoo uropow ‘ojes-od4) snqoi e si eaef

ON

ON

ON

SO

GVAVS Ul UMM

SpUIW W)

INANTA

dVHD

qriadd

vuR[gR)IR)

sId)oweIe

X14gpul EQ%.E@QEOU q0]

10C. Improvements on
competitive technologies

2005 R&D 100 Entry

CartaBlanca is written in a widely used business computer
language. CartaBlanca (Version 2.0) is a large-scale, scientific and
engineering software application written in Java. CFDLIib is written
in FORTRAN 77, which is older technology. CHAD is written in
FORTRAN 95, which is object-based but not object-oriented and
requires greater effort from the developers. The inherent parallelism
of the Java language leads to automatic parallel code on shared-
memory machines.

CartaBlanca minimizes development efforts for simulation
projects. Using object-oriented Java, code developers can produce
a mature code more quickly, with better interaction between
developers, and without sacrificing performance. Because Java is a
clean, type-safe programming language, CartaBlanca can support
a highly interactive and interdependent development team. Using
CartaBlanca, developers can cut simulation code development time
by a third.

CartaBlanca is user-friendly. Since Java supports GUIs,
CartaBlanca is very user-friendly. Because of the GUI interface, both
specifying the problem and inputting the data are much easier in
CartaBlanca than in CFDLib, CHAD, or FLUENT.

CartaBlanca’s speed is comparable to the competitors’ speed.
The performance speed of Java is now comparable to FORTRAN’s,
and because so many code developers work in Java, its performance
will continue to improve. Currently, CartaBlanca achieves
performance speeds equivalent to the speeds of similar C language
codes. We expect CartaBlanca’s performance speed to increase in
the future because of the attention industry is paying to Java.

CartaBlanca, even in compiled form, is portable without
any modification. Both CFDLib and CHAD must be frequently
modified and always recompiled when transferred from one
computer to another. Because CartaBlanca is written in Java,
the code does not need to be modified or recompiled when it is
transferred from one computer to another.

CartaBlanca uses a Jacobian-free Newton-Krylov solver.
This solver is an improvement upon our competitors. The Jacobian-
free Newton-Krylov solver enables much faster solution of the
conservation equations than is possible with the relatively primitive
solvers available in CFDLib and CHAD.

CartaBlanca uses the particle-in-cell (PIC) and material point
method (MPM). CartaBlanca, like CFDLIib, uses the PIC method
and MPM, along with the multiphase flow formulation, to enable the
simulation of complex fluid structure-interaction problems such as a
blast between buildings.

Page 9 CartaBlanca

11A. Principal applications

11B. Other applications

2005 R&D 100 Entry

Aerospace and Defense—CartaBlanca is used to simulate
projectile/target interactions for the Army. The PIC method in
CartaBlanca was used to simulate the large deformations in both
the projectile and target. Large-deformation simulations are
easier to produce than those using conventional Lagrangian mesh
approaches that suffer from mesh tangling, or those using a pure
Eulerian approach, which suffer from excessive artificial diffusion or
boundary smearing.

Chemical Process—CartaBlanca is used to simulate and
optimize centrifugal contactor-separator devices for the recovery of
actinides from a waste stream. CartaBlanca’s multiphase flow and
unstructured grid technology is key for developing these simulations.

Homeland Security—CartaBlanca is used to simulate the effects
of a small nuclear blast between buildings. The calculation includes
not only the effect of the blast wave through the atmosphere, but also
the transmission of blast and damage in the building materials.

Heat Transfer/Phase Change—CartaBlanca is used to develop
simulation algorithms using the Newton-Krylov solver for phase-
changing flows in metals such as those encountered in industrial
casting operations.

Reactive Flows—CartaBlanca is used to develop models for
safe handling of high-explosive charges. These simulations use
CartaBlanca’s multiphase flow code with detonation chemistry.

Animation and Special Effects—Physical models are used in the
entertainment field for special effects depicting realistic fire, water,
air, hair, and moving objects. CartaBlanca can be used to simulate
the movement of hair and other special effects for computer games,
computer animation, video games, and the film industry.

Automotive Industry—CartaBlanca can be used to simulate
reactive flows in combustion chambers. The PIC method can be used
to simulate moving valves and pistons in an engine and show the
effects of heat transfer in each of the moving parts.

Biomedical Industry—CartaBlanca can be used to simulate
pharmaceutical centrifugal devices used to separate liquids and mass
exchange operations. The software allows engineers to optimize
device designs.

Oil and Gas Industry—Process equipment design for oil
production fields, including separators for drilling fluids, can be
simulated and optimized with CartaBlanca.

Environmental Industry— CartaBlanca can be used to design
and optimize waste cleanup operations.

Page 10 CartaBlanca

12. Summary

2005 R&D 100 Entry

Nuclear Plant Safety Industry—CartaBlanca can be used to
accurately simulate the multiple physics involved in a nuclear plant
coolant accident.

Accurate, physics-based computer simulations are widely used
in all branches of science and engineering. When a new airplane
turbine is designed, physics-based computer simulations are used
to predict the performance of the finished part and to make changes
before the aerospace company manufactures a prototype. In addition
to being important in the technical disciplines, physical models
are also used in the entertainment field, i.e., film industry, video
games, and computer games. Physics-based computer simulations
are the drivers behind special effects depicting realistic fire, water,
air, hair, and moving objects. Simulation software for these special
effects can be quite complex. Very often, simulation projects involve
the modification of existing software to produce new capabilities.
Furthermore, program or project goals change frequently as funding
priorities evolve or as research developments lead to new branches
of investigation. As such, code development is often the bottleneck
on these projects. This bottleneck becomes a substantial incentive
for software development packages that are developer-friendly—
easy for scientific and engineering software developers to modify
and extend their code.

CartaBlanca is the first scientific software package to employ the
full power of Java, a language that continuously derives benefits
from the extensive community of developers and supporters.
CartaBlanca is a modern flexible software package for large-
scale computational method and physical model development.
CartaBlanca allows scientific and engineering code developers to
produce and maintain less costly code that is not only user-friendly,
but also developer-friendly.

Java is a programming language that addresses deficiencies in
the C++ object-oriented language. Because of features such as type
safety, array-bounds checking, and simplified object-oriented syntax,
Java is a more efficient programming language. According to G.
Phipps in “Comparing Observed Bug and Productivity Rates for
Java and C++" (Software: Practice and Experience, 1999;
29:345-348), Java typically has two to three times fewer bugs and
30%—-200% more code development productivity than C++. Since its
introduction in the mid-90s, Java’s superiority in terms of security,
portability, and code-developer productivity has led to a rapid
growth in the use of Java as the programming language of choice
within the business community. So far, scientists and engineers
have been reluctant to abandon old languages such as FORTRAN
and C++ because of the small number of successful Java scientific

Page 11 CartaBlanca

2005 R&D 100 Entry

or engineering applications. CartaBlanca is the platform for future
scientific code developers.

CartaBlanca contains advanced nonlinear solver technology
through the Jacobian-free Newton-Krylov scheme. At the same
time, CartaBlanca’s GUI capabilities lead to an extremely user-
friendly problem specification. CartaBlanca has a novel design and
uses object-oriented Java to provide a component-like computer
architecture for the solvers and for the physics and material response
modules.

In summary, CartaBlanca represents a paradigm shift in scientific
computing and takes advantage of the wealth of capabilities built
into the Java programming language. In addition, CartaBlanca
incorporates advanced numerical algorithms, such as the Newton-
Krylov solution method and the multiphase particle-in-cell
treatment, that allow scientists and engineers to simulate complex
phenomena such as fluid/structure interactions and reactive flows
with phase changes.

A DVD with a short clip showing CartaBlanca’s capabilities
accompanies this entry. The clip shows CartaBlanca’s portability
from PCs and Macs to parallel-processing supercomputers.

Page 12 CartaBlanca

Organization Data

13. Chief executive officer

14. Contact person to handle
all arrangements on exhibits,
banquet, and publicity

15. To whom should reader
inquiries about your product be
directed?

2005 R&D 100 Entry

Name

Position
Organization
Address

City, State, ZIP
Country

Phone

Fax

E-mail

Name

Position
Organization
Address

City, State, ZIP
Country

Phone

Fax

E-mail

Name

Position
Organization
Address

City, State, ZIP
Country

Phone

Fax

E-mail

Page 13

G. Peter Nanos, Jr.

Director

Los Alamos National Laboratory
Mail Stop A100

Los Alamos, NM 87545

USA

(505) 667-5101

(505) 665-2679

nanos@lanl.gov

Cindy Boone

R&D 100 Coordinator

Los Alamos National Laboratory
Mail Stop C333

Los Alamos, NM 87545

USA

(505) 667-1229

(505) 665-3125

boone@lanl.gov

W. Brian VanderHeyden
Technical Staff Member

Los Alamos National Laboratory
Mail Stop B216

Los Alamos, NM 87545

USA

(505) 667-9099

(505) 665-5926

wbv@lanl.gov

CartaBlanca

Appendix List of Co-developers

Letters of Recommendation

CartaBlanca Structure and Capabilities
CartaBlanca—1Java-Based Solver Environment
CartaBlanca’s File Structure
CartaBlanca Graphical User Interfaces
CartaBlanca’s Test Interfaces
CartaBlanca Simulations

CartaBlanca—A Pure-Java, Component-based Systems Simulation
Tool for Coupled Nonlinear Physics on Unstructured Grids (excerpt)

Implementation and Performance of a Particle in Cell Code Written
in Java (excerpt)

Los Alamos Profile

A DVD is included in this entry.

2005 R&D 100 Entry Page 14 CartaBlanca

List of Co-developers

Name
Position
Organization
Phone

Fax

E-mail

Name
Position
Organization
Phone

Fax

E-mail

Name
Position
Organization
Phone

Fax

E-mail

Name
Position
Organization
Phone

Fax

E-mail

Name
Position
Organization
Phone

Fax

E-mail

Nely T. Padial-Collins

Technical Staff Member

Los Alamos National Laboratory
(505) 665-0931

(505) 665-5926
nelylanl@lanl.gov

Duan Z. Zhang

Technical Staff Member

Los Alamos National Laboratory
(505) 665-4428

(505) 665-5926
dzhang@lanl.gov

Qisu Zou

Technical Staff Member

Los Alamos National Laboratory
(505) 664-0109

(505) 665-5926

qisu@lanl.gov

Giovanni M. Lapenta

Technical Staff Member

Los Alamos National Laboratory
(505) 667-4394

(505) 665-7150
lapenta@lanl.gov

Stefano Markidis

Postdoctoral Staff Member

Los Alamos National Laboratory
(505) 665-7594

(505) 665-7150
stefano@lanl.gov

2790 Skypark Drive, Suite 310 » Torrance, CA 90505-5345 ¢ (310) 530-1008 » (310) 530-8383 Fax

28 January 2005 J0548WW012805

Dr. Brian VanderHeyden

Group Leader

Theoretical Division Fluid Dynamics Group
Mail Stop B216

Los Alamos Nationial Laboratory -
Los Alamos, NM 87545

Subject: Support for “CartaBlanca” — A high efficiency complex physics coding environment
written in the Java programming language

Dear Dr. VanderHeyden and Members of the R&D 100 Award Committee:

ACTA is pleased to write this letter in support of your proposed research. We sought to team
with Los Alamos National Laboratory on our Army Research Office (ARO) sponsored Small
Business Administration (SBA) Small Business Technology Transfer (STTR) Project entitled
“Advanced Computational Algorithms for Simulating Weapon-Target Interaction,” because of
LANL’s reputation in this research area and the particular advantages of CartaBlanca for
simulating material penetration problems involving Army munitions. We used the code in our
Phase I feasibility study and were awarded a 24 month Phase II contract based on the success of
our cooperative research effort.

We are particularly interested in the capability of CartaBlanca to simulate the penetration of
structural materials as well as armor plate with exploding munitions. The multi-phase flow
capability offered by CartaBlanca was amply demonstrated in Phase I where we simulated the
penetration and detonation of an explosive material by an inert round.

In Phase II, we plan to validate material models in CartaBlanca using test data provided by the
Army. Model validation and predictive accuracy assessment are among ACTA’s specialties.
We are currently under contract with the AFRL Munitions Directorate at Eglin AFB to develop
high—fidelity physics-based (HFPB) fast-running models for weapon-target interaction involving
Air Force munitions, and plan to pursue similar modeling efforts involving Army munitions,
using validated material models in CartaBlanca.

Some other applications of CartaBlanca we plan to pursue during our Phase III
(commercialization phase) include (a) MOUT (Military Operations in Urban Terrain) related
problems such as warhead penetration of urban materials, secondary debris generation and their

TORRANCE, CALIFORNIA « LOMPOC, CALIFORNIA « VANDENBERG AFB, CALIFORNIA « CAPE CANAVERAL, FLORIDA

Los Alamos National Laboratory
Page 2
January 28, 2005

effect on people nearby, (b) Breakup of space boosters, missiles and thermal ablation of resulting
debris during their travel back to earth, and (c) modeling explosions of land mines and their
effect on vehicles and occupants of affected vehicles.

CartaBlanca is written in java and therefore can be easily ported to many types of computers and
operating systems. ACTA has both PC workstations and two Beowulf clusters running Linux.
CartaBlanca’s ability to run parallel in the Beowulf cluster is very useful for us when we plan to
run large problems. CartaBlanca has the capability to automatically verify new implementations
and changes to the code using JUnit. This is very important to us since this is a live program that
gets updated frequently. CartaBlanca has a component design architecture that allows us to add
constitutive models for new materials easily. We plan to port a complex concrete material model
used in Dyna-3D to CartaBlanca next year.

We appreciate the collaborative relationship we have enjoyed throughout Phase 1 and look
forward to the same in Phase II. We wish you well as you seek additional research funding for
this very worthwhile endeavor.

v,

Timothy K. Hasselman, Ph. D.
Director, Engineering Mechanics Division

FEB-07-2005 18:47 FROM:BP OLIFNS RNT

16399616265 TO: SBS6655926 P.1-1

BP Amogo Chemicals Company
* b PTA Amcricss Business Unit
Research & Technology Department

150 W. Warronvillo Raad
Naperville, linols 60563-8460

January 27, 2005 Phons: 030-620-4068

Fax: 630-961-8265

simulatj viron " from tical Djvision of Los Al s
National Laboratory.

Dcar Dr. VanderHeyden and the CartaBlanca Team:

I am writing to endorse your application for the 2005 R&D 100 Award Submission for
“CartaBlanca -- A high efficiency, object-oricnted, general-purpose computer simulation
environment”.

I have becn involved with computer simulation and modeling in the chemical industry for
several decades. It has been my pleasure to sec the three dimensional high fidelity
modeling from DOE National Laboratories such as Los Alamos makes its way from the
national defense mission into helping with civilian R&D.

This type of simulation capability has already hclped my company optimize several of
our complex reactive flow unit operations and has resulted in substantial savings.

Furthermore, I am glad to see you taking the utility of this technology to the next level
with CartaBlanca.

CartaBlanca’s use of Java will vastly improve portability and your object-oriented
component-like design will help make this complex technology more adaptive and useful
to a wide variety of needs. Thesc features should help the petrochemical industry use
advanced simulation much morc effectively in the future.

It is for these reasons that I offer my support and endorsemcnt of the CartaBlanca project
for the R&D 100 award. Good luck!

Sincerely,

C—Afaﬂﬁr f/t;o au(fmulo 4

Christos G. Papadopoulos
Modeling & Simulation Advisor
Leader M&S Network Americas
BP Amoco Petrochemicals

& 5
3 i A
Baver HealthCare BAYER]
Diagnostics Division .
January 28, 20415
Subject: Support for Los Alamos National Laboratory's High Efficiency, Object-
Oriented, Computer Simulation Software - Cartalllanca,
Deae T, VanderHevden and the CartaBlanca Team:
The purpose of this letter is to endorse your application Por the 2003 RE&ED 100 Award
submission for the High Efficiency, Object-Oriented, Computer Siomlation Sollwar: —
CuartaBlanca.
As a Senior R&l Engineer in the medical instroment development industry, I have been
looking for a high efficiency and reusable computer simmlation sollware Dor Clow
simulation so that we can: 1) better understand our medical system design (liguicd
delivery, mixing. . ele; 20 reduce development cyele time; 3) reduce total cost of our
systems. These will allow us o develop more cost efTective and better performing
diagnostics healthcare solutions. Brayor HoalthC LLG
Cliagnostics ori
511 Sonadict Suonuvc

The cormercial Now simolation tools on the market currently are very expensive and not
etticient. [n April, 2004 when T first came across CarlaBlanca's website, I was very
impressed by its capability, that is, Java Object-Oriented bascd amd wilh rich capability in Prore: 914 5310000
flovw simulation.

Tareytonn. MY 10007

In the industrial R&ID settings, there are lens, 17 nol hundreds of networked computers
running either Microsoft Windows, Linux, or UNIEX. During off hours, these computers
usually go to idle state. With the Java language, CartaBlanca will be capable of solving
the same Mow el in parallel by utilizing theve idle networked compurters, regardless
of operation system, daring the night tme and deliver resulls the next moming.

The Object-Oriented natural of CartaBlanca will also allow reuse of ¢lasses easily, hence,
casy maintenance/development of new solyvers.

With its unigue feature in Java, Object-Oriented programming, and rich Now simulation

capabilities, [will recommend CartaBlanca to anyone who performs complex flow
sitmmlation,

sincerely,

Jtoie s

Pei-Ying Hsich, Ph.D,
Senior RE&D Engineer
Baver HealthCare
Diagnostics Division

||
!

I
1T

-

Thaoveeeeis J Ieitsnsne Meseeere) €lemfen
FEuk B 200
Yeaedidvwerni, N e

February 2, 2005

Subject: Support for "CartaBlanca -- A high efficiency, object-oriented, general-purpose
computer simulation envirenment™ [rom the Theoretical Division ol Los Alamos
Mational Lahoratory,

Dear Dr. Vanderllevden and the CartaBlanca Team:

This letter serves to endarse your application for the 2005 R&1Y 100 Award Submission
lor “CartuBlanca -- A high efficiency, object-oriented, general-purpnse computer
simulation environment.”

The Java programming language has been a spectacular success in web and business
computing, Java’s type salety, portability and eflicient language structure have been the
keys to this success. From a software engineering perspective, the Java programming
language also provides an attractive platform for writing numerically intensive
applications. Features such as built-in threads and components for graphical user
interfaces along with true object-oriented programming capabilities make the language
very attractive for 21* century scientific applications. 1BM has been at the foretront of
enabling the use of Java for numerically intensive computing. Cur efforts have included
the high performance Ninja compiler and research on arrav-bounds-check elimination
and semantic inlining to name a few, Ta fully realize the poal of widespread use of Java
scientific computing, we believe it crucial to have examples of practical applications that
can serve as both a test bed and a pilot for the greater scientilic and ¢ngineennyg
coommunity. CartaBlanca has served this role. It has demonstrated the feasibility of using
Java along with its advanced features to produce a state-of-the-art scientific computing
covironment. We cxpect that the continued suceess of the CartaBlanca code project will
encourage others to explore the use of Java for a wide variety-of numerically intensive
applications. Thas will foster a synergy between scientific and business computing that
will vield great benefits for all. For these reasons, we unreservedly endorse the
CartaBlanca project for an R&D 100 award,

Best Regards,

1-.1“_.4_”:,_511' d___.JF"n.'n

Manish Gupta

Senior Manager, Emerging Svstemn Sofitware
IBM T. 1. Watson Research Center

W. B. VanderHeyden

Group Leader

Theoretical Division Fluid Dynamics Group

TA-3, Bldg 200, Mail Stop B216 r1

Drop Point 030200018 | .d

SM-30, Bikini Atoll Road

Los Alamos National Laboratory .

Los Alamos, NM 87545 pervasivetechnologylabs
AT INDIANA UNIVERSITY

January 24, 2005

Subject: Support for “CartaBlanca -- A high efficiency, object-oriented, general-purpose
computer simulation environment” from the Theoretical Division of Los Alamos
National Laboratory.

Dear Dr. VanderHeyden and the CartaBlanca Team:

This letter serves to enthusiastically endorse your application for the 2005 R&D 100
Award Submission for “CartaBlanca — A high efficiency, object-oriented, general-
purpose computer simulation environment.”

As you know, I have been dedicated to the cause of using Java for scientific computing
applications. Just as the Java programming language has revolutionized web, business
and telecommunications software, I believe that it also can provide the same benefits to
scientific software. As Phipps’s study has shown (G. Phipps, Software Pract. Exper., 29,
345 (1999)), programming applications in Java in for business applications has led to
substantially increased software developer productivity with a concomitant decrease in
bug rates. It is for these reasons that I have served as the Chairman of the international
Java Grande Forum (http://www .javagrande.org/), which is dedicated to the promotion of
Java for high performance and scientific computing.

I am pleased to endorse the CartaBlanca project because it has been in the vanguard of
Java Grande Projects. It has played a crucial role showing that real-world scientific
computing Java applications are not only viable but also quite beneficial. Its
complexity—unstructured 3 dimensional computational grids, multiphase fluid flow,
fluid-structure interaction—has been particularly pleasing to see and to showcase in my
review articles (G. Fox, Computing Sci. Engng.., 5, 60 (2003)).

Furthermore, the seamless incorporation of the industry standard Junit off-the-shelf
testing software into CartaBlanca furthers the cause of software re-use so crucial to the
vision of vastly increased productivity that is behind much of the software engineering
efforts today. The fact that CartaBlanca uses both single and multi-processor operational
mode for a wide variety of applications is impressive. The re-use of the JavaParty
environment from the University of Karlsruhe for porting from shared-memory-paraliel
to distributed cluster computing environments is another important example of software
re-use and the power and portability of the Java programming language.

501 North Morton Street, Suite 224
Bloomington, Indiana 47404-3730
812-856-1242 Fax 812-856-1537

The use of object-oriented inheritance hierarchies in CartaBlanca to produce component-
like, plug and play modules for alternative physics treatment and numerical solver
strategies is another example of the novelty and power of the Java programming
language. The relatively small size of the CartaBlanca team, when compared to more
conventional software development projects, is good evidence of the productivity of the
Java language. Analysis by Los Alamos documented the need for large software teams in
the conventional Fortran/C++ environment.

Coupling these achievements discussed above, with your important collaborative work
with Lapenta, Markidis and Budlimic on the Parsek test code, which gave crucially
important side-by-side speed comparisons of Java, Fortran and C++, your work has gone
a long way towards the realization of the Java Grande vision. Continued development
and commercialization of the CartaBlanca code will help usher in a new era for scientific
computing. It is for these reasons I give my unqualified support to your nomination for
the R&D 100 Award.

Sincerely,

Py !.
r.‘, L‘.lt"‘ € = ¢ <\-\><;
- %' |) [

Geoffrey C. Fox)

Professor of Computer Science, Informatics & Physics
Chairman, Java Grande Forum

Director, Community Grids Lab,

Pervasive Technology Labs at Indiana University

CENTER FOR HIGH PERFORMANCE SOFTWARE RESEARCH

KEN KENNEDY, DIRECTOR Via email. wbv@lanl.gov

JOHN AND ANN DOERR UNIVERSITY PROFESSOR

January 31, 2005

W. B. VanderHeyden

Group Leader

Theoretical Division Fluid Dynamics Group
TA-3, Building 200, Mail Stop B216

Drop Point 03020001S

SM-30, Bikini Atoll Road

Los Alamos National Laboratory

Los Alamos, NM 87545

Dear Dr. VanderHeyden and the CartaBlanca Team:

It is my pleasure to endorse your application for the 2005 R&D 100 Award Submission
for “CartaBlanca—A high efficiency, object-oriented, general-purpose computer
simulation environment”.

Let me begin by summarizing my background. My research here at Rice University is
exploring software support for high performance and parallel computing in science and
engineering, scientific programming environments, and optimization of compiled code.
My current work falls into four main project areas: implementation of efficient high-level
domain-specific programming systems, application development tools for computational
grids, research on compilers and tools for scalable scientific computing and compilation
for high-performance uniprocessors. I am the Director for The Center for High
Performance Software Research, which is a research development center that specializes
in leading and managing cross-institutional, multidisciplinary research consortia,
primarily in software for high performance computing. In addition, I currently direct or
co-direct four ongoing multi-institutional consortia: the Los Alamos Computer Science
Institute, the NSF-sponsored Virtual Grid Application Development System project, the

Page 2

Gulf Coast Center for Computational Cancer Research and the Houston BioGrid
consortium.

We at Rice have been closely following your progress on the CartaBlanca (and the
associated Parsek) software project for several years now, as we regard it as one of the
most important ongoing efforts to bring the power of object-oriented computing into the
somewhat archaic world of high-performance scientific computing. We believe that
modern software should exhibit the following characteristics: elegant design, ease of
maintenance, extensibility, portability and last but not least, high performance. The
software created by the CartaBlanca project shows all of these qualities, while further
using Java as the implementation language, which has frequently been dismissed as too
slow for high performance applications.

As you know, Zoran Budimlic and I have been pursuing the use of Java for high
performance and scientific computing for some time now. Java offers increased
programmer efficiency and language type-safety; and Java is widely used for web and
business applications. In addition, Java follows the open-source trends that have yielded
tremendous benefits in the form of software re-use.

At the same time, Java has not yet realized its full potential in the high performance and
scientific computing arena. This is due not only to execution speed issues associated
with earlier versions of the Java virtual machine and to compiler optimization problems
with object-oriented code, but also to a lack of example success stories. We at Rice have
been addressing the former problem by introducing our advanced telescoping Java
compiler framework JaMake, which uses a novel approach for the compilation of highly
object-oriented software. Your CartaBlanca effort has gone a long way towards
addressing the latter problem by providing a real-world multi-physics application written
entirely in Java, which solves complex multidimensional physics application problems.
In addition, your work with the Parsek team has provided useful benchmarks between
Java and the more traditional languages for scientific computing, C++ and FORTRAN.
Furthermore, the Parsek code allowed us to test our JaMake compiler for scientific
applications and gain unique insights.

The CartaBlanca project has had an enormous impact on the scientific community and
has come a long way in reshaping the old-fashioned beliefs that one must sacrifice good
design for the sake of performance, and the not so old, but still obsolete, thinking that
Java and other high-level languages are unsuitable for high-performance computing.
Efforts like this will change the way programmers think about high-performance software
and help boost the productivity and quality of software design that is inadequate in most
of the scientific and high-performance systems so far.

HIPERSOFT — MS 132 « 6100 MAIN STREET ¢ HOUSTON, TEXAS 77005
E-MAIL: ken@rice.edu ¢ PHONE: 713-348-5186 « FAX: 713-348-3111

Page 3

My sincere hope is that CartaBlanca’s success will encourage more scientific computing
using your paradigms and lead to a new wave of more efficient scientific computing
applications. I therefore heartily endorse your application for an R&D 100 award for the
CartaBlanca project.

Sincerely,

o

Ken Kennedy
John and Ann Doerr University Professor
Director, Center for High Performance Software Research

HIPERSOFT — MS 132 « 6100 MAIN STREET ¢ HOUSTON, TEXAS 77005
E-MAIL: ken@rice.edu ¢ PHONE: 713-348-5186 « FAX: 713-348-3111

CartaBlanca — Java-based Solver
Environment

» Newton-Krylov solver for implicit, non-
linearly consistent solutions

e Multiphase flow

* Rapid prototyping
* PIC method

* GUI interface

* Integrated unit and regression testing

CartaBlanca

* Pure Java development environment
* Object-oriented design:

developer . _
productivity -

. mainpack PhysTests =] ’: IE
 Phipps: Java 30- —— J
200% more B 5

productive e, f[
[testHTPCG -
* Multiphase flow on 5P
3-D unstructured grids
* JUnit for testing = e

» Simple, clean object-oriented language

» Strong typing, extensive compiler checking

» Commercially robust: good developer tools

* Portable, robust

* Built-in thread facility, networking

» JavaGrande addressing HPC

* New fast JVMs, native compilers

* C/C++/FORTRAN interoperability

» Growing pool of developers, will soon be most widely used
* Built-in GUI (Swing), graphics, database access (JDBC)

CartaBlanca’s File Structure

File Edit Search Yiew GoTo Code Refactor Build Run Tools CVS Window Help
B X B3 A # | Crotsute | B | 5| @

{ i h o i =z (]
g mle':t .‘caablnca e 5 e e] e = il MLSpeciesBasic. java ﬂ il NLSpeciesPM.java | MLSpeciesBa. java | 2
o T o R -
= _ : il Advection. java ” Lil TemperatureFieldCoupler. java || Ll MLSpeciesHEL. java | bs!
= 3 i s = " = - = . =] g
6'| [Project | Packages | A WelocityFieldCoupler. java " Jil| Problemspecifier java H \J| GerericSpecieResponse. java “ il Kelvin,java | El

- [meshes 0 Pack — ail g
| ackage Ficslack;
& B E nutot L bkt &
% 15 particles Frimport o
= - &3 scripts #
o | =8 ps =
@ # o bePack 5 # Class NLSpeciesIM m
£ * ol
e #- (a0 benchmarkFieldsPack & a2
- (a7 commPack
b a0 discretePack public class NLSpeciesPM extends NLSpeciesBasicy
[# (a7 graphicsPack
(o graphPack B /%% Field callCounter #/
I% = inputPack int callCounter = 0;
£ & FieldRow ¢ =
=] %% Field numberOfinteractions *7
€ & FisldRowData protected int nunmberOfInteractions = 0;
¢ m FieldTable
£ FieldTableData B /%% Field number0fReactions */
¢ & GlobalParticlelnputReadar int mmberOfReactions = L:
(Bl package.html
public NL3peciesPM{Problen3pecifier myProblem3pecifier,
T & ProblemSpecifier
| X MeshDriwer myMeshDriwver, Discretelps myDiscreteOps, States myStates,
[(5 ioPack =] Communication communication) {
(a0 mainPack
#- =1 meshPack super (nyProblen3pecifier, myMeshDriver, myDiscretelps, my3tates,
[(a7 physicsPack communication) ;
= " ials'):
& B physF‘erF'aEk lmhast_as wyProblenSpecifier. getInteger | nulrllat,t_arlals Jes
1 4 nspecies = wyProblemipecifier.getInteger ("nspecies')
i 23 problemDriverPack nurher0fStateVariables =
i 57 solverPack uyProblenSpecifier. getInteger [mumber0fStateVariables") ;
#- (a0 swingPack mmber0fUnknovms = mmber0fStateVariables * numbodes ;
[+ [0 testl0 this.oldState = (MultiState] myitates.oldState;
H 5 tstsrc this.newState = (MultiState) myStates.newState;
this.rhsState = (MultiState) myStates.rhsState;
[l buildlxml 5
this.lhsState = (MultiState) myStates.lhsState;
@cartablanca‘\m\ this.lastHewtonIterateState = (MultiState) myStates.lastHewtonIterateState:
) cartablanca.ipr this.uState = wy3tates.uState;
) cartablanca. ws this.vState = uyStates.vState;
2] tartablanca.]pr setRootStates():
1%l CodeConventions.pof setlp():
[details.html setUPExchangeInfai) ;
2 grepstatus.cmd
2 grepstatusu (=) '
& inputspecifier 10 -
F 6 TODO |
—
35:79 Insert Impart Popup: ON | Z7Mof 46

This figure shows an example of an edit session using Borland’s JBuilder Java development environment
to examine the CartaBlanca file structure. Because of the ubiquity of Java, the Foundation version of the
Borland JBuilder environment shown here is freely available. This version is more than adequate for
developing code with CartaBlanca. The same kind of capability for FORTRAN, for example, would cost
several hundred dollars.

In the pane on the left, you see the directory structure of the CartaBlanca code. The user can easily interact
with the objects using famliar point and click methods to drill down through the file hierarchy and to
navigate in general. On the right, you see a part of the code for a species transport class in CartaBlanca.
The color coding is automatic and helps the developer quickly identify the different types of variables and
Java language components. JBuilder enables point and click interaction with the code in this pane.This
ability is state-of-the-art and free because of Java’s strong marketplace presence. This free software is part
of the reason for Java’s efficient development protocol.

CartaBlanca Graphical User Interface

(= % MeshFile Partition File Node Data File Particle Data File

Genersl Infurmuation, | Physics || Sobver | Kmnerical Oplions | Frecanditioner | nitial Conditions | Bowndary Conditions | Material Properties | Exchange Farameters | Chenical Reaction | Farficle Froperties | Species Froperties |

’:l Use Partitions

F:uurd.inate System:

I'userDiml:mry:

IMesh InputFiles:

[MeshPartitionFileName:
[NoteDaiaFileMame:
[ParticleFileName:

IRunni.ng Parameters:

ferophicsDuny TimeStop: |

imum Time:

I]Partic]es On ’:l ReStart

fimitGraphic:
printinSiep:

Main Page. Note multiple tabs along top to allow access to a variety of pages for specifi-
cation of boundary conditions, material contants, etc.

ey [
BE ® Mesh File Partition File Node Data File Particle Data File

Genersl Information | Pysics | Solver | Nunerical Options | itioner | Mnitial Conditions | Bomnlary Conditions | hiaterial Froperties | Exchange Faramalers | Chemical Reaction | Barlicle Fropenties | Species Propenties |

I:‘USE Partitions

’] Particles On FR.EStart

m’ imumTime Step:
m’ ur Time Step:

imum Time:

Look in: |9 BUADS v 2 EE
I;] I3 100micron 3 26x%26 5 [MMT_2_ LPrep
L‘*b 53 101%101 (3 2dbow [5x50 [y MWT_2
IE| My Recent (3 11ex10e [2part 3 6nxiin (3 onebyhalf
Dacuments | lemy 97,11 D2« (53 71nx41n_35x20 =i pipe
- I3 161nx161n 3 21nx301n (3 Poiseuille
@ (3 16part (53 3m6n ChiBpart (5 quads
Desktop (3 173nx111n [41nxdin [cony [smallQuadiesh
1D [y 41inzd1n_10 [conv_dpart 5 trickle
v (31010 (S 4ren Dcvs
J (=3 1020 () 4part [fallingdam
My Documents () 1dquads [4wz (3 grwhiesh
() 201nx144n [4x40 () HEL
s (3 201ru1S1n (3 51n101n_5x10 I NMT_1
r. T (3 201nx=201n 351210 [y MT_2
My Computer |75 22nx22n (3 51nx2en [WMT_2_Leonard
= I3 22220 _1in 3 51n=51n LI NMT_2_Leonard_Circ
- File name: | | [Open |
My Hetwork
Places Files of type: ‘AII Files v | [Cancel J
T T .

Here we see the interaction of the CartaBlanca GUI and the windows file system for point
and click access to mesh files.

CartaBlanca Graphical User Interface

ﬁ % MeshFile Partition File Node Data File Particle Data File

General Infermnation | Physits | Sclver | Mumerical Options | Bretenditioner | tial Conditions | Bemdary Conditions | Myterial Properties | Evthange Farameters | Chenical Reaction | Parlidle Ereperties | Species Broperties |

BeDefnitions || BeDai |

s o P
'Endldﬂnnmnmny Comic can be deternined eifher by the Hat of nodes in the anface (NedeLin) or by fhe cefidents of the coni¢ functien:
[REY,D = AKX + BVY + CLZ+ DRYTEXEZ + YL+ GX T HY + T2+ 7

A B C [} E F G H | J NodList

>

w[a[s[m & [w[e]=

~

[Region pains can hel, Ie, eq, ge, r gt fhan the mdicated conics. Conis mmbers should be separated by comas, without blanks hetween fhen. -1 indicates o conics satisfy the rdiion.

BR It le: eq ge gt type: kind
i 1 1 i 1 [fectemal mdlow ~
2 n E 2 1 i lecternal [pressure |
3 6 1 3 1 5 excternal [wall
14 6 1 4 1 5 excternal [wall

fou chose myMeshFileixt

This figure is the boundary conditions page.In the top table, the user can prescribe general
conic surfaces that serve as boundary sections for boundary conditions. In the second table,
the user specifies which conic surfaces correspond to the boundary sections.

File Help

B T Mesh File Partition File Node Data File Particle Data File

I femerst mcrmation| Byics | saner | Wil Options | Ereoniitioner | It Cenitions | Boumdary Conlitions | Bxchange Farametrs | Chenital Reacion. | Tariide Ecpertes | Species Erepertis |

IClwuse flowSystem: IC]umse energySysiem: IC]um“ speciesSysiem: IClwose momentumSysiem: IC]umse siressSystem: IClwuse turhulence System:

=
=

NLTurbulence

54 | & e e
joumNonParticleMaterials: jnumParticleMaterials: | 2 \
|puture use: [stefanBoltzmarnn: | 5.6696E-8 \
leravity components: o | w || | fzasConstant: | 831439 \
lgravitationalConstan: | 6.67E-11 | [AvogadroNumber: | 602283623 \
fuzz: | LIE 32 | [Planek Constant: | 6.222E34 \
JlightSpeed: | 2.99776E8 | jelectronCharge: | LSE-19 \
|frameAngu]arVelncity: | 0.0 | Ia}dsOfRnwtinn: | z ‘
[TsolveEnergyTransport, [chemicalReactionOn jenergylUnitFacior: | L0 \
umTransport useEquilibriumPressure {phaseOfPforNonEquilP: | 1 \
[TsolveSneciesTransport [T PeriodicinX

| TsolveScalarTransoort | PeriodicInyY

[TsolveTurhulence Transport [T PeriodicInZ

[TsolveStress [PeriodicInTheia

This figure is the general physics page. The bottom section contains constants and switches
that control basic physics parameters. The top layer contains scroll panes that allow the user to
select the type of flow, heat transfer, species transport, and other types of physcis. If a devel-
oper adds a new instance of one type, Java's reflection mechanism will automatically pullit into
the menu of choice.

CartaBlanca’s Test Interfaces
Single Test

File Edit Search Yiew GoTo Code Refactor Build Run Took C¥S Window Help

CEHE|S5G (X RE|2AEE|HGrose b B3|

Dz g

”
i = == il TemperatureFieldCoupler java il NLSpeciesHEL java il NLSpeciesBasic java lil NLSpeciesPM.java il MLSpeciesBa.java
B Eme T4 @
2] e T b -
= B il WelorityFieldCoupler java .4 ProblemsSpecifier java il GenericSpecieResponss. java il Kelvin java 4 Advection. java
&
ai| o) Packages v |
ackage physicsPack: | =

& Project b R
w| B Hcartablanca = Fimport
§ = o cartablanca (£
7 [(&7 CRDLIBComp)
) B 5 envjindent (i JUnit
N i @ it Test class name:

@ (5 graphs

lauxPack.RootSuite ‘v‘ [R |
@ G jars

B &3 JavahaN
@ &1 meshes
& output

Reload classes every run

[I Ju

- 53 particles Runs: 0 X Errors: 0 X Failures: 0
- [scripts Results:
- src

L |

[} testhLEnerayBasic

[0 testNLEnergyBasicithFlowBasic
[T testNLEneryHE1WithFlowBasic
[testHTPCG

[do et TRAMOE!

X Failures | £ TestHierarchy

[#- (37 bePack
[#- (a7 benchma|

MDD

[# =7 commPa
- [discreter|
@ (37 graphics
@ (& graphPa
[[inputPac
(- (2] ioPack

[5 mainPack_|

= h
¢ﬁ »

Discretelps, States wyStates,

(|

D

[+]

| PING 3U% & H ISPUELLLD

4T [¥]
Run - RootSuite r
bh tolerand acktesthLEneroyHETWithFlowBasic) was Exit
Checiing T
1] ointFound true
P
@ Computed value is 2068094, 3640454365
testinswer = 2065084, 3640454365
- expected value = 2068094, 36
% tolerance = 206 50543600000003
@
Did testNLEnergyHELVithFlowBasic
ES Hypel
Sereen dre:
Shart
[RootSuite “wid
& 4:Run| | 3 &: TODO \when Rd
Process started

35:78 || nsert Trmport Popup: o | T3avig

Multiple Test

File Edit Search View GoTo Code Refactor Build Fun Tooks WS Window Hel

)

o =9 awPack RootSuite Run
o bePack

¥ tes{GAVERp!

O JiesICAT/ExpI(isiAdvactionPack es{CANERD]) - Passad
[test il

) test0neD CAmExD >
X Failures | Test Hierarchy

Tl »

i (o7 benchmar]

- & commPal
- @ discretePd
- & graphicsP)
& 51 graphPac

hyDiscretelps, States wydtates,

G inputPack nySrates,
5 inPack

[0 mainPack

R m—|

I

[4]

4 »

ERH2(S5S|ARDE|PAS S| H Erocue - r B[B0
- =
o = - &QLJU’* 1= | il TemperatrsFielCouplerjava | i) MSpeciesHELjava | i) MSpeciesBasicjava | il NiSpeciesPMjava | i) MSpeciesBA.jaa
. R
P b & | il VelcityFieldCoupler. java | il Problemsperifer jmva | il GenericSpecieResponse java | arkewinjava | i) advertion java
Sil| o Packages T |
- | package physicsPack: =

i Praject i
[w] B Partablanca
§ = i cartablanca (5|
] ¥ (& CFDLIBCOmp
I a0 envjindent
=]
- - @ g Test class name:

e araphs lauxPack.Rootsuite [=] EH stop |

5 jars

5 JavahaN [¥] Reload classes every run

@ [meshes

@ 5 output L] 1 Ju

G particles Runs: 142 X Emrors: 0 * Failures: 0

@ 51 seripts Results:

Run - RootSuite
atal Tmber of Edge |nning:testiLG

testhLC:
»

[oa P

[VExtBN. size = 200
Ul mrough with mesh object construction

{5 Poing the solver selection

The elapsed time for mesh setup is 5398 for test testIDinlcadwnengures
Wl poing the DiscreteOpsCounm ohiects

3¢ Doing the Discretelps objects

oing physicsType HLCompatibleAdvection

@ gerting states up

Setting physics objects

physParameters for NLCompatibleddvection

> RootSuite
B 4iRun | @6 TODO

Process started

35:79 ‘ | Inzert

Import Popup: ON | | 40Maf s

[FIng U7 o | [Jepuewwo) o

Here we see two
examples showing the
test suite for
CartaBlanca.
CartaBlanca uses the
JUnit test package that
drops seamlessly into
CartaBlanca’s frame-
work. CartaBlanca’s
test suite allows the
developer to make
sure new modifica-
tions to the code have
not broken previously
installed capabilities.
Nearly 50 tests are
built into CartaBlanca
to test many aspects of
the code. These tests
include solvers and
advection algorithms,
as well as tests of
problems such as
projectile target
interactions. The tests
are run either one by
one, as shown in the
single test, or auto-
matically,as shown in
the multiple test. The
GUIs shown allow the
developer to see the
progress of the tests
and to see where any
failures occur. The tests
are written to run
quickly and to update
automatically with any
changes to the code.
The use of JUnit along
with the inherent
efficiency of the Java
programming
language is one of the
keys to the success of
the CartaBlanca
framework.

-

Phase Separation Simulation Using
Annular Centrifugal Contactors

Annual centrifugal contactors consist of two concentric cylindrical zones. The spinning rotor

and the stationary housing wall form the external zone, where some liquid or organic material

are being mixed. After mixing, the flow mixture enters the inner rotating cylinder through an
annular opening in the bottom. In this zone, the flows are separated by high centrifugal forces,

and each liquid leaves the device through exit ports on top. CartaBlanca’s multiphase-flow solver

is used to simulate the hydraulics of the separation zone. The lighter fluid leaves through one small
opening at the center of the outside wall of the central cylindrical region at the top.

The heavier leaves through another small opening at the center of the outside

wall of the external cylindrical region at the top.

z
Ii
X

RhoMaci
1.025
097375
059225
087125
082
076875
07175
06e625
0615
056375
05125
046125
041
035875
0323075
025625
0205
015375
01025
005125
0

LALLM

§m \\\ s lz/\

s

A

e e e (
155 |

£

R

d
|
{
i
§
§
§

FERLRERRRRERRRY AR

Schematic of Centrifugal
Contactor

Quarter Section CartaBlanca Simulation of
Contactor

Projectile/Target Simulation

Simulations of projectile/target interactions are of interest to the armed forces.
These interactions are challenging problems because of the high deformation and
material damage that occurs, CartaBlanca addresses these problems by use of a
combination of multiphase flow and the mesh-free particle method. It tracks the
high deformation and damage without the mesh tangling experienced with conven-
tional Lagrangian mesh code. CartaBlanca also handles the effects of gas evolution
from a reactive armor problem using the same procedure.

3-D Bullet Brittle Plate

Awerbuch Experiment 3D — Brittle — 40 microseconds

sLEER

Ops

- f g h
l‘l Lj 3 LZIHS » l

2ps

3 7l S o

67us 109pus

Frame 001 | 29 Jan 2004 | Time = 4.00000E-005 | Time = 4.00000E-005

vy
poeny
Py
Py
pvoas
Py
Py
e
Py
ey
Py
ped

3D — Brittle — 80 microseconds 3D — Brittle — 120 microseconds

Frame 001 | 29 Jan 2004 | Time = 8.00000E-005 | Time = 8.00000E-005 Frame 001 | 29 Jan 2004 | Time = 1.17000E-004 | Time = 1.17000E-004

2-D and 3-D Bullet/Plate Interaction Simulation

This figure set shows a simple bullet/plate interaction calculation and compares the
results in two- and three-dimensional simulations. The bullet is lead and the plate is
aluminum. Both are represented as particles. The 3-D simulation shows some non-

axisymmetric behavior resulting from the initial plate boundary conditions.

2-D Bullet/Plate Simulation
with Plastic Response

20 mlcroseconds

3-D Bullet/Plate Simulation
(Serial and Parallel)

20 mlcroseconds

40 mlcroseconds

80 mlcroseconds

2-D 4-Phase Reactive Bullet Plate

Shown are the results from a 4-phase, two-dimensional calculation where a high
explosive has been put at the bottom beneath the target plate. The calculation
includes 1) lead bullet, 2) aluminum target, 3) gas, and 4) high explosive. The bullet
penetrates the target plate and at 26 microseconds, the high explosive ignites. The
orange color is the ignition front, which propagates through the material.

10

Reactive — 24 microseconds

R

(=]
1 1 17T

X

Reactive — 36 microseconds

Reactive — 26 microseconds

10

X

Reactive — 56 microseconds

@
LI L L |

Time: 28

3D Multiphase-FLIP-MPM Simulation
of Blast Between Buildings

100m cube

20m x 20m square
buildings

20, 30, 40, 50 m tall
~3kt blast

Elastic law with
brittle fracture

Multiphase flow

This sequence of snapshots from a CartaBlanca simulation shows the development of a blast and its effects on
buildings in an urban setting. The application is analysis for homeland security. In the snapshots, the red isosur-
face shows the progression of the blast wave through the air. The blue particles make up the buildings and the
concrete base. As the pressure wave interacts with the buildings, the material deforms and fails creating debris.

LA-UR-00-6049
CartaBlanca— A Pure-Java, Component-based Systems
Simulation Tool for Coupled Nonlinear Physics on
Unstructured Grids—An Update

(Excerpt)
W. B. VanderHeyden, E. D. Dendy, and N. T. Padial-Collins

FINITE VOLUME METHOD

CartaBlanca is based on the finite-volume method, [9], for conservation equations.
CartaBlanca adopts the node-based version of this scheme with edge-based connectivity.
We provide here a very simplified outline of the method. For an arbitrary control volume
V with bounding surface A the generic conservation statement is of the form

ifqu+gﬁf-ZdS+fst=o,
dtv A 1% (1)

—

where ¢ is the density of some conserved quantity such as mass, momentum or energy, f

is the local flux of this conserved quantity due to a variety of mechanisms, 7 is an
outward normal vector defined on the surface of the control volume, and s is a
generalized source density. The first and third integrals in Equation (1) are over the
entire space of the control volume; the second integral is over the surface of the control
volume. The derivative on the first integral quantity in Equation (1) is with respect to
time. For numerical computations, Equation (1) is discretized in time and in space on a
computational grid. On such a grid, conservation nodes are connected by edges as shown
in Figure 1.

neighbor
nodes

edge

Fig. 1. Control volume for ith node.

Each node is associated with a polyhedral control volume, V7, as depicted in Figure 1. For
each node, the averaged value of the conserved density is defined as

1
q; EVIQdV~
v @

The quantities g; are, typically, the state variables for the numerical simulation.
Similarly, the average source over each control volume is

1
=— | sdV.
4=y, Vf
; 3)

Let Je be the average flux on the control volume face associated with edge e. Then, if
we integrate the Equation (1) over a time step, At, using, for example, a first-order
difference approximation for the time derivative, we obtain the discretized form of the
conservation equation

gVt =gV + ALY f, A+ sV, =0,
edges (4)

where the superscripts n and n+1 denote the present and future time levels, respectively.
Of course, the fluxes and source terms are generally functions of space, time and the state
variables, ¢;. Thus, the set of discretized conservation equations for all nodes and all
types of conservation quantities forms a nonlinear algebraic system. The physics for a
given application lies in the definition of the fluxes and sources in Equation (4). The aim
of CartaBlanca is to provide scientists and engineers a friendly environment using object-
oriented Java for the implementation of component-like physics and solver objects for the
solution of the corresponding coupled nonlinear conservation equations.

JACOBIAN-FREE NEWTON-KRYLOV METHOD

We may write the set of conservation equations in the compact, abstract form

E(q,1+l) =0 (5)

where F; denotes the left hand side of Equation (4) and ¢"*' denotes the entire set of state
variables at the advanced time. The quantity F; is called the residual function. The
system represented by Equation (5) is, in general, nonlinear. We employ the Jacobian-
Free Newton-Krylov method in CartaBlanca to solve these systems. We provide here a

brief outline in order to motivate our discussion of the software design. Newton’s method
n+1(0)

for a nonlinear system begins with an initial guess of the solution, 9; ", where the
superscript in parenthesis denotes the iterate level n. This is, typically, the solution from
time level n. Newton’s method then proceeds through a series of iterations involving the
solution of a sequence of linear systems

‘]ij (q;+l(k))6§ _ —Fi(q"“(k)),

(6)
along with the update

1(k+1) 1(k) k
ql’[+ + =qﬂ+ =6 ,

(7)

where there is an implied summation in Equation (6) on the repeated index, j . The goal,
of course, is to proceed until we find the solution to Equation (5). The matrix quantity, J,
is the Jacobian matrix defined as

Fq)

JF;
=g, (8)

Explicit formation of the Jacobian matrix is typically a very expensive computation.
Fortunately, the JFNK method takes advantage of the fact that Krylov linear solution
methods require only the evaluation of matrix-vector products, Jv (where v is a Krylov
vector), and not the matrix J by itself. Furthermore, matrix-vector products can be
approximated numerically using a directional difference formula,

Jsz(q+£v)—F(q),

€)

where € is some small scalar perturbation parameter. This approximation allows us to
structure CartaBlanca in such a way that the physics developer can focus on providing
residual functions inside physics objects or components. Using the abstraction embodied
in Equation (5) we have genericized the rest of the infrastructure for solving and
processing physics problems so that developers can work simultaneously on a variety of
different problems using the same software.

SOFTWARE

CartaBlanca is composed, at present, of twelve separate packages. Each contains classes
that perform distinct functions. We have tried to design these classes to serve as software
components that can be interchanged in a “plug and play” mode by developers. We have
also tried to write the utility classes in such a way that physics and solver class
developers need not concern themselves with the implementation of the parallel features
of the software.

In the following, we describe each of these packages and the classes they contain. We
also describe the interactions and associations between the classes in the different
packages. We choose to start the discussion with the mesh and input packages. These are
low-level packages; they are used by many, but make sparing use of other packages. We
then work our way up through the remaining packages of increasing complexity until we
finally describe the main package, which contains the main methods. Before proceeding
to the discussion of the CartaBlanca software packages, we start by commenting on our
general design approach and on our software engineering methods.

Approach

Our approach to the design of CartaBlanca includes the following general guiding
principles. First, we have endeavored to make use of object-orientation at the highest
levels from a physical point of view. Thus, our objects are things that exist over entire
sections of the computational domain or grid, rather than at individual nodes. This choice
was made based on the idea that this would yield higher numerical performance by
avoiding excessive overhead at the node level. This choice also provides a smoother
transition into object-oriented programming for developers more familiar with procedural
scientific legacy codes. Nevertheless, this approach has allowed us to make substantial
use of Java and its object-oriented features.

Another principle we have employed is to make the top levels of the program as generic
as possible so that the developer can plug physics into the appropriate program locations
and then have the rest of the program able to immediately interact. This was
accomplished, in part, by the use of abstract classes, which provide general functionality
and interfaces for things such as physics and solver objects. Thus, these objects are like
components.

Software Engineering

Our approach to team programming follows the lightweight processes advocated in the
recent article by Fowler, [10]. Iterative programming and component development has,
for example, been very useful. The use of team coding has also proved helpful.

In order to foster the team software approach, we have incorporated the JUnit, [15],
testing facility into CartaBlanca. This has been useful in that any developer can perform
tests easily on their local computing platform to make sure his modifications have not
corrupted the software. This is in contrast to a situation in which software testing is
performed using specialized software available only on a certain computing platform.

We have found it very helpful to use a common integrated development environment
(IDE) for our software development. We are currently using JBuilder 4.0 Professional by
Borland Technologies. JBuilder gives us an identical programming environment on our
Windows NT and Solaris workstations. JBuilder is also available for LINUX operating
systems. The JBuilder environment, conveniently, recognizes the JavaDoc @todo
functionality. We use this feature as a simple issues tracking mechanism.

In addition to the JBuilder IDE, we use the GNU CVS revision control software for our
software repository. We run CVS as a ‘pserver’ on one of our Solaris workstations. Thus,
we can check pieces of software in and out over the network directly. We currently run a
simple implicit heat transfer, scalar advection and multiphase flow problems (discussed
in Section 5) as test problems before committing software modifications to our CVS
repository.

I/0 Package

CartaBlanca reads mesh files (see Section 4.6) and writes graphics files (see Section
4.11). In the initial stages of the project, an I/O package was imported from S. J.
Chapman, [5], for these operations, [28]. This package contained classes with methods
that enabled the developer to write C-language-syntax file print and read statements. We
have since abandoned this package in favor of using Java’s very effective Reader and
Writer classes in the java.io package, [12]. We make use of the nonstandard

ExponentialFormat class provided in reference [12] for writing doubles to text files. At
present, this is the only class contained in the I/O Package.

Input Package

The input package contains the basic input facilities for problem specification. The user
specifies parameters such as solver tolerances, physical properties and boundary
conditions using a graphical user interface (GUI). Problem data is written to a
‘ProblemSpecifier’ class object. The ‘ProblemSpecifier’ object contains all input
information from the GUI. It can be queried by as needed for information in the rest of
the program. The ‘ProblemSpecifier’ object is serializable. This feature is used to save
ProblemSpecifier settings to disk. This eliminates the need for any text-based input files,
other than the mesh files (see section 4.6).

The GUI is contained in three classes named ‘TabbedInputClass’, ‘TabbedInputFrame’
and ‘TabbedInputFrame AboutBox.” The GUI covers several categories of input
separated into several tabbed input frames. The input categories are General Information,
Physics, Linear Solver, Nonlinear Solver, Pre-conditioner, Initial Conditions, Boundary
Conditions and Materials. A snapshot of the GUI interface is shown in Figure 2.

& =lol x|
File Help
[& [8]
Genoral tonraasion, | Mysies | Tinear Sune | Son Uinear Sclve | Procontisisse | Ttial Contitions | Bosmday Coniiens | Wit |
« Use Partitions
meshDirectory: feteabe -
Mesh Enput Files
¥
Fraroniiie i
it
[Rumning Parameters:
i Cyeles: —ﬁ
Erraphicsinemal: B
initial Time Step: i

Figure 2. Snapshot of GUI. Tabs enable user to provide input on the various
categories of input.

The user can click on the various tabs along the top of the GUI to access the different
categories of input. As the user types in new information into the fields of the GUI, the
information is written to the ProblemSpecifier object. When the user exits the GUI, the
ProblemSpecifier is output to disk as a serialized object for future use and the rest of the
program then begins executing based on the information in the ProblemSpecifier object.

Communications Package

The communications package contains classes of objects that provide functionality for
inter-partition communication and for global mesh operations. The class CyclicBarrier
provides a simple barrier that objects may invoke to synchronize calculations. The
implementation was modeled on the barrier class provided in Chapter 5 of Oaks and
Wong. The CyclicBarrier is used, for example, in discrete operations such as divergence

field computations in which communication of flux quantities among mesh partitions are
required.

The Reduction class in the communications package provides for the computation of
global quantities across the entire mesh such as a global maximum or a global sum.
Global sums are required, for example, for mesh-wide dot products of vectors in the

various Krylov solvers. The Reduction class accomplishes this by using static class
variables for sums and extrema.

Mesh Package

The mesh package contains several classes that describe mesh elements, edges, interior
boundary nodes, and partition and global meshes. These classes are built from mesh
information read from mesh files. CartaBlanca requires three types of mesh information
files, which follow the format used by the Metis mesh-partitioning program. The three
files contain the mesh connectivity, the node coordinates and the partitioning of the mesh
elements. Please see the Metis manual for a description of these files.

CartaBlanca requires mesh partitioning to be done in such a way that elements and not
nodes are partitioned. Referring to Figure 3, the mesh partitioning for CartaBlanca must
be done along node-edge connections. In the Figure, the heavier edge connections denote
the boundary between partitions A and B. To implement this mode of partitioning in
CartaBlanca, nodes on the partition boundaries are duplicated. In the example in the

Figure, the three nodes along the partition boundary would be present in each partition as
duplicates.

Partition
A

< | R

STTTTTTT T

Partition
B

Figure 3. Partitioning in CartaBlanca. Meshes must be partitioned along node
connections.

Figure 4 shows an example of an element-partitioned mesh for CartaBlanca.

S,

Figure 4. Two-dimensional 3000 node partitioned mesh. Partitions were generated
using Metis.

The mesh partitioning shown in Figure 4 was performed using the Metis program and the
Metis output was then fed to CartaBlanca for computations. The actual plot was
generated using the Tecplot program which operates on graphics output files from
CartaBlanca (see Section 4.11) A further example mesh is shown in Figure 5 for the case
of a 3-dimensional tetrahedral mesh.

Figure 5. Three-dimensional tetrahedral element mesh. The shading denotes the 4
partitions that were computed by Metis.

In general terms, the mesh package classes perform the following functions:

* Read and store data from mesh input files. This includes element connectivity,
node coordinates and element partitioning,

» Compute all required element and node geometrical information such as cell face
areas and normal vectors for the global mesh,

* Compute all edge connectivity and geometric information from the element
information for the global mesh,

» Link all nodes via edge elements,

» Setup up partition meshes with links between global and partition mesh objects
including nodes, elements and edges.

» Set up connectivity between duplicate nodes on different partitions.
Discrete Operations Package

The discrete operations package contains a class called Divergence which provides a
variety of mesh-wide discrete operations including the computation of the divergence of a
vector field, the gradient of a scalar at both mesh nodes and mesh faces as well as some
more specialized operations. Some of the specialized operations include finding the
maximum face-by-face inflow values for each node for advection calculations and
finding the diagonal term of a mesh-wide matrix operator. All of these operations require
communication and therefore use the duplicate node connectivity information from the
mesh package classes and the barrier object from the communications package.

Physical Properties Package

Physical properties such as material densities and transport properties such as viscosities,
mass diffusivities and thermal conductivities are required in simulations of physical
systems. These quantities are often predicted using equations of state from system
quantities such as temperature and pressure. The details of these predictions are kept
separate from the solution of conservation equations by isolating the implementation in a
separate package. This package contains, at present, classes for the prediction of material
densities diffusivities, and inter-phase exchange parameters such as drag coefficients. The
classes use information input by the user from the materials input pages of the GUI and
provide methods to the physics package classes (see Section 4.9) for the materials
properties predictions. Thus, the physical properties package classes also insulates the
physics developers from changes in the details of the materials properties input
specifications.

Physics Package

The physics package contains classes that allow a developer to encode the conservation
equations that he or she would like to solve. The developer first must set up an AbsState
class corresponding to his physical system. AbsState is a container class (seesection
4.9.1). Once the AbsSstate class is set up, the user then can encode his conservation
equations in an AbsProblemPhysics class. This is discussed in section 4.9.2. When
specifying both the AbsState class and the AbsProblemPhysics class, the user must
extend abstract classes that provide the basic interface expected by the rest of
CartaBlanca.

AbsState Class

The AbsState class is an abstract class that must be extended by the developer to provide
a data container for state variables for specific physics problems. The state variables are

fundamentally stored in a two dimensional array wherein the first dimension is the
variable type and the second dimension is the node index. For example, if one is trying
to solve a problem with state variables for pressure, and three components of velocity,
then the first dimension of this array would be four. The two-dimensional representation
is convenient for developers since they tend to work with the governing equations a field
or state variable type at a time. The two-dimensional view is also a convenient format for
the graphics package since it also processes the data a field at a time.

Krylov solvers, however, work in terms of a one-dimensional state vector. Thus, the
AbsState class also provides a one-dimensional view of the same state data. Currently,
the one-dimensional view is provided as a copy of the two dimensional data. The copy is
performed using Java’s System.arraycopy function for best performance.

AbsProblemPhysics Class

For linear physical systems, developers can specify their physical system behavior by
extending the AbsProblemPhysics class. AbsProblemPhysics is an abstract class that lays
out what CartaBlanca expects from physics objects. The most important feature of this
class of objects is the methods to get the right and left hand side of the governing
equations for the state variables. The solvers in CartaBlanca interact with these physics
object methods to obtain the right-hand side of the linear equation system and the matrix-
vector multiply. Another important behavior of AbsProblemPhysics objects is the pre-
conditioning method. The Krylov solvers also interact with physics objects by invoking
their pre-conditioning method. This method takes a Krylov vector from the Krylov
solver and updates it according to some iterative improvement scheme. Currently,
diagonal, Jacobi and symmetric successive over-relaxation pre-conditioning are available.
Plans for a multigrid-like scheme are in place to obtain improved solver performance.

AbsProblemPhysics classes also inherit some methods for the base class for converting
time 7 states to time n + lstates. These methods, of course, can be overridden in the
derived classes to provide additional functionality.

NLAbsProblemPhysics Class

In the case of nonlinear physics problems, the matrix-vector multiply evaluation has to be
provided in a generic fashion following Equation (9). The NLAbsProblemPhysics class
of CartaBlanca extends the AbsProblemPhysics to provide this behavior. In this class of
objects, the developer must encode the governing equations into methods that return the
full nonlinear residual equation in the form of a left and right hand side. The left and right
hand side correspond to the implicit and explicit parts of the governing equations. These
objects invoke these nonlinear get methods from the overridden linear get methods from
AbsProblemPhysics class using Equation (9) to produce a linear matrix-vector multiply
evaluation. Since NLAbsProblemPhysics inherits from AbsProblemPhysics, all other
behavior, such as pre-conditioning is also available.

Figure 6 provides a graphical overview of the physics class inheritance hierarchy that was
generated directly from the Java source code using GDPro from Embarcadero
Technologies.

AbsProblemPhysics

N\,

HeatTransfer

IncompressibleFlow

ScalarAdvection

NLAbsProblemPhysics

NLMultiPhaseFlow K NLHeatTransferP
NLScalarAdvection

Figure 6. UML Class hierarchy diagram of the Physics package.

Solver Package

The solver package contains classes for linear and nonlinear solvers. As was the case for
the classes in the physics package, an abstract solver class, AbsSolver, is provided as a
parent for all solvers. Currently, this class has been extended to provide users Krylov
solver classes based on Conjugate Gradient and both the standard and flexible variant of
Gmres, [24]. In addition, an ‘explicit’ solver is provided for fully explicit calculations
which essentially bypasses any solution method at all and simply returns the right hand
side as the solution. Finally, a Newton-Krylov (JFNK) solver is provided for nonlinear
problems. Each of these solvers communicates directly with physics objects through
method invocations. The solver class inheritance hierarchy is shown in Figure 7.

AbsSolver

Gmres \

CcG

NewtonGmres

FGmres

Figure 7. Solver package class hierarchy.

Graphics Package

The Graphics package, at present, contains only one class that can be used to produce
Tecplot format output text files. The class interacts with the abstract state class so that it
automatically knows about new state variables, etc. Eventually, this class will be
extended to allow for additional plot file output formats. We also envision direct use of
Java graphics.

Problem Driver Package

The ProblemDriver package contains the Driver class, a top-level driver for solving
physics problems on each mesh partition. The Driver class implements Java’s Thread-
class Runnable interface. This enables data-parallel computation in CartaBlanca with
each thread corresponding to a particular mesh partition. Figure 8 shows a UML
association diagram for the Driver class.

“'.'.’.‘.FE!'" Huhl!_m &dgnm-r
B B
E!-.‘o.lrp‘a-r!na
AhsFrahemPhslos
duprdm L’ ': 'n:u‘h:ﬂﬂr
1 -

Ol ver

Ahs5alper

J) ey e

el rLHE

Figure 8. Association diagram for driver class.

As can be seen, the Driver class interacts with all the major CartaBlanca objects from an
AbsProblemPhysics object to an AbsSolver object.

Boundary Conditions Package

Boundary conditions are required for the complete specification of all but the simplest
physical problems. In order to build a layer of abstraction between the core physics
classes and the user interface for boundary conditions, we have introduced a separate
boundary conditions package. At present, this package contains only one class, which
implements boundary conditions. This class takes user input data from the
ProblemSpecifier object and provides methods for setting boundary fluxes for use in the
conservations equations in the physics classes.

Main Package

The main package consists of several classes that contain the public static main method
that drives the entire simulation. The class PhysMain contains a main method that
instantiates all high-level objects and invokes the start method for all of the Driver
objects for each mesh partition.

P T T
Q\ﬂl””/)

" Construct ProblemSpecifier, Invoke

T~ GUI for User input

—

N

Construct, in order, o
- Mesh, Physics, Solver, >
\ Driver Objects for each -
mesh partition
i
Start each Driver thread

/—/4\

STt 2

Figure 9. Flow chart for CartaBlanca main method.
Performance

Our last task here is to give some measure of the performance of CartaBlanca. To provide
a basis of comparison, we used CFDLIB, [17], and CartaBlanca to perform simulations of
the Martin and Moyce broken dam problem on both two- and three-dimensional
Cartesian meshes. We fyrthermore ran both codes using the same treatment of advection
mass fluxes, namely, 1 order accurate donor cell advection. Finally, we used the
Conjugate Gradient method for the solution of the pressure equation in CFDLIB and for
the preconditioning of the non-linear pressure residual in CartaBlanca. Thus, the two sets
of calculations, while not identical, were as close to the same as possible in terms of the
numerical methods used. Table 1 provides a comparison of the speed of the codes in
terms of the so-called grind time--average wall-clock processing time per time step per
node.

Table 1: Performance compagisons between CartaBlanca and CFDLIB on the
broken dam problem using 1 order (donor cell) fluxes for advection. Table entries
are ‘grind times’ defined as average wall-clock processing time in microseconds per
time step per node.

Case\Code Elements | Time | CartaBlanca | CFDLIB
Steps

2D 1100 261 321 147
quadrilateral
element
mesh

3D 4400 279 779 400
hexahedral
element
mesh

All calculations were performed on our Sun Ultra 60 workstation running Solaris 2.7. For
the CartaBlanca calculations, we used Sun JDK 1.3.1 with the HotSpot JIT. For the
CFDLIB calculations, we used Sun FORTRAN 77 compiler version 5.0 with
optimization. As can be seen from the Table, CartaBlanca achieved 46% of the speed of
CFDLIB in the two-dimensional case and 51% of CFDLIB in the three-dimensional case.
While this is not a perfect side-by-side comparison of Java and FORTRAN it is a
reasonably close comparison. The results are quite pleasing to us when we consider that

CFDLIB is a highly optimized FORTRAN code, which has many man-years of effort
behind it and a worldwide user base. Furthermore, CFDLIB is recognized as a fast
multiphase flow code by our users. Finally, CFDLIB was written for structured grids and
does not use indirect addressing, as does CartaBlanca.

Implementation and Performance of a Particle In Cell Code
Written in Java (excerpt)

S. Markidis, G. Lapenta, W.B. VanderHeyden, Z. Budimli'c

Skeleton Particle-in-Cell Algorithm

The simulation of systems where plasmas are present requires the description not only of
the scale of interest but also of the smaller scales that affect the physics of the systems
under consideration. For instance, simulation of coronal mass ejection from the Sun
requires the description of large scale processes using a magnetohydrodynamic (MHD)
model. However, the MHD models require to include models of dissipation processes
that develop at microscopic scales. The calculation of dissipations requires more accurate
microscopic kinetic models, beyond the fluid approach. At small scales dissipations are
present not only as interparticle collisions but also through electromagnetic interactions
of ions and electrons at the microscopic scales. A self-consistent description of
astrophysical systems must be performed at the kinetic level using the Boltzmann
equation for ions and electrons, the Maxwell equations for the electromagnetic fields and
the Newton (or Einstein) equation for the gravitational field. However the cost of such
direct approach would be prohibitive if attempted using the most common explicit
methods currently in use. The standard approach is to represent the systems with reduced
models such as the Hybrid, resistive MHD, Hall MHD or two-fluid model, where some
or all species are approximated in the fluid limit. In all reduced models, ad hoc
assumptions of the kinetic behavior are made, most commonly in the form of
prescriptions for the higher order moments of the distribution (e.g., the pressure tensor)
and for the dissipation processes (e.g., anomalous resistivity).

We follow a bolder approach. We adhere to the exact kinetic model with all the correct
microscopic physics. To be able to bring such approach all the way to the large scales of
interest we use two powerful techniques that can make the numerical simulation
manageable within the existing computing resources: object orientation and implicit
formulation. The implicit formulation is described elsewhere and its description is
beyond the scope of the present paper. Here we use a simpler explicit PIC algorithm and
focus only on the issue of object orientation of a plasma simulation code which is
described next. Below, we report a simple version of the Particle In Cell method. The
scheme considered here is a full-fledged plasma simulation method currently being
widely used in the plasma physics community. Our goal here in not simply to use an
artificially simple benchmark to test Java performances but to test Java in a realistic
application. Our simplified algorithm consists of three parts: the interpolation scheme, the
Poisson solver and the particle mover, as shown in Fig. 1.

PARTICLE MOVER

INTERPOLATION INTERPOLATION
GRID-PARTICLE PARTICLE-GRID

POISSON SOLVER

Fig. 1. An explicit electrostatic PIC algorithm.
Interpolation particle-grid

The density on the grid is calculated from the particles through the interpolation scheme
defined by

q
o, = EEpW(xi - xp)
P (1)
where i and p label grid nodes and particles, respectively, A®x is the space step while g,

is the particle charge. The classic Cloud-In-Cell (CIC) method is used for the
interpolation functions:

X, =X,

W (x,—x,)=b()

Ax ()
@& where the b, is the first order b-spline function.
Field Solver

The Poisson equation for the electric potential B0 is:

e p

2
dx & (3)

where @ € is the dielectric constant. Equation (3) is solved using a finite difference
scheme. Then the electric field £ on the grid can be calculated by using the central
difference discretization and solving the resulting linear system with Gaussian
elimination.

Interpolation grid-particle

Given the electric field on the grid, the electric field on each particle can be calculated
using the same CIC interpolation scheme:

EP=EE[W(xi—xP) @

Particle mover

Particles are moved solving the Newton equations of motion for the particle position x,
and velocity v, :

d
Do Lo g,
Mo (5)
@,
dt P (6)

where m,, is the particle mass. Equations (5, 6) are discretized with the leapfrog finite
difference scheme .

OBJECT ORIENTED IMPLEMENTATION

The biggest problem for any advanced plasma simulation code is to organize the
complexity. Because plasma physics simulations are becoming more complex and
because more physicists become involved in the writing of software, we need more
sophisticated and easier development techniques. With an object- oriented framework, the
computational physicist tries to organize the physical problem into objects that control
the complexity of the simulation.

DRIVER

TIMER PARTICLE — PHYSICS «— FIELD

MESH

Fig. 2. Parsek Framework.

In designing Parsek, we have tried to follow two guiding principles. First, we have tried
to use a full object-oriented programming from a physical point of view. Object
orientation gives an elegant software design and results in a code that is easy to read and
can be more effectively used by physicists who are less proficient in computer science
issues.

Second, we have written the code to be as generic as possible so that the computer
programmer can plug plasma physics into the proper program locations and develop a
new code to study different plasma phenomena. So the programmer can extend the
functionality of the code by adding models and algorithms of various level of complexity.

The algorithm discussed and tested in the present work is a skeleton version of a
complete plasma simulation code. We use a PIC scheme that includes all the most
important steps present in a complete code. The algorithm summarized in Sect. 2.1
follows the trajectories of a number of particles in force fields that are calculated self-
consistently from charge, current and pressure densities created by the particles. Each
time step in a PIC code consists of two major steps: the particle mover to update the
particle positions and calculate the new charge and current densities, and the field solver
to update the surrounding fields. Since particles can be located anywhere within the
simulation domain but the surrounding fields are defined only on discrete grid points, the
particle mover uses two interpolation steps to link the particle positions and the fields: a
step to interpolate fields from the grid points to the particle positions and a step to
interpolate the charge of each particle to grid points. The Parsek architecture is
summarized in Fig. 2. The complete code listing is too long to be reported here, as is to
be expected for a realistic simulation code that can study realistic physics problems.
Parsek is composed of six separate classes:

* Particle Object

The Particle class describes an individual plasma particle, like an electron or ion,
including its position and velocity. Basically Particle is organized as:

public class Particle {
private double Position;
private double Velocity;
private double ElectricFieldOnParticle;

}
* Field Object

The Field class represents the electromagnetic field and its sources for a given point
of the mesh. The Field object includes the charge density and the electric field for
each grid node. It is written as follows:

public class Field {
private double ChargeDensity;
private double ElectricField;

* Mesh Object

The Mesh class contains several methods that describe mesh elements and boundary
nodes. Furthermore, it provides methods to calculate discrete differential operators
and to interpolate a discrete vector field onto a specified location in the mesh.

* Physics Object

The Physics class handles the particle mover phase, where the new particle position
and velocity are determined by Newton’s law, and the field solve phase, where the
fields are updated solving Maxwell’s equations.

* Driver Object

The Driver class describes the methods that handle the whole simulation. After
initializing the arrays of particle and field objects with

Particle[] myParticle = new Particle[NumberOfParticles];
Field[] myField = new Field[NumOfGridPoints];

the initial conditions for the particle velocities and positions are set. Once
constructed, the simulation is advanced in discrete units of time. Fields are
calculated from the sources, including the appropriate boundary conditions. At this
point, the explicit method requires solving a linear system to determine the new
electric fields. Next, the forces on particles are calculated by interpolating the fields
to the particle positions. The forces are used to update the particle velocity, and
subsequently the particle position. These procedures are repeated for each
incremental time step.

* Timer Object
Finally, the Timer class calculates the time performance of the code.
ALTERNATIVE IMPLEMENTATIONS OF PARSEK

The object-oriented implementation of Parsek described above uses a fine-grained
approach. The objects are chosen to correspond to the smallest units in the physical
system under consideration: the particles and the mesh points. Alternative approaches are
possible.

Previous studies have led the high performance computing community to reach two
widely held beliefs.

First, programs written in Java are believed to be an order of magnitude, or more, slower
than corresponding programs written in C or FORTRAN. To ascertain this point we have
developed various FORTRAN and Java versions to compare their relative speed.

Second, fine-grained object orientation, either in C++ or in Java, is believed to be much
slower than coarse-grained object orientation. Fine-grained object orientation can be
loosely defined as the choice to define objects at the smallest scale of interest in the
problem being considered. For plasma simulation this corresponds to the choice outlined
in the previous section where the objects were chosen as single particles and single mesh
points. The crucial feature of fine object-orientation is that the objects are small and large

arrays of them are required. The additional cost of handling arrays of objects is believed
to result in a great penalty in terms of computing efficiency. Coarse-grained object
orientation, instead, defines broader objects that include larger units of the system under
consideration. For plasma simulations this corresponds to choosing objects composed by
the whole grid or by whole populations of particles (such as all ions or all electrons). The
crucial feature of coarse object orientation is that all relevant arrays are wrapped inside
the objects and no arrays of objects are required. Previous studies have reported penalties
of one order of magnitude when fine-grained object-orientation is compared with coarse-
grained object orientation and only the traditional compiler techniques are used. To test
this issue we have developed different versions of Parsek all written in Java but using
different object orientation styles.

The two beliefs described above are often based on evidence obtained some years ago
when the Java virtual machines and compilers were still in their infancy. Furthermore,
often such conclusions were reached using simple methods not applied to any scientific
problem. More recently, extensive benchmarks of Java using a suite of standard
mathematical problems has shown that contrary to the commonly held beliefs, Java is
almost on par with FORTRAN.

Here we intend to conduct all tests with the most modern compilers on the most modern
computer architectures. And we will conduct all tests for a real problem of plasma
simulation where the final answer is a significant plasma physics result. While most of
the previous performance studies were conducted on benchmark problems, we will base
our study on a realistic plasma physics simulation tool.

Below, we put the two beliefs described above to test using several alternative versions of
Parsek both in Java and in FORTRAN 90. All versions are equivalent from the
algorithmic point of view but are radically different in the choice of software architecture
and programming language. Below we describe the various versions.

Coarse-Grained Object Oriented Parsek

Two approaches to object orientation are possible: a “coarse grained object-oriented”
(referred to as LOO) and a “’pure object-oriented” (referred to as OO) programming style.
We have described the OO design in the section above. With a LOO technique the arrays
that describe particles and fields are wrapped in two objects that represent the whole
particle population and electrostatic field states. The coarse grained object-oriented
Parsek is composed by 5 separate classes:

* Particles Object

The Particles class in the LOO framework acts as a container to store the
characteristic data for N individual particulate elements. Each individual particle has
several attributes, such as position and velocity. In the code, examples are:

private double[] Position = new double[NumberOfParticles];
private double[] Velocity = new double[NumberOfParticles];

In a LOO code arrays are wrapped in a single object, and no array of objects is used.
In the fully OO PIC code, instead, objects were single particles and arrays of objects
were used. Moreover the Particles object contains methods to move and accelerate

the particles, and to check if the particles are leaving the boundaries. Unlike the case

of the OO PIC code, in a LOO PIC code there is a direct interaction between the
Particles and Mesh objects.

* Fields Object

A Fields object represents a discretization of a continuous field quantity over an
underlying mesh. Internally, Fields data is stored essentially as an array, containing
charge density, potential, and electric field values on the grid. In Java, it is written
as follows:

private double[] ElectricField
private double[] Potential
private doublef[] ChargeDensity

new double[NumO{fGridPoints];
new double[NumO{fGridPoints];
new double[NumO{fGridPoints];

The Field Solver is a method of this class.
* Mesh Object

It contains the information about the grid and methods to calculate the interpolation
functions.

* Driver Object
It coordinates the other objects and controls the progress of the computational cycle.
* Timer Object
The Timer object calculates the timing performance of the code.
FORTRAN Style Parsek

Although Java is a full-fledged object oriented language, old-fashioned procedural
programming remains possible using static classes. We have developed an additional
Java version of Parsek that uses a "FORTRAN style” (FS) procedural program. All
methods are static, arrays are passed directly as arguments and the data is accessed
directly. The FORTRAN style code is procedural in only one class. It includes the usual
Particle mover, Field Solver, and Interpolation stages.

FORTRAN 90 Parsek

To compare Java and FORTRAN 90 performances we wrote two additional versions of
Parsek in FORTRAN 90. We have chosen to use modern FORTRANO9(features,
including types, modules and array notation. Two versions have been written in
FORTRAN 90: one with coarse-grained types and one with fine grained types.

Fine-grained types

The fine-grained data is stored as an array of elements of a defined type. The Particle
type describes an individual plasma particle, like an electron or ion, including its position
and velocity. Particle is organized as:

TYPE Particle
DOUBLE PRECISION :: Position
DOUBLE PRECISION :: Velocity

DOUBLE PRECISION :: ElectricFieldOnParticle END TYPE Particle

The Field type represents the electromagnetic field and its sources for a given point of the
mesh. The Field type includes the charge density, the current density, the electric field for
each grid node. Field is written as follows:

TYPE Field
DOUBLE PRECISION :: ChargeDensity
DOUBLE PRECISION :: Potential
DOUBLE PRECISION :: ElectricField END TYPE Field

Coarse-grained types

The coarse grained data is stored as a defined type that includes arrays to accomodate
particle and field data. The Particles type describes an entire species of particles
(composed of NumberParticles individual particles), like all electrons or all ions,
including their position, velocity, mass, charge and the electric field acting on them.
Particles is organized as:

TYPE Particles

DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: Position

DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: Velocity

DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: Charge

DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: Mass

DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: ElectricFieldOnParticle
END TYPE Particles

The Fields type represents the electric field and its sources for the whole mesh
(composed of NumOfGridPoints points). The Fields type includes the charge density, the
current density, the electric field for each grid node. It is written as follows:

TYPE Fields
DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: Charge Density
DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: Potential
DOUBLE PRECISION, dimension(0 : NumberParticles-1) :: ElectricField
END TYPE Fields

Testing Environment

Table 1 presents the platforms used for measuring the performance. The Java
environment is reported in Table 1 for each platform. The machines were relatively
unloaded during each simulation, and several runs were made at each test condition with
the average time recorded.

Table 1: Platforms Used for Measuring Performance

Dell Precision . Dell Latitude
Platforms Sun Blade 2000 520 Dell Latitude C840 €840
Processor UltraSPARC-III+ | Xeon Pentium 4 Pentium 4
Processor Speed | 1.2 GHz 1.9 GHz 1.6 GHz 2.0 GHz
Memory 512MB 4GB 512MB 1GB
Og’y"sr;ﬁ;“g SunOS 5.8 RedHat Linux 8 | Windows 2000 Windows XP
SUN Java build | 1.4.1-02-b06 1.4.1-b21 1.4.2-b28 1.4.1-b21

Java Performance

Table 2 and Figures 3 and 4 compare the execution time for the different implementations
of Parsek. All tests are performed on the SUN platform. In Table II the second, third and
fourth columns show the performance of Parsek, developed in Java with different object
orientation techniques. Each row presents the time performance in milliseconds, for
simulations with a different number of particles showed in the first column. Figure 3
illustrates graphically these results. Figure 6 describes the dependency of the timing
performance on the number of particles. Clearly, the timing shows the relative slowness
of the fine-grained object-oriented programming solution. While FS and LOO show a
difference in performance of only a few percent, the OO Parsek is on average 1.5 times
slower than the others. However, it must be stressed that, in our PIC code, the fine-
grained object-orientation is not as penalizing as reported in previous studies.

Recently ”The Center For High Performance Software” of the Rice University has
developed JaMake, a Java compilation environment that uses advanced program analysis
and transformation techniques. JaMake is able to improve the performance of a fine
grained object oriented program to bring it almost to the same speed as a procedural or
coarse-grained object oriented program. Although the JaMake package is still under
development, we have succeeded in testing the performance of the OO version of Parsek
when compiled using JaMake. The last column of Table 2 shows the timing performance
of the OO version of Parsek compiled with JaMake. The results clearly show the
elimination of the additional costs of fine grained object orientation.

Table 2: Execution times, showing the almost 1.5 times speedup of FS and LOO
over the pure OO. Tests on the SUN platform shown in Table I.

num.particles | OO(ms) | LOO(ms) | FS(ms) OO'(JSIS‘)M“’
1000 210 128 118 167
2000 413 233 233 281
5000 1032 551 605 603
10000 1999 1063 1224 1206
20000 4012 2143 2419 2517
50000 10273 5799 6164 6258

;

N
N
N
\

Time (ms)

5000

Number of Particles

OLOO

WmFS

0 JaMake OO
Njole;}

Fig. 3. Execution times for FS, LOO, OO Parsek codes in Java. The performance

data is reported in Table 2.

12000 _ I
= a0
= L0
&2 |
10000 - — Q0 .avlede /'{—"
8000 F /
T
E
S o 4 P
& e
T
A
e
4000 /,ﬁ’x’
L
e
A
2000 T
u 1 1 1 1
& 23 21 35 4 45 &
Humber c* Jarlick: i

Fig. 4. Execution times: increasing the number of particles, the execution time
increases linearly. The performance data is reported in Table 2.

Java vs FORTRAN 90

Table 3 and Figure 5 compare the three Java implementations of Parsek with the two
implementations in FORTRAN 90. Different platforms and operating systems are
considered. All tests are conducted using 50,000 particles. In Table III the six last
columns show the performance of Parsek, developed in FORTRAN 90 and in Java with
different programming techniques. The last column considers the fine-grained OO
version in Java compiled with JaMake. Each row presents the time performance in
milliseconds, for simulations running under different operating system showed in the first
column. The version of Java used is listed in Table I for each platform. For the two
FORTRAN implementations, we use the Lahey FORTRAN 95 compiler (version 5.7 for
the Windows platform and version 6.1 for the Linux platform) with maximum
optimization on the Linux and Windows platforms. The Sun FORTRAN 90 version 6.2
with the compiler option -O3 is used for the SUN platform. Figure 7 illustrates
graphically these results.

Clearly, on the SUN platform, FORTRAN and Java performances are comparable, with
some Java implementations even outrunning both FORTRAN implementations.
Conversely, on the INTEL platforms, the coarse grained FORTRAN version remains
about a factor of two faster than the fastest Java, but the fine grained FORTRAN version
is actually slower than some Java implementations. The direct comparison between Java
and FORTRAN requires further comments.

Table 3. Execution times for a simulation with 50,000 particles under
different operating system shown in Table 1

0.S. F90 F90 JavaFS(ms) | JavaLOO(ms) | JavaOO(ms) | JavaQO-JaMak
fine(ms) | coarse
(ms)
Windows2000 3765 1680 3255 3956 5800 3625
Linux 2742 1130 2874 3420 3960 4250
SUN 7430 6485 6164 5799 10273 5386

12000 -

10000

8000

— @ Windows 2000
6000] [|mLinux

(aSuUN
4000

2000 — -

| ﬁ

F80 Coarse F80 Fine FS LOO 00 Jaake OO

Time {ms)

Figure 5. Execution times for FS, LOO, OO Java implementations and the two
Fortran90 implementations. The performance data is reported in Table III.

First, on the Windows 2000 platform we tested also the Compaq FORTRAN compiler
that resulted in considerably slower execution. On the Linux platform we also tested the
ABSOFT compiler version 7, which was also slower but by a smaller margin.

Second, the two FORTRAN implementations perform significantly different on the two
INTEL platforms. Coarse-grained typing results in a improved handling of the cache
since operations conducted on an array of quantities (such as the particle positions) are
closer in memory and are loaded in the cache all together in a block.

Third, we have repeated the tests above with a different number of particles, reaching
virtually identical conclusions.

»
‘ Los Alamos

NATIONAL LABORATORY

____IOSALAMOSPROFLE [\ /\ N/)\

Situated on more than 43 square miles in northern
New Mexico, Los Alamos National Laboratory has
more than 7400 regular full-time employees and

an approximate annual budget of $1.7 billion. We
are operated by the University of California for

the National Nuclear Security Administration of the
US Department of Energy.

Over our 58-year history, our primary mission has been
to apply science and technology to problems of national
security. At first our mission was dedicated principally to

/'"4‘

I 'A‘AA)\

stockpile stewardship, but an ever-changing world has
expanded our mission to cover other global threats, such
as computer hacking and biological terrorism.

The Laboratory also conducts basic and applied research
that addresses societal issues, such as developing alterna-
tive energy sources, designing the world’s first functional
quantum computer, and tracking down the most common
ancestor of the HIV-1 strains responsible for AIDS. A vital
facet to all our work is R&D collaboration with private
industry. The following are five key R&D areas.

Maintaining Our National

Security. The Laboratory
continues to work on resolving
nuclear weapons issues and on
deciphering emerging tech-
nological challenges posed by
the nuclear weapons stockpile.
To accomplish this mission,
the Laboratory applies an array
of science and technology,
from theoretical and
computational physics to
fabricating and testing

Radiation-tolerant materials
like this could provide safe
nuclear waste storage for
thousands of years.

Understanding the
Complexity of Life. At Los
Alamos, scientists have united
biological, physical, and
computational sciences in an
effort to better understand
biological complexity. With
such knowledge, we will
develop technologies that
address a number of critical
issues, such as detecting,
identifying, and defeating
diseases and determining how
genes function in the cell and
the whole organism.

Scientists are developing
hohlraums to achieve
thermonuclear ignition, a
process for the controlled
release of great amounts of
energy.

Developing Environmental
Solutions. The Laboratory’s
expertise in this area spans a
variety of environmental
technologies, from waste
minimization to environmental
restoration and waste
management. The principal
goal of these and other
programs is to maintain a safe
and healthy environment for
present and future generations.

Researchers are using density
contour maps to solve novel
protein structures, many of
which have medical
applications.

Defeating Global Threats.
Los Alamos researchers are
developing technologies

that defend the world against
a number of international
threats, such as the pro-
liferation of nuclear weapons,
chemical and biological agents,
and information terrorism and
computer infiltration.

The Blue Mountain
Supercomputing Platform
helps researchers maintain the
safety and reliability of the US
nuclear stockpile.

Developing Supercomputers.
In collaboration with industry,
the Laboratory continues to
develop faster and more
sophisticated supercomputers
to handle the extraordinarily
complex calculations required
to study the dynamics of
nuclear weapons, global
climate and ocean changes,
or oil flow through under-
ground rock.

Using a quantum
cryptography process
developed at Los Alamos,

a sender can transmit an
image (top) that is encrypted
(middle) in such a way that
only the intended receiver
can decrypt it (bottom).

Visit the LANL web site at
http://www.lanl.gov/

worldview/

