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Abstract

In many models for disperse two-phase flows, the pressure of the disperse phase is often assumed to be the same as that
of the continuous phase, or differ only by an amount caused by the surface tension. This type of model is referred to as an
equilibrium pressure model. Recent research indicates that the stress difference between the phases caused by dynamics of
the motion can be significantly important in the modeling of disperse two-phase flows. Although this difference is still
ignored in most calculations of disperse multiphase flows for various reasons, when an equilibrium pressure model is
applied to continuous multiphase flows, a conceptual difficulty arises. For instance, the equilibrium pressure model cannot
be used to study the tensile break of a sponge with interconnected pores, because the air in the pores can never go into
tension while the sponge material does not break without tension.

To avoid this conceptual difficulty, a multipressure model is introduced for continuous multiphase flows by analyzing
and then modifying the implicit assumption about the volumetric strain rates involved in the equilibrium pressure model.
Numerical implementations of the multipressure model are discussed. An example using the multipressure model is
presented.

Published by Elsevier Ltd.
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1. Introduction

Considerable work has been devoted to the study of disperse multiphase flows, in which there is only one
continuous phase and all other phases are in forms of particles, droplets and bubbles with sizes small
compared to the macroscopic length scale of the flow. A continuous multiphase flow, in contrast, contains
more than one continuous phase occupying regions or forming interconnected networks with length scales
comparable to the macroscopic length scale of the flow. There are relatively few studies conducted on
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continuous multiphase flows as compared to the number of studies of disperse multiphase flows. Part of the
reason for this is the difficulties related to the description of the morphology of continuous multiphase flows.

Advances in the materials manufacturing industry have produced many interesting composites with contin-
uous or interpenetrating material phases (Wegner and Gibson, 2000; Feng et al., 2003). On the numerical
front, advances of the particle-in-cell method (Harlow and Amsden, 1991; Sulsky and Brackbill, 1991; Cum-
mins and Brackbill, 2002) enable the computational study of fluid—structure interactions using the method of
multiphase flows (Ma et al., 2005). In this method the solid and fluid are treated as interpenetrating two-phase
flows. The stresses in the solid and in the fluid are governed by different constitutive relations. All of these
developments enable the study of continuous multiphase flow or the deformation of the interpenetrating com-
posite materials.

One of the most important differences between the disperse and continuous multiphase flows resides in the
character of phase interactions. It has been shown that the phase interactions go beyond the exchange forces
(such as drag, added mass force etc). In addition to the surface tension effects, the difference in the average
stresses between the phases results from the dynamics of phase interactions. This dynamical part of the stress
difference has important consequences to a multiphase flow. The dynamical part of the pressure difference for
potential flows was first studied by Stuhmiller (1977). Later, Zhang and Prosperetti (1994) found that phase
interactions not only result in the pressure difference but also a stress in a potential flow. For low Reynolds
number flows the dynamical stress difference is related to effective viscosity (Zhang and Prosperetti, 1997).
Despite its importance (Hwang and Shen, 1989; Sangani and Didwania, 1993; Prosperetti, 1999), the dynam-
ical part of the stress difference is largely ignored in calculations of disperse multiphase flows. Part of the rea-
son for ignoring this important part of the stress difference is related to the uncertainties (Sundaresan, 2000) in
the models for disperse multiphase flows. The other part of the reason is that it does not result in obvious
conceptual difficulties in disperse multiphase flows. Models with the dynamical part of the stress or pressure
difference ignored are referred to as equilibrium pressure models. In continuous multiphase flows, the dynam-
ical part of the stress difference can no longer be ignored. The example of a sponge made of elastic material in
tension with fluid-filled pores illustrates the critical nature of the stress difference.

In this paper, instead of examining the full tensorial stress difference, we focus only on the pressure differ-
ence, or isotropic component of the stress difference. The first reason for this choice is that the pressure is
directly related to the volumetric strain of the material and that the continuity condition provides a constraint
to the rates of volumetric deformations. We examine the consequence of this constraint in this paper. The sec-
ond reason is that, in many flows, such as the Rayleigh-Taylor mixing problem (Ramshaw, 1998), the motion
is dominated by the inertia and pressure; and the deviatoric component of the stress can be neglected. The
third reason is, that the study of the isotropic component of the stress may provide guidance in the study
of the deviatoric components.

The pressure in a compressible material depends on the volumetric deformation. In many numerical calcu-
lations of multiphase flows the average phase pressure is not determined directly by calculating the volumetric
deformation of the material, rather it is determined by requiring that all volume fractions sum to one (Prosp-
eretti and Tryggvason, 2006). Therefore the numerical scheme implies a method of calculating the volumetric
deformations of the phases. In this paper, we study the assumptions involved in the method and then modify
them to reach a multipressure model while still satisfying the continuity requirement.

As an example, this multipressure model is then used in Section 6, to calculate the spalling of a porous solid
with interconnected pores in the presence of the air — a continuous two-phase problem. The pressure field for
the air and the stress field for the solid are calculated at the same time. This example shows that the multipres-
sure model introduced can be used to study fluid-structure interaction problems in the context of continuous
multiphase flows.

2. Averaged equations for multimaterial flows

Averaged equations for multiphase flows can be derived using a number of approaches. In this paper, we
extend the ensemble average approach used by Zhang and Prosperetti (1994), Zhang and Prosperetti (1997).
In their approach the probability is defined in a phase space comprised of the coordinates and velocities of the
particle centers. In the study of continuous multiphase flows, such as turbulent mixing problems, the number
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of the degrees of freedom in the flow is not finite. The concept of the probability defined on the finite dimen-
sional phase space needs to be extended slightly. Such an extension (Drew and Passman, 1999) requires some
mathematical formality and a few concepts of real analysis. So that we are not burdened by mathematics, we
explain the ensemble average, the associated probability and the relation of the probability to the probability
density used by Zhang and Prosperetti (1994), Zhang and Prosperetti (1997) in Appendix A. The main con-
clusion from Appendix A is that the forms of the averaged equations derived by Zhang and Prosperetti for
systems with finite degrees of freedom are also correct for systems with an infinite number of degrees of free-
dom, and therefore are applicable to disperse multiphase flows with finite Reynolds number. For continuous
multiphase flows, however, the small particle approximation previously used is not applicable and needs to
abandoned. We study the consequence of this abandonment.

We consider an ensemble of flows and denote a flow belonging to the ensemble as . Let C;(x, ¢, ) be the
indicator function of phase i, such that C;(x, ¢, ) = 1 if the spatial point x is occupied by phase i in flow # at
time ¢, and C;(x,¢, ) = 0, otherwise. The volume fraction 0; of phase i at this point at time ¢ is calculated by
averaging the values of the indicator functions over all possible flows in the ensemble.

MLOz/G@m%MQ (1)

where [(-)dZ denotes the average over all possible flows in the ensemble.
The gradient of the volume fraction is calculated as

va:/vau¢fmy 2)
The ensemble phase average (¢,) for a quantity ¢; pertaining to phase i is defined as
0:{q,)(x,t) = / Ci(x,t, F)q,(x,t, 7 )d2, (3)
and its gradient is calculated as
05 0)(x.0) = 094} (x.0) + [ la(x.0.7) ~ (g)(x. IV C,(x.1. 7)d2, @
after using (2).
For a velocity field ufx, t) of phase i, by replacing ¢; with u,q; in (3), differentiating the equation with respect

to x and then adding the resulting equation to the partial time derivative of (3), we find the averaged transport
equation for the quantity g¢;

0 aq; .
040 + 5+ 0ua)) = 0 G+ 9 - ) + [ Gado )
after exchanging the time and spatial differentiation with the probability integral, where
. 0C,
Ci=—+u-VC. 6
o +u -V (6)

The last term in (5) represents a source or a sink to quantity ¢g; due to phase change in the flows in the
ensemble.

The averaged mass conservation equation can be obtained from the averaged transport Eq. (5) by setting
q; = p?, where p? is the material density, or the microscopic density, of phase i.

SO+ Oale)) = [ fEar, )

where #; is the Favre averaged velocity defined as @;(p?) = (u;p?).
By setting ¢; =1 in (5) one finds the evolution equation for the volume fraction
00;

o + V- (0(u;)) = 0V - m;) + / C;d,?. ®)
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Adding V - [6;(&; — (w;))] to both sides of (8), using (2) and the definition (3) of an averaged quantity we have

00;
ot

+it; - V0, = / Cid2 — / (w; — ;) - VC,d2. (9)

Multiplying (9) by (p?) and then subtracting the resulting equation from (7) we have the averaged evolution
equation for the average of the microscopic density.

o[04 5 et = [h - tncar o) [ veas. (10)

While the right hand sides of (9) and (10) can be written in mathematically simpler forms by using (6), in this
paper we choose to leave them in the forms presented above because in many cases, models for phase changes
are given for Z,. Our task in this paper is to study constraints on the closures for the interface integral
f(lli — il,) . VC,dg’

The multiphase flow momentum equation can be derived by setting ¢; = pu; in the transport Eq. (5) and
using the microscopic momentum equation for the material to find

gwi@?ﬁi) +V- (0i<p?>l~‘ii‘i) =0V -a;) + V- (0i6]) + / C"p?"fdg)» (11)
where
"fe = —(p?(uf—itf)(u,-—ﬁ,-», (12)

is the Reynolds stress resulting from velocity fluctuations. To further study the averaged momentum equation
we introduce an auxiliary macroscopic stress field 6 4(x, t) defined for phase i. In different fields related to mul-
tiphase flows the choice of this auxiliary stress is different as we will discuss later. For any such stress the first
term on the right hand side of (11) can be written as

0.V -6,) = 0,V - aa + V- [0:((0)) — 6a)] + (13)
where
fi=- / (6: — 6a;) - VCid2. (14)

Substituting (13) into the momentum Eq. (11) one finds

0 .
a(ﬂ(p?)ﬁ,) + V- (91<p?>l~l,l~l,) = HIV S oA+ V- [9[(<O'i> — O'Ai)] + V- (HiO'l-Re) +f, + / Clp?llld@ (15)
The interfacial force f; defined in (14) depends on the choice of the macroscopic stress field 6 4;. The sum of the
interfacial force is

M M M
Zfi:—/Zai‘VC,-d?/—i-ZaAi-VG,-. (16)
i=1 i=1 i=1

The first term in (16) represents the effects of normal stress jumps, such as the surface tension, and is indepen-
dent of the choice of the stress 6 4;. In the studies of two-phase flow in porous media (Bentsen, 2003), the stress
is chosen to be the average stress of the phases, (6a; = (6;)). All choices are allowed provided that the inter-
facial forces defined in (14) are modeled accordingly, although some choices may facilitate or complicate clo-
sure development for a given practical problem. For instance, for a particle suspension under gravity, one can
choose a4, to be zero for the particle phase, as long as the model for the interfacial force f; includes effects of
buoyancy.

A typical choice for the stress 6 4; in disperse multiphase flows is 64; = (6.), (i =1, ---, M) where (a.) is the
average stress for the continuous phase. With this choice, under the assumption that the particle size is small
compared to the macroscopic length scale, the averaged momentum Eq. (15) can be written in the form
derived by Zhang and Prosperetti (1994), Zhang and Prosperetti (1997) as shown in Appendix B. Studying
one-dimensional Rayleigh-Taylor mixing, Glimm et al. (1999), and Saltz et al. (2000) introduced a
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two-pressure model in which 64;=0 and the interfacial terms are modeled as proportional to V0,. For
instance, f; is modeled as p;V0;, where p; is the pressure for phase i averaged on the interface. The gradient
in the volume fraction provides a natural length scale for the interfacial force. Apparently these models are
specifically devised for the Rayleigh-Taylor mixing problems, where the length scale in the problem is dom-
inated by the length scale represented by the inverse of the volume fraction gradient, and cannot be extended
easily to more general cases since the interfacial force is not necessarily zero when the gradient of the volume
fraction vanishes.

Depending on the choice of 6,;, the averaged stress differences may or may not appear explicitly in the
momentum equations, but their effects are important from the point of view of multiphase flow theory.
The stress difference (related to the stress T in Appendix B) is not only related to important quantities, such
as effective viscosity in a Stokes flow (Zhang and Prosperetti, 1997), but also related to the characteristics of
the averaged equations (Prosperetti, 1999). However, in many numerical calculations of disperse two-phase
flows, especially for small particle volume fractions, the effect of the stress difference is neglected together with
the Reynolds stresses and the particle collision stress (Pan et al., 2000; Zhang and VanderHeyden, 2001).
When fine numerical meshes are used, such calculations can still produce results comparable to physical exper-
iments. This is seemingly contradictory to the previous statements about the importance of the stress difference
between the phases and can be explained by the effects of mesoscale structures in the multiphase flows. For
disperse two-phase flows with the particle scale small compared to the macroscopic length scale of the flow,
mesoscale structures often exist in the flow. Using a similar technique of deriving the averaged equations for
disperse two-phase flows, one can average the averaged equations again over the mesoscale (Zhang and Van-
derHeyden, 2002). A similar stress difference term representing the stress difference inside and outside of the
mesoscale structures appears in the double-averaged equations (see Eqgs. (17)—(20) in that paper). The effect of
the average stress difference between the particle phase and continuous phase is overwhelmed by the stress dif-
ference inside and outside of the mesoscale structures. In other words, the stress differences between different
entities (between particles and continuous fluids or between inside and outside of mesoscale structures) in the
flow are always important but they manifest themselves at different scales. When fine numerical meshes are
used, the effects of the stress difference inside and outside the mesoscale structures are accounted for because
the mesoscale structures are resolved in the calculation.

For continuous multiphase flows, different phases occupy regions of all scales, the double-averaging
method cannot be applied. For these flows, the concepts, such as drag and added mass forces, need to be
reconsidered, if they can be meaningfully defined. Their relations to the interfacial force f; also need to be reex-
amined. Furthermore, for continuous multiphase flows, one has to explicitly consider the stress difference or
average stresses of the all phases.

3. Continuity constraint on volumetric deformation models

The average stress of the material is often directly related to the average deformation gradient or average
velocity gradient (Va;) of the material. The average velocity gradient is not a primary variable in the averaged
equation system, but can be related to the gradient of the average velocity by using (4),

0:(Vu;) = 0,V (u;) — /(u,- — (u;))VC,d2. (17)

Therefore to calculate the stress in multiphase flows, a closure to the interface integral in the last term of (17)
needs to be specified. The integral is a tensor. In this paper we focus on the study of the trace of this integral
and leave the study of the closure for the deviatoric components of the integral to the future. This choice is
based on the reason that the trace of this integral is related to the trace of (Vu;) and the pressure and temper-
ature of the phase. In many high speed flows, the inertia, and therefore the pressure, dominate the motion of
the system and the deviatoric stress can be neglected. The continuity condition provides a constraint on pos-
sible closures of the integral. To understand the consequence of this constraint is the main objective of this
paper. We show that there is a family of possible closures for the integral and the equilibrium pressure model
used in many calculations is one of the possible closures satisfying the constraint.
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In many computations of multiphase flows, the volume fractions and the microscopic densities are not com-
puted directly from the evolution equations, rather they are calculated as follows. The macroscopic density
p: = 0:(p?) is calculated using (7) with the velocity obtained from the momentum equations of the system.
The average microscopic density is determined by finding an average pressure (p;) according to the averaged
equation of state for phase 7 such that the following equation is satisfied.

Z Zo =1. (18)

Eq. (18) contains M unknown pressures, M — 1 additional relations are needed to solved it. The simplest and
most commonly used assumption is the equilibrium pressure assumption ((p;) = p). Regardless of the assump-
tions or the numerical methods used to solve this equation, if models for the phase change terms in (9) and (10)
are specified, any method that provides a way to determine the volume fraction and the microscopic density is
equivalent to making closure assumptions about the interface integral [(u; — &;) - VC,d2 in the last terms on
the right hand sides of the equations. We now study the constraint for the closures of this interface integral;
and then use the constraint to guide us to a model that allows different pressures for different phases.
From (17) we find

/ (s — ) VC.A2P = 0,(Vit, — (V) — V(0.(p%u) /L)), (19)

after using #; — (u;) = (p¥u)/(p"), where u;, = u; — (u;) and p” = p? — (p?) are the fluctuation components of
the velocity and the microscopic material density p’. In many multiphase flows, the last term in (19) can be
neglected. For instance, if the density fluctuations are caused by pressure fluctuations, p/, then using the equa-
tion of state we have p = p!/c?, where ¢; is the speed of sound for phase i. After using the momentum equa-
tion for the material, we find p] (due to the Bernoulli effect) is of order (p?)(u;) - u, and the last term in Eq. (19)
can be estimated as O(0,(u;)u, - u,/c?). If the fluctuation velocity is small compared to the sound speed, which is
true for many practical cases of multiphase flows, the last term of (19) can be neglected. There are cases, such
as Rayleigh—Benard convection, in which the correlation between the velocity fluctuation and the microscopic
density cannot be neglected. In this paper we restrict ourselves to the cases where the correlation (p¥u)) is neg-
ligible. Under this restriction Eq. (19) implies that a closure for [(u; — &;)VC;d2 provides a relation between
the gradient of the average velocity Vi, and the average of the velocity gradient (Vu;) of the material.
Closures of the interface integral cannot be arbitrary. They are constrained by the microscopic continuity

condition,

1oc
o

i=1

(20)

Using this condition, we find the constraint for the closure after using (2) and (6).

i/(u,»—ili)-VCidﬂ’:i(/ Cidy—ui-vei). (21)

This constraint (21) on the closure relation is equivalent to the requirement of (18) because, by differenti-
ating (18) and using (10), we have

a M M

atz <Z’> ==y {/(ui—ﬁi)~VCid@+ﬂi-V9,—/C,-d?}]. (22)

i=1

If (21) is satisfied, we have % Zf‘i] 0; = 0. If the initial volume fractions of all the phases sum to one, it remains
one during the system evolution. Conversely, if (18) is satisfied, the left hand side of (22) vanishes and (21) is
satisfied.

Either Eq. (18) or (21) provides a constraint on closures for the interface integral, [(u; — &) - VC;d2, but
does not specify a model for this integral for each individual phase. For an incompressible phase 7, V - u; = 0.
Upon substitution of this into (19) we find the closure for the interface integral,



92 D.Z. Zhang et al. | International Journal of Multiphase Flow 33 (2007) 86100
/(u,- - ﬁl) . VC,(L@ = Q,V . ﬁiv (23)

because the microscopic material density p? is constant, and the last term of (19) vanishes.
In the case where all the phases are incompressible, without phase changes, the constraint (21) or (23) leads
to the familiar continuity condition for the mixture

M
V- i =0. (24)
i=1

It is known that this constraint on the average velocities is equivalent to (18) for multiphase flows when all
phases are incompressible.

For compressible phases, the interface integral needs to be modeled. The models for the integral are not
unique. In the next section we first show the implied model for the interface integral under the equilibrium
pressure assumption, then propose another model in the following section. The purpose of this work is not
to advocate one model over the other, but rather to show their advantages and disadvantages when used in
different circumstances.

4. Equilibrium pressure assumption

Under the equilibrium pressure assumption all phases have the same pressure. This assumption is often
generalized as that the time derivatives of the pressures are the same for all the phases (3(p,)/0t = dp/dr) to
accommodate the effect of surface tension.

By differentiating (18) and using (7) we find

®_N~ L[ ocam oo /S~ 0

TR Rr [ naar v o) / 2. 3y )
where

. p)

TR 0

Here ¢; is different from the speed of sound of the material. By expanding the equation of state in the vicinity
of the average density and the average temperature, after averaging, one finds that the averaged equation of
state differs from the original equation of state for the material by quadratic terms in density and temperature
fluctuations. If these fluctuations result from velocity fluctuations, similar to the analysis following (19), using
the momentum and energy equations for the material, one can estimate that these quadratic terms are negli-
gible for flows in which Mach number of the fluctuation velocity is small. Under this assumption, ¢; defined in
(26) can be approximated by the speed of sound of the material.
Using (26) we have

N VA < SR B Iy R NP A
o TS 2 D U piCd? =V - (6der) »] (27)

Substituting (27) into (10), one finds

A _JZMML 00.d? — - (0.( 01
Jon-a-vear = G 3 o [ réar = utm]
OV - (a1

(p?) (n?)

If we further assume that the pressure gradients for all the phases are also the same, using (26) to V - (0,(p")a;)
in the right hand side of (25) we can rewrite (25) as

/ (0 — (1) CAP(F). (28)



D.Z. Zhang et al. | International Journal of Multiphase Flow 33 (2007) 86100 93

1 / 0 N M0,
—v [ p;CdZ? -V - H,vui]/ -, 29
e O] 2 >
where ug is the sonic average velocity (Kashiwa and Rauenzahn, 1994) defined as

_ O/ (< p))
SVL0:/(3{p?))

This closure for [(u; — ;) - VC,d2, or equivalently Eq. (27) implies that the local microscopic density
change is not directly related to the velocity field of the individual phase, but related to the mixture motion.
For a disperse multiphase flow, if the typical size of the particles is small compared to the macroscopic length
scale of the flow, it is true that the microscopic density change of the disperse phase is not directly related to its
velocity field. On the other hand, for the continuous phases one expects a more direct relation between the
microscopic density change and the velocity field of the phase. Clearly it is advantageous to have a more flex-
ible relation between the microscopic density changes and the velocity fields for both the disperse and contin-
uous phases. The multipressure model described in the next section provides such flexibility.

M

)
CRRAEDY

i=1

(30)

S

5. A multipressure model

We note that [(u; — ;) - VC,d2 represents the difference between (V- ;) and V - i, if the last term in (19)
is negligible as we always assume in this paper. To accommodate a more flexible relation between (V - #;) and
V - u; for different phases as mentioned in the previous section we introduce a coefficient «; for each phase and
write

<V'”,‘> :OC,‘V'ﬁ,'"‘B[. (31)

Evidently, the coefficient «; introduced here is related to the connectivity or morphology, material properties,
and volume fraction of the phase. For continuous multiphase flows, satisfactory results can often be found by
simply assuming o; = 0,, or o; = 1 if the volume fraction is sufficiently large (>90%) or the phase is well con-
nected. The term B; is introduced to allow for deficiencies in the modeling by the first term alone. Using (31)
and (19) we have

/ (W — i) - VCid2 = 0,](1 — )V - its — B, (32)

If phase 7 is incompressible, comparing (32) to (23) we find «; =0 and B; = 0.
Using (32), Eq. (9) can be written as

00; - . .

a —+ V . (Hilli) = OC,‘G,’V s U; + / Cideg + 9,’B,’, (33)

and (10) can be written as

9id<dpt?> = —0:(p]) [V - ; + B)] "‘/ (b — <p?>)Cidgj' (34)

To ensure that the volume fraction of all the phases sum to one, or equivalently for [(u; — &) - VC;d2 to
satisfy (21), quantity B; satisfies

M

ZM:H,«Bi => [v (i) — 0,0,V - iy — / C‘id@]. (35)

i=1

This equation does not uniquely determine B; for all the phases. To uniquely determine B;, we assume the pres-
sure increase Op, /0t caused by B; for all the phases is the same. For example, one may consider dp;/0t to be due
to the propagation of fast pressure waves in the system, while the underlying non-equilibrium state would need



94 D.Z. Zhang et al. | International Journal of Multiphase Flow 33 (2007) 86100

much slower convective time scale to equilibrate. Using this assumption, (34) and the equation of state (26) we
have

(p{)c;B; = —0p, /21, (36)
where 0p,/0r is the same for all the phases. Solving Eqgs. (36) and (35) we find
1/((p%)c? M .
B = —Ueie) [v (Od1) — 2,0,V - ity / c,-dy} , (37)
im0/ ((pi)et) =

and

. _ 0./({p)e}) < . . -
u—u;) - VCd? = (1 —0,)0V - ity — 57—+ V- (0a;) — 0,0,V - w; — d2|, 38
f=m-vear = -any-a- TS S [v-0m) feas] e

after using (32).

With the closure for [(u; — &;) - VC;d2 explicitly given in (28) under the equilibrium pressure assumption
or in (38) with the multipressure model introduced in this section, the volume fractions and microscopic den-
sities for all the phases can be calculated from evolution equations (9) and (10) and Eq. (18) is redundant
because both closures (28) and (38) satisfy constraint (21), which is equivalent to (18) as proved in Section
2 provided that the initial volume fractions sum to one. In this way one can avoid solving (18), which is typ-
ically nonlinear and requires an implicit method. This implementation of the closures can reduce the amount
of calculation and could be significant in an explicit numerical scheme. However there is a shortcoming with
this implementation and it should be used with care. Since this explicit scheme enforces "V 00,/0t = 0 at
every time step, instead of Zfil@i = 1, error accumulation over time may result with the sum of the volume
fractions noticeably deviating from one, especially in cases with large Courant numbers and a large number of
time steps.

To avoid this possible numerical error, we now introduce another numerical implementation of the multi-
pressure model that solves Eq. (18). This method can be viewed as a modification to the traditional predictor—
corrector method used with the equilibrium pressure assumption. As in the traditional pressure calculation,
the macroscopic densities p, = 0;(p?) in the numerators of (18) are calculated from the transport Eq. (7). After
obtaining p;, instead of using the equations of state for all the phases to find a common pressure p to satisfy
(18), we advance 0; with the chosen ¢; as if the last term 0;B; in (33) were absent to obtain an interim volume
fraction 0. Using this interim volume fraction, 07, an interim microscopic density, (p?)" = p;/0;, and the cor-
responding pressure p;, such that (p)" = p’(p;) can be calculated. Such calculated p; and (p?)" do not satisfy
(18) in general. The final values of averaged microscopic densities, (p?) = p?(p; + Ap), are obtained by finding
a common pressure increase, Ap, satisfying (18), that is

M

Pi _
2 Ay " )

i=1

In this way, we do not directly use (37), instead we use the assumption (36) to find Ap = (dp,/0r)At, which
implies (37).

The use of (39) has an additional advantage in the case where all the phases are incompressible. In such
cases p! in (39) is independent of Ap, but the numerator p; is a function of Ap in an implicit numerical scheme.
Therefore the pressure increase can still be determined. In this case, the pressure increment is the same at every
time step for all the phases, therefore the pressures for all the incompressible phases are the same provided
their initial pressures are the same.

For an incompressible phase i, in the absence of phase change, if we use the equilibrium pressure model, the
closure (28) for the interface phase integral [(u; — #;) - VC;d2 leads to the evolution equation for the micro-
scopic density

(el

=l (40)
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while the multipressure model leads to

d{pf) _0{p?) - 0
i i ;- U\ — 07 41
P SO ) (41)
since o; = 0 and B; =0 in (34).
Finally, we note that for cases, such as slow expansion of uniformly distributed large gas bubbles in a com-
pressible viscous fluid in a closed container without macroscopic motion (V - &; = 0), an additional model term,

M & (_pj_pi)

=N

to (31) is needed, (with corresponding changes in (32), (33), (34) and (38)), to account for the process of pres-
sure equilibration among the phases due to exchange of volume among them, where the 7,(=t;) is a time scale
for pressure equilibration. In the example that follows, we will assume the equilibration time scales are very
long compared to the dynamics and this term will therefore be neglected. We include it here, however, for
completeness and to show how the multipressure model can include the case of pressure equilibration.

6. A numerical example

The use of an equilibrium pressure model has become a standard practice in the computation of multiphase
flows (Sundaresan, 2000). In this section we use a numerical example to examine the properties of the multi-
pressure model.

We consider the tensile failure, known as spalling, resulting from the collision of two porous elastic plates
with thickness L and 2L. It is well known that the pressure for the gas phase always stays positive. If the equi-
librium pressure model were used the pressure (or the negative of the trace of the stress) in the solid material
would be the same as the gas pressure; the solid material would always be in the state of compression and
spalling would never happen. Therefore to simulate the spalling phenomenon, one has to use a multipressure
model. As indicated in the derivation of the multipressure model many multipressure models are possible. The
multipressure model introduced in the last section is one of such candidates and is used in the calculation
described in this section.

At time ¢ = 0 the thinner plate with velocity ¥ collides with the thicker plate at rest with the presence of air
inside and outside the plates. Physically, the presence of the air has a negligible effect on the collision process if
the solid material has a density significantly larger than that of the air. However, to have a computational
model with the ability to simultaneously calculate the air flow and the solid deformation is a significant chal-
lenge and has important applications, for instance, in the explosion process of a tank filled with compressed
air. The break-up of the tank and the subsequent trajectories of the tank fragments are of practical interest to
many safety engineers and bomb designers. The plate collision example in this paper is chosen to demonstrate
the new capability enabled by the multipressure model introduced in this paper. If the effect of the air is
neglected, there is an analytical representation of the collision process. In the case where the air is present,
we expect that the numerical solution obtained using the multipressure model to be close to the analytical solu-
tion without accounting for the effect of the air, therefore the analytical solution provides a point of reference
to our numerical scheme and physical model.

At the moment when the moving thinner plate impacts the thicker plate at rest, stress waves are generated
and travel in both directions from the impact surface. If the thickness of the plate is small compared to the
other two dimensions of the plate, the elastic waves can be approximated as plane waves with wave speed
ce = \/E/p, where E is the Young’s modulus of the plate material and p” is the microscopic density of the
elastic material. Since both plates are made of the same material, the speeds c. of the stress waves in both
directions are the same. In the time interval A¢, the waves travel distance c.A¢ and change the velocity in
the material experiencing the stress waves in both directions. Using the principle of momentum conservation,
we find the velocity in the region visited by the stress waves to be /2 and the impulse in the time interval to be

I = c.AtdplV )2 = A A, (42)
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where ¢ is the stress in the elastic body and A is the area of the plate. The stress ¢ can be solved from (42)

0 =cp V)2 =1/pE V2. (43)

The waves generated on the impact surface are compression waves, when they reach both ends of the plates,
they reflect back as tension waves. Since the waves travel at the same speed in both directions, the reflected
waves meet at the middle plane of the thicker plate. When they meet, the stress in this location becomes 2o
in tension as the stress from both waves superpose. If the material tensile strength is between ¢ and 20, the
thicker plate breaks at the middle plane, a phenomenon known as spalling.

In the numerical example, we set

E=70GPa, p°=2700kg/m®, ¥ =100 m/s. (44)

The wave speed in the material is then ¢, = 5.09 km/s and the stress ¢ = 0.687 GPa. The tensile strength of the
elastic material is set to be o = 1.0 GPa, about the middle point of the stresses ¢ and 2a.

The density of air at atmospheric pressure is about 1.2 kg/m>. In the calculation, the air is regarded as an
ideal gas. In this example the density ratio of the solid to the gas is more than 2000.

A two-dimensional calculation was performed on a rectangular region of 1.5 cm by 1.0 cm. On the bound-
aries the normal velocities are set to be zero. Initially, the thickness of the thinner plate is L = 0.2 cm with the
bottom located at y = 0.7 cm in the computational domain. In the x-direction the plate spans from 0.1 cm to
1.4 cm in the computational domain. Initially, the thickness of the thicker plate is 2L = 0.4 cm, with top
located at y = 0.7 cm in the computational domain. The initial porosity (or the air volume fraction) in the
plates is 1%. The initial velocity of the thinner plate is —100 m/s while the velocity of the thicker plate is zero.
In the numerical calculation, the coefficient «; in (31) is set to one for both phases, to ensure the maximum
correlation between (V- u;) and V - i;; and B; is determined by solving Eq. (39). We apply a simple material
failure model, in which when the maximum principal stress exceeds the tensile strength o, the stress in the
principal direction is set to zero and the material at the location is marked as damaged.

According to the elastic wave speed, one can predict that the time for the two reflected tension waves to
meet at the middle plane is 1.18 ps after impact. Our numerical calculation finds that the first damage occurs
at time 1.12 ps and is located at the middle of the plate. Fig. 1. shows the damage of the material 2 ps after the
impact. The damaged material is colored red and undamaged is marked blue.

1.5

0.5

0 0.5 1 1.5

Fig. 1. Spall of an elastic plate. The area damaged by tensile stress is marked red.
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7. Conclusions

The difference between the average volumetric deformation rate and the divergence of the average velocity
is proved to be the interface integral [(u; — &;) - VC;d2. Any method of calculating pressures in a multiphase
flow is equivalent to a closure of the interface integral because the volumetric deformation is related to the
pressure of the phase. Continuity of the multiphase system provides a constraint to the closure. However this
constraint is not sufficient to determine the closures for the interface integrals for all the phases; therefore dif-
ferent closure models or pressure models are possible. The traditionally used equilibrium pressure model is one
of the models that satisfy the continuity constraint. Application of the equilibrium pressure model to contin-
uous multiphase flows has been shown to encounter a conceptual difficulty and multipressure models have to
be introduced as an alternative. In the multipressure model introduced in the present paper, the interface inte-
gral is written as a summation of two terms. The first term is proportional to the divergence of the average
phase velocity with a coefficient expected to be a function of the volume fractions and morphology of the mul-
tiphase system. The second term is related to the relative compressibilities of the phases. Pressure equilibration
among the phases can also be included as a third term for problems in which this effect is important.

Numerical implementation of the multipressure model only requires a small modification of the codes
implemented with equilibrium pressure models. While further evaluation of the multipressure model is needed,
the numerical example in the present paper indicates the suitability of the model to problems where the vol-
umetric deformation rate is strongly correlated to the divergence of the average velocity.
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Appendix A. Probability and average

Following statistical mechanics, Zhang and Prosperetti (1994), Zhang and Prosperetti (1997) derived aver-
aged equations by averaging over an ensemble of two-phase flows. They used the Liouville equation in a phase
space comprised of the positions and velocities of particles. For the potential and Stokes flows they treated, the
motion of the continuous fluid is uniquely determined by the motions and positions of the particles; therefore
the continuous fluid does not possess additional degrees of freedom, and the phase space has a finite dimen-
sion. This is no longer true for flows with finite Reynolds number, in which the degrees of freedom of the con-
tinuous fluid are infinite. Thus the concept of probability defined in a finite-dimensional phase space needs to
be extended to handle these systems. For such an extension, we note that the probability of finding flows in a
given subset of the ensemble is defined by the nature of the physics involved, and is independent of the param-
eters, or degrees of freedom, that we choose to describe them. This notion of parameter independence is sim-
ilar to the notion of coordinate system independence in describing physical systems; different coordinate
systems can be used to describe the same set of flows. In different descriptions of the flows, the phase space
and the probability density are different, but the probability of finding flows belonging to the subset of the
ensemble is independent of the description. The probability density defined in a phase space is merely a rep-
resentation of the probability defined by the physical process. This description-independent probability can be
used to treat systems with finite or infinite degrees of freedom, because degrees of freedom, finite or infinite,
are merely descriptions of the system. This type of probability is common in real analysis and modern prob-
ability theory. Drew and Passman (1999) used this probability as a conceptual starting point to derive aver-
aged equations for multiphase flows.

Following Drew and Passman, we now introduce a probability £ defined on a collection of subsets of the
flows in the ensemble Q2. A subset in the collection is called an event in probability theory. The probability is a
set function that maps an event (a subset in the collection), to a real number between 0 and 1. To ensure that
such a probability is well defined and has the properties with which we are already familiar, there are certain
conditions that need to be satisfied by the set function and by the collection of the subsets. Almost all physical
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systems of interest satisfy these conditions; therefore we do not list them here. Readers interested in more
details are referred to textbooks on real analysis and probability theory, (e.g. Ash, 1972). The focus of this
Appendix is the connection between this probability and the probability density defined in the phase space
used by Zhang and Prosperetti (1994), Zhang and Prosperetti (1997) in the derivation of the averaged equa-
tions. This connection is particularly useful because the probability defined on the collection of subsets is quite
abstract and difficult to manipulate. The probability defined in the phase space, although not as general, is
easy to apply. For instance, the small particle approximation (Zhang and Prosperetti, 1994, 1997) can only
be obtained by using the probability density defined on particle configurations as derived in the following.

The average of function, f, which depends on a spatial position x, time 7 and flow & in the ensemble, is the
probability integral (associated with the probability measure) over all possible flows in the ensemble, and is
denoted as [ f(x,¢,7)d2. Here, we assume that all the functions of interest satisfy the integrability condition
under the probability 2 (Yosida, 1966; Ash, 1972). For such a probability to be useful we further assume that
differentiation with respect to both position x and time 7 can be exchanged freely with the probability integral
for the functions of interest.

For a system with N particles at time ¢ the probability density of finding a particle configuration ¢~ =
{x1,...,xy;v,...,vy} in which particle « is at a specified position x, with a specified velocity v, for o=
I,...,N is related to the probability Z as follows:

P(%",t) = /5[x1 —y(F,0)] - Olxny —yy(F,0)]|0]v1 — wi(F,8)] - Svy — wy(F,1)|d2, (45)

where y, (7 ,t) and w,(Z ,t) are the position and velocity of particle « in flow & at time ¢. In this definition the
d-functions select the flows with configuration " from the ensemble; and the integral averages over all the
flows satisfying the configuration. The conditional average g(x, #|%") of a quantity ¢(x, ¢, %) given the config-
uration %" can be calculated by averaging over all flows satisfying the configuration as

P(6",)q(x,t|6") = /q(x7t,97)5[x1 = (F, D] Slxy —yu(F,1)]0[vi — w1 (F,1)] -+ - O|vy — wy (F ,1)|dP.
(46)
In particular, the conditionally averaged acceleration v, of particle o can be calculated by

P(6N, t)v,(t|6") = / W, (F,0)8[x1 —y, (F,0)] - S[xy — yy(F,0)]0[v) — wi(F,1)] - - S[vy — wy(F,1)]d2.

(47)

By differentiating (45) with respect to time 7 and then using (46), we find a generalized Liouville equation,
) .

2t Ve (uP) + Vi, - (P)] = 0, (48)

o=1

where we have used V, é(x, —y,) = =V, d(x, —y,) and V,, 6(v, — w,) = =V, (v, — w,), and exchanged dif-
ferentiation with the probability integration. For systems that can be uniquely described by the particle con-
figuration %", the average sign (over-bar) for the acceleration v, is not necessary (v, = w,), and Eq. (48)
becomes the Liouville equation.

The probability density defined in (45) is for distinguishable particles, while the probability density P., used
by Zhang and Prosperetti (1994), Zhang and Prosperetti (1997) is for indistinguishable particles. These two
probabilities are connected simply by P,, = > P(%",t), where the summation is over all N! possible permu-
tations of particle numberings. Therefore the probability density defined in (45) normalizes to one, while
P_, normalizes to N!. Using this connection, one can show that generalized Liouville Eq. (48) is also satisfied
by P.,. This result implies that probability used in the present paper is consistent with the probability used by
Zhang and Prosperetti (1994), Zhang and Prosperetti (1997) for the cases they treated.

Because we have derived the generalized Liouville Eq. (48) and the transport Eq. (5) without referring to the
phase space, the equations obtained by Zhang and Prosperetti (1994), Zhang and Prosperetti (1997) can be
used in disperse multiphase flows with finite Reynolds numbers.
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Appendix B. Small particle approximation

If the typical size of the disperse phase is small compared to the macroscopic length scale, the small particle
approximation (Zhang and Prosperetti, 1997) can be made to the interfacial force. Under this approximation

and with the choice a5, = {(6.), (i =1, - - - ,M), where (a.) is the average stress for the continuous phase, one
can write
fo=—04Fg+V - (04T), (49)

where Fy is the force density with which the continuous phase acts on particles, and T is a stress tensor. In the
case of spherical particles with radius «, this force density and the stress can be written as

04F4(x,t) = n(x, 1) /||— [(oc),(x + 1, t|x) — (6o)(x +r,1)] - ndS,, (50)
0uT (x,1) = a n(x,1) /| o) — o) e 1.0 nnd, (51)

where n(x, t) is the number density of the particles, and (6.), is the average stress on the particle surface under
the condition that the particle center is located at x.

The force F4 includes the drag, added mass force, the Basset force, etc. The stress T represents the dynamic
part of the stress difference between the disperse and the continuous phases. In the case of a potential flow, the
trace of this stress is related to the difference between the pressure averaged over particle surfaces and the aver-
age pressure of the continuous phase (Stuhmiller, 1977; Zhang and Prosperetti, 1994). This pressure difference
is caused by the Bernoulli effect. With (49), the momentum equation for the continuous phase becomes

0 .
a(oc<p2>i;c) + V- (0{pNV i) = 0.V - (60) + V - (0.6%) +V - (04T) — 04F4 + / Ceplud?. (52)

The interfacial force f; in the momentum equation for the disperse phase can be related to f using (16). Upon
the application of the small particle approximation, the surface tension effect represented by the right hand
side of (16) can be written as divergence of a stress (Prosperetti and Zhang, 1996), because the integral of
the surface tension force over a particle surface yields zero net force (Hesla et al., 1993; Prosperetti and Jones,
1984). This stress tensor due to the surface tension together with the dynamical stress difference T from f; can-
cels the corresponding part of the stress difference (64) — (6.} in the momentum Eq. (15) for the disperse phase
(i = d) (Prosperetti and Zhang, 1996). Using Eqgs. (33), (47), (53) and (54) in that paper one finds that, in the
momentum equation for the disperse phase, the only part of the stress difference left is the stress due to particle
collisions besides a term negligible under the small particle approximation. Hence the momentum equation for
the disperse phase can be written as

0

53 Oale)i) + 7 (Oulpl)isia) = 025 - (0.) + - (0a0T) + ¥ - (Gaon) + 0uFs + [ Caplusd?, (53

where 6o 1s the stress due to particle collisions (Zhang and Rauenzahn, 1997, 2000).

References

Ash, R.B., 1972. Real Analysis and Probability. Academic Press, Inc., Orlando, FL.

Bentsen, R.G., 2003. The role of capillarity in two-phase flow through porous media. Transport Porous Med. 51, 103-112.

Cummins, S.J., Brackbill, J.U., 2002. An implicit particle-in-cell method for granular materials. J. Comput. Phys. 180, 506-548.

Drew, D.A., Passman, S.L., 1999. Ensemble averaging. Theory of Multicomponent fluids. Springer-Verlag, New York, NY (Chapter 9).

Feng, X.-Q., Mai, Y.-W., Qin, Q.-H., 2003. A micromechanical model for interpenetrating multiphase composites. Comp. Mater. Sci. 28,
486-493.

Glimm, J., Saltz, D., Sharp, D.H., 1999. Two-phase modeling of a fluid mixing layer. J. Fluid Mech. 378, 119-143.

Harlow, F.H., Amsden, A.A., 1991, Fluid dynamics, A LASL Monograph, Los Alamos National Laboratory Report LA-4700.

Hesla, T.I., Huang, A.Y., Joseph, D.D., 1993. A note on the net force and moment on a drop due to surface forces. J. Coll. Interface Sci.
158, 255-257.

Hwang, G.J., Shen, H.H., 1989. Modeling the solid phase stress in a fluid—solid mixture. Int. J. Multiphase Flow 15.



100 D.Z. Zhang et al. | International Journal of Multiphase Flow 33 (2007) 86100

Kashiwa, B.A., Rauenzahn, R.M., 1994. A multimaterial formalism. In: Crowe, C.C., Johnson, R., Prosperetti, A., Sommerfeld, M.,
Tsuji, Y. (Eds.), Numerical Method in Multiphase flows, FED-Vol 185. ASME, New York.

Ma, X., Zou, Q., Zhang, D.Z., VanderHeyden, W.B., Wathugala, G.W., Hasselman, T.K., 2005. Application of a FILP-MPM-MFM
method for simulating weapon-target interaction. In: Proceedings of the 12th International Symposium on Interaction of the Effects of
Munitions with Structures, New Orleans, Louisiana, September 13-16.

Pan, Y., Dudukovic, M.P., Chang, M., 2000. Numerical investigation of gas-driven flow in 2-D bubble columns. AIChE J. 46, 434-449.

Prosperetti, A., 1999. Some considerations on the modeling of disperse multiphase flows by averaged equations. JSME Int. J. Series B 42,
573-585.

Prosperetti, A., Jones, A.V., 1984. Pressure forces in disperse two-phase flows. Int. J. Multiphase Flow 10, 425-440.

Prosperetti, A., Tryggvason, G., 2006. Computational Methods for Multiphase Flow. Cambridge University Press (Chapter 10).

Prosperetti, A., Zhang, D.Z., 1996. Disperse phase stress in two-phase flow. Chem. Eng. Comm. 141-142, 387-398.

Ramshaw, J.D., 1998. Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration. Phys. Rev. E
58, 5834-5840.

Saltz, D., Lee, W., Hsiang, T.-R., 2000. Two-phase flow analysis of unstable fluid mixing in one-dimensional geometry. Phys. Fluid. 12,
2461-24717.

Sangani, A.S., Didwania, A.K., 1993. disperse-phase stress tensor in flows of bubbly liquids at large Reynolds numbers. J. Fluid Mech.
248, 27-54.

Stuhmiller, J.H., 1977. The influence of interfacial pressure forces on the character of the two-phase flow model equations. Int. J.
Multiphase Flow 3, 551-560.

Sulsky, D., Brackbill, J.U., 1991. a numerical method of suspension flow. J. Comput. Phys. 96, 339-368.

Sundaresan, S., 2000. Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges. AIChE J. 46, 1102-1105.

Wegner, L.D., Gibson, L.J., 2000. The mechanical behaviour of interpenetrating phase composites - I: modeling. Int. J. Mech. Sci. 42,
925-942.

Yosida, K., 1966. Functional Analysis. Springer-Verlag, New York.

Zhang, D.Z., Prosperetti, A., 1994. Averaged equations fro inviscid disperse two-phase flow. J. Fluid Mech. 267, 185-219.

Zhang, D.Z., Prosperetti, A., 1997. Momentum and energy equations for disperse two-phase flow and their closure for dilute suspensions.
Int. J. Multiphase Flow 23, 425-453.

Zhang, D.Z., Rauenzahn, R.M., 1997. A viscoelastic model for dense granular flow. J. Rheol. 41, 1275-1298.

Zhang, D.Z., Rauenzahn, R.M., 2000. Stress relaxation in dense and slow granular flows. J. Rheol. 45, 1019-1023.

Zhang, D.Z., VanderHeyden, W.B., 2001. High-resolution three-dimensional numerical simulation of a circulating fluidized bed. Powder
Tech. 116, 133-141.

Zhang, D.Z., VanderHeyden, W.B., 2002. The effects of mesoscale structures on the macroscopic momentum equations for two-phase
flows. Int. J. Multiphase Flow 28, 805-822.



	Pressure calculations in disperse and continuous  multiphase flows
	Introduction
	Averaged equations for multimaterial flows
	Continuity constraint on volumetric deformation models
	Equilibrium pressure assumption
	A multipressure model
	A numerical example
	Conclusions
	Acknowledgments
	Probability and average
	Small particle approximation
	References


