
ness middleware. Its original client-
side use is of secondary importance.

Java for high-performance computing
has been a popular issue and the subject
of annual workshops over the last seven
years, including the latest event, Java
Grande ISCOPE, JGI’02, (http://
charm.cs.uiuc.edu/javagrandeIscope/)
held in Seattle from 3–5 November
2002. This meeting series joined forces
with the International Symposium on
Computing in Object-oriented Parallel
Environments (ISCOPE), aimed pri-
marily at object-oriented methods in sci-
ence and engineering with an emphasis
on the use of C++.

Java Grande
These two conferences addressed OO
methods in Grande applications. Grande
describes a very broad class of problems
that are large in some sense. These can
include large massively parallel simula-
tions as well as scalable approaches to
large-scale distributed systems, areas dis-
cussed earlier in Grid and peer-to-peer
computing Web Computing columns.

Several important research topics are
included in the JGI (Java Grande-IS-
COPE) agenda, which is divided into
three broad categories: Java on the node,
OO scientific computing, and distributed
systems. Within these categories are

• Java for numerical computing with
possible language and runtime issues

• High-performance Java compilation
• OO (largely C++ today) libraries
• Parallel Java and C++ environments
• Java-based distributed computing

and Grid environments

Java on the Node
Initially, Java Grande introduced a se-
vere performance penalty, up to two or-
ders of magnitude slower than equiva-
lent Fortran or C++ codes. Today, the
penalty typically is no more than a fac-
tor of two on most scientific applica-
tions. To monitor performance, the
National Institute of Standards and
Technology developed SciMark (http://
math.nist.gov/scimark2), a benchmark
that averages several common scientific
kernels including the fast Fourier trans-
form and matrix algebra. The current
top score is over 300 Mflops for the
IBM Java VM (Virtual Machine) on an
Intel architecture PC.

EPCC’s Java benchmark suite (www.
epcc.ed.ac.uk/overview/publications/
research_pub/2001_pub/conference/
jgflangcomp_final.ps.gz) compared
Java with Fortran and C, with favor-
able results for Java reported at JGI’01.
Much of this improvement came from
better compiler techniques, including

those reported at JGI meetings. Inter-
estingly, Java uses dynamic just-in-time
methods, and its compiler structure
differs from other familiar languages.

The Java Grande community has
discussed in detail (http://math.nist.
gov/javanumerics) the key reasons why
Java node performance cannot easily
match Fortran and C++. These include

• Java floating-point rules
• Nature of Java arrays
• Overhead of small objects, as in com-

plex data types
• Immature scientific libraries
• Lack of parameterizable types (which

means each method must be repli-
cated for each argument type: real,
double, complex, and so on)

Substantial progress has been made
since 1995 to give Java more flexibility
in floating-point representations. Ini-
tially, the language insisted that Java
should not only run on all computers
but always give exactly the same answer.

Actually, this goal is quite interesting
in applications in which exact repro-
ducibility could be critical (medical in-
struments, for example). However, it is
not natural for floating-point arith-
metic in which different CPUs have
different rounding characteristics even
when operating with fundamentally
the same IEEE representation.

The Java Grande community nu-
merics working group relaxed Java’s
original strict rules with an optional
strictfp modifier to enforce the
original semantics. Java still cannot take
advantage of several floating-point ac-

60 Copublished by the IEEE CS and the AIP 1521-9615/03/$19.00 © 2003 IEEE COMPUTING IN SCIENCE & ENGINEERING

JAVA AND GRANDE APPLICATIONS
By Geoffrey Fox

S OON AFTER JAVA BECAME POPULAR FOR INTERNET APPLICA-

TIONS, MANY OTHER FIELDS BEGAN LOOKING AT IT. WHILE

JAVA’S ORIGINAL THRUST WAS CLIENT-SIDE APPLETS, TODAY ITS

DOMINANT USE IS IN LARGE ENTERPRISE SERVERS RUNNING BUS-

Editor: Geoffrey Fox, gcf@indiana.edu

WEB COMPUTINGW E B C O M P U T I N G

JANUARY/FEBRUARY 2003 61

celerations—including the fused multi-
ple-add instruction on some high-per-
formance CPUs. However, the Java
Grande community is no longer pursu-
ing the addition of a fastfp modifier
to enable this; perhaps current perfor-
mance is good enough.

Java arrays are built as objects and
create nontrivial overhead (they are not
just a list of sequential entries in mem-
ory). Additional overhead occurs in us-
ing Java representations as objects for
complex arithmetic or for, say, a three-
dimensional velocity vector (or what-
ever physical structure describes the
basic entities in the simulation). Here,
the solution could involve language
and compiler optimizations to remove
the object overheads.

It is getting harder and harder to
change Java because mainstream soft-
ware systems use it so extensively, so
most efforts focus on compiler strate-
gies to recognize and remove over-
heads. While significant progress has
been made, much of the advanced
compiler technology remains only in
research versions because major ven-
dors see little demand from the scien-
tific community for better perfor-
mance. The Java Grande community is
pursuing Fortran-style arrays in Java
with JSR 83 (Java Specification Re-
quest) for such multi-arrays.

The next release of Java should in-
clude generic types, which partly address
the parameterizable type issue men-
tioned earlier. Two other language en-
hancements of interest to scientific com-
puting are operator overloading (so you
could, for instance, add complex objects
with the + notation and not with a non-
intuitive add method) and value classes
(objects represented by value and not by
reference). These are not likely to ap-
pear soon. One interesting recent an-
nouncement from Visual Numerics is
the availability of JMSL, a high-quality
Java version (www.vni.com/products/

imsl/jmsl.html) of its well-known IMSL
scientific library.

All in all, Java performance on the
node is reasonable today, but further im-
provement is possible in areas of impor-
tance to computational science and en-
gineering. To hasten this requires users
to show more interest and demand that
new supercomputers offer Java compil-
ers with the capabilities that have been
proven in research but not yet deployed.

Parallel Java
Java for parallel computing involves
both the node issues just discussed and
parallelism support similar to that in
other languages. There are several
message-passing activities involved
(such as Java bindings of MPI), shared-
memory OpenMP, and other compiler-
based approaches to parallelism. (For
Indiana University work in this area,
see www.hpjava.org.)

I will discuss these issues in subse-
quent Web Computing offerings but
for now I can say that Java is as good or
better than other languages in support
for parallelism. Java has excellent com-
munication libraries that are getting
better with each release. Furthermore,

the language is expressive and supports
rich parallel constructs.

At JGI’02, researchers at Los Alamos
National Laboratory and Rice Univer-
sity reported interesting results in de-
veloping large-scale scientific applica-
tions from scratch in Java and in using
advanced compiler optimizations.
They obtained good performance for
the CartaBlanca code (www.lanl.gov/
projects/CartaBlanca/overview.html)
for heat transfer and multiphase flow
and the Parsek particle in the cell code
(charm.cs .u iuc .edu/ javagrande
Iscope/papersProgram.html#9). They
also investigated different coding
styles, from what we can call Fortran in
curly brackets to a sophisticated style
extensively using fine-grain objects.

Are these the approaches we should
take? Should we give up some perfor-
mance in exchange for a more power-
ful OO style and Java’s robust software
engineering? Is the additional com-
plexity of C++ important? Perhaps Mi-
crosoft’s C# is the answer? C++ and C#
should perform better than Java, but so
far, the scientific computing commu-
nity has not extensively adopted them.

Distributed
and Enterprise Java
Distributed systems have been the
largest topic in Java Grande meetings
because they build on Java’s natural in-
tegration with the Internet. Much of the
research in this area falls under the um-
brella of Grid and peer-to-peer com-
puting, which we have discussed in ear-
lier columns and to which we will return
in the future. This time I will touch on
an area highlighted in the JGI’02
keynote talk by IBM’s Pratap Pattnaik.
He stressed the critical importance of
robust enterprise systems that are today
largely being built in Java.

Enterprise architectures are built
around (Grid-like) architectures with in-
dividual components linked by messag-

All in all, Java

performance on the node

is reasonable today, but

further improvement is

possible in areas of

importance to

computational science

and engineering.

COMPUTING IN SCIENCE & ENGINEERING

ing subsystems. This architecture is replacing monolithic sys-
tems built around huge mainframes. Such approaches are per-
haps inevitable with growth of distributed enterprises and
commodity server systems. However, modularity and natural
distributed support comes at a serious management cost.

Such enterprise solutions inevitably grow in size as
Moore’s law leads to smaller unit systems with increased
performance coming from adding more CPUs. This is the
Grande Enterprise (or Grid) problem. How can we manage
and make robust such a continually growing decentralized
system? This challenge requires perhaps new algorithms
and software aimed at building what IBM calls autonomic
systems (www.research.ibm.com/autonomic/manifesto/
autonomic_computing.pdf).

Autonomic computers should sense their environments
and respond properly to unexpected and often erroneous
input. They should be tolerant of faults in themselves and
others (a characteristic sought perhaps not so successfully
through generations of human societies).

Scaling to ever more computers affects parallel and dis-
tributed computing differently. In the parallel case, you typ-
ically use SPMD (single program, multiple data) method-
ology with the same program on each node, so the key
scaling problem is maintaining performance in terms of
communication and load balance as the number of nodes
scales up. In distributed computing, you typically scale het-
erogeneously, with each node running distinct codes; indi-
vidual node or communication channel is important but not
as critical as in the parallel case. Rather, the key scaling and
performance problems stem from the system’s heterogene-
ity and unpredictability.

As we solve the lower-level technical problems (better
node and communication performance, for example), auto-
nomic computing issues such as the robustness and man-
agement of Grande systems will become new foci of re-
search. Here, we must refine and meld the different
architecture styles of peer-to-peer and Grid systems to ad-
dress these challenges.

Feedback?
Geoffrey Fox wants to hear from you. Comments? Criticism?
Applause? Suggestions? What topic shall we tackle next? We
want to hear about interesting topics and potential authors
that could benefit Web Computing readers.

Don’t hesitate to contact Geoffrey Fox
at gcf@grids.ucs.indiana.edu.

How to Reach CiSE
Writers
For detailed information on submitting articles,
write to cise @computer.org or visit http://
computer.org/cise/edguide.htm.

Letters to the Editors
Send letters to

Jenny Ferrero, Contact Editor
jferrero@computer.org

Please provide an email address or daytime
phone number with your letter.

On the Web
Access http://computer.org/cise or http://ojps.
aip.org/cise for information about CiSE.

Subscription Change of Address (IEEE/CS)
Send change-of-address requests for magazine
subscriptions to address.change@ ieee.org. Be
sure to specify CiSE.

Subscription Change of Address (AIP)
Send general subscription and refund inquiries
to subs@aip.org.

Subscribe
Visit http://ojps.aip.org/cise/subscrib.html or
http://computer.org/subscribe.

Missing or Damaged Copies
If you are missing an issue or you received a dam-
aged copy (IEEE/CS), contact membership@
computer.org. For AIP subscribers, contact
kgentilie@aip.org.

Reprints of Articles
For price information or to order reprints,
send email to cise@computer.org or fax +1 714
821 4010.

Reprint Permission
To obtain permission to reprint an article, con-
tact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

