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SUMMARY

Plasma simulation is an important example of a high-performance computing application where computer
science issues are of great relevance. In a plasma, each particle, electron or ion, interacts with the external
fields and with other particles in ways that can be readily and effectively emulated using object-oriented
programming. However, the great cost of plasma simulations has traditionally discouraged object-oriented
implementations due to their perceived inferior performance compared with classic procedural FORTRAN
or C. In the present paper, we revisit this issue. We have developed a Java particle-in-cell code for
plasma simulation, called Parsek. The paper considers different choices for the object orientation and
tests their performance. We find that coarse-grained object orientation is faster and practically immune
from any degradation compared with a standard procedural implementation (with static classes). The loss
in performance for a fine-grained object orientation is a factor of about 50%, which can be almost
completely eliminated using advanced Java compilation techniques. The Java code Parsek also provides
an interesting realistic application of high-performance computing to compare the performance of Java
with FORTRAN. We have conducted a series of tests considering various Java implementations and various
FORTRAN implementations. We have also considered different computer architectures and different Java
Virtual Machines and FORTRAN compilers. The conclusion is that with Parsek, object-oriented Java can
reach CPU speed performances more or less comparable with procedural FORTRAN. This conclusion is
remarkable and it is in agreement with the most recent benchmarks, but is at variance with widely held
misconceptions about the alleged slowness of Java. Copyright © 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation of the behavior of plasmas is an ideal candidate for object-oriented techniques. A plasma
is, by definition, a collection of objects (the plasma particles, electrons and ions) with several
properties and with well-defined functional interactions with other plasma objects. Computationally,
it is quite natural to think of plasmas in terms of objects with data that each object must carry
and methods that each object should possess. Moreover, the computational schemes that have been
used to simulate plasmas have also the structure of objects. For example, superparticles and grid
nodes of the classic particle-in-cell (PIC) simulation [1,2] can be directly regarded as objects. Finally,
simulation of plasmas must include different approaches, branches of physics and levels of expertise.
The plasma species themselves, for instance, can be treated either in a kinetic or fluid dynamic
approach. The electromagnetic fields, however, use neither of these approaches, but require the solution
of full or approximate Maxwell equations. Chemical interactions among the charged plasma species
require different expertise—complex chemistry—as in plasma processing devices for semiconductor
production [3]. Sometimes molecular dynamics or solid mechanics models are required. Creating a
simulation as a series of objects allows for seamless integration of the appropriate expertise.

Previous successful attempts to create an object-oriented plasma simulation [4,5] have had limited
application either because the language used (FORTRAN 90 [4]) did not support objects well or
because the language (C++ [5,6]) imposed a high implicit cost in implementing changes to the
simulation. Here we use Java to create a flexible computationally rapid implementation of PIC for
plasma simulations. Java’s object-oriented programming allows the abstraction of common physical
concepts and the development of reusable class libraries. Java byte code is portable across multiple
platforms, and Java’s multithreading allows parallel computation that is critical for high-performance
plasma simulations. Furthermore Java allows for an effective project management. Previous studies [7]
have shown that Java programming results in fewer bugs and faster code development.

Previous experience with Java has shown that a complete object-oriented design generally results
in slow execution. Typically, the penalty is a factor of ten or more [8]. If the objects are large,
including arrays of data (‘coarse-grained object oriented’), the execution time penalty may be
smaller. For plasma simulations, species-level objects instead of particle-level objects may increase
computation speed.

We have initiated a long-term project to develop a complete software package for plasma simulation
fully written in object-oriented Java. We called the project Parsek. In the present study, we compare the
execution speed and the solution correctness of different versions of Parsek all written in Java but with
different implementations: FORTRAN style (procedural Java with static classes), coarse-grained style
and fine-grained style. FORTRAN style and coarse-grained style execute at approximately the same
speed. The fine-grained style is only approximately 1.5 times slower when compiled with traditional
compilers, and competitive with the coarse-grained style and FORTRAN style when compiled with an
advanced optimizing compiler [9].

We have also compared the Java versions of Parsek with different implementations written in
FORTRAN 90. A widely held belief in the high-performance computing community is that Java
can be an order of magnitude slower than FORTRAN [10]. Recent rigorous benchmarks conducted
at the National Institute for Standard and Technology (NIST) and based on a suite of widely used
numerical algorithms has proved otherwise: Java and FORTRAN are now basically equally efficient,
achieving approximately the same speed measured in floating operations per second (FLOPS) [11].
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Our study indeed confirms such a conclusion: different implementations of Parsek written in Java and
in FORTRAN can vary their execution time somewhat, but, on average, FORTRAN and Java run at a
comparable speed.

The dramatically improved execution times of our Java program in comparison to previous
comparisons of Java and FORTRAN [8,10] appear to be caused by the improved compilation
environment (Java™ Runtime Environment, Standard Edition (build 1.4.0-b92) Java HotSpot™ Client
VM (build 1.4.0-b92, mixed mode)).

2. SCIENTIFIC CHALLENGES

The simulation of systems where plasmas are present requires the description not only of the scale
of interest but also of the smaller scales that affect the physics of the systems under consideration.
For instance, simulation of coronal mass ejection from the Sun requires the description of large-
scale processes using a magnetohydrodynamic (MHD) model [ 12]. However, the MHD models require
models of dissipation processes to be included that develop at microscopic scales. The calculation of
dissipations requires more accurate microscopic kinetic models, beyond the fluid approach. At small
scales, dissipations are present not only as interparticle collisions but also through electromagnetic
interactions of ions and electrons at the microscopic scales. A self-consistent description of
astrophysical systems must be performed at the kinetic level using the Boltzmann equation for ions and
electrons, the Maxwell equations for the electromagnetic fields and the Newton (or Einstein) equation
for the gravitational field. However, the cost of such direct approach would be prohibitive if attempted
using the most common explicit methods currently in use. The standard approach is to represent the
systems with reduced models such as the hybrid, resistive MHD, Hall MHD or two fluid model, where
some or all species are approximated in the fluid limit [13]. In all reduced models, ad hoc assumptions
of the kinetic behaviour are made, most commonly in the form of prescriptions for the higher-order
moments of the distribution (e.g. the pressure tensor) and for the dissipation processes (e.g. anomalous
resistivity) [13].

We follow a bolder approach [14,15]: we adhere to the exact kinetic model with all the correct
microscopic physics. To be able to bring such an approach all the way to the large scales of interest we
use two powerful techniques that can make the numerical simulation manageable within the existing
computing resources: object orientation and implicit formulation. The implicit formulation is described
elsewhere [16] and its description is beyond the scope of the present paper. Here we use a simpler
explicit PIC algorithm and focus only on the issue of object orientation of a plasma simulation code,
which is described next. Below, we report a simple version of the PIC method. The scheme considered
here is a full-fledged plasma simulation method currently being widely used in the plasma physics
community [1,2]. Our goal here in not simply to use an artificially simple benchmark to test Java
performances but to test Java in a realistic application.

2.1. Skeleton PIC algorithm

Our simplified algorithm consists of three parts: the interpolation scheme, the Poisson solver and the
particle mover, as shown in Figure 1. A complete description of the PIC algorithm can be found in
textbooks [1,2].
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Figure 1. An explicit electrostatic PIC algorithm.

Interpolation particle—grid

The density on the grid is calculated from the particles through the interpolation scheme defined by
q
pi = ;A—’;W(x,- —xp) M

where i and p label grid nodes and particles, respectively. Ax is the space step while g, is the particle
charge. The classic cloud-in-cell (CIC) method [1,2] is used for the interpolation functions:

W(x; —x,) = by (x" A_xx”) 2)

where the b is the first-order b-spline function [2].

Field solver

The Poisson equation for the electric potential @ is

d*o P

- __Fr 3

2 @ 3
where € is the dielectric constant. Equation (3) is solved using a finite difference scheme. Then the
electric field E on the grid can be calculated by using the central difference discretization and solving

the resulting linear system with Gaussian elimination.
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Interpolation grid—particle

Given the electric field on the grid, the electric field on each particle can be calculated using the same
CIC interpolation scheme:

EP:ZEiW(xi_xP) 4

Particle mover
Particles are moved solving the Newton equations of motion for the particle position x , and velocity v :

dvp qp
P _ 2P F 5
i om, (xp) (%)
dxp
— = 6
dr b ©
where m , is the particle mass. Equations (5) and (6) are discretized with the leap frog finite difference
scheme [1,2].

3. OBJECT-ORIENTED IMPLEMENTATION

The biggest problem for any advanced plasma simulation code is to organize the complexity.
Because plasma physics simulations are becoming more complex and because more physicists become
involved in the writing of software, we need more sophisticated and easier development techniques.
With an object-oriented framework, the computational physicist tries to organize the physical problem
into objects which control the complexity of the simulation.

In designing Parsek, we have tried to follow two guiding principles. First, we have tried to use a
full object-oriented programming from a physical point of view. Object orientation gives an elegant
software design and results in a code that is easy to read and can be more effectively used by physicists
who are less proficient in computer science issues.

Second, we have written the code to be as generic as possible so that the computer programmer
can plug plasma physics into the proper program locations and develop a new code to study different
plasma phenomena. So the programmer can extend the functionality of the code by adding models and
algorithms of various levels of complexity.

The algorithm discussed and tested in the present work is a skeleton version of a complete plasma
simulation code. We use a PIC scheme that includes all the most important steps present in a complete
code. The algorithm summarized in Section 2.1 follows the trajectories of a number of particles in
force fields which are calculated self-consistently from charge, current and pressure densities created
by the particles. Each time step in a PIC code consists of two major steps: the particle mover to
update the particle positions and calculate the new charge and current densities, and the field solver to
update the surrounding fields. Since particles can be located anywhere within the simulation domain
but the surrounding fields are defined only on discrete grid points, the particle mover uses two
interpolation steps to link the particle positions and the fields: a step to interpolate fields from the
grid points to the particle positions and a step to interpolate the charge of each particle to grid points.
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Figure 2. Parsek framework.

The Parsek architecture is summarized in Figure 2. The complete code listing is too long to be reported
here, as is to be expected for a realistic simulation code that can study realistic physics problems.
Parsek is composed of six separate classes as follows.

e PFarticle object. The Particle class describes an individual plasma particle, such as an electron or
ion, including its position and velocity.Basically Particle is organized as

public class Particle {
private double Position;
private double Velocity;
private double ElectricFieldOnParticle;

}

e Field object. The Field class represents the electromagnetic field and its sources for a given point
of the mesh. The Field object includes the charge density and the electric field for each grid node.
It is written as follows:

public class Field ({
private double ChargeDensity;
private double ElectricField;

}

e Mesh object. The Mesh class contains several methods that describe mesh elements and boundary
nodes. Furthermore, it provides methods to calculate discrete differential operators and to
interpolate a discrete vector field onto a specified location in the mesh.
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e Physics object. The Physics class handles the particle mover phase, where the new particle
position and velocity are determined by Newton’s law, and the field solve phase, where the fields
are updated solving Maxwell’s equations.

e Driver object. The Driver class describes the methods that handle the whole simulation.
After initializing the arrays of particle and field objects with

Particle[] myParticle = new Particle [NumberOfParticles];
Field[] myField = new Field[NumOfGridPoints];

the initial conditions for the particle velocities and positions are set. Once constructed, the
simulation is advanced in discrete units of time. Fields are calculated from the sources,
including the appropriate boundary conditions. At this point, the explicit method requires to
solve a linear system to determine the new electric field. Next, the forces on particles are
calculated by interpolating the fields to the particle positions. The forces are used to update
the particle velocity, and subsequently the particle position. These procedures are repeated for
each incremental time step.
e Timer object. Finally, the Timer class calculates the time performance of the code.

4. ALTERNATIVE IMPLEMENTATIONS OF PARSEK

The object-oriented implementation of Parsek described above uses a fine-grained approach.
The objects are chosen to correspond to the smallest units in the physical system under consideration:
the particles and the mesh points. Alternative approaches are possible.

Previous studies have led the high-performance computing community to reach two widely held
beliefs [8,10].

First, programs written in Java are believed to be an order of magnitude, or more, slower than
corresponding programs written in C or FORTRAN [10]. To ascertain this point we have developed
various FORTRAN and Java versions to compare their relative speed.

Second, fine-grained object orientation, either in C++ or in Java, is believed to be much slower
than coarse-grained object orientation [8]. Fine-grained object orientation can be loosely defined as the
choice to define objects at the smallest scale of interest in the problem being considered. For plasma
simulation this corresponds to the choice outlined in the previous section where the objects were
chosen as single particles and single mesh points. The crucial feature of fine object orientation is
that the objects are small and large arrays of them are required. The additional cost of handling
arrays of objects is believed to result in a great penalty in terms of computing efficiency. Coarse-
grained object orientation, instead, defines broader objects that include larger units of the system under
consideration. For plasma simulations this corresponds to choosing objects composed by the whole grid
or by whole populations of particles (such as all ions or all electrons). The crucial feature of coarse
object orientation is that all relevant arrays are wrapped inside the objects and no arrays of objects
are required. Previous studies [8] have reported penalties of one order of magnitude when fine grained
object orientation is compared with coarse-grained object orientation and only the traditional compiler
techniques are used. To test this issue we have developed different versions of Parsek all written in Java
but using different object-orientation styles.
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The two beliefs described above are often based on evidence obtained some years ago when the Java
Virtual Machines (JVMs) and compilers were still in their infancy. Furthermore, often such conclusions
were reached using simple methods not applied to any scientific problem. More recently, extensive
benchmarks of Java using a suite of standard mathematical problems has shown that contrary to the
commonly held beliefs, Java is almost on par with FORTRAN [11].

Here we intend to conduct all tests with the most modern compilers on the most modern computer
architectures. We will conduct all tests for a real problem of plasma simulation where the final
answer is a significative plasma physics result. While most of the previous performance studies
were conducted on benchmark problems, we base our study on a realistic plasma physics simulation
tool.

Below, we put the two beliefs described above to test using several alternative versions of Parsek
both in Java and in FORTRAN 90. All versions are equivalent from the algorithmic point of view, but
are radically different in the choice of software architecture and programming language. Below we
describe the various versions.

4.1. Coarse-grained object-oriented Parsek

Two approaches to object orientation are possible: a ‘coarse-grained object-oriented’ (referred to as
LOO) and a ‘pure object-oriented’ (referred to as OO) programming style. We have described the
0O design in the section above. With a LOO technique the arrays that describe particles and fields
are wrapped in two objects that represent the whole particle population and electrostatic field states.
The coarse grained object-oriented Parsek is composed by five separate classes as follows.

e PFarticles object. The Particles class in the LOO framework acts as container to store the
characteristic data for N individual particulate elements. Each individual particle has several
attributes, such as position and velocity. In the code, examples are

private double[] Position = new double [NumberOfParticles];
private double[] Velocity = new double [NumberOfParticles];

In a LOO code arrays are wrapped in a single object, and no array of objects is used. In the
fully OO PIC code, instead, objects were single particles and arrays of objects were used.
Moreover the Particles object contains methods to move and accelerate the particles, and to
check if the particles are leaving the boundaries. Unlike the case of the OO PIC code, in a LOO
PIC code there is a direct interaction between the Particles and Mesh objects.

e Fields object. A Fields object represents a discretization of a continuous field quantity over
an underlying mesh. Internally, Fields data is stored essentially as an array, containing charge
density, potential, and electric field values on the grid. In Java, it is written as follows:

private double[] ElectricField = new double [NumOfGridPoints];
private double[] Potential = new double [NumOfGridPoints] ;
private double[] ChargeDensity = new double [NumOfGridPoints];

The Field Solver is a method of this class.
e Mesh object. It contains the information about the grid and methods to calculate the interpolation
functions.
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e Driver object. It coordinates the other objects and controls the progress of the computational
cycle.
e Timer object. The Timer object calculates the timing performance of the code.

4.2. FORTRAN:-style Parsek

Although Java is a full-fledged object-oriented language, old fashioned procedural programming
remains possible using static classes [18]. We have developed an additional Java version of Parsek that
uses a ‘FORTRAN style’ (FS) procedural program. All methods are static, arrays are passed directly as
arguments and the data is accessed directly. The FORTRAN-style code is procedural in only one class.
It includes the usual Particle mover, Field Solver, and Interpolation stages.

4.3.  FORTRAN 90 Parsek

To compare Java and FORTRAN 90 performances we wrote two additional versions of Parsek in
FORTRAN 90. We have chosen to use modern FORTRAN 90 features, including types, modules
and array notation. Two versions have been written in FORTRAN 90: one with coarse-grained types
and one with fine-grained types.

4.3.1. Fine-grained types
The fine-grained data are stored as an array of elements of a defined type. The Particle type describes
an individual plasma particle, such as an electron or ion, including its position and velocity. Particle is

organized as

TYPE Particle

DOUBLE PRECISION :: Position
DOUBLE PRECISION :: Velocity
DOUBLE PRECISION :: ElectricFieldOnParticle

END TYPE Particle

The Field type represents the electromagnetic field and its sources for a given point of the mesh.
The Field type includes the charge density, the current density, the electric field for each grid node.
Field is written as follows

TYPE Field
DOUBLE PRECISION :: ChargeDensity
DOUBLE PRECISION :: Potential
DOUBLE PRECISION :: ElectricField

END TYPE Field

4.3.2.  Coarse-grained types

The coarse-grained data is stored as a defined type that includes arrays to accommodate particle and
field data. The Particles type describes an entire species of particles (composed of NumberParticles
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individual particles), such as all electrons or all ions, including their position, velocity, mass, charge
and the electric field acting on them. Particles is organized as

TYPE Particles
DOUBLE PRECISION,dimension
DOUBLE PRECISION, dimension : NumberParticles-1 :: Velocity

(0 ) Position

(0 )
DOUBLE PRECISION,dimension(0 : NumberParticles-1) :: Charge

(0 )

(0 )

: NumberParticles-1

DOUBLE PRECISION,dimension : NumberParticles-1 :: Mass
DOUBLE PRECISION,dimension : ElectricFieldOnParticle

END TYPE Particles

: NumberParticles-1

The Fields type represents the electric field and its sources for the whole mesh (composed of
NumOfGridPoints points). The Fields type includes the charge density, the current density, the electric
field for each grid node. It is written as follows:

TYPE Fields

DOUBLE PRECISION, dimension(0 : NumOfGridPoints-1) :: ChargeDensity
DOUBLE PRECISION, dimension(0 : NumOfGridPoints-1) :: Potential
DOUBLE PRECISION, dimension (0 : NumOfGridPoints-1) :: ElectricField

END TYPE Fields

5. PARSEK AS A BENCHMARK

The goal of our work is two-fold. First, we intend to develop a pure object-oriented simulation code to
study space and astrophysical plasmas. Second, we want to develop a benchmark that closely reflects
the ‘real world’ scientific computation. In the present paper, we consider only a simplified version
of the complete implicit PIC algorithm that we will ultimately use [16]. The simplified algorithm is
reported in Section 2.1 and includes all the relevant steps used in the great majority of existing PIC
codes and provides a realistic benchmark for Java.

Using Parsek as a benchmark we conclude that a fine-grained object-oriented design is penalizing
in performance but only by a reasonable margin. Furthermore, we reach the somewhat surprising
conclusion that Java has already become competitive with FORTRAN 90 for state of the art scientific
computing. Below we describe the results of our testing campaign in detail.

5.1. Testing environment

Table I presents the platforms used for measuring the performance. The Java environment is reported in
Table I for each platform. The machines were relatively unloaded during each simulation, and several
runs were made at each test condition with the average time recorded.

5.2. Test problem

We study one-dimensional plasma dynamics in a uniform grid. In these simulations two equal

Maxwellian streams of electrons flow through each other, and the fields are solved in the electrostatic
limit. A motionless background of ions provides charge neutrality. This plasma physics problem is
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Table 1. Platform used to test Parsek.

Model
Sun Blade 2000  Dell Precision 520  Dell Latitude C840  Dell Latitude C840
Processor UltraSPARC-II1+ Xeon Pentium 4 Pentium 4
Processor speed 1.2 GHz 1.9 GHz 1.6 GHz 2.0 GHz
Memory 512 MB 4 GB 512 MB 1 GB
Operating system SunOS 5.8 RedHat Linux 8 Windows 2000 Windows XP
SUN Java build 1.4.1-02-b06 1.4.1-b21 1.4.2-b28 1.4.1-b21

— 00
— | OO
— S

TotalEnergy
£ 08 &

w
[

Time

Figure 3. History of total energy for the three implementations. The codes show the same evolution.

known as the ‘two stream instability’ and it has been studied thoroughly [1,2]. The system extends
between x = 0 and 27, with periodic boundary conditions. The ions are motionless, while the electrons
follow trajectories imposed by the interactions with the other charged particles. We have performed
simulations with different number of particles in a grid of 64 nodes.

Figure 3 shows the time evolution of the total energy of the physical system, as a sum of kinetic
and potential energies. Figure 4 presents the phase space plot after 1000 time steps. Every point of
this plot identifies a particle: the projection on the x-axis is its position, while the other coordinate is
its velocity. Figures 3 and 4 show the results obtained with the three different Java implementations
(00, LOO and FS) and prove that the three different Parsek implementations reach the same results
and that they perform equivalent operations. Note that we used the same seed to generate the same

pseudorandom series.
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Figure 4. Phase space plot after 1000 time steps (wpet = 1) for the three implementations.
The results of the codes are identical since we used the same seed to generate random numbers
and the programs perform the same operations.

5.3. Java performance

Table II and Figures 5 and 6 compare the execution time for the different implementations of Parsek.
All tests are performed on the SUN platform. In Table II the second, third and fourth columns show
the performance of Parsek, developed in Java with different object-orientation techniques. Each row
presents the time performance in milliseconds, for simulations with a different number of particles
shown in the first column. Figure 5 illustrates these results. Figure 6 describes the dependency of
the timing performance on the number of particles. Clearly, the timing shows the relative slowness
of the fine-grained object-oriented programming solution. While FS and LOO show a difference in
performance of only a few per cent, the OO Parsek is on average 1.5 times slower than the others.
However, it must be stressed that, in our PIC code, the fine-grained object-orientation is not as
penalizing as reported in previous studies [8]. Budimli¢ and Kennedy [9] wrote an object-oriented set of
LINPACK Classes that they called OwlPack (Objects Within Linear algebra PACKage) [9] and tested
the different programming techniques. Based on OwlPack, the conclusion was that a OO program can
be up to 20 times slower than the FORTRAN-style program.

Recently, ‘The Center For High Performance Software’ of the Rice University has developed
JaMake [9], a Java compilation environment that uses advanced program analysis and transformation
techniques. JaMake is able to improve the performance of a fine-grained object-oriented program to
bring it almost to the same speed as a procedural or coarse-grained object-oriented program. Although
the JaMake package is still under development, we have succeeded in testing the performance of
the OO version of Parsek when compiled using JaMake. The last column of Table II shows the
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Table II. Execution times, showing the almost 1.5 times speedup of FS and LOO over the pure
0OO. Tests on the SUN platform shown in Table I.
Number of particles OO (ms) LOO (ms) FS (ms) 0O0-JaMake (ms)
1000 210 128 118 167
2000 413 233 233 281
5000 1032 551 605 603
10 000 1999 1063 1224 1206
20000 4012 2143 2419 2517
50000 10273 5799 6164 6258
-
12000
\\\{\
10000 -§
8000 -
= R mLOO
o 6000 §
£ S N BFS
[= W N
4000 § § O JaMake OO
A \ 00
- \\\_ \\\§\‘\‘ § <) § A
SNy :‘ = R N
2000 o =Y @Y 1 \
N

10000
Number of Particles

Figure 5. Execution times for FS, LOO, OO Parsek codes in Java. The performance data is reported in Table II.
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Figure 6. Execution times: increasing the number of particles, the execution time increases linearly.
The performance data is reported in Table I1.

timing performance of the OO version of Parsek compiled with JaMake. The results clearly show
the elimination of the additional costs of fine-grained object orientation.

5.4. Java versus FORTRAN 90

Table III and Figure 7 compare the three Java implementations of Parsek with the two implementations
in FORTRAN 90. Different platforms and operating systems are considered. All tests are conducted
using 50000 particles. In Table III the six last columns show the performance of Parsek, developed
in FORTRAN 90 and in Java with different programming techniques. The last column considers the
fine-grained OO version in Java compiled with JaMake. Each row presents the time performance in
milliseconds, for simulations running under different operating systems shown in the first column.
The version of Java used is listed in Table I for each platform. For the two FORTRAN implementations,
we use the Lahey FORTRAN 95 compiler (version 5.7 for the Windows platform and version 6.1
for the Linux platform) with maximum optimization on the Linux and Windows platforms. The Sun
FORTRAN 90 version 6.2 with the compiler option -O3 is used for the SUN platform. Figure 7
illustrates these results.

Clearly, on the SUN platform, FORTRAN and Java performances are comparable, with some
Java implementations even outrunning both FORTRAN implementations. Conversely, on the INTEL
platforms, the coarse-grained FORTRAN version remains about a factor of two faster than the fastest
Java, but the fine-grained FORTRAN version is actually slower than some Java implementations.
The direct comparison between Java and FORTRAN requires further comment.
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Table III. Execution times for a simulation with 50 000 particles under different operating systems
shown in Table I.

F90 fine F90 coarse JavaFS JavaLOO JavaOO JavaOO-JaMake

Operating system (ms) (ms) (ms) (ms) (ms) (ms)

Windows2000 3765 1680 3255 3956 5800 3625

Linux 2742 1130 2874 3420 3960 4250

SUN 7430 6485 6164 5799 10273 5386

12000

10000 ]

8000
E . = Windows 2000
< 5000 1 |mLinux
E OSUN

4000 [ L

2000 — L L

Fa0 Coarse F40 Fine FS LOO (o]0} Jatdake OO

Figure 7. Execution times for FS, LOO, OO Java implementations and the two FORTRAN90 implementations.
The performance data is reported in Table III.

First, on the Windows 2000 platform we also tested the Compaq FORTRAN compiler that resulted in
considerably slower execution. On the Linux platform we also tested the ABSOFT compiler version 7,

which was also slower but by a smaller margin.

Second, the two FORTRAN implementations perform significantly differently on the two INTEL
platforms. Coarse-grained typing results in a improved handling of the cache since operations
conducted on an array of quantities (such as the particle positions) are closer in memory and are loaded

in the cache all together in a block.

Copyright © 2005 John Wiley & Sons, Ltd.
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Table I'V. Comparison in speed between SUN J2SDK1.4.1, SUN JDK1.0.2
and IBM WSDK version 5 on the Windows XP platform described in

Table 1.

Java version 0O (ms) LOO (ms) FS (ms)
SUN J2SDK 1.4.1 5357 2668 2674
SUN JDK 1.0.2 87512 49572 55409
IBM WSDK v.5 6909 2954 2624

Third, we have repeated the tests above with a different number of particles, reaching virtually
identical conclusions.

6. CONCLUSIONS

We have examined three different choices for the object-orientation of a PIC code and we have studied
their performances in Java. The coarse-grained object-oriented version and the procedural (FORTRAN
style) version perform at approximately the same speed while the fine-grained object-oriented version
is only 1.5 times slower using a traditional compiler, and on par with coarse-grained implementation
when using JaMake. Moreover, we completed a series of tests comparing the Java versions with
two FORTRAN 90 procedural implementations. The FORTRAN versions vary in their performance
according to the specific compiler and the choice between coarse and fine typing. However, on average,
FORTRAN and Java implementations run at more or less comparable speed.

The conclusions reached here are a remarkable confirmation of the applicability of Java to scientific
computing. Previous studies had reported much less favorable results where fine-grained object
orientation was observed to be about a factor of ten slower and Java was observed to underperform
by a wide margin [8]. We believe the improved speed of Java when compared with FORTRAN to
be due to three reasons. First the Java codes we developed do not significantly employ the Garbage
collector, since the objects are created at the beginning of the run and never destroyed. Second, the
recently developed advanced compiler techniques employed in the JaMake [9] compiler can remove the
overhead associated with using fine-grained objects in scientific computation, as evidenced with results
we have reported in this paper. Third, as observed in previous studies [11], JVMs are being improved
at a fast pace by the major software companies. To prove this last point, we performed tests using the
OO version of Parsek and using different JVMs. Table IV compares the timing performances, obtained
with a Sun JDK 1.0.2 and a Sun J2SDK 1.4.1, running a simulation of 50 000 particles. Clearly, the
new JVM is an order of magnitude faster than the old one. This factor of ten is indeed what is required
to explain the improvement of Java versus FORTRAN that our tests have shown when compared with
older studies [9,10]. For completeness, Table IV also considers another Java environment from another
producer (IBM), obtaining only slightly different results.

We believe that our tests show that Java even in its current version and without any special
features or any additional tools can be effectively used for high-performance scientific computing.

Copyright © 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:821-837
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Future developments, such as the JaMake compilation environment [9], will improve the performance
even further, making Java a very compelling candidate for the next generation of high-performance
scientific computing applications.
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