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SUMMARY

We describe the parallel performance of the pure Java CartaBlanca code on heat transfer and multiphase
fluid flow problems. CartaBlanca is designed for parallel computations on partitioned unstructured meshes.
It uses Java’s thread facility to manage computations on each of the mesh partitions. Inter-partition
communications are handled by two compact objects for node-by-node communication along partition
boundaries and for global reduction calculations across the entire mesh. For distributed calculations, the
JavaParty package from the University of Karlsruhe is demonstrated to work with CartaBlanca. Copyright
c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Our goal is the development and demonstration of high-performance computing with Java both in
serial and parallel modes. It is also highly desirable to have a single code that can run both on
shared memory and distributed memory systems. This would greatly simplify the maintenance and
modification processes. The rationale for using Java in high-performance computing applications is
based on several factors. First, Java is a relatively simplified and streamlined object-oriented language.
Threads and networking are built-in features of the language available for parallel computation.
Due to its marketplace strength, a wealth of third party software components is available for re-use.
One notable example is the Junit facility for testing [1].

Finally, the introduction of dynamic compilers has brought Java performance very close to that of
Fortran and C++ for scientific computation. Boisvert et al. [2] provide an up-to-date review, which
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shows that Java performance has improved significantly over the past several versions of the Java
Version Machine (JVM). Remarkably, they show that, for some cases, Java is slightly faster than C
when tested back-to-back on a suite of scientific computing benchmark applications called Scimark
from the U.S. National Institute of Standards and Technology. In addition, Reinholtz [3], writes that not
only is it possible for Java to have better general performance than C++, but also is likely that this will
actually occur. He argues that Java performance can exceed that of C++ because dynamic compilation
gives the Java compiler access to runtime information not available to a C++ compiler. Furthermore,
the rapidly growing market for embedded systems will drive such performance improvements to extend
battery life. Considering this information and the important benefits from Java’s strong typing, clean
design, object-orientation, we have to conclude that Java is a serious alternative language for scientific
and engineering computing applications.

1.1. Communication environments for Java

The advent and popularity of clusters of workstations stimulated the development of a large body of
methods that allow the execution of a Java program on a distributed memory system. Standard Java
provides a standard communication library, the Remote Method Invocation (RMI), which is based on a
slow object serialization. Part of the reason for the inefficiency of the standard RMI implementation is
the security features for business applications. These security features are, however, not as important for
scientific applications. Therefore, researchers have begun to develop non-standard packages that try to
improve efficiency and performance of the RMI implementation for scientific applications. These tend
to come in two categories, Distributed Shared Memory (DSM) and Message Passing Interface (MPI)
environments. DSMs allow the direct application of shared memory programs on distributed processor
clusters with little or no modification. The MPI libraries provide wrappers to the standard MPI libraries.

Due to its robustness and relative ease of use, we used JavaParty for the work described in this
paper. The following is a brief review of currently available communication packages and libraries
for Java. We start by discussing JavaParty [4], which is a DSM system that allows porting of multi-
threaded Java programs to distributed environments with minimal modifications. JavaParty allows
classes to be declared as remote, which allows them to be visible and accessible anywhere in the
JavaParty distributed environment. Consequently, the JavaParty environment acts as a single JVM.
Since the access and creation of remote classes is syntactically indistinguishable from regular Java
classes, minimal modifications to a multi-threaded Java program are required for use with JavaParty.

For completeness, we provide a brief review of other Java communications libraries discussed in
the literature. Java/DSM is a modified JVM implemented on top of ThreadMarks Distributed Shared
Memory system [5]. DO! is a system for automatic generation of distributed code [6]. The Reflective
Remote Method Invocation (RRMI) is based on an alternative object serialization [7]. Manta is a
native Java compiler with highly efficient RMI [8]. Jalapeno is a virtual machine for Java servers
written in Java [9]. Cluster Virtual Machine for Java virtualizes the cluster without requiring that
any pure Java application be specially written for it [10]. Jackal is a DSM system built upon the
Manta environment. It enables the running of unmodified multi-thread Java programs on a cluster of
workstations [11]. ProActive Java Library for Parallel, Distributed Concurrent Computing is composed
of standard Java classes and uses RMI as the transport layer [11]. JESSICA, ‘Java-Enabled Single-
System Image Computing Architecture’ is an environment that runs on top of standard Unix systems
to support parallel execution of multi-thread Java programs on a cluster of computers [12]. MPIJava
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is an object-oriented Java interface for the standard MPI system [13]. JavaMPI provides an automatic
generation of wrappers to MPI libraries [14]. MPIJ is a pure Java implementation of MPI and can
run without the need for a native MPI implementation [15]. JMPI is also a 100 percent Java-based
implementation of the Message Passage Interface [16]. The Hyperion System [17], combines Java
compilation to native code with a run-time library for the distributed execution of Java threads.
Finally, JavaSymphony is a high-level Java-based programming paradigm for parallel and distributed
systems [18].

1.2. CartaBlanca

To exploit the benefits of Java and the ancillary communication packages described above, we
have recently developed a general-purpose nonlinear system solver environment for complex physics
computations on unstructured grids. The environment, called CartaBlanca, was reported on at the 2001
Java Grande/ISCOPE Conference [19]. In the following, we review the main features of CartaBlanca
and then discuss our progress toward a general parallel computation capability for both shared and
distributed memory systems.

The paper is structured as follows. In Section 2 we provide an overview of CartaBlanca. In Section 3
we describe implementation of communication for parallel computations in CartaBlanca. We follow
this in Section 4 with some results from example calculations. Finally, in Section 5 we provide a
discussion of conclusions and plans.

2. OVERVIEW

The goal of the CartaBlanca project is to produce a modern flexible software environment for
prototyping physical models, discretization schemes and solution methods for nonlinear physics
problems on unstructured grids. CartaBlanca employs an object-oriented, component-like design using
the Java programming language. CartaBlanca uses unstructured grids composed of either triangular or
quadrilateral mesh elements in two dimensions, or tetrahedral or hexahedral mesh elements in three
dimensions. CartaBlanca employs the finite-volume method [20], to provide flexibility with regard to
both meshes and physical effects. Currently, the Jacobian-Free Newton Krylov [21] method is used for
the solution of the nonlinear algebraic systems arising from the discretization of the governing partial
differential equations. Finally, CartaBlanca uses Java’s built-in thread facility for shared-memory
parallelization. CartaBlanca has been used to simulate multiphase flow, heat transfer and solidification,
free surface flows, for example.

2.1. Status

The CartaBlanca environment has been described in detail elsewhere [19]. We provide here a brief
summary description of its current capabilities and features. CartaBlanca accepts unstructured grids
in two and three dimensions with triangular, tetrahedral, quadrilateral and hexahedral elements and
uses Metis [22] generated mesh partition files for parallel computations. CartaBlanca has a graphical
user interface (GUI) for problem specification and uses abstract classes for state, physics and solver
objects to impose a uniform component-like interface for developers. Available Krylov solvers include
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the pre-conditioned Conjugate Gradient and both the standard and flexible variant of the GMRES
method [23]. A JFNK nonlinear quasi-Newton solver is also included. Physics objects for high-
accuracy scalar advection, interface tracking, heat transfer and multiphase flow, phase change and
radiation effects have been implemented. A software-testing facility based on the JUnit framework [21],
is integrated into the environment.

As single processor performance, we have reported elsewhere [19], that CartaBlanca has
demonstrated roughly half the speed of a mature FORTRAN code on a prototypical multiphase flow
problem, the broken dam, which will be discussed further in subsequent sections of this paper.

2.2. Related efforts

It is worthwhile to note relevant examples from outside our laboratory. First, Hauser et al. [24]
have produced an object-oriented, pure-Java simulation code for aerospace applications. They employ
a multi-block structured grid computation scheme and use Java’s thread and RMI facilities for
parallelization and to enable remote interaction between a GUI and the numerical application.

Another effort worth noting here is that of Hatakeyama et al. [25], who describe an object-oriented
paradigm for flow simulation software in which the object-oriented concept is used at the computational
node level to produce flexible abstractions. They demonstrate their concepts with a C++, structured grid
simulation of a wind tunnel with a test object and show that they can easily insert and extract arbitrary-
shaped flow obstacles.

Finally, in the work of Riley et al. [26], NASA flow solver and adaptive mesh codes were rewritten
in object-oriented Java and compared with their FORTRAN counterparts. These workers showed that
the performance of their Java codes was about one-half that of similar codes written in FORTRAN.
This work shows that full use of object-oriented programming techniques does not necessarily result
in poor performance.

3. COMMUNICATION IMPLEMENTATION

Parallelism in CartaBlanca is based on the partitioning of a given computational mesh. Generally
speaking, there are two types of communication operations that must be addressed. To explain this
consider an example of mesh partitioning as shown in Figure 1. The partitioning was performed using
the Metis program [22]. For CartaBlanca, partitions are cut along edges connecting nodes. An example
of this is shown in Figure 2. As shown in the figure, the partition boundary runs along node connections
following the heavy black line. For each node on the partition boundary, we carry a duplicate on each
partition. Thus for the case in which several partitions meet at a corner, we would have more than two
duplicates. Each node in the mesh corresponds to a control volume the faces of which correspond to
each of the edges connecting neighbor nodes. The dashed line in Figure 2 shows the boundary of the
control volume surrounding the center node.

In general, the two types of communication that must occur between these mesh partitions are the
exchange of information along partition–partition boundaries and the exchange of global extrema
and sums. The former are called boundary communications and the latter are called reduction
communications.

Boundary communications arise, for example, when gradients and divergences of a given scalar,
vector or tensor field are computed using Gauss’ theorem. Discretization of the surface integral
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Figure 1. A four-partition mesh example.

Figure 2. Example of partition boundaries in CartaBlanca.
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introduces a sum over control volume face areas

∇q ≈ 1

V

∫
V

∇q dV = 1

V

∫
A

q �n dA ≈ 1

V

∑
f

qf�nfAf (1)

where q is the field under consideration, V denotes the control volume, A denotes the surface area
of the control volume, and �n is the surface outward normal vector. The subscript f denotes one of
the faces corresponding to the edge connections to the neighbor nodes. For the nodes that lie on the
partition boundary, the surface integral spans the adjacent partitions and thus requires inter-thread
communication.

In the CartaBlanca software, mesh partition objects contain information on the geometrical aspects
of the mesh partitions. The information includes physical node coordinates and connectivity between
node neighbors on the partition. In addition, each mesh partition object stores connectivity information
for nodes on the boundary of the partition regarding neighbors on other partitions. This information is
accessed for communication operations such as in the case of gradient and divergence calculations.

The second class of communication in CartaBlanca includes the reduction operations such as global
extrema and global sums. For these operations, each mesh partition must contribute a single numerical
result such as a maximum. This type of operation is required, for example, when computing an error
norm across the entire mesh for use in stopping criteria in the iterative solvers.

Both of the communication operations—boundary and reduction–are handled in a single
communication object as depicted in Figure 3. Starting with the main method at the top level, the
program spawns threads for each of the mesh partitions. In the example shown in Figure 3, there are
four partitions. Each thread has a cycle driver object, a solver object, a physics object and finally a
discrete operator object. The cycle driver object invokes the solver object each time cycle increment.
The solver object calls the physics object repeatedly while it iteratively adjusts the solution vector
to bring the physics object’s equation residual norms to within tolerance of zero. The physics object
accepts the latest guess of the solution vector from the solver object and in turn evaluates the equation
residuals. The physics object uses the discrete operator object to evaluate quantities such as gradients,
and divergences that are required to form the residuals.

As shown in Figure 3, two distinct types of communication occur among the threads of control.
The solver objects communicate reduction information for mesh-wide data such as global maxima,
minima. Communication in the discrete operator objects consists of cross-boundary information
amongst the partitions for the computation of gradients and divergences as discussed previously.
To facilitate these two modes of communication, CartaBlanca has a communication class that provides
the bridge between the various threads as two services. The reduction communication service is used by
the solver objects to compute global extrema. The boundary communication service is used to compute
surface integrals for the duplicate nodes on the inter-partition boundaries. In each of these, the basic
mode of operation is for each of the partition threads to compute their own contribution and then send it
to the communication object. Once this is done, then the partitions can retrieve from the communication
objects the data from the other partitions. Barriers are used to ensure the synchronization of these
processes.

Communication between the various objects is handled by simple get and set methods. The program,
as written, works directly on shared memory computers. For distributed memory clusters, a DSM
facility can be used. With some additional modifications, MPI-based systems may also be used to
compute on cluster computers.
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Figure 3. Overview of the parallel structure in CartaBlanca.

We have successfully used JavaParty [4] in conjunction with CartaBlanca for parallel operations on
distributed systems. As previously explained, JavaParty allows the declaration of classes as remote and
the simultaneous creation of more than one virtual machine, each of which is able to access remote
classes and their instances. In addition, in the JavaParty environment, the access to a remote class
is syntactically identical to the access to a regular Java class as if we had only a virtual machine
distributed over several computers. Thus, the modification of the base CartaBlanca code is minimal.
Only two changes had to be implemented to our code. First, we had to declare the communication
object as remote. Second, we used JavaParty’s remote threads instead of using Java’s native threads [4]
for the parallel threads of control depicted in Figure 3.

4. RESULTS

We demonstrate CartaBlanca’s parallel performance on two prototypical physics problems: heat
transfer and multiphase flow. These problems are described more fully in [19]. Briefly, the heat transfer
problem solves the transient heat equation on a square domain. In the examples, the mesh is a uniform,
two-dimensional quadrilateral grid. The initial temperature distribution has run from zero to one in
the x direction and has no gradient component in the y direction. The solution to the problem is that
the temperature relaxes to a steady state with a uniform temperature of one-half. The multiphase flow
problem simulates a broken dam flow wherein a fluid such as water is initially confined to the right
half of a square domain with another fluid such as air in the left half. At zero time, gravity is ‘turned
on’ and the water slumps and flows to fill the bottom half of the domain. The broken dams simulated
were two-dimensional and the meshes were Cartesian quadrilateral element grids.

We performed both shared memory and distributed memory parallel scaling tests. For the
shared memory tests, we used an 8-processor Intel SMP machine with 900 MHz Pentium-3 chips.
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Table I. Intel shared memory, broken dam,
201 × 201 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 6.991 1.00
2 3.953 0.88
3 2.632 0.89
4 2.604 0.67
5 2.811 0.50
6 2.808 0.41
7 2.857 0.35
8 3.030 0.29

The operating system was RedHat Linux-2.4.10. For the distributed memory tests, we used a Linux
cluster distributed memory machine. Each node was a Compaq DL360 with two Intel Pentium-3,
1 GHz processors. The network was GigE and the operating system was RedHat Linux 2.4.10. In
the runs discussed here, we used one processor per node since this mode of operation provided a pure
test of distributed memory operation. The Sun JDK version 1.3.1 02 was used on both the shared
and distributed memory clusters. We used the JavaParty package with the University of Karlsruhe fast
Remote Method Invocation package (KaRMI).

Parallel efficiency is defined as

Single processor time

Multi-processor time × Number of processors

for both the shared and distributed memory tests. Thus, perfect scaling results in an efficiency of unity.
The following sections discuss the results of our tests.

4.1. Shared memory results

The results for the shared memory tests are shown in Tables I–V. For proper interpretation, it is
important to point out that the timings in the tables are on a per node, per cycle basis. That is they
are not raw wall clock but wall clock time per node per cycle. We call this quantity the grind time.

In general, the scaling is reasonable and is similar to what we have seen with similar FORTRAN
codes on this class of problems. We are not prepared at this point, however, to make any quantitative
comparisons of scaling with FORTRAN codes. This is left for future work.

4.2. Distributed memory results

We now discuss the performance of CartaBlanca on the distributed memory cluster.
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Table II. Intel shared memory, broken dam,
301 × 301 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 8.351 1.00
2 5.015 0.83
3 3.532 0.79
4 3.116 0.67
5 3.021 0.55
6 3.101 0.45
7 3.000 0.40
8 3.125 0.33

Table III. Intel shared memory, broken dam,
401 × 401 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 11.422 1.00
2 7.381 0.77
3 5.400 0.71
4 4.588 0.62
5 4.365 0.52
6 4.299 0.44
7 4.254 0.38
8 3.125 0.46

4.2.1. Prototype code

Before examining Cartablanca parallel runs with JavaParty in distributed memory service, we tested
our communication modules on a small prototype communication code that consists of cycles in which
a for-loop calculates polynomials, with a barrier before and after the for-loop. For multiple processors,
this for-loop can be divided in two, three, four or eight parts if calculated on, respectively, two, three,
four or eight processors. At the end of the for-loop on each processor, we calculate the minimum
and maximum value of the last polynomial across all loop instances. Thus, for the multiple processor
cases, this operation required inter-processor communication. This set of operations was done for a
several cycles. Consequently, we have two barriers, a global maximum and a global minimum per
cycle. The total number of polynomials calculated is the same in every test. This small code is a nearly
ideal parallel application since the size of the calculation (4 800 000 polynomials per cycle) is large
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Table IV. Intel shared memory, heat transfer,
201 × 201 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 2.833 1.00
2 1.483 0.96
3 0.959 0.98
4 0.966 0.73
5 1.097 0.52
6 1.039 0.45
7 0.885 0.46
8 0.748 0.47

Table V. Intel shared memory, heat transfer,
301 × 301 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 8.121 1.00
2 4.840 0.84
3 2.809 0.96
4 2.312 0.88
5 2.529 0.64
6 2.228 0.61
7 1.958 0.59
8 1.751 0.58

compared with the size of the communication. As such, it should scale well in both shared memory
and distributed memory service. The scaling results of these tests are shown in Table VI.

The results show very good scaling for the case of the distributed cluster using JavaParty. In contract,
the shared memory machine, somewhat surprisingly, shows less than ideal scaling. We believe this to
be an artifact of the hardware. In both cases, the efficiencies fall off for the 8-processor case. We do not
understand why this occurs and the effect should be studied further. These results provide a context for
the interpretation of the CartaBlanca results in the following sections.

4.2.2. CartaBlanca-JavaParty

We have been able to run all the problems in the shared memory examples using JavaParty as a
DSM facility with very little code modification (as explained in Section 3) with times shown in
Tables VII–XI.
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Table VI. Grind times for the prototype communication program. (Note
time units in this table are nanoseconds per node.)

Grind time, Grind time,
Number of ns/node, ns/node,
processors shared memory Efficiency cluster Efficiency

1 18.12 1.00 22.37 1.00
2 11.46 0.79 9.92 1.13
3 7.70 0.78 7.05 1.06
4 5.88 0.77 5.42 1.03
8 3.35 0.68 3.25 0.86

Table VII. Linux cluster, broken dam
problem, 201 × 201 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 6.900 1.00
2 4.349 0.79
3 3.693 0.62
4 3.215 0.54
5 3.174 0.43
6 3.148 0.37
7 3.149 0.31
8 3.065 0.28

Table VIII. Linux cluster, broken dam
problem, 301 × 301 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 8.832 1.00
2 4.666 0.95
3 3.449 0.85
4 2.919 0.76
5 2.727 0.65
6 2.505 0.59
7 2.408 0.52
8 2.368 0.47
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Table IX. Linux cluster, broken dam problem,
401 × 401 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 11.848 1.00
2 6.105 0.97
3 4.419 0.89
4 3.580 0.83
5 3.288 0.72
6 2.952 0.67
7 2.657 0.64
8 2.587 0.57

Table X. Linux cluster, heat transfer problem,
201 × 201 grid.

Number of Grind time,
processors ms/cycle/node Efficiency

1 3.679 1.00
2 2.102 0.88
3 1.808 0.68
4 1.719 0.54
5 1.686 0.44
6 1.696 0.36
7 1.636 0.32
8 1.723 0.27

Table XI. Linux cluster, heat transfer prob-
lem, 301 × 301 grid.

Number of Grind time
processors ms/cycle/node Efficiency

1 8.939 1.00
2 4.904 0.91
3 3.766 0.79
4 3.341 0.67
5 3.120 0.57
6 2.881 0.52
7 2.672 0.48
8 2.637 0.42
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Figure 4. Shared memory efficiencies for the heat transfer problem. SM 201,
201 × 201 grid; SM301, 301 × 301 grid.
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Figure 5. Distributed memory efficiencies for the heat transfer problem. SM 201,
201 × 201 grid; SM301, 301 × 301 grid.
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Figure 6. Shared memory efficiencies for the broken dam problem. SM 201, 201× 201 grid; SM301,
301 × 301 grid; SM401, 401 × 401 grid.
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Figure 7. Distributed memory efficiencies for the broken dam problem. SM 201, 201 × 201 grid;
SM301, 301 × 301 grid; SM401, 401 × 401 grid.
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The trends in efficiency are similar to those obtained with the shared memory machines. For the heat
transfer problems, the cluster efficiencies trend better for shared memory, while for the broken dam
problem the efficiencies are better for the cluster. In both cases the scaling improves as the problem
size increases as would be expected.

We have plotted the efficiencies for both the shared memory and cluster cases in Figures 4–7.
As can be seen the shared memory results display some unusual non-monotonic behavior. This is not
completely understood, although we have reason to believe that it is an artifact of our shared memory
machine and not the CartaBlanca program.

While we have not performed side-by-side a comparison of scaling behavior seen with CartaBlanca
to, say, a parallel FORTRAN code, we can say that the trends reported here are qualitatively similar
to results we have seen in the past with such FORTRAN codes. That is, in general, the efficiencies
improve, as the problem size is increased for fixed number of partitions. This is expected since as
problem size increases, the ratio of communication operations to on-processor work decreases. That is,
for a fixed number of mesh partitions and processors, the ratio of the number of nodes on the inter-
partition boundaries to the number of nodes interior to the partitions decreases and thus the ratio of
communication to work done solely on each of the processors decreases. We thus see an improvement
in efficiencies for a fixed number of processors as the problem size increases.

5. CONCLUSIONS AND FUTURE PLANS

We conclude that for both shared memory computers and distributed memory clusters we achieve
similar scalability with CartaBlanca on the test problems. For the case of distributed memory clusters,
only minor modifications were necessary to allow CartaBlanca to run in parallel. What is very
encouraging is that the simplicity of the shared memory communication algorithm can be retained in
going to distributed-memory computations. This simplicity keeps the burden of the development and
maintenance of the computation software from the physics developer in keeping with the advantages
of the Java paradigm. We plan to continue to pursue modifications to improve scalability. This will be
followed by testing the ability of the CartaBlanca–JavaParty combination on a parallel problem of a
much larger scale. We will also make quantitative comparisons to scaling from traditional FORTRAN
codes [27].
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