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Application of the standard second-order upstream-centered advection method of
van Leer to a coupled transport equation system of the (@yat)[ 1] + V- [21]Ju=0
can produce artificial extrema in the rafic= A/p, even thougfT satisfies a simple
advection equation and is expected to preserve monotonicity.lHeneelocity, p is
mass density, and\ is a conserved quantity such as momentum density, energy
density, or chemical species density. TAUs a mass-specific transport quantity such
as velocity, energy per unit mass, temperature, or species mass fraction. A new flux
formulation and gradient limiting procedure is presented here which eliminates these
artificial extrema, preserves the second-order accuracy, and preserves the monotone
character of the van Leer method, even in the limit of vanishing mass density. Such
a formulation is calle@¢ompatible The method is noniterative (i.e. explicit) and can
be employed in a general finite-volume framework. Sample results for the transport
of a square wave in one and two dimensions are providesli99s Academic Press

Key Words:finite-difference approximations; synchronous advection; computa-
tional fluid dynamics; gradient limiting.

1. INTRODUCTION

This paper introduces a flux formulation that ensures “compatibility” of mass-spe«
quantities when using an upstream-centered, second-order advection operator. We us
patibility in the sense of Ser'and Smolarkiewicz [1], who defined the term in connectic
with the smoothness of mass-specific quantities such as species mass fraction, ve
temperature, or specific internal energy. This permits us to reserve the term “monc
city” for the conserved quantities (species density, momentum density, and energy der
Many second-order advection schemes are monotone, but noncompatible.
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2 VANDERHEYDEN AND KASHIWA

To better understand the meaning of compatibility, consider the system

drp o
a[A]Jrv-[A}uzo, (1.1)
wheret is time, p is the mass density is the velocity, andA is the density of any other
conserved quantity such as linear momentum or energy. Such systems arise in hume
applications, including compressible single phase flows, nonisothermal single-phase flc
multispecies flows, and multiphase flows. Note that the above system is also encount
in the numerical solutions of systems with a nonzero right-hand side.

Now, for example, letA= pT, and letA be the internal energy density. With unit-specific
heat,T is just the temperature. To simplify the discussion we will often refeh @s the
energy density, and as the temperature.

Equation (1.1) implies

pP——=p|—+Uu-VT| =0. (1.2)

dT {BT }
In other words, the temperature is a Lagrangian invariantSaind Smolarkiewicz [1] point
out that this means at a timet + At must be bounded by the valuesiofn the immediate
neighborhood at timé; they refer to a scheme having this property as bemgpatible
with the Lagrangian equations. Such a property is desirable in any numerical advec
scheme and can be particularly important in systems having large density gradients, w
overshoots and undershoots can be troublesome.

For a typical time-explicit finite-difference or finite-volume method, the solution of th
equation system (1.1) is subject to the Courant—Friedrichs—Lewy (CFL) stability criteri
based on the transport velocity. This means that information can travel over, at most,
cell per time step. In the terminology of Satend Smolarkiewicz [1], @ompatiblescheme
is one for which the average temperature in a given cell is bounded by the average prev
time temperatures from that cell and its neighbors.

Prior efforts to develop compatible advection schemes appear to be limited to the wc
of Schér and Smolarkiewicz [1] and to Thuburn [2], both of which build upon the idea c
flux-corrected transport (FCT). The essence of the FCT idea is to add an anti-diffusive |
into an advection scheme based upon upwind differencing, a compatibility constraint be
used to gauge the amount of anti-diffusion to be added inaiSehd Smolarkiewicz [1]
do so in an iterative fashion within the classical FCT framework. Thuburn [2], in contra
accomplishes the same goal in a single step. In either case the formula for gauging
allowable amount of anti-diffusion results in so-called “flux-limiting.” In contrast to the
foregoing prior works, we focus our attention here on a class of upstream-centered met
for advection that make use gfadient limitingto ensure monotonicity of the conserved
densities. In particular, we shall build upon the multidimensional method introduced
van Leer [3] which is closely related to the scheme of Collela [4] and also to that
Saltzmann [5]. The basic idea behind the method of van Leer [3] is to construct fluxes us
a finite Taylor expansion in space about the upstream cell-center, the gradients used i
expansion being “limited” according to a certain recipe involving the neighboring valu
of the densities. This gradient-limiting procedure can, of course, reduce the scheme loc
to a purely upwind (but monotone) method, as is the case for flux-limiting as well.

Hence, our goal is to introduce a flux formulation that renders the multidimensional v
Leer advection operator compatible. Achieving this goal will naturally involve a new twi
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on gradient limiting. (Our aim is not to introduce an entirely new advection scheme; nc
it to survey the enormous literature on the subject. The reader interested in a broad vie
advection schemes should refer to Leveque [6] and the various references cited there

It should be noted that we use the term “monotonicity of the advection operator’
the usual colloguial sense. Namely, that for a uniform velocity flow an initially monotor
density distribution will remain monotonic after application of the advection operator.
course, the van Leer advection scheme that we use in this paper applies to the more
eral case of nonuniform and divergent velocity fields. In the more general case, velc
divergence acts as a source or sink and can produce new physical density extrema.
the advection operator can be thought of as a mapping from the Lagrangian (mate
frame of reference to the Eulerian (grid) frame [8], it should be expected to map any
physical extrema in density from the Lagrangian data to the mesh without generating
rious new extrema. Fortunately, the conservative form of the advection operator tha
employ directly includes the Lagrangian process of compression and expansion. As
it automaticallypreserves density field monotonicity and any physical extrema genere
by divergent flows.

In the next section we examine van Leer’s [7] second-order upstream-centered adve
scheme, applied to the equation system (1.1), with constant velocity, in one dimension
usual we confine our attention to the uniform flow case so that the Lagrangian proce
that establish the extrema are not allowed to obscure the mapping process, which |
real interest here.) We show that a standard application of van Leer’s scheme is mona
but noncompatible. The examination reveals the source of the noncompatibility of
standard implementation of van Leer's method. The compatible flux formulation is tt
developed for the one-dimensional case. Section 3 contains the generalization to mu
space dimensions with general velocity fields, and the corresponding proof of compatib
In Section 4 we provide example calculations in one and two dimensions to demons
the characteristics of the method.

2. THE ONE-DIMENSIONAL CASE

In this section we review the van Leer advection scheme for a one-dimensional adve
problem and demonstrate that it is monotone in the conserved quantities for the case
constant velocity field. We then show that it can lead to noncompatibility. Finally, we sh
how to alter the flux formulation to render the van Leer scheme compatible.

2.1. Monotonicity of the van Leer Method

To begin, we consider the equation system (1.1)

(Z)HL (QLLDX:O’ 2.1.1)

on a one-dimensional domain. We confine our discussion to the case for wkihis a

constant, a rightward traveling wave. (We will consider the more general case in Sectio
We use standard finite-difference nomenclature with subscripts denoting the discrete
points and superscripts denoting discrete times. Time steps and space increments are d
by At and Ax, respectively. Half-indices denote cell face values. Integrating the equat
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system over thgth cell and over time front" to t" + At we arrive at the standard finite-
difference equations for the system

n

it =q; — o (@) 112+ 0(Q)j-172: (2.1.2)

wheres = uAt/Ax > 0 is the Courant number aids eitherp or A. The quantities|; and
q?*l are the cell average densities at tinleandt" 4+ At, respectively. For convenience,
we suppress the superscnpfor the time levelt" on theq’s.

The angle bracket quantities denote the fluxed quantities given by

t"+AL

1
(D jr12 = E/ q(Xj+41/2, 1) dt, (2.1.3)

tn

whereq is eitherp or A. As is commonly known, first-order accuracy is obtained by
assuming the quantity(xj,1/2, t) is a constant and is given by the cell average valuf
upstream from the face, i.g(Xj+1/2, t) ~q;.

Higher accuracy is obtained by recognizing th#x;; 1,2, t) is not, in general, a con-
stant over the time intervdl' to t" + At. A second-order accurate method results fron
approximating the distribution af at timet" in each cell as a linear function of space, that
is

99

qx, t" ~ qj + <&> X —=Xj), (2.1.4)

J

which provides a piecewise-linear representationqof, t") over the domain. Using
Eq. (2.1.4) with the transformationX;.1/2, t) = q[Xj112 — ut —t"), t"] in Eq. (2.1.3)
gives a space-time centered approximation for the fluxed quantities,

@iz =0+ (51) Ga-o. 215)
whereAXx; = Xj11/2 — Xj—1/2. Itis well known that nonmonotone solutions to the equatior
system (2.1.1) can result from the from the use of straightforward numerical approximati
to the spatial derivative in Eq. (2.1.5). The origin of the problem is honmonotonicity of tl
piecewise-linear representation@by the set of Eqgs. (2.1.4). Van Leer [6] resolved this
problem bylimiting the numerical spatial derivatives so that the piecewise-linear dens
fields preserve monotonicity, while producing the highest possible accuracy. (We loos
refer to van Leer's method as second-order accurate, which is only true in areas where
solution varies smoothly.) Let j denote van LeerBmited difference operator. Van Leer’s
prescription is

min[4|d; — gj_1l, |9j+1 — Qj-1l, 4ldj+1 — 9;11sign[@j+1 — dj—a],
Ajq= if sign[dj — gj-1] = sign[dj+1 — dj-1] = sign[gj+1 — ;] (2.1.6)
0, otherwise.

The spatial derivative in Egs. (2.1.4)—(2.1.5) is then approximated as

(8_q> L Aa 2.1.7)
| _
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In doing so, we are assured that the cell face values (the extrema for each cell) given

1-—
dj+120 =0Qj + Zqu (2.1.8a)

and

Qj_1/20 =0Qj — Zqu, (2.1.8b)
where the superscripts  and (R) denote the values approaching from the left and rigk
respectively, are bounded by the neighboring cell-center datade 94;,1/20 < dj1).

Using Egs. (2.1.5), (2.1.7), (2.1.8a), (2.1.8b), we obtain expressions for the fluxe
terms of the bounded face valuespf

(@j+172 = 00j + (1= 0)Qj 41720 (2.1.9a)

and

(d)j—12 =00j—1+ (1—0’)C]j_1/2<L>. (2.1.9b)

From Egs. (2.1.9a)—(2.1.9b) we can see that the fluxes are weighted averages of the
and cell-centered data for<fc <1 and are, therefore, also bounded by the surroundil
cell-centered data for this Courant number range.

Now we are ready to verify the monotonicity of van Leer’'s advection scheme. Us
Eqg. (2.1.9a) we can express the quandity- o (Q) j+1/2 as

Qi — o (A j+12 = (1 — 0)0e, (2.1.10)
where
Oe = (1—0)q; +0Qj_1/2®. (2.1.11)

The quantity (- o)q can be thought of as the density of materehainingin the cell
after the outgoing flux is withdrawn if the inflow flux were neglected. (Notice the line
gradients ensurg;_ 1> — Qj = 0; — gj_1/2®, Which is used to obtain Eq. (2.1.10).)

Now for O0<o <1, ge is a weighted average of the cell-center and face data anc
therefore, itself, bounded by the surrounding cell-center data. From Eqgs. (2.1.2) and (2.
we obtain, finally,

an+1 =1 —-0)0e+ o (q)j-1/2- (2.1.12)

Thus,q]n+1 is a weighted average of two bounded quantitgsand (d);_1/2, with inter-

polanto. Hence, van Leer’'s scheme is monotone if the interpolant satisfies @ 1, which,
of course, is well known [7].
It is also well known that the first-order limit of Eq. (2.1.12),

gttt =1 —0)gj + 001, (2.1.13)

is also monotone for the same conditionscanWhat is not so obvious is the source of
noncompatibility of Eq. (2.1.12), which is studied next.
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2.2. Noncompatibility of the Standard van Leer Method

We now examine the compatibility of the foregoing method applied to the system (1.
In particular we shall study the smoothness of the mass-specific quartit/p (temper-
ature). Using Eq. (2.1.12) for the densitigand A, we obtain, after some manipulation,

M= (1 Q)%JFQ 11z (2.2.1a)
(P)j-12’

where

o{p)j-1/2

Q= (1—0)pre+ 0—(,0>j—1/2.

(2.2.1b)

If van Leer’s limited differences are used to form the second-order mass density fluxes,
are assured that©Q <1 for 0<o < 1. In this range, we see that the new temperatur:
is a weighted average of the ratidg./ore and (A)j_12/(p)j-1,2. These ratios can also
be considered temperatures. The former is the temperature of the material “remaining
the cell considering outflows only, while the latter is the temperature of the material enter
the cell. We have compatibility if these ratios are bounded by the surrounding temperal
data. Unfortunately, because spatial distributiong @ind A are independent (that is, no
information regarding the cell-center temperatures is directly included in limiting the flux
of A) these ratios are not generally bounded by the surrounding temperature data; he
the scheme is not generally compatible.
In contrast, for the first-order case, Egs. (2.2.1a)—(2.2.1b) reduce to

-I—jnJrl =(1- Q)T] + Qijl’ (222a)

where now

opj-1
(L—0)pj+opj1’

Q= (2.2.2b)
This simplification occurs because the energy flux@s, in the first-order case are simply
products of cell-center mass densities and temperatures. As a result, the mass density f:
out of the the ratios encountered in Eg. (2.2.1a).

Thus, for the first-order cas@{‘+1 is bounded byf; andT;_; for 0<o <1, eveninthe
limit of vanishing mass. In this case> 0 andp;_1 vanishes beforg;, so thatQ — 0 and
T‘n+l N T

j i

Whereas the first-order scheme lacks the desired accuracy, it yields both monotone
sities and compatible temperatures and is well-behaved in the limit of vanishing mass.
second-order compatible fluxes developed in the next section will be shown to recover tt
properties and to retain second-order accuracy.

2.3. Compatible Fluxes for van Leer’s Operator

The compatibility of the first-order upwind scheme, demonstrated in the previous secti
is related to the fact that the fluxed energigh), are products of cell-center mass densities

! For the casgre = (p) ;-1 =0, Qis, strictly speaking, undefined. In a practical calculation, however, one ma
add a small amount of residual density to the denominator in Eq. (2.2.1b) to@ored in this limit.



COMPATIBLE VAN LEER FLUXES 7

and temperatures. For examp{é\)j_1,> = pj_1Tj—1. This characteristic ensured that the
“remaining” and fluxed temperaturesye/pre and (A)j_1/2/(p)j-1/2, respectively, were
bounded by the surrounding cell-center data.

In what follows, we introduce a new second-order definition of the fluxed energy den
that renders van Leer’'s method compatible. We start with the Taylor expansion of the
A=pT in each cell and expand the first-order spatial derivative using the product r
Thus, for thejth cell

(%
P,+<8X>j(x Xj)

The Taylor expansion for mass density is

A=pT =T, o

J

oT
+ pj <> (x = x)) +O[(x = x)?]. (2.3.1)

)
p=pj+ (8—'0> (X — X)) + O[(x — xj)?].
X/

If we neglect the terms @[ (x — X; )?] in the above expansions and form the ratie- A/ p,
we obtain the following piecewise nonlinear spatial temperature distribution in the prese
of density gradients:

Pj (AT /3X)j (X — Xj)
pj + (Bp/9%)j (X — X))

T=T;+ (2.3.2)
This nonlinear distribution is crucial; it will enable us to construct a limited differenc
operator for temperature that produces compatible fluxes. From Eq. (2.3.2) we see th:
relation

Toin—T; < < Tmax—Tj, (2.3.3)

pi+ (5%); X = x))

must hold if compatibility of the temperature field is to be obtained, whgkeand Tpax
are the minimum and maximum of the local cell-center temperatures. To enforce inequ
(2.3.3), we introduce a new limited temperature difference operator. Due to the nonline
of the temperature field, this operator is different from the limited difference operator
the density fields given by Eq. (2.1.6). Latdenote the new operator for the temperature
For the one-dimensional case we introduce the prescription

ATj = Tial(pj — 34ip).
pi AT = min | Tj+1 — Tj-1lpj, ~ sign[Tj11 — Tj_1] (2.3.4a)
HTira = Til(oj + 34ip)

if sign[Tj — Tj_1] =sign[Tj+1 — Tj_1] =sign[Tj;1 — T;], and
piAT=0 (2.3.4b)
otherwise. Hence, the operat&I;T is simply van Leer’s operator, Eg. (2.1.6), applied to

field having a nonlinear distribution like (2.3.2). Notice that if the mass density approac
zero (on average or on a cell face), the limited temperature difference is forced to zerc
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first-order limit, by this prescription. This is a key feature of the new formulation. To b
consistent with the monotone mass density representation and to include the proper de
variation characteristics, the limited mass density differen_qe),, is used in Eq. (2.3.4a).
Settingp; (3T /9x)j = pj A T/2AX;, the limited temperature field in each cell is now

I X—Xj
PiAT (2Ax:)

T= T]‘ + — o\
Pj +Aj,0(m)

(2.3.5)

Equation (2.3.5) guarantees face temperatures that are bounded by the surrounding
center temperature data. Thatis, for exampjes Tj 120 < Tj11. (The reader can quickly
verify that the extrema in Eq. (2.3.5) are at the cell faces.)

We can now examine the implications of the expansion (2.3.1) using the new limit
temperature difference on the fluxed energies. From Egs. (2.1.5) and (2.3.1) and se
p; (AT /3X)j = pj A T/2AX;, we find the fluxed energies to be

(AYj—12=0pj1Tj_1+ (1 —0)pj_120Tj_1/20 (2.3.6a)
and
(Ajr12=0p;Tj + (L= 0)pjt1/20 Tj1120. (2.3.6b)

For 0< o < 1the fluxed energies are weighted averages of the cell-centered energy den
and the face energy density. The reader can verify that the limited differences ensure the
flux of A given by Eg. (2.3.6b) is bounded by the surrounding data and therefore presel
the monotonicity of the van Leer scheme.

Compatibility of the temperature for the new formulation is demonstrated by usi
Egs. (2.3.6a)—(2.3.6b), and (2.2.1a) to obtain

T = (1- QTe+ QTin. (2.3.7)
whereQ is given by Eg. (2.2.1b), and

2 piTi —o(pT)jt12

T (2.3.8)
Pj — o{pP)j+1/2
and
- TYi_
Ty = D12 (2.3.9)
(P)j-1/2

The scheme will be compatible as long as @ <1 and bothT,e and T;, are bounded
by the surrounding cell-center data. We have already argued th&@ & 1 for0<o < 1.
So the remaining task is to find the conditions under whighand T;, are bounded by
surrounding cell-center temperature data. Let us first exaffiipavhich is simply the
average temperature of the inflow material. From Egs. (2.1.9b) and (2.3.6a)

T o(ET)j1+ A —0)(pT)j_120
n —
opj-1+ (L —0)pj_120

(2.3.10a)
=oinTj—1+ A — oin)Tj_120,
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where

opj-1
opj-1+ (L —0)pj_120

Win = (2.3.10b)
For the interval 6< o < 1 with nonzero mass densities we have O, < 1. Furthermore,
for the vanishing mass case in a rightward traveling wave, we exfetd tend to zero,
sincep;_1 will approach zero faster than _, > . Thus,Ti, is a weighted average af _;
andT;_;»u . Becausdl;_1 o0 is bounded bylj_; andT;, so then isTjy.

Now considefT. This quantity can be thought of as the temperature “remaining” if on
outflow is considered. Using Egs. (2.1.9a), (2.3.6b), and (2.3.8) we see that

3o (pT)j —olo(pT)j + A —0)(pT)jr1/20]
© pj —olopj + (1 —0)pji120]

(2.3.11a)
=(1- a)re)Tj + Cl)reTj —1/2(R),

where

OPj—1/2®
Wre Ty — (2.3.11b)

Forthe interval G< o < 1 with nonzero mass densities we have ®, < 1. Forthe vanishing
mass case inarightward traveling wave, we expgct> 0 sincep;_1 -~ willapproach zero
faster tharp;. So, in this limit, Tre — Tj. Thus,Tre is aweighted average ®f andT;_; o» .
SinceTj_q/xr is bounded bylj_; andT;, so isTre. Finally then,Tj’”rl is bounded by the
surrounding cell-center temperatures; compatibility is proved and the new fluxes prodt
van Leer scheme with the desirable vanishing-mass properties seen for the first-order

To recap this one-dimensional development, we have shown how the flux of a conse
quantity, A= pT, can be developed so as to render van Leer's advection operator I
monotone in the conserved quantity and compatible in the mass-specific quaniitye
first step is to use the product rule for differentiationf so that the fluxegpT can
be expressed as a linear combination of products of mass density and temperatures
cell centers and cell faces as in Egs. (2.3.6a)—(2.3.6b). The second step is to recogni.
nonlinearity of the temperature that results from assuming a linear distributioh and to
introduce an appropriate nonlinear limited difference operator so face values are bound
the surrounding temperature data. Use of the limited nonlifahfferences will guarantee
monotonicity ofp T and compatibility ofT in a second-order scheme without changing th
conditions on the Courant number for stability or monotonicity.

The gradient-limited advection algorithm using the new compatible flux formulation
then:

Compute trial gradients for densities and temperatures.

Limit mass density gradients using the standard linear form.

Limit temperature or mixing ratio gradients according to the nonlinear form.
Compute the fluxed quantities with limited gradients.

Perform the straightforward advection operation.

3. GENERAL MULTIDIMENSIONAL COMPATIBLE SCHEME

The compatible flux formulation developedin the previous section for the one-dimensi
case can be extended to the multidimensional, arbitrary-velocity-field case in a relati
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straightforward and similar manner. We outline the steps in this section for an unsplit (w
regard to mesh direction) time-explicit multidimensional arbitrary finite-volume van Le
advection scheme. Note that the advection operator used in the following developmel
equivalent to that developed by van Leer [3] for multidimensional advection. The mor
tonicity characteristics will be preserved. The new contribution will be the formulation «
compatible fluxes.

3.1. Finite Control Volume Conservation Equations

The fundamental control volume description for the conservation equation system (:
is

%/qu+ /q(U—us)~ndS=O, (3.1.1)
V() S(t)

whereq is eitherp or A. V (t) is an arbitrary time-varying control volumg(t) is its surface,

Us is the surface velocity, analis the outward unit vector normal to the surface [10]. To

simplify the discussion, let us consider here the case of a stationary mesh foruykich
We wish to solve these equations on an arbitrary finite-volume mesh. We start by apply

Eq. (3.1.1) to thg th control volume or cell of the mesh and approximate the time derivativ

with a first-order forward-difference formula. Lef denote a cell volume average

1
qj = V/q(x,t”>dv, (3.1.2)
j
Vi

wherex is the position vector and; is the volume of the th cell. The conservation equa-
tions take the form

attVy =qpV) — At/qu~n ds (3.1.3)
Sj

whereS; denotes thg th cell surface. If one breaks up the surface integral in Eq. (3.1.
into segments corresponding to inflowing and outflowing volumes, one finds, after mak
use of the Gauss theorem and some manipulation that

qV =gV = ) (@eAVe + Y (@A, (3.1.4)
0 i

where the subscriptsandi denote sections of thigh cell surface undergoing outflow and
inflow, respectively. Each outflow and inflow section will have an associated fluxed volut
denoted byAV, andAV;, respectively. This fluxed volume is the volume of material whict
passes through each surface section in the time increnterithe angle brackets denote
the average of the quantity over the fluxed volume at tifne

l n
(a) = AV /Q(X,t ydv. (3.1.5)
AV
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t=tn
cellj+¢ cellj +c¢
el : 7
/
// |®/
RACHE VTN
® o
|
cellj | cellj+r
@,
s
I//
2
E=tmeat Teellj+¢ cellj +c
—— T =
//1|— ® 7|
e /@ |
® !@ / |
'® ® |

|
i
/

s
cell j 7/ cellj+r

FIG. 1. Fluxed volumes.

To clarify the terms so far take, for example, the case of a Cartesian meshxithny =1
and withx, y velocity components = v = 1. Suppose, furtherst =0.5. The fluxed vol-
umes associated with upper and right faces of ¢edit timet" andt™? are shown in
Fig. 1.

The figure shows each volume that passes through the right and upper faceg ofrcell
the example, volumes 2, 3, 4, and 6 are outflow volumes forjcalblumes 1 and 2 are
inflow volumes for cellj +t. Volumes 3 and 4 are inflow volumes for cgh- c. Volumes 6
and 7 are inflow volumes for cejl+r. The volume labeled 5 remains in c@liThe reader
may consult Collela [3] for more discussion on the geometric description of the fluy
volumes in multidimensional advection calculations.

3.2. Inflow and Outflow Effects

We can now manipulate Eq. (3.1.4) to show how to treat the fluxed quantities to en
compatibility of the multidimensional van Leer advection scheme. Our aim is to show t
the new temperature is a weighted average of the value forttheell and its neighbors.
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We start by settingl = pT in Eqg. (3.1.4) and simply grouping the terms as

(P = {(pT),-V; - Z(pT>oAvo} +) (pTHAV. (3.2.1)

(o]

The curly brace term will be recognized as the energy remaining in the cell consider
outflow only; the last term is the inflowing energy. If we multiply and divide the terms i
the inflow sum by the inflowing fluxed densities we obtain

(pTIHV, {(pT)jvj - Z(pT) AVO} + Z %A\/. (3.2.2)

Now multiply and divide the inflow sum by the total inflowing mass to get

(P} = {(pT) iV — Z<pT>oAvo}

(o]

{Z A\/I}Z{Z p>uAV|}<PpT>i> AV (323)

Let us now define, as in the one-dimensional case, an auxiliary quajtig

- (PT)jVj =3 0(pT)eAV,

Tre = (3.2.4)
© PiVi — > o(p)oAV,

This is the net temperature of the material in the cell that is not fluxed out, neglecting inflc
Let us also defingj, as

- (p)i (pT)i
Tn = E
i {3ipiaVi} (p)i

AV;. (3.2.5)

This is the net average temperature of all materials fluxed into the cell. With these definitic
Eq. (3.2.3) takes the form:

(DY) = {m Vi — Z(p>oAVo}ﬂe + { S oAy }T (3.2.6)

o i
Dividing through by the new masg; +1V,, and using Eq. (3.1.4) we obtain
T = (1- QTe+ QTin, (3.2.7)

whereQ is given by

_ Min
Mre + Mip '
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with

Min = > ()i AV,

and

Mre = Pj Vj - Z(P)oAVo~

o

From Eqs (3 2.7) we can see that the new temperature is a weighted average of the
tities T, and Ty, provided O< Q < 1. We now must show, as in the one-dimensional cas
the conditions under which© Q < 1, and bothT;, andT, are bounded by the surrounding
cell-center temperatures.

Let us first examine the bounds €n We start with a limited piecewise-linear represen
tation for p. Within each cell,

p=pi+(Vp)j-rj, (3.2.8)

wherer j =x — X; is the position vector relative to the cell volume centroigd, We may
use Eq. (3.2.8) in Eq. (3.1.5) to compute the mass average densities in an arbitrary vol
AV, inthejth cell as

(p) =pj +(Vp)j-(rj). (3.2.9)

The quantity(r ;) is the volume centroid oA V.

Inwhat follows, we assume that the gradientsin Egs. (3.2.8)—(3.2.9) are limited so tha
extrema in each segment of the piecewise-linear representation of the density are bol
by the surrounding mesh data. Dukowicz and Kodis [8] provide a multidimensional vers
of van Leer’s limiter for an arbitrary quantity. In their method, a trial gradient is computec
by standard means and then limited by multiplication by a coefficignt,

(VaQ)j = aj(V)j. (3.2.10a)
The coefficientr; is computed by ensuring the vertex valueg cbmputed from the Taylor

expansion involvingy; (Vq); do not lie outside the maximumimay, and minimum gmin,
of the surrounding cell-center data. This yields the prescription for

o) = Min[1, ®max, omin], (3.2.10b)
where
Omax — qj
= 0, ——— 3.2.10
max mw{ " maxg,] — g ] ( °
and

Omin — qj
n= _min 4 21
e =malo. e A (82100
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whereq, are the values of| at the cell vertices computed using the linear expansio
for g, such as Eq. (3.2.8), with the trial density gradient. Since the vertex values are
extrema for the linear expansion, this procedure guarantees that the densities are bot
by the surrounding cell-center data. (It is important to point out here that other gradie
limiting procedures may be used as well. The following discussion only requires that
extrema of each segment of the piecewise function remain bounded by the surrounding r
data.)

If the mass density gradient used in Egs. (3.2.8)—(3.2.9) is limited we are assured tha
mass fluxes and therefang, are nonnegative, since the centroids of the fluxed volumes a
all within their respective cells. Then, as in the one-dimensional casg, if 0, we have
0<Q<1. Letus now examin|e.

If we use Eq. (3.2.9) in the formula fon,e we obtain

Me=pj|Vi = > AVo| = (Vp)j - D {1})oAVo. (3.2.11)
[0} (o]
Let us define an auxiliary position vectot, as
— ri)oAV,
= @. (3.2.12)
[VJ - ZOAVO]

If one chooses a numerical advection scheme so that none of the fluxed volnmgs,
overlap, then it is easy to show thgtis the centroid of the volume in the cell that is not
fluxed out—i.e. the “remaining” material. In Fig. 1, for example, this would be the centro
of volume 5. To show this, recognize that simges defined relative to the cell centroid we
have the relationship

/I’jdV=0

Vl
- dv dv
2 /r' * / i (3.2.13)

O AV, Vi—20AV,

=D (roAVo+ Vi = D AVo[(rj)e,
[0} o}

where the centroid of the “remaining” material is defined as

1 .

Ne= —m8m idV. 3.2.14

(rjdre v, — ZOAVO / y ( )
Vj*EDAVO

From Egs. (3.2.13)—(3.2.14) it is clear that, provided the volu¥sdo not overlap,

_Zo<rj>oAV0

= . 3.2.15
V) - S oAVe) (8:219)
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Now, if we use definition (3.2.12) in Eq. (3.2.11) we obtain

Vi =Y AV,
[0}

Som is made up of two factors, both of which must be nonnegativeifgto be nonneg-
ative. The first factor is simply the difference of the cell volume and the outgoing flux
volumes. The second factor is the limited mass density at the positidret us discuss
these two factors briefly.

The first factor is a restriction even in the case of a first-order scheme. The implicat
on the Courant numbers depend on the approximation one makes to the flux volumes.
for example, the case of the two-dimensional Cartesian mesh. Suppose one approxi
the flux volumes as rectangular slabs adjacent to the cell faces with a volume equal t
fluxed volume through each face. In this case, one finds a stability condition such tha
sum of the Courant numberts = uAt/Ax andoy =vAt/Ay must be less than one; a
result which is well known [3-5].

Suppose one how takes into account the geometrical shapes and destinations of the
volumes shown in Fig. 1. One then finds the restriction on Courant numbers is ingtedd
oy < 1, which has also been shown by previous investigators [3-5].

Now let us consider the second factor in Eq. (3.2.16), the limited mass density al
Since we are using limited gradients to compute the density, the only requirement
nonnegativity is that} be inside the cell. This will guarantee a nonnegative mass dens
Whetherr; is inside the cell or not will depend on parameters such as Courant numt
and the assumptions made concerning the shapes of the fluxed volumes. If one use
example, the slab approximation for the Cartesian mesh example, then one can sho.
the Courant numbers must satisfy< (1—oy)2 andoy < (1—0y)? to assure nonnegativity.
Foroyx =0y =0 we havesr < (3 — V/5)/2220.382 to assure nonnegativity.

If, on the other hand, one uses a more realistic geometry with no overlapping volume
shown in Fig. 1 them} is simply (r j)re, which is always contained within the cell. In this
case no additional Courant number limitations are imposed beyond those associatec
the first factor on the right-hand side of Eq. (3.2.16).

Having set forth the conditions under which<0Q < 1, the next task is to show th?&t]
andfre are bounded by the local cell temperatures at tifne

Mye = [pi + (Vo) -13]. (3.2.16)

3.3. Inflow
We treat the case of;, first. Let us begin by defining the average temperature of ti
material in the th inflow volume from neighbor ceth as

- TY
Toom = ARIGY (3.3.1)

(0)im)

The subscript denotes théth inflow volume; the parenthetical subscriphas been added
to denote the index of the donating neighbor cell. From Eq. (3.2.5) we can sekthat
a weighted average of the inflow average tempel’atlj:l,‘%,. (Note that the factotp);/
{3 i (piAVi} in Eq. (3.2.5) is the fraction of the inflowing mass from flte inflowing
fluxed volume. These factors are nonnegative and sum to one.) Trhissbounded by
the'ﬁ(m). Now if we show that thé](m) are bounded by th¢th cell and surrounding cell
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temperatures, then we will have proved tfiatis bounded by the surrounding cell-center
temperature data. From Egs. (3.1.5) and (3.2.9) we may write the inflow mass from neigt
cellmas

(PYiem = pm + (VPIm - (Fm)iam, (3.3.2)

where(r)im is the centroid of the fluxed volume\V;, from the donating celin. The
multidimensional linear expansion &f = pT—the analog of Eq. (2.3.1)—for each cellin
the mesh is

pT =1[pj +1j- (Vo)iITj + pjrj - (VT)j. (3.3.3)
From Egs. (3.3.3) and (3.1.5) the fluxed energy takes the form
(pT) ={p)Tj + pj(VT)j - (rj). (3.3.4a)
For the case at hand, the inflow energy from neighborroed
(PT)iem = (0)im Tm + om(VTm - (Fm)im)- (3.3.4b)

It is important to remember here that the mass density and temperature gradient
Egs. (3.3.2)—(3.3.4b) are assumed to be limited. In particular, the extrema in each of
segments of the piecewise-nonlinear temperature field implied by the linear expan:
(3.3.3),

Pl - (VT);

T=Tj+ o
Fpir (V)

(3.3.5)
should be bounded by surrounding mesh data. We note here that the Dukowicz—K
generalization of van Leer’s limiter can be used to limit the temperature gradient, as v
as the mass density gradient. This is done by using Eq. (3.3.5) with trial temperature gr
ents and limited mass density gradients to compute trial vertex temperatures. These v
temperatures are then used in Egs. (3.2.10b)—(3.2.10d) to compute a limiter coefiicient
The limited temperature gradient is then simply the product of the limiter coefficient a
the trial temperature gradient,

(VT)J' —> Olj(VT)j.

The temperature gradient limiter coefficient is generally different from the one used to lir
the mass density gradient. Also, other gradient limiting procedures can be used so lon
the extrema of the segments of the piecewise-nonlinear temperature field remain bout
by the surrounding mesh data.

It is worth pointing out here that the nonlinear temperature field given by Eg. (3.3.
does not exhibit local extrema so we are assured that the cell vertex values give the ext
values for the temperature within each cell. Finally, since the temperature and mass den:
used to construct the energy fluxes are bounded quantities, so then is the piecewise e
density field. Thus the new flux formulation will preserve the monotonicity characteristi
of the van Leer advection scheme.
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Using Egs. (3.3.2), (3.3.4b) we can now compute the average temperature of the fl
material:

-'Iil = (/OT>I(m) — ,Om(VT)m . (rm>i(m)
O i " mA (YO)m - (Tmdiam

(3.3.6)

Comparing Eq. (3.3.6) with Eq. (3.3.5) shows that the average temperature of the flt
material depends on the position of the fluxed volume centroid in an identical manne
the way that the temperature in the cell depends on position. If the temperature grad
are limited using the nonlinear temperature functionality of Eq. (3.3.5), we are assured
the average temperature of the fluxed material is bounded by the surrounding data.

Using the arguments put forward above, we can now see that the average inflow ter
ature, Tin, will be a bounded quantity.

3.4. Outflow

We now turn our attention to the proof of the boundednes‘%,eofthe temperature of
the remaining material in the cell considering outflow only. We start with Eq. (3.2.4) &
subtract the quantity; > (p)oAV, from the first term in the numerator and add it to the
second term:

Ti[01Vi — Xo(p)oAVo] — S ol(pT)o — (0)oTi1AV,

Tre =
* PiVi = Xo(P)oA Vo
(3.4.1)
_ 1 4 “Xol(pT)o = (p)aTi]AVs
i piVi — Zo JoAVo
Now if we use Egs. (3.2.9) and (3.3.4a) we find
(pT)o — (P)oTj = pj(VT)j - (rjlo- (3.4.2)
Using Eq. (3.4.2) in Eq. (3.4.1) we obtain
Zo j Vo
Te =T, VT . 3.4.3
re i+ pj( )j - Eo AVO ( )
If we now use Eg. (3.3.2) to substitute for the fluxed mass, we find that
. VoAV,
Te =T +pj(VT); - ~Zallilot (3.4.4)

Pj [Vi - ZOAVOJ (Vp)] Zo JoAVo
Finally, if we use definition (3.2.12) in Eq. (3.4.4) we obtain the simple relationship:

~ Pj (VT)J' . I’T
=T 4 S 3.4.5

Comparison of Egs. (3.4.5) and (3.3.5) reveals that temperature of the remaining mater
the cell should be bounded by the surrounding data as lorigswithin the j th cell and the
temperature gradients are limited, so the extrema of the segments of the piecewise-non
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cell temperature field remain bounded by surrounding mesh data. The restrictigrison
the same as put forward previously for the nonnegativityngf and, therefore, imposes
the same restrictions on quantities such as Courant numbers to ensure monotonicity
compatibility.

To recap, the preceding analysis presents a method for obtaining multidimensional mc
tonic and compatible fluxes with the following restrictions:

First, the extrema of the segments of the piecewise-linear mass density and piecev
nonlinear temperature fields at tinf® must be bounded by the surrounding mesh date
Second, the fluxed energie§T), must be computed using the expansion given b
Eqg. (3.3.4a). Third, the sum of the outflowing fluxed volumes from any cell in the me!
cannot exceed the total cell volume. Finally, the quantjtydefined by Eq. (3.2.12), must
be contained within each respective cell.

At this point, one can further observe the behavior of the van Leer advection algorit
with the newly developed compatible flux formulation for compressible flow fields. Tt
main observation is that the proof of compatibility and the compatible flux formulatic
presented in this section is fully general and includes the case of compressible flow fie
Compatibility will be maintained in any flow field, provided time steps are restricted ¢
that the remaining mass—defined by Eq. (3.2.16)—remains nonnegative. Consider
limiting case in which a computational cell is completely emptied by a divergent flow fiel
In this case, the temperature of the cell will be driven to the temperdiurgiven by
Eq. (3.4.5). Because of the new compatible flux formulation, this temperature is guarant
to be bounded by the surrounding temperature data and remains compatible. The beh
of the mass density is also interesting to examine for this case. The mass density fol
emptying cell at timen 4 1 is given by

ne1_ Me {Vj —20AV

P v, v, } (pj + (Vp)j -17) — 0.

Because of the limiting of the mass density gradient and because of time step restrictions
algorithm will never give unphysical negative mass densities. Thus, the advection sch
with the new compatible flux formulation is well suited to compressible flows.

4. EXAMPLE PROBLEMS

As an example problem, we consider the coupled system of equations

r1 01 0
0 0
LA B N L T , (4.1)
ot | picaTy p1C1 Ty p1p2R(To — Typ)
02C2 T 02C2 T p1p2R(Ty — Ty)

whereR is a coupling parameter argl andc, are specific heats. This system of equation:s
describes a simple two-phase flow in which each phase is transported with the com
constant velocity, but with separate densities and temperatures. The subscripts denote
phases. We choose the two-phase system to provide an example in which mass den
are zero in parts of the domain but temperatures remained well-defined. The coupling te
on the right-hand side of equation system (4.1) ensure well-defined temperatures eve
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the limit px — 0, k=1 or 2. This occurs because each term in the temperature equati
is proportional to the phase mass density. In the test problems that follow, we will cons
the tight coupling limitR — oo.

Since the equation system (4.1) has a nonzero right-hand side, a slight generaliz
of the method discussed above is required for solution. This involves the introduction
time-split procedure. In the first step the solution is advanced using only the sources fror
right-hand side of the equations. This step is called the Lagrangian step. In the second
the solution is advanced from the Lagrangian data produced in the Lagrangian step |
the procedures developed in this paper with no source terms. The second step is som:
called the remapping step and includes any effects of compression and expansion
divergent velocity fields.

The following outlines the time-split procedure. Consider the generalized form of
transport equations in system (1.1),

99
a—l—voqu_ f, (4.2)
whereq is a density. The quantity represents source terms. The control volume descripti
for this conservation equation is

%/qdv+/q(u—us)-nd8= /lde (4.3)

V(t) S(t) V()

where the meaning of the symbols are the same asin Eq. (3.1.1). Asin Section 3, we cc
our attention to a stationary mesh control voluidg, with a zero mesh velocityug = 0).
LettingqV denotef,,q dV, Eq. (4.3) becomes

V.
d(?jithz—/qu-ndSJr/de 4.9
Vi

Si
In our time-split procedure we advance the cell averages first by considering the sc
terms only:

(qV)jL = (qV)rj‘—i—At/ fds (4.5)
Vi

The superscrigt denotes the Lagrangian data from the first or Lagrangian step. The solu
is then obtained from the Lagrangian data considering the effect of the advection terms

gV = @Vt = @V)] — At /q*u nds (4.6)
S

whereq* is a piecewise density field constructed using the methods described in this p
from cell-center data defined g5 = (qV)jL/V]-”. Thegj can be thought of as the average
density of the Lagrangian state on the control volwife

One can see that Egs. (3.1.3) and (4.6) are essentially the same. The distinction be
the two is that Eq. (4.6) operates on the Lagrangian data from the first step of the time-
method. Of course, in the absence of source terms, Eg. (4.6) is identical to (3.1.1).
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In what follows we consider the advection of square-wave mass distributions in both «
and two dimensions to illustrate the behavior of the new flux formulations. We choose m
densities of fields one and two to be 1 and 0.001, respectively. This gives the system
character of a liquid—gas multiphase flow. Furthermore, we choose the specific heats t
1 and 1000 so the product of material density and specific heats are equal; this gives
temperatures symmetry with respect to energy.

We will compare the following cases:

(1) afirst-order method,;

(2) astandard application of van Leer’s second-order method using a linear expansiol
the energy density, that is Eq. (2.1.5) with= p T, and using the linear limited difference
operator given by Eq. (2.1.6). This is the case corresponding to the discussion in Section

(3) a second-order method using the expanded flux form for energy density given
Egs. (2.3.6a)—(2.3.6b) but using the linear limited difference operator given by Eq. (2.1
for both the mass density and temperature; and

(4) acompatiblesecond-order method using the expanded flux form for energy dens
given by Egs. (2.3.6a), (2.3.6b) using the linear limited difference operator for mass d
sity and the nonlinear limited difference operator given by Eq. (2.3.4a)—(2.3.4b) for t
temperature.

4.1. Advection of a One-Dimensional Square Wave

We first consider the solution of equation system (4.1) on a one-dimensional domain
units long. We discretize the domain into 100 units sorad = 1. Thex component of
velocity is taken as a positive constant= 1. The initial mass densities and temperature:
are distributed at time=0 as shown in Table I.

The boundary conditions on mass density and temperature are Neumann. The e
solution of the equation system for these boundary and initial conditions is simply a ri
body motion of the density and temperature fields to the right with the veloeity.

We performed calculations for Courant numbers of 0.10 and 0.999. The smaller Coul
number was chosen to examine the numerical diffusion characteristics in the three cases
larger Courant number was chosen to give a high weighting to the face value contribu
for the “remaining” temperature. (See Egs. (2.3.11a), (2.3.11b).

The results from our computationstat 50 time units are shown in Figs. 2a through 5c.

As one can see from the figures, both the standard van Leer case and the expa
flux formulation with linear temperature field gradient limiting produce noncompatibl
temperatures. Only the expanded flux formulation with nonlinear temperature field gradi
limiting produces compatible temperatures with second-order accuracy. Note also tha
nonlinear gradient limiting does not appear to introduce diffusive behavior beyond that s
in the other second-order cases.

TABLE |
Field x <10 10<x <30 30< x
P1 1 0 1
02 0 108 0
T, 0 1 0
T, 0 1 0
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FIG. 2. Field 1 temperatures; =0.1 ( , analytic - - - -, 1storder; ——-—- , 2nd-order): (a) standard
van Leer, (b) expanded flux, linear temperature field, (¢) expanded flux, nonlinear temperature field.

4.2. Advection of a Notched Two-Dimensional Box

We will now demonstrate the multidimensional capabilities of the new flux formulation
computing the advection of a notched two-dimensional box. We use a notched box to prc
a more intricate configuration for the demonstration. We will use an accurate, nono
lapping geometric description of the flux volumes so that the Courant nurepersdoy,
can both approach one. We show that the box is advected with compatible tempera
for case 4 but not for case 3. We first discuss the problem specification and then the
volume computation, followed by the results of the computation.

Consider the two-phase flow system described in the previous section in atwo-dimens
square domain with dimensions 100 units by 100 units. Let both phases have a uni
velocity field withx andy components equal to one so that flow is along the diagonal
the domain. The mass densities and temperatures are distributed atitnas shown in
Fig. 6.

The boundary conditions on density, velocity, and temperature are Neumann.

As in the one-dimensional case, the analytical solution to the governing differen
equations is such that the box simply translates as a rigid body along the diagonal o
domain. Since there is no heat diffusion, the temperature fields also translate with the :
rigid body motion.
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FIG. 3. Field 2 temperatures; =0.1 ( , analyti¢ - - - -, 1storder; —-—-—- , 2nd-order): (a) standard
van Leer, (b) expanded flux, linear temperature field, (c) expanded flux, nonlinear temperature field.

As in the one-dimensional case, the state variables were advanced using the Lagratr
form of the equations. The Lagrangian update is then advected solving equation sys
(4.1) with zero right-hand side. The advection step was unsplit with regard to mesh
rection and consisted of visiting each cell face, computing the required mass and en
fluxes in the manner described above, and then moving these quantities from the dc
ing cell to the appropriate accepting adjacent and corner cells as depicted in Fig. 1.
fluxes were computed using the Dukowicz—Kodis [8] gradient limiting procedure outlin
above.

The flux volumes and centroids were computed from the physical picture presente
Fig. 1 as follows. Introduce a locgl, n coordinate system, as shown in Fig. 7 so tha
& =n =0 at the bottom-left corner of the cell agd=n =1 at the top-right corner.

Consider the case of the flux volumes associated with the right face in Fig. 1. From
Courant numbers we locate the coordinatesnd ¢, as shown in Fig. 7 ag; =1 — oy
andf, =1-oy. In &, n space, the flux volume through the face and the volumes of tt
triangular and the rectangular sections are

1
Av,=1—141, Avyi = 5(1 — €)1 =€), Aviect = £2(1—£1).
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The centroids of the triangular and rectangular sectiol§s incoordinates are

c 21 c 1 2
&i = 3 + éfl, Mi = 3 + 552
and
c 1 1 c 1 1
Eroct = > + 531, rect = 5 + 562.
The centroids in physical space can be found with the simple mapping
=@ -, =Y,

With the foregoing equations, the fluxed mass and energy from the triangular and |
angular portions of the fluxed volumes were computed. The portion of the fluxed quant
associated with the triangle were added to the cell sharing only a corner. The rectan:
portion was added to the adjacent cell. Note that the other triangular portion, Section
Fig. 1, was not fluxed when treating the right face of gell'his piece is treated with the
upper face of the cell below cejl The above scheme can be shown to be equivalent to v
Leer’'s multidimensional scheme [2].
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Using these methods, two second-order calculations were performed correspondi
cases 3 and 4 to illustrate the performance of the nonlinear temperature gradient limi
(The standard van Leer case gave noncompatible solutions similar in character to that
in the one-dimensional example and are not shown here.) Both calculations were perfo
for Courant numbers af, = oy, = 0.999. These high values were chosen to accentuate
noncompatibility of the linear gradient limiting scheme, case 3. Computations were
performed for Courant numbers 6f = oy, =0.1 for cases 3 and 4. We do not show thes
results here since the noncompatibility in case 3 was difficult to see in the multidimensi
perspective plots used to display results.

The results of the advection calculations are shown in Figs. 8a—d. In all figures, the ir
and final results are plotted together. The initial state is shown on the left side of the fig
and the final state at a time of 65 time units is shown on the right.

The temperature fields from the linear gradient limiting calculations are shown
Figs. 8a—b. Significant overshoot and undershoot are seen. The temperature fields
the calculation with nonlinear gradient limiting are shown in Figs. 8c—d. Here we see€
overshoot nor undershoot, as predicted by the analysis.

5. CONCLUSIONS

We have formulated new fluxes for the second-order van Leer advection operator. T
fluxes preserve monotonicity of computed density fielddensure compatibility of trans-
port quantities such as velocity, temperature, energy, and species concentration whi
taining second-order accuracy in the usual sense. The key to the new method is to e
the densities as a linear function within each cell. For the flux of any quapTitywhich is
the product of density and the transported quantity, the gradient is then expanded usir
product rule. The T flux computed from the expansion can then be written as the prod
of a second-order mass flux with the cell-center temperature plus a term proportigifal to
Monotonicity of pT and compatibility ofT are then ensured if the gradientDfis limited
using the nonlinear spatial distribution férimplied by the linear expansions fprandoT.
This method is extendable to higher-order schemes with nonlinear density distributions.
method as derived for the multidimensional case is fully general, and therefore applic:
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For this case, the flux g E can be computed from the expanded expression
1
oE = Tj + Euj - Uj [,Oj + (Vp)j - l‘j] +,0j[(VT)j +uj - (Vu),—] Ty,

The temperature and velocity gradients should be limited so that the piecewise-nonlir
velocity and temperature fields given by

Uy o+ PIVW; TG
Pl + (Vo) -1l
and
pi(VT)j-rj 1 pj(Vu)j-r; pi(VU)j -1

T=T;+ = .
T+ (Vo) ril 20 + (Vo) 1] ey + (Vo) 1]

remain bounded by surrounding mesh data. It is then straightforward to explore the im
cations of such a strategy on the compatibility of the resulting advection scheme. Of
future work might explore the implications of the techniques developed in this paper
implicit schemes and on higher-order schemes.
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