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Application of the standard second-order upstream-centered advection method of
van Leer to a coupled transport equation system of the form(∂/∂t)[ ρ

A ] + ∇ · [ ρ

A ]u = 0
can produce artificial extrema in the ratioT ≡ A/ρ, even thoughT satisfies a simple
advection equation and is expected to preserve monotonicity. Hereu is velocity,ρ is
mass density, andA is a conserved quantity such as momentum density, energy
density, or chemical species density. ThusT is a mass-specific transport quantity such
as velocity, energy per unit mass, temperature, or species mass fraction. A new flux
formulation and gradient limiting procedure is presented here which eliminates these
artificial extrema, preserves the second-order accuracy, and preserves the monotone
character of the van Leer method, even in the limit of vanishing mass density. Such
a formulation is calledcompatible. The method is noniterative (i.e. explicit) and can
be employed in a general finite-volume framework. Sample results for the transport
of a square wave in one and two dimensions are provided.c© 1998 Academic Press

Key Words:finite-difference approximations; synchronous advection; computa-
tional fluid dynamics; gradient limiting.

1. INTRODUCTION

This paper introduces a flux formulation that ensures “compatibility” of mass-specific
quantities when using an upstream-centered, second-order advection operator. We use com-
patibility in the sense of Sch¨ar and Smolarkiewicz [1], who defined the term in connection
with the smoothness of mass-specific quantities such as species mass fraction, velocity,
temperature, or specific internal energy. This permits us to reserve the term “monotoni-
city” for the conserved quantities (species density, momentum density, and energy density).
Many second-order advection schemes are monotone, but noncompatible.
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To better understand the meaning of compatibility, consider the system

∂

∂t

[
ρ

A

]
+ ∇ ·

[
ρ

A

]
u = 0, (1.1)

wheret is time,ρ is the mass density,u is the velocity, andA is the density of any other
conserved quantity such as linear momentum or energy. Such systems arise in numerous
applications, including compressible single phase flows, nonisothermal single-phase flows,
multispecies flows, and multiphase flows. Note that the above system is also encountered
in the numerical solutions of systems with a nonzero right-hand side.

Now, for example, let,A= ρT , and letAbe the internal energy density. With unit-specific
heat,T is just the temperature. To simplify the discussion we will often refer toA as the
energy density, andT as the temperature.

Equation (1.1) implies

ρ
dT

dt
≡ ρ

[
∂T

∂t
+ u · ∇T

]
= 0. (1.2)

In other words, the temperature is a Lagrangian invariant. Sch¨ar and Smolarkiewicz [1] point
out that this meansT at a timet + 1t must be bounded by the values ofT in the immediate
neighborhood at timet ; they refer to a scheme having this property as beingcompatible
with the Lagrangian equations. Such a property is desirable in any numerical advection
scheme and can be particularly important in systems having large density gradients, where
overshoots and undershoots can be troublesome.

For a typical time-explicit finite-difference or finite-volume method, the solution of the
equation system (1.1) is subject to the Courant–Friedrichs–Lewy (CFL) stability criterion
based on the transport velocity. This means that information can travel over, at most, one
cell per time step. In the terminology of Sch¨ar and Smolarkiewicz [1], acompatiblescheme
is one for which the average temperature in a given cell is bounded by the average previous
time temperatures from that cell and its neighbors.

Prior efforts to develop compatible advection schemes appear to be limited to the works
of Schär and Smolarkiewicz [1] and to Thuburn [2], both of which build upon the idea of
flux-corrected transport (FCT). The essence of the FCT idea is to add an anti-diffusive part
into an advection scheme based upon upwind differencing, a compatibility constraint being
used to gauge the amount of anti-diffusion to be added in. Sch¨ar and Smolarkiewicz [1]
do so in an iterative fashion within the classical FCT framework. Thuburn [2], in contrast,
accomplishes the same goal in a single step. In either case the formula for gauging the
allowable amount of anti-diffusion results in so-called “flux-limiting.” In contrast to the
foregoing prior works, we focus our attention here on a class of upstream-centered methods
for advection that make use ofgradient limitingto ensure monotonicity of the conserved
densities. In particular, we shall build upon the multidimensional method introduced by
van Leer [3] which is closely related to the scheme of Collela [4] and also to that of
Saltzmann [5]. The basic idea behind the method of van Leer [3] is to construct fluxes using
a finite Taylor expansion in space about the upstream cell-center, the gradients used in the
expansion being “limited” according to a certain recipe involving the neighboring values
of the densities. This gradient-limiting procedure can, of course, reduce the scheme locally
to a purely upwind (but monotone) method, as is the case for flux-limiting as well.

Hence, our goal is to introduce a flux formulation that renders the multidimensional van
Leer advection operator compatible. Achieving this goal will naturally involve a new twist
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on gradient limiting. (Our aim is not to introduce an entirely new advection scheme; nor is
it to survey the enormous literature on the subject. The reader interested in a broad view of
advection schemes should refer to Leveque [6] and the various references cited there.)

It should be noted that we use the term “monotonicity of the advection operator” in
the usual colloquial sense. Namely, that for a uniform velocity flow an initially monotonic
density distribution will remain monotonic after application of the advection operator. Of
course, the van Leer advection scheme that we use in this paper applies to the more gen-
eral case of nonuniform and divergent velocity fields. In the more general case, velocity
divergence acts as a source or sink and can produce new physical density extrema. Since
the advection operator can be thought of as a mapping from the Lagrangian (material)
frame of reference to the Eulerian (grid) frame [8], it should be expected to map any new
physical extrema in density from the Lagrangian data to the mesh without generating spu-
rious new extrema. Fortunately, the conservative form of the advection operator that we
employ directly includes the Lagrangian process of compression and expansion. As such,
it automaticallypreserves density field monotonicity and any physical extrema generated
by divergent flows.

In the next section we examine van Leer’s [7] second-order upstream-centered advection
scheme, applied to the equation system (1.1), with constant velocity, in one dimension. (As
usual we confine our attention to the uniform flow case so that the Lagrangian processes
that establish the extrema are not allowed to obscure the mapping process, which is the
real interest here.) We show that a standard application of van Leer’s scheme is monotone,
but noncompatible. The examination reveals the source of the noncompatibility of the
standard implementation of van Leer’s method. The compatible flux formulation is then
developed for the one-dimensional case. Section 3 contains the generalization to multiple
space dimensions with general velocity fields, and the corresponding proof of compatibility.
In Section 4 we provide example calculations in one and two dimensions to demonstrate
the characteristics of the method.

2. THE ONE-DIMENSIONAL CASE

In this section we review the van Leer advection scheme for a one-dimensional advection
problem and demonstrate that it is monotone in the conserved quantities for the case of a
constant velocity field. We then show that it can lead to noncompatibility. Finally, we show
how to alter the flux formulation to render the van Leer scheme compatible.

2.1. Monotonicity of the van Leer Method

To begin, we consider the equation system (1.1)

(
ρ

A

)
t
+

(
ρu
Au

)
x

= 0, (2.1.1)

on a one-dimensional domain. We confine our discussion to the case for whichu > 0 is a
constant, a rightward traveling wave. (We will consider the more general case in Section 3.)
We use standard finite-difference nomenclature with subscripts denoting the discrete mesh
points and superscripts denoting discrete times. Time steps and space increments are denoted
by 1t and1x, respectively. Half-indices denote cell face values. Integrating the equation
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system over thej th cell and over time fromtn to tn + 1t we arrive at the standard finite-
difference equations for the system

qn+1
j = qj − σ 〈q〉 j +1/2 + σ 〈q〉 j −1/2, (2.1.2)

whereσ = u1t/1x > 0 is the Courant number andq is eitherρ or A. The quantitiesqj and
qn+1

j are the cell average densities at timestn andtn + 1t , respectively. For convenience,
we suppress the superscriptn for the time leveltn on theq’s.

The angle bracket quantities denote the fluxed quantities given by

〈q〉 j +1/2 = 1

1t

tn+1t∫
tn

q(xj +1/2, t) dt, (2.1.3)

whereq is eitherρ or A. As is commonly known, first-order accuracy is obtained by
assuming the quantityq(xj +1/2, t) is a constant and is given by the cell average value
upstream from the face, i.e.q(xj +1/2, t) ≈ qj .

Higher accuracy is obtained by recognizing thatq(xj +1/2, t) is not, in general, a con-
stant over the time intervaltn to tn + 1t . A second-order accurate method results from
approximating the distribution ofq at timetn in each cell as a linear function of space, that
is

q(x, tn) ≈ qj +
(

∂q

∂x

)
j

(x − xj ), (2.1.4)

which provides a piecewise-linear representation ofq(x, tn) over the domain. Using
Eq. (2.1.4) with the transformation,q(xj +1/2, t) = q[xj +1/2 − u(t − tn), tn] in Eq. (2.1.3)
gives a space-time centered approximation for the fluxed quantities,

〈q〉 j +1/2 = qj +
(

∂q

∂x

)
j

1xj

2
(1 − σ), (2.1.5)

where1xj = xj +1/2 − xj −1/2. It is well known that nonmonotone solutions to the equation
system (2.1.1) can result from the from the use of straightforward numerical approximations
to the spatial derivative in Eq. (2.1.5). The origin of the problem is nonmonotonicity of the
piecewise-linear representation ofq by the set of Eqs. (2.1.4). Van Leer [6] resolved this
problem bylimiting the numerical spatial derivatives so that the piecewise-linear density
fields preserve monotonicity, while producing the highest possible accuracy. (We loosely
refer to van Leer’s method as second-order accurate, which is only true in areas where the
solution varies smoothly.) Let̄1 j denote van Leer’slimiteddifference operator. Van Leer’s
prescription is

1̄ j q =


min[4|qj − qj −1|, |qj +1 − qj −1|, 4|qj +1 − qj |] sign[qj +1 − qj −1],

if sign[qj − qj −1] = sign[qj +1 − qj −1] = sign[qj +1 − qj ],

0, otherwise.

(2.1.6)

The spatial derivative in Eqs. (2.1.4)–(2.1.5) is then approximated as(
∂q

∂x

)
j

≈ 1̄ j q

21xj
. (2.1.7)
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In doing so, we are assured that the cell face values (the extrema for each cell) given by

qj +1/2(L) = qj + 1

4
1̄ j q (2.1.8a)

and

qj −1/2(R) = qj − 1

4
1̄ j q, (2.1.8b)

where the superscripts (L) and (R) denote the values approaching from the left and right,
respectively, are bounded by the neighboring cell-center data (e.g.,qj ≤ qj +1/2(L) ≤ qj +1).

Using Eqs. (2.1.5), (2.1.7), (2.1.8a), (2.1.8b), we obtain expressions for the fluxes in
terms of the bounded face values ofq:

〈q〉 j +1/2 = σqj + (1 − σ)qj +1/2(L) (2.1.9a)

and

〈q〉 j −1/2 = σqj −1 + (1 − σ)qj −1/2(L) . (2.1.9b)

From Eqs. (2.1.9a)–(2.1.9b) we can see that the fluxes are weighted averages of the face-
and cell-centered data for 0≤ σ ≤ 1 and are, therefore, also bounded by the surrounding
cell-centered data for this Courant number range.

Now we are ready to verify the monotonicity of van Leer’s advection scheme. Using
Eq. (2.1.9a) we can express the quantityqj − σ 〈q〉 j +1/2 as

qj − σ 〈q〉 j +1/2 = (1 − σ)qre, (2.1.10)

where

qre ≡ (1 − σ)qj + σqj −1/2(R) . (2.1.11)

The quantity (1− σ)qre can be thought of as the density of materialremainingin the cell
after the outgoing flux is withdrawn if the inflow flux were neglected. (Notice the linear
gradients ensureqj +1/2(L) − qj = qj − qj −1/2(R) , which is used to obtain Eq. (2.1.10).)

Now for 0≤ σ ≤ 1, qre is a weighted average of the cell-center and face data and is
therefore, itself, bounded by the surrounding cell-center data. From Eqs. (2.1.2) and (2.1.10)
we obtain, finally,

qn+1
j = (1 − σ)qre + σ 〈q〉 j −1/2. (2.1.12)

Thus,qn+1
j is a weighted average of two bounded quantities,qre and〈q〉 j −1/2, with inter-

polantσ . Hence, van Leer’s scheme is monotone if the interpolant satisfies 0≤ σ ≤ 1, which,
of course, is well known [7].

It is also well known that the first-order limit of Eq. (2.1.12),

qn+1
j = (1 − σ)qj + σqj −1, (2.1.13)

is also monotone for the same conditions onσ . What is not so obvious is the source of
noncompatibility of Eq. (2.1.12), which is studied next.
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2.2. Noncompatibility of the Standard van Leer Method

We now examine the compatibility of the foregoing method applied to the system (1.1).
In particular we shall study the smoothness of the mass-specific quantityT = A/ρ (temper-
ature). Using Eq. (2.1.12) for the densitiesρ andA, we obtain, after some manipulation,

Tn+1
j = (1 − Q)

Are

ρre
+ Q

〈A〉 j −1/2

〈ρ〉 j −1/2
, (2.2.1a)

where

Q = σ 〈ρ〉 j −1/2

(1 − σ)ρre + σ 〈ρ〉 j −1/2
. (2.2.1b)

If van Leer’s limited differences are used to form the second-order mass density fluxes, we
are assured that 0≤ Q ≤ 1 for 0≤ σ ≤ 1.1 In this range, we see that the new temperature
is a weighted average of the ratiosAre/ρre and〈A〉 j −1/2/〈ρ〉 j −1/2. These ratios can also
be considered temperatures. The former is the temperature of the material “remaining” in
the cell considering outflows only, while the latter is the temperature of the material entering
the cell. We have compatibility if these ratios are bounded by the surrounding temperature
data. Unfortunately, because spatial distributions ofρ and A are independent (that is, no
information regarding the cell-center temperatures is directly included in limiting the fluxes
of A) these ratios are not generally bounded by the surrounding temperature data; hence,
the scheme is not generally compatible.

In contrast, for the first-order case, Eqs. (2.2.1a)–(2.2.1b) reduce to

Tn+1
j = (1 − Q)Tj + QTj −1, (2.2.2a)

where now

Q = σρ j −1

(1 − σ)ρ j + σρ j −1
. (2.2.2b)

This simplification occurs because the energy fluxes,〈A〉, in the first-order case are simply
products of cell-center mass densities and temperatures. As a result, the mass density factors
out of the the ratios encountered in Eq. (2.2.1a).

Thus, for the first-order case,Tn+1
j is bounded byTj andTj −1 for 0≤ σ ≤ 1, even in the

limit of vanishing mass. In this caseσ > 0 andρ j −1 vanishes beforeρ j , so thatQ → 0 and
Tn+1

j → Tj .
Whereas the first-order scheme lacks the desired accuracy, it yields both monotone den-

sities and compatible temperatures and is well-behaved in the limit of vanishing mass. The
second-order compatible fluxes developed in the next section will be shown to recover these
properties and to retain second-order accuracy.

2.3. Compatible Fluxes for van Leer’s Operator

The compatibility of the first-order upwind scheme, demonstrated in the previous section,
is related to the fact that the fluxed energies,〈A〉, are products of cell-center mass densities

1 For the caseρre = 〈ρ〉 j −1/2 = 0, Q is, strictly speaking, undefined. In a practical calculation, however, one may
add a small amount of residual density to the denominator in Eq. (2.2.1b) to forceQ → 0 in this limit.
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and temperatures. For example,〈A〉 j −1/2 = ρ j −1Tj −1. This characteristic ensured that the
“remaining” and fluxed temperatures,Are/ρre and 〈A〉 j −1/2/〈ρ〉 j −1/2, respectively, were
bounded by the surrounding cell-center data.

In what follows, we introduce a new second-order definition of the fluxed energy density
that renders van Leer’s method compatible. We start with the Taylor expansion of the field
A= ρT in each cell and expand the first-order spatial derivative using the product rule.
Thus, for thej th cell

A = ρT = Tj

[
ρ j +

(
∂ρ

∂x

)
j

(x − xj )

]
+ ρ j

(
∂T

∂x

)
j

(x − xj ) +O[
(x − xj )

2
]
. (2.3.1)

The Taylor expansion for mass density is

ρ = ρ j +
(

∂ρ

∂x

)
j

(x − xj ) +O[
(x − xj )

2
]
.

If we neglect the terms ofO[(x−xj )
2] in the above expansions and form the ratioT = A/ρ,

we obtain the following piecewise nonlinear spatial temperature distribution in the presence
of density gradients:

T = Tj + ρ j (∂T/∂x) j (x − xj )

ρ j + (∂ρ/∂x) j (x − xj )
. (2.3.2)

This nonlinear distribution is crucial; it will enable us to construct a limited difference
operator for temperature that produces compatible fluxes. From Eq. (2.3.2) we see that the
relation

Tmin − Tj ≤
ρ j

(
∂T
∂x

)
j
(x − xj )

ρ j + (
∂ρ

∂x

)
j
(x − xj )

≤ Tmax − Tj , (2.3.3)

must hold if compatibility of the temperature field is to be obtained, whereTmin andTmax

are the minimum and maximum of the local cell-center temperatures. To enforce inequality
(2.3.3), we introduce a new limited temperature difference operator. Due to the nonlinearity
of the temperature field, this operator is different from the limited difference operator for
the density fields given by Eq. (2.1.6). Let1̃ denote the new operator for the temperature.
For the one-dimensional case we introduce the prescription

ρ j 1̃ j T = min


4|Tj − Tj −1|

(
ρ j − 1

41̄ j ρ
)
,

|Tj +1 − Tj −1|ρ j ,

4|Tj +1 − Tj |
(
ρ j + 1

41̄ j ρ
)

sign[Tj +1 − Tj −1] (2.3.4a)

if sign[Tj − Tj −1] = sign[Tj +1 − Tj −1] = sign[Tj +1 − Tj ], and

ρ j 1̃ j T = 0 (2.3.4b)

otherwise. Hence, the operator1̃ j T is simply van Leer’s operator, Eq. (2.1.6), applied to a
field having a nonlinear distribution like (2.3.2). Notice that if the mass density approaches
zero (on average or on a cell face), the limited temperature difference is forced to zero, the
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first-order limit, by this prescription. This is a key feature of the new formulation. To be
consistent with the monotone mass density representation and to include the proper density
variation characteristics, the limited mass density difference,1̄ j ρ, is used in Eq. (2.3.4a).
Settingρ j (∂T/∂x) j = ρ j 1̃ j T/21xj , the limited temperature field in each cell is now

T = Tj +
ρ j 1̃ j T

(
x−xj

21xj

)
ρ j + 1̄ j ρ

(
x−xj

21xj

) . (2.3.5)

Equation (2.3.5) guarantees face temperatures that are bounded by the surrounding cell-
center temperature data. That is, for example,Tj ≤ Tj +1/2(L) ≤ Tj +1. (The reader can quickly
verify that the extrema in Eq. (2.3.5) are at the cell faces.)

We can now examine the implications of the expansion (2.3.1) using the new limited
temperature difference on the fluxed energies. From Eqs. (2.1.5) and (2.3.1) and setting
ρ j (∂T/∂x) j = ρ j 1̃ j T/21xj , we find the fluxed energies to be

〈A〉 j −1/2 = σρ j −1Tj −1 + (1 − σ)ρ j −1/2(L) Tj −1/2(L) (2.3.6a)

and

〈A〉 j +1/2 = σρ j Tj + (1 − σ)ρ j +1/2(L) Tj +1/2(L) . (2.3.6b)

For 0≤ σ ≤ 1 the fluxed energies are weighted averages of the cell-centered energy density,
and the face energy density. The reader can verify that the limited differences ensure that the
flux of A given by Eq. (2.3.6b) is bounded by the surrounding data and therefore preserves
the monotonicity of the van Leer scheme.

Compatibility of the temperature for the new formulation is demonstrated by using
Eqs. (2.3.6a)–(2.3.6b), and (2.2.1a) to obtain

Tn+1
j = (1 − Q)T̂re + QT̂in, (2.3.7)

whereQ is given by Eq. (2.2.1b), and

T̂re =
[
ρ j Tj − σ 〈ρT〉 j +1/2

ρ j − σ 〈ρ〉 j +1/2

]
(2.3.8)

and

T̂in = 〈ρT〉 j −1/2

〈ρ〉 j −1/2
. (2.3.9)

The scheme will be compatible as long as 0≤ Q ≤ 1 and bothT̂re and T̂in are bounded
by the surrounding cell-center data. We have already argued that 0≤ Q ≤ 1 for 0≤ σ ≤ 1.
So the remaining task is to find the conditions under whichT̂re and T̂in are bounded by
surrounding cell-center temperature data. Let us first examineT̂in, which is simply the
average temperature of the inflow material. From Eqs. (2.1.9b) and (2.3.6a)

T̂in = σ(ρT) j −1 + (1 − σ)(ρT) j −1/2(L)

σρ j −1 + (1 − σ)ρ j −1/2(L)

(2.3.10a)
= ωinTj −1 + (1 − ωin)Tj −1/2(L) ,
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where

ωin = σρ j −1

σρ j −1 + (1 − σ)ρ j −1/2(L)

. (2.3.10b)

For the interval 0≤ σ ≤ 1 with nonzero mass densities we have 0≤ ωin ≤ 1. Furthermore,
for the vanishing mass case in a rightward traveling wave, we expectωin to tend to zero,
sinceρ j −1 will approach zero faster thanρ j −1/2(L) . Thus,Tin is a weighted average ofTj −1

andTj −1/2(L) . BecauseTj −1/2(L) is bounded byTj −1 andTj , so then isT̂in.
Now considerT̂re. This quantity can be thought of as the temperature “remaining” if only

outflow is considered. Using Eqs. (2.1.9a), (2.3.6b), and (2.3.8) we see that

T̂re = (ρT) j − σ [σ(ρT) j + (1 − σ)(ρT) j +1/2(L) ]

ρ j − σ [σρ j + (1 − σ)ρ j +1/2(L) ]
(2.3.11a)

= (1 − ωre)Tj + ωreTj −1/2(R) ,

where

ωre = σρ j −1/2(R)

(1 − σ)ρ j + σρ j −1/2(R)

. (2.3.11b)

For the interval 0≤ σ ≤ 1 with nonzero mass densities we have 0≤ ωre ≤ 1. For the vanishing
mass case in a rightward traveling wave, we expectωre → 0 sinceρ j −1/2(R) will approach zero
faster thanρ j . So, in this limit,T̂re → Tj . Thus,T̂re is a weighted average ofTj andTj −1/2(R) .
SinceTj −1/2(R) is bounded byTj −1 andTj , so isT̂re. Finally then,Tn+1

j is bounded by the
surrounding cell-center temperatures; compatibility is proved and the new fluxes produce a
van Leer scheme with the desirable vanishing-mass properties seen for the first-order case.

To recap this one-dimensional development, we have shown how the flux of a conserved
quantity, A= ρT , can be developed so as to render van Leer’s advection operator both
monotone in the conserved quantity and compatible in the mass-specific quantity,T . The
first step is to use the product rule for differentiation ofρT so that the fluxedρT can
be expressed as a linear combination of products of mass density and temperatures at the
cell centers and cell faces as in Eqs. (2.3.6a)–(2.3.6b). The second step is to recognize the
nonlinearity of the temperature that results from assuming a linear distribution inρT and to
introduce an appropriate nonlinear limited difference operator so face values are bounded by
the surrounding temperature data. Use of the limited nonlinearT differences will guarantee
monotonicity ofρT and compatibility ofT in a second-order scheme without changing the
conditions on the Courant number for stability or monotonicity.

The gradient-limited advection algorithm using the new compatible flux formulation is
then:

• Compute trial gradients for densities and temperatures.
• Limit mass density gradients using the standard linear form.
• Limit temperature or mixing ratio gradients according to the nonlinear form.
• Compute the fluxed quantities with limited gradients.
• Perform the straightforward advection operation.

3. GENERAL MULTIDIMENSIONAL COMPATIBLE SCHEME

The compatible flux formulation developed in the previous section for the one-dimensional
case can be extended to the multidimensional, arbitrary-velocity-field case in a relatively
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straightforward and similar manner. We outline the steps in this section for an unsplit (with
regard to mesh direction) time-explicit multidimensional arbitrary finite-volume van Leer
advection scheme. Note that the advection operator used in the following development is
equivalent to that developed by van Leer [3] for multidimensional advection. The mono-
tonicity characteristics will be preserved. The new contribution will be the formulation of
compatible fluxes.

3.1. Finite Control Volume Conservation Equations

The fundamental control volume description for the conservation equation system (1.1)
is

d

dt

∫
V(t)

q dV +
∫

S(t)

q(u − us) · n dS= 0, (3.1.1)

whereq is eitherρ or A. V(t) is an arbitrary time-varying control volume,S(t) is its surface,
us is the surface velocity, andn is the outward unit vector normal to the surface [10]. To
simplify the discussion, let us consider here the case of a stationary mesh for whichus = 0.

We wish to solve these equations on an arbitrary finite-volume mesh. We start by applying
Eq. (3.1.1) to thej th control volume or cell of the mesh and approximate the time derivative
with a first-order forward-difference formula. Letqj denote a cell volume average

qj = 1

Vj

∫
Vj

q(x, tn) dV, (3.1.2)

wherex is the position vector andVj is the volume of thej th cell. The conservation equa-
tions take the form

qn+1
j Vj = qj Vj − 1t

∫
Sj

qu · n dS, (3.1.3)

whereSj denotes thej th cell surface. If one breaks up the surface integral in Eq. (3.1.3)
into segments corresponding to inflowing and outflowing volumes, one finds, after making
use of the Gauss theorem and some manipulation that

qn+1
j Vj = qj Vj −

∑
o

〈q〉o1Vo +
∑

i

〈q〉i 1Vi , (3.1.4)

where the subscriptso andi denote sections of thej th cell surface undergoing outflow and
inflow, respectively. Each outflow and inflow section will have an associated fluxed volume
denoted by1Vo and1Vi , respectively. This fluxed volume is the volume of material which
passes through each surface section in the time increment1t . The angle brackets denote
the average of the quantity over the fluxed volume at timetn:

〈q〉 = 1

1V

∫
1V

q(x, tn) dV. (3.1.5)



           

COMPATIBLE VAN LEER FLUXES 11

FIG. 1. Fluxed volumes.

To clarify the terms so far take, for example, the case of a Cartesian mesh with1x = 1y = 1
and withx, y velocity componentsu = v = 1. Suppose, further,1t = 0.5. The fluxed vol-
umes associated with upper and right faces of cellj at time tn and tn+1 are shown in
Fig. 1.

The figure shows each volume that passes through the right and upper faces of cellj . In
the example, volumes 2, 3, 4, and 6 are outflow volumes for cellj . Volumes 1 and 2 are
inflow volumes for cellj + t . Volumes 3 and 4 are inflow volumes for cellj + c. Volumes 6
and 7 are inflow volumes for cellj + r . The volume labeled 5 remains in cellj . The reader
may consult Collela [3] for more discussion on the geometric description of the fluxed
volumes in multidimensional advection calculations.

3.2. Inflow and Outflow Effects

We can now manipulate Eq. (3.1.4) to show how to treat the fluxed quantities to ensure
compatibility of the multidimensional van Leer advection scheme. Our aim is to show that
the new temperature is a weighted average of the value for thej th cell and its neighbors.
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We start by settingq = ρT in Eq. (3.1.4) and simply grouping the terms as

(ρT)n+1
j Vj =

{
(ρT) j Vj −

∑
o

〈ρT〉o1Vo

}
+

∑
i

〈ρT〉i 1Vi . (3.2.1)

The curly brace term will be recognized as the energy remaining in the cell considering
outflow only; the last term is the inflowing energy. If we multiply and divide the terms in
the inflow sum by the inflowing fluxed densities we obtain

(ρT)n+1
j Vj =

{
(ρT) j Vj −

∑
o

〈ρT〉o1Vo

}
+

∑
i

〈ρ〉i
〈ρT〉i

〈ρ〉i
1Vi . (3.2.2)

Now multiply and divide the inflow sum by the total inflowing mass to get

(ρT)n+1
j Vj =

{
(ρT) j Vj −

∑
o

〈ρT〉o1Vo

}

+
{∑

i

〈ρ〉i 1Vi

}∑
i

〈ρ〉i{ ∑
i 〈ρ〉i 1Vi

} 〈ρT〉i

〈ρ〉i
1Vi . (3.2.3)

Let us now define, as in the one-dimensional case, an auxiliary quantityT̂re as

T̂re ≡ (ρT) j Vj − ∑
o〈ρT〉o1Vo

ρ j Vj − ∑
o〈ρ〉o1Vo

. (3.2.4)

This is the net temperature of the material in the cell that is not fluxed out, neglecting inflow.
Let us also definêTin as

T̂in ≡
∑

i

〈ρ〉i{ ∑
i 〈ρ〉i 1Vi

} 〈ρT〉i

〈ρ〉i
1Vi . (3.2.5)

This is the net average temperature of all materials fluxed into the cell. With these definitions,
Eq. (3.2.3) takes the form:

(ρT)n+1
j Vj =

{
ρ j Vj −

∑
o

〈ρ〉o1Vo

}
T̂re +

{ ∑
i

〈ρ〉i 1Vi

}
T̂in. (3.2.6)

Dividing through by the new mass,ρn+1
j Vj , and using Eq. (3.1.4) we obtain

Tn+1
j = (1 − Q)T̂re + QT̂in, (3.2.7)

whereQ is given by

Q = min

mre + min
,
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with

min =
∑

i

〈ρ〉i 1Vi

and

mre = ρ j Vj −
∑

o

〈ρ〉o1Vo.

From Eqs. (3.2.7) we can see that the new temperature is a weighted average of the quan-
tities T̂in andT̂re, provided 0≤ Q ≤ 1. We now must show, as in the one-dimensional case,
the conditions under which 0≤ Q ≤ 1, and bothT̂in andT̂re are bounded by the surrounding
cell-center temperatures.

Let us first examine the bounds onQ. We start with a limited piecewise-linear represen-
tation forρ. Within each cell,

ρ = ρ j + (∇ρ) j · r j , (3.2.8)

wherer j = x − x j is the position vector relative to the cell volume centroid,x j . We may
use Eq. (3.2.8) in Eq. (3.1.5) to compute the mass average densities in an arbitrary volume,
1V , in the j th cell as

〈ρ〉 = ρ j + (∇ρ) j · 〈r j 〉. (3.2.9)

The quantity〈r j 〉 is the volume centroid of1V .
In what follows, we assume that the gradients in Eqs. (3.2.8)–(3.2.9) are limited so that the

extrema in each segment of the piecewise-linear representation of the density are bounded
by the surrounding mesh data. Dukowicz and Kodis [8] provide a multidimensional version
of van Leer’s limiter for an arbitrary quantityq. In their method, a trial gradient is computed
by standard means and then limited by multiplication by a coefficient,α j :

(∇q) j → α j (∇q) j . (3.2.10a)

The coefficientα j is computed by ensuring the vertex values ofq computed from the Taylor
expansion involvingα j (∇q) j do not lie outside the maximum,qmax, and minimum,qmin,
of the surrounding cell-center data. This yields the prescription forα j ,

α j = min[1, αmax, αmin], (3.2.10b)

where

αmax = max

[
0,

qmax − qj

max[qv] − qj

]
(3.2.10c)

and

αmin = max

[
0,

qmin − qj

min[qv] − qj

]
, (3.2.10d)
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whereqv are the values ofq at the cell vertices computed using the linear expansion
for q, such as Eq. (3.2.8), with the trial density gradient. Since the vertex values are the
extrema for the linear expansion, this procedure guarantees that the densities are bounded
by the surrounding cell-center data. (It is important to point out here that other gradient-
limiting procedures may be used as well. The following discussion only requires that the
extrema of each segment of the piecewise function remain bounded by the surrounding mesh
data.)

If the mass density gradient used in Eqs. (3.2.8)–(3.2.9) is limited we are assured that the
mass fluxes and thereforemin are nonnegative, since the centroids of the fluxed volumes are
all within their respective cells. Then, as in the one-dimensional case, ifmre > 0, we have
0≤ Q ≤ 1. Let us now examinemre.

If we use Eq. (3.2.9) in the formula formre we obtain

mre = ρ j

[
Vj −

∑
o

1Vo

]
− (∇ρ) j ·

∑
o

〈r j 〉o1Vo. (3.2.11)

Let us define an auxiliary position vector,r ?
j as

r ?
j ≡ −∑

o〈r j 〉o1Vo[
Vj − ∑

o1Vo
] . (3.2.12)

If one chooses a numerical advection scheme so that none of the fluxed volumes,1Vo,
overlap, then it is easy to show thatr ?

j is the centroid of the volume in the cell that is not
fluxed out—i.e. the “remaining” material. In Fig. 1, for example, this would be the centroid
of volume 5. To show this, recognize that sincer j is defined relative to the cell centroid we
have the relationship∫

Vj

r j dV = 0

=
∑

o

∫
1Vo

r j dV +
∫

Vj −6o1Vo

r j dV

=
∑

o

〈r j 〉o1Vo +
[

Vj −
∑

o

1Vo

]
〈r j 〉re,

(3.2.13)

where the centroid of the “remaining” material is defined as

〈r j 〉re ≡ 1

Vj − ∑
o1Vo

∫
Vj −6o1Vo

r j dV. (3.2.14)

From Eqs. (3.2.13)–(3.2.14) it is clear that, provided the volumes1Vo do not overlap,

〈r j 〉re = r ?
j = −∑

o〈r j 〉o1Vo[
Vj − ∑

o1Vo
] . (3.2.15)
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Now, if we use definition (3.2.12) in Eq. (3.2.11) we obtain

mre =
[

Vj −
∑

o

1Vo

]
[ρ j + (∇ρ) j · r ?

j ]. (3.2.16)

Somre is made up of two factors, both of which must be nonnegative formre to be nonneg-
ative. The first factor is simply the difference of the cell volume and the outgoing fluxed
volumes. The second factor is the limited mass density at the positionr ?

j . Let us discuss
these two factors briefly.

The first factor is a restriction even in the case of a first-order scheme. The implications
on the Courant numbers depend on the approximation one makes to the flux volumes. Take,
for example, the case of the two-dimensional Cartesian mesh. Suppose one approximates
the flux volumes as rectangular slabs adjacent to the cell faces with a volume equal to the
fluxed volume through each face. In this case, one finds a stability condition such that the
sum of the Courant numbersσx = u1t/1x andσy = v1t/1y must be less than one; a
result which is well known [3–5].

Suppose one now takes into account the geometrical shapes and destinations of the fluxed
volumes shown in Fig. 1. One then finds the restriction on Courant numbers is insteadσx < 1,
σy < 1, which has also been shown by previous investigators [3–5].

Now let us consider the second factor in Eq. (3.2.16), the limited mass density atr ?
j .

Since we are using limited gradients to compute the density, the only requirement for
nonnegativity is thatr ?

j be inside the cell. This will guarantee a nonnegative mass density.
Whetherr ?

j is inside the cell or not will depend on parameters such as Courant numbers
and the assumptions made concerning the shapes of the fluxed volumes. If one uses, for
example, the slab approximation for the Cartesian mesh example, then one can show that
the Courant numbers must satisfyσx < (1−σy)

2 andσy < (1−σx)
2 to assure nonnegativity.

Forσx = σy = σ we haveσ < (3 − √
5)/2≈ 0.382 to assure nonnegativity.

If, on the other hand, one uses a more realistic geometry with no overlapping volumes as
shown in Fig. 1 thenr ?

j is simply〈r j 〉re, which is always contained within the cell. In this
case no additional Courant number limitations are imposed beyond those associated with
the first factor on the right-hand side of Eq. (3.2.16).

Having set forth the conditions under which 0≤ Q ≤ 1, the next task is to show thatT̂in

andT̂re are bounded by the local cell temperatures at timetn.

3.3. Inflow

We treat the case of̂Tin first. Let us begin by defining the average temperature of the
material in thei th inflow volume from neighbor cellm as

T̃i (m) ≡ 〈ρT〉i (m)

〈ρ〉i (m)

. (3.3.1)

The subscripti denotes thei th inflow volume; the parenthetical subscriptm has been added
to denote the index of the donating neighbor cell. From Eq. (3.2.5) we can see thatT̂in is
a weighted average of the inflow average temperatures,T̃i (m). (Note that the factor〈ρ〉i /

{∑i 〈ρ〉i 1Vi } in Eq. (3.2.5) is the fraction of the inflowing mass from thei th inflowing
fluxed volume. These factors are nonnegative and sum to one.) ThusT̂in is bounded by
the T̃i (m). Now if we show that thẽTi (m) are bounded by thej th cell and surrounding cell
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temperatures, then we will have proved thatT̂in is bounded by the surrounding cell-center
temperature data. From Eqs. (3.1.5) and (3.2.9) we may write the inflow mass from neighbor
cell m as

〈ρ〉i (m) = ρm + (∇ρ)m · 〈rm〉i (m), (3.3.2)

where〈r j 〉i (m) is the centroid of the fluxed volume,1Vi , from the donating cellm. The
multidimensional linear expansion ofA = ρT—the analog of Eq. (2.3.1)—for each cell in
the mesh is

ρT = [ρ j + r j · (∇ρ) j ]Tj + ρ j r j · (∇T) j . (3.3.3)

From Eqs. (3.3.3) and (3.1.5) the fluxed energy takes the form

〈ρT〉 = 〈ρ〉Tj + ρ j (∇T) j · 〈r j 〉. (3.3.4a)

For the case at hand, the inflow energy from neighbor cellm is

〈ρT〉i (m) = 〈ρ〉i (m)Tm + ρm(∇T)m · 〈rm〉i (m). (3.3.4b)

It is important to remember here that the mass density and temperature gradients in
Eqs. (3.3.2)–(3.3.4b) are assumed to be limited. In particular, the extrema in each of the
segments of the piecewise-nonlinear temperature field implied by the linear expansion
(3.3.3),

T = Tj + ρ j r j · (∇T) j

ρ j + r j · (∇ρ) j
, (3.3.5)

should be bounded by surrounding mesh data. We note here that the Dukowicz–Kodis
generalization of van Leer’s limiter can be used to limit the temperature gradient, as well
as the mass density gradient. This is done by using Eq. (3.3.5) with trial temperature gradi-
ents and limited mass density gradients to compute trial vertex temperatures. These vertex
temperatures are then used in Eqs. (3.2.10b)–(3.2.10d) to compute a limiter coefficient,α j .
The limited temperature gradient is then simply the product of the limiter coefficient and
the trial temperature gradient,

(∇T) j → α j (∇T) j .

The temperature gradient limiter coefficient is generally different from the one used to limit
the mass density gradient. Also, other gradient limiting procedures can be used so long as
the extrema of the segments of the piecewise-nonlinear temperature field remain bounded
by the surrounding mesh data.

It is worth pointing out here that the nonlinear temperature field given by Eq. (3.3.5)
does not exhibit local extrema so we are assured that the cell vertex values give the extreme
values for the temperature within each cell. Finally, since the temperature and mass densities
used to construct the energy fluxes are bounded quantities, so then is the piecewise energy
density field. Thus the new flux formulation will preserve the monotonicity characteristics
of the van Leer advection scheme.
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Using Eqs. (3.3.2), (3.3.4b) we can now compute the average temperature of the fluxed
material:

T̃i (m) ≡ 〈ρT〉i (m)

〈ρ〉i (m)

= Tm + ρm(∇T)m · 〈rm〉i (m)

ρm + (∇ρ)m · 〈rm〉i (m)

. (3.3.6)

Comparing Eq. (3.3.6) with Eq. (3.3.5) shows that the average temperature of the fluxed
material depends on the position of the fluxed volume centroid in an identical manner to
the way that the temperature in the cell depends on position. If the temperature gradients
are limited using the nonlinear temperature functionality of Eq. (3.3.5), we are assured that
the average temperature of the fluxed material is bounded by the surrounding data.

Using the arguments put forward above, we can now see that the average inflow temper-
ature,T̂in, will be a bounded quantity.

3.4. Outflow

We now turn our attention to the proof of the boundedness ofT̂re, the temperature of
the remaining material in the cell considering outflow only. We start with Eq. (3.2.4) and
subtract the quantityTj

∑
o〈ρ〉o1Vo from the first term in the numerator and add it to the

second term:

T̂re = Tj
[
ρ j Vj − ∑

o〈ρ〉o1Vo
] − ∑

o[〈ρT〉o − 〈ρ〉oTj ]1Vo

ρ j Vj − ∑
o〈ρ〉o1Vo

(3.4.1)

= Tj + −∑
o[〈ρT〉o − 〈ρ〉oTj ]1Vo

ρ j Vj − ∑
o〈ρ〉o1Vo

.

Now if we use Eqs. (3.2.9) and (3.3.4a) we find

〈ρT〉o − 〈ρ〉oTj = ρ j (∇T) j · 〈r j 〉o. (3.4.2)

Using Eq. (3.4.2) in Eq. (3.4.1) we obtain

T̂re = Tj + ρ j (∇T) j · −∑
o〈r j 〉o1Vo

ρ j Vj − ∑
o〈ρ〉o1Vo

. (3.4.3)

If we now use Eq. (3.3.2) to substitute for the fluxed mass, we find that

T̂re = Tj + ρ j (∇T) j · −∑
o〈r j 〉o1Vo

ρ j
[
Vj − ∑

o1Vo
] − (∇ρ) j · ∑

o〈r j 〉o1Vo
. (3.4.4)

Finally, if we use definition (3.2.12) in Eq. (3.4.4) we obtain the simple relationship:

T̂re = Tj + ρ j (∇T) j · r ?
j

ρ j + (∇ρ) j · r ?
j

. (3.4.5)

Comparison of Eqs. (3.4.5) and (3.3.5) reveals that temperature of the remaining material in
the cell should be bounded by the surrounding data as long asr ?

j is within the j th cell and the
temperature gradients are limited, so the extrema of the segments of the piecewise-nonlinear
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cell temperature field remain bounded by surrounding mesh data. The restriction onr ?
j is

the same as put forward previously for the nonnegativity ofmre and, therefore, imposes
the same restrictions on quantities such as Courant numbers to ensure monotonicity and
compatibility.

To recap, the preceding analysis presents a method for obtaining multidimensional mono-
tonic and compatible fluxes with the following restrictions:

First, the extrema of the segments of the piecewise-linear mass density and piecewise-
nonlinear temperature fields at timetn must be bounded by the surrounding mesh data.
Second, the fluxed energies,〈ρT〉, must be computed using the expansion given by
Eq. (3.3.4a). Third, the sum of the outflowing fluxed volumes from any cell in the mesh
cannot exceed the total cell volume. Finally, the quantityr ?

j , defined by Eq. (3.2.12), must
be contained within each respective cell.

At this point, one can further observe the behavior of the van Leer advection algorithm
with the newly developed compatible flux formulation for compressible flow fields. The
main observation is that the proof of compatibility and the compatible flux formulation
presented in this section is fully general and includes the case of compressible flow fields.
Compatibility will be maintained in any flow field, provided time steps are restricted so
that the remaining mass—defined by Eq. (3.2.16)—remains nonnegative. Consider the
limiting case in which a computational cell is completely emptied by a divergent flow field.
In this case, the temperature of the cell will be driven to the temperatureTre given by
Eq. (3.4.5). Because of the new compatible flux formulation, this temperature is guaranteed
to be bounded by the surrounding temperature data and remains compatible. The behavior
of the mass density is also interesting to examine for this case. The mass density for the
emptying cell at timen + 1 is given by

ρn+1
j = mre

Vj
=

[
Vj − ∑

o 1Vo

Vj

]
(ρ j + (∇ρ) j · r ?

j ) → 0.

Because of the limiting of the mass density gradient and because of time step restrictions, the
algorithm will never give unphysical negative mass densities. Thus, the advection scheme
with the new compatible flux formulation is well suited to compressible flows.

4. EXAMPLE PROBLEMS

As an example problem, we consider the coupled system of equations

∂

∂t


ρ1

ρ2

ρ1c1T1

ρ2c2T2

 + ∇ ·


ρ1

ρ2

ρ1c1T1

ρ2c2T2

 u =


0

0

ρ1ρ2R(T2 − T1)

ρ1ρ2R(T1 − T2)

 , (4.1)

whereR is a coupling parameter andc1 andc2 are specific heats. This system of equations
describes a simple two-phase flow in which each phase is transported with the common
constant velocity,u, but with separate densities and temperatures. The subscripts denote the
phases. We choose the two-phase system to provide an example in which mass densities
are zero in parts of the domain but temperatures remained well-defined. The coupling terms
on the right-hand side of equation system (4.1) ensure well-defined temperatures even in
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the limit ρk → 0, k = 1 or 2. This occurs because each term in the temperature equations
is proportional to the phase mass density. In the test problems that follow, we will consider
the tight coupling limitR→ ∞.

Since the equation system (4.1) has a nonzero right-hand side, a slight generalization
of the method discussed above is required for solution. This involves the introduction of a
time-split procedure. In the first step the solution is advanced using only the sources from the
right-hand side of the equations. This step is called the Lagrangian step. In the second step,
the solution is advanced from the Lagrangian data produced in the Lagrangian step using
the procedures developed in this paper with no source terms. The second step is sometimes
called the remapping step and includes any effects of compression and expansion from
divergent velocity fields.

The following outlines the time-split procedure. Consider the generalized form of the
transport equations in system (1.1),

∂q

∂t
+ ∇ · qu = f, (4.2)

whereq is a density. The quantityf represents source terms. The control volume description
for this conservation equation is

d

dt

∫
V(t)

q dV +
∫

S(t)

q(u − us) · n dS=
∫

V(t)

f dS, (4.3)

where the meaning of the symbols are the same as in Eq. (3.1.1). As in Section 3, we confine
our attention to a stationary mesh control volume,Vj , with a zero mesh velocity (us = 0).
LettingqV denote

∫
V q dV, Eq. (4.3) becomes

d(qV) j

dt
= −

∫
Sj

qu · n dS+
∫

Vj

f dS. (4.4)

In our time-split procedure we advance the cell averages first by considering the source
terms only:

(qV)L
j = (qV)n

j + 1t
∫
Vj

f dS. (4.5)

The superscriptL denotes the Lagrangian data from the first or Lagrangian step. The solution
is then obtained from the Lagrangian data considering the effect of the advection terms only,

qn+1
j Vj = (qV)n+1

j = (qV)L
j − 1t

∫
Sj

q∗u · n dS, (4.6)

whereq∗ is a piecewise density field constructed using the methods described in this paper
from cell-center data defined asq∗

j = (qV)L
j /Vn

j . Theq∗
j can be thought of as the average

density of the Lagrangian state on the control volumeVn
j .

One can see that Eqs. (3.1.3) and (4.6) are essentially the same. The distinction between
the two is that Eq. (4.6) operates on the Lagrangian data from the first step of the time-split
method. Of course, in the absence of source terms, Eq. (4.6) is identical to (3.1.1).
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In what follows we consider the advection of square-wave mass distributions in both one
and two dimensions to illustrate the behavior of the new flux formulations. We choose mass
densities of fields one and two to be 1 and 0.001, respectively. This gives the system the
character of a liquid–gas multiphase flow. Furthermore, we choose the specific heats to be
1 and 1000 so the product of material density and specific heats are equal; this gives the
temperatures symmetry with respect to energy.

We will compare the following cases:

(1) a first-order method;
(2) a standard application of van Leer’s second-order method using a linear expansion for

the energy density, that is Eq. (2.1.5) withq = ρT , and using the linear limited difference
operator given by Eq. (2.1.6). This is the case corresponding to the discussion in Section 2.2;

(3) a second-order method using the expanded flux form for energy density given by
Eqs. (2.3.6a)–(2.3.6b) but using the linear limited difference operator given by Eq. (2.1.6)
for both the mass density and temperature; and

(4) acompatiblesecond-order method using the expanded flux form for energy density
given by Eqs. (2.3.6a), (2.3.6b) using the linear limited difference operator for mass den-
sity and the nonlinear limited difference operator given by Eq. (2.3.4a)–(2.3.4b) for the
temperature.

4.1. Advection of a One-Dimensional Square Wave

We first consider the solution of equation system (4.1) on a one-dimensional domain 100
units long. We discretize the domain into 100 units so all1xj = 1. Thex component of
velocity is taken as a positive constant,u = 1. The initial mass densities and temperatures
are distributed at timet = 0 as shown in Table I.

The boundary conditions on mass density and temperature are Neumann. The exact
solution of the equation system for these boundary and initial conditions is simply a rigid
body motion of the density and temperature fields to the right with the velocityu = 1.

We performed calculations for Courant numbers of 0.10 and 0.999. The smaller Courant
number was chosen to examine the numerical diffusion characteristics in the three cases. The
larger Courant number was chosen to give a high weighting to the face value contribution
for the “remaining” temperature. (See Eqs. (2.3.11a), (2.3.11b).

The results from our computations att = 50 time units are shown in Figs. 2a through 5c.
As one can see from the figures, both the standard van Leer case and the expanded

flux formulation with linear temperature field gradient limiting produce noncompatible
temperatures. Only the expanded flux formulation with nonlinear temperature field gradient
limiting produces compatible temperatures with second-order accuracy. Note also that the
nonlinear gradient limiting does not appear to introduce diffusive behavior beyond that seen
in the other second-order cases.

TABLE I

Field x < 10 10≤ x ≤ 30 30< x

ρ1 1 0 1
ρ2 0 10−3 0
T1 0 1 0
T2 0 1 0
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FIG. 2. Field 1 temperatures,σ = 0.1 (———, analytic; - - - -, 1storder;−·−·−·, 2nd-order): (a) standard
van Leer, (b) expanded flux, linear temperature field, (c) expanded flux, nonlinear temperature field.

4.2. Advection of a Notched Two-Dimensional Box

We will now demonstrate the multidimensional capabilities of the new flux formulation by
computing the advection of a notched two-dimensional box. We use a notched box to provide
a more intricate configuration for the demonstration. We will use an accurate, nonover-
lapping geometric description of the flux volumes so that the Courant numbersσx andσy

can both approach one. We show that the box is advected with compatible temperatures
for case 4 but not for case 3. We first discuss the problem specification and then the flux
volume computation, followed by the results of the computation.

Consider the two-phase flow system described in the previous section in a two-dimensional
square domain with dimensions 100 units by 100 units. Let both phases have a uniform
velocity field with x andy components equal to one so that flow is along the diagonal of
the domain. The mass densities and temperatures are distributed at timet = 0 as shown in
Fig. 6.

The boundary conditions on density, velocity, and temperature are Neumann.
As in the one-dimensional case, the analytical solution to the governing differential

equations is such that the box simply translates as a rigid body along the diagonal of the
domain. Since there is no heat diffusion, the temperature fields also translate with the same
rigid body motion.
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FIG. 3. Field 2 temperatures,σ = 0.1 (———, analytic; - - - -, 1storder;−·−·−·, 2nd-order): (a) standard
van Leer, (b) expanded flux, linear temperature field, (c) expanded flux, nonlinear temperature field.

As in the one-dimensional case, the state variables were advanced using the Lagrangian
form of the equations. The Lagrangian update is then advected solving equation system
(4.1) with zero right-hand side. The advection step was unsplit with regard to mesh di-
rection and consisted of visiting each cell face, computing the required mass and energy
fluxes in the manner described above, and then moving these quantities from the donat-
ing cell to the appropriate accepting adjacent and corner cells as depicted in Fig. 1. The
fluxes were computed using the Dukowicz–Kodis [8] gradient limiting procedure outlined
above.

The flux volumes and centroids were computed from the physical picture presented in
Fig. 1 as follows. Introduce a localξ, η coordinate system, as shown in Fig. 7 so that
ξ = η = 0 at the bottom-left corner of the cell andξ = η = 1 at the top-right corner.

Consider the case of the flux volumes associated with the right face in Fig. 1. From the
Courant numbers we locate the coordinates`1 and`2 as shown in Fig. 7 as̀1 = 1− σx

and`2 = 1− σy. In ξ, η space, the flux volume through the face and the volumes of the
triangular and the rectangular sections are

1vo = 1 − `1, 1vtri = 1

2
(1 − `1)(1 − `2), 1vrect = `2(1 − `1).
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FIG. 4. Field 1 temperatures,σ = 0.999 (———, analytic; - - - -, 1storder;−·−·−·, 2nd-order): (a) standard
van Leer, (b) expanded flux, linear temperature field, (c) expanded flux, nonlinear temperature field.

The centroids of the triangular and rectangular sections inξ, η coordinates are

ξ c
tri = 2

3
+ 1

3
`1, ηc

tri = 1

3
+ 2

3
`2

and

ξ c
rect = 1

2
+ 1

2
`1, ηc

rect = 1

2
+ 1

2
`2.

The centroids in physical space can be found with the simple mapping

rx = 1x

2
(2ξ − 1), r y = 1y

2
(2η − 1).

With the foregoing equations, the fluxed mass and energy from the triangular and rect-
angular portions of the fluxed volumes were computed. The portion of the fluxed quantities
associated with the triangle were added to the cell sharing only a corner. The rectangular
portion was added to the adjacent cell. Note that the other triangular portion, Section 7 in
Fig. 1, was not fluxed when treating the right face of cellj . This piece is treated with the
upper face of the cell below cellj . The above scheme can be shown to be equivalent to van
Leer’s multidimensional scheme [2].
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FIG. 5. Field 2 temperatures,σ = 0.999 (———, analytic; - - - -, 1storder;−·−·−·, 2nd-order): (a) standard
van Leer, (b) expanded flux, linear temperature field, (c) expanded flux, nonlinear temperature field.

FIG. 6. Initial conditions.
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FIG. 7. Local coordinates.

Using these methods, two second-order calculations were performed corresponding to
cases 3 and 4 to illustrate the performance of the nonlinear temperature gradient limiting.
(The standard van Leer case gave noncompatible solutions similar in character to that seen
in the one-dimensional example and are not shown here.) Both calculations were performed
for Courant numbers ofσx = σy = 0.999. These high values were chosen to accentuate the
noncompatibility of the linear gradient limiting scheme, case 3. Computations were also
performed for Courant numbers ofσx = σy = 0.1 for cases 3 and 4. We do not show these
results here since the noncompatibility in case 3 was difficult to see in the multidimensional
perspective plots used to display results.

The results of the advection calculations are shown in Figs. 8a–d. In all figures, the initial
and final results are plotted together. The initial state is shown on the left side of the figures
and the final state at a time of 65 time units is shown on the right.

The temperature fields from the linear gradient limiting calculations are shown in
Figs. 8a–b. Significant overshoot and undershoot are seen. The temperature fields from
the calculation with nonlinear gradient limiting are shown in Figs. 8c–d. Here we see no
overshoot nor undershoot, as predicted by the analysis.

5. CONCLUSIONS

We have formulated new fluxes for the second-order van Leer advection operator. These
fluxes preserve monotonicity of computed density fieldsandensure compatibility of trans-
port quantities such as velocity, temperature, energy, and species concentration while re-
taining second-order accuracy in the usual sense. The key to the new method is to expand
the densities as a linear function within each cell. For the flux of any quantity,ρT , which is
the product of density and the transported quantity, the gradient is then expanded using the
product rule. TheρT flux computed from the expansion can then be written as the product
of a second-order mass flux with the cell-center temperature plus a term proportional to∇T .
Monotonicity ofρT and compatibility ofT are then ensured if the gradient ofT is limited
using the nonlinear spatial distribution forT implied by the linear expansions forρ andρT .
This method is extendable to higher-order schemes with nonlinear density distributions. The
method as derived for the multidimensional case is fully general, and therefore applicable,
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FIG. 8. (a) Field 1 temperature with linear gradient limiting; (b) Field 2 temperature with linear gradient
limiting; (c) Field 1 temperature with non-linear gradient limiting; (d) Field 2 temperature with nonlinear gradient
limiting.

to the cases with nonuniform velocity fields and arbitrary control volume geometry. Also,
this method should permit the use of a variety of gradient limiting procedures, in addition
to that of Dukowicz and Kodis, [8], used in this paper.

6. FUTURE WORK

One can imagine several possible extensions of this work. First, the method should apply
directly to compressible flows. We did not include a compressible flow example in this
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FIG. 8—Continued

paper as it is already lengthy. A demonstration of the method for a suitable compressible
flow would be an obvious next step. In addition, the method outlined here should work on
unstructured meshes. An example calculation on a suitable unstructured mesh would be
another interesting followup item.

Another obvious extension of this work is to examine compatibility in cases for which
the conserved quantity is a more complicated function of mass-specific transport quantities.
A common example is the total energy given by the sum of internal and kinetic energy,

ρE = ρ

(
T + 1

2
u · u

)
.
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For this case, the flux ofρE can be computed from the expanded expression

ρE =
[
Tj + 1

2
u j · u j

]
[ρ j + (∇ρ) j · r j ] + ρ j [(∇T) j + u j · (∇u) j ] · r j .

The temperature and velocity gradients should be limited so that the piecewise-nonlinear
velocity and temperature fields given by

u = u j + ρ j (∇u) j · r j

[ρ j + (∇ρ) j · r j ]

and

T = Tj + ρ j (∇T) j · r j

[ρ j + (∇ρ) j · r j ]
− 1

2

ρ j (∇u) j · r j

[ρ j + (∇ρ) j · r j ]
· ρ j (∇u) j · r j

[ρ j + (∇ρ) j · r j ]

remain bounded by surrounding mesh data. It is then straightforward to explore the impli-
cations of such a strategy on the compatibility of the resulting advection scheme. Other
future work might explore the implications of the techniques developed in this paper on
implicit schemes and on higher-order schemes.
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