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Abstract

Pore-scale dispersion (PSD), aquifer heterogeneity, sampling volume, and source size influence solute concentrations of conservative
tracers transported in heterogeneous porous formations. In this work, we developed a new set of analytical solutions for the concentra-
tion ensemble mean, variance, and coefficient of variation (CV), which consider the effects of all these factors. We developed these models
as generalizations of the first-order solutions in the log-conductivity variance of point concentration proposed by [Fiori A, Dagan G.
Concentration fluctuations in aquifer transport: a rigorous first-order solution and applications. J Contam Hydrol 2000;45(1–2):139–
163]. Our first-order solutions compare well with numerical simulations for small and moderate formation heterogeneity and from small
to large sampling and source volumes. However, their performance deteriorates for highly heterogeneous formations. Successively, we
used our models to study the interplay among sampler size, source volume, and PSD. Our analysis shows a complex and important inter-
action among these factors. Additionally, we show that the relative importance of these factors is also a function of plume age, of aquifer
heterogeneity, and of the measurement location with respect to the mean plume center of gravity. We found that the concentration
moments are chiefly controlled by the sampling volume with pore-scale dispersion playing a minor role at short times and for small
source volumes. However, the effect of the source volume cannot be neglected when it is larger than the sampling volume. A different
behavior occurs for long periods, which may be relevant for old contaminations, or for small injection volumes. In these cases, PSD
causes a significant dilution, which is reflected in the concentration statistics. Additionally, at the center of the mean plume, where high
concentrations are most likely to occur, we found that sampling volume and PSD are attenuating mechanisms for both concentration
ensemble mean and coefficient of variation, except at very large source and sampler sizes, where the coefficient of variation increases with
sampler size and PSD. Formation heterogeneity causes a faster reduction of the ensemble mean concentrations and a larger uncertainty
at the center of the mean plume. Therefore, our results highlight the importance of considering the combined effect of formation heter-
ogeneity, exposure volume, PSD, source size, and measurement location in performing risk assessment.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A great effort has been spent in the last few decades for
better understanding the spatial and temporal evolution of
solute concentrations in heterogeneous porous formations.
Important advances have been obtained in this field mostly
considering point concentrations, which are defined over a
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small but finite volume of size ‘. According to the contin-
uum approach to flow in porous formations ‘ should be
smaller than the typical scale of variability of the hydraulic
conductivity (IY), but large enough to define macroscopic
quantities such as porosity and hydraulic conductivity
(see e.g., [3], ch. 1). Hence, when this property is satisfied,
the continuum approach applies at scales larger than ‘
and point values of physical quantities can be defined
and treated with the mathematical machinery of contin-
uum theory (see e.g., [2], ch. 1). However, a large disparity
of sampling volumes, whose dimensions depend on the way
concentrations are measured, is observed in applications.
For instance, solute concentrations are usually measured
in observation wells, spanning several vertical integral
scales of the log-conductivity, or in the effluent of extrac-
tion wells, with a sampling volume that can be approxi-
mated by their capture zone for continuous, or long-
lasting, extractions. Therefore, point measurements are
rare and the characteristic size of the sampling volume is
typically much larger than ‘. In these cases, besides dilution
associated with pore-scale dispersion (PSD), which mixes
solute at scales smaller than ‘, measured solute concentra-
tions are influenced by mixing of solute mass within the
sampling volume.

An important case in which attenuation of solute con-
centrations associated with the sampling volume should
be carefully evaluated is risk assessment, because sampling
volume influences solute concentrations dramatically at the
exposure location. For instance, sampling volumes vary if
risk analysis of exposure to a contaminant is assessed in
a drinking water distribution system at the production well
or at the in-house taps. In the former case, the sampling
volume would be the volume of the well, whereas in the lat-
ter case, a reasonable choice would be the aquifer volume
within the well capture zone with travel time less or equal
to the turnover time, tr = Vr/Q, of the storage facility,
whose volume is Vr, and Q is the mean water discharge
extracted from the well. In both cases, the level of exposure
depends critically on the interplay between the spatial dis-
tribution of the solute mass within the aquifer and the size
of the sampling volume.

The impact of the sampling volume on the first two
moments of the solute concentration has been investigated
by Andričević [1], who concluded that whereas both PSD
and sampling volume attenuate solute concentrations, their
relative importance depends on the elapsed time since injec-
tion. In his derivation, he utilized closures developed in sol-
ute transport in turbulent flows to quantify the correlation
terms between concentration and velocity fields and a num-
ber of additional assumptions in order to illustrate qualita-
tively the impact of the sampling volume on the
concentration variance. In particular, he computed the
concentration variance by integrating, over the sampling
volume, the product of the variance of the point concentra-
tion and the correlation function. The former has been
assumed constant over the sampling volume and the latter
has been assumed to decrease exponentially with the two-
point separation distance (see Eqs. (33), (34) and (35) of
[1]). However, these solutions have been utilized by Andri-
čević to study the impact of the sampling volume qualita-
tively on solute concentration, and they cannot be used
as a predictive tool in risk assessment because of the many
assumptions he adopted.

To overcome this difficulty and to further explore the
impact of PSD and sampling volume on the concentration
moments, we developed new first-order solutions of the
first two moments of volume-averaged solute concentra-
tions. We started our development from the first-order
solutions obtained by Fiori and Dagan [12] for the first
and second moments of point solute concentrations in het-
erogeneous aquifers. In the remaining sections, first we
generalize these solutions to include the effect of the sam-
pling volume DV and then, after a thorough testing with
accurate numerical simulations, we use them to analyze
the effect of DV, source size, and PSD on the moments of
solute concentrations.

2. First-order solutions for solute concentrations

Let us consider a tracer of constant concentration C0

released instantaneously within the volume V0, and assume
that the total mass M0 = n V0C0 is subdivided into Np non-
interacting particles, each of them with the elementary
mass Dm = n C0 V0/Np, where n indicates the formation’s
porosity, which is considered constant through the aquifer
(e.g., [7,14,16]). The point concentration C(x,t) expresses
the mass of solute per unit volume of fluid contained
into an elementary infinitesimal volume (DV! 0) centered
at x:

Cðx; tÞ ¼
Z

V 0

daC0ðaÞd½x� Xtðt; aÞ� ð1Þ

where d is the Dirac delta function, and Xt(t;a) is the trajec-
tory of the particle released at position x = a within V0:

x ¼ Xtðt; aÞ ¼ eXðt; aÞ þ Xb ð2Þ

Following Fiori and Dagan [12] in Eq. (2) the particle tra-
jectory has been split into two components: the advective
displacement eX, which in principle can be obtained by solv-
ing the following integro-differential equation deXðtÞ=dt ¼
v½XtðtÞ�, where v is the local velocity, and the Brownian
component Xb. The latter is a Wiener process with zero
mean and variance matrix Xb,ii(t) = 2Dd,iit resulting from
a constant diagonal dispersion tensor Dd,ii = aiijUj,
i = 1, . . . ,N [1,12,20]. In the last two expressions, N is the
space dimensionality, aii is the pore-scale dispersivity, and
U is the aquifer mean velocity, which for simplicity, but
without lack of generality, is assumed aligned with the x1

direction. The Brownian motion is introduced to model
pore-scale dispersion, a process occurring at a scale smaller
than ‘, and from Eq. (2) can be expressed as the difference
between the particle trajectory and the advective displace-
ment (Xb ¼ Xt � eX).
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We define the resident concentration CDV for a volume
DV centered at x as the solute mass per unit of volume that
at time t is within DV:

CDV ðx; tÞ ¼
1

DV

Z
DV

dx

Z
V 0

daC0ðaÞd½x� Xtðt; aÞ� ð3Þ

Accepting that a detailed mapping of the formation
hydraulic properties cannot be obtained, we model the
log-conductivity Y = ln(K), where K is the local hydraulic
conductivity, as a stationary random space function
(RSF). Consequently to this choice, solute concentration
CDV is also modeled as a RSF with probability density
function that depends on the statistical properties of Y,
through flow and transport equations.

The ensemble mean of CDV is obtained by taking the sta-
tistical expectation of Eq. (3):

hCDV ðx; tÞi ¼
1

DV

Z
DV

dx

Z
V 0

daC0ðaÞ
Z

deX Z dXb

� d½x� eXðt; aÞ � Xb�f ðeX;XbÞ ð4Þ

where f ðeX;XbÞ is the pdf of the particle trajectory. Because
of the particle trajectory splitting into advective and
Brownian components, f coincides with the multivariate
joint pdf of eX and Xb, which, according to the Bayes rule,
is given by the product of the marginal pdf of eX and the
pdf of Xb conditional to eX: f ðeX;XbÞ ¼ u0ðeXÞuCðXb j eXÞ.
Fiori and Dagan [12] showed that at the first-order of
approximation in r2

Y , advective and Brownian components
of the total displacement are independent. This greatly sim-
plifies the computation of f ðeX;XbÞ, which assumes the fol-
lowing form:

f ðeX;XbÞ ¼
YN
i¼1

u0iðeX iÞ
 ! YN

i¼1

uiðX b;iÞ
 !

ð5Þ

where u0i and ui are the marginal pdfs of the ith component
of the advective and Brownian displacements, respectively.
They are both normally distributed [8,12] with pdfs:

u0iðeX iÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pX iiðtÞ
p exp �ð

eX i � ai � Utdi1Þ2

2X iiðtÞ

" #
ð6Þ

and

uiðX b;iÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4pDd;iit
p exp �

X 2
b;i

4Dd;iit

" #
ð7Þ

Furthermore, in Eq. (6) Xii i = 1, . . . ,N are the components
of the displacement variance tensor X iiðtÞ ¼ heX 0iðt; aÞ�eX 0iðt; aÞi, with eX 0i ¼ eX i � heX ii representing the fluctuation
of the advective component of the particle trajectory
around its ensemble mean. Because of the first-order
approximation, the components of the velocity field and
of the corresponding advective displacement, which de-
pends linearly on them, are also normally distributed.

Despite the great attention received in stochastic theo-
ries the ensemble mean concentration, also in its volume-
averaged form of Eq. (4), is a crude approximation of the
actual (unknown) solute concentration, as a number of nat-
ural head gradient tracer tests have shown (e.g., [13]). A
measure of the difference between actual and ensemble
mean concentrations is provided by the coefficient of
variation:

CV ðCDV Þ ¼
rCDV

hCDV i
ð8Þ

which besides hCDVi requires the computation of the con-
centration variance:

r2
CDV
ðx; tÞ ¼ hC2

DV ðx; tÞi � hCDV ðx; tÞi2 ð9Þ

where the first term of the right hand side of Eq. (9) as-
sumes the following form:

hC2
DV ðx; tÞi ¼

1

DV 2

Z
DV

dx0
Z

DV
dyhCDV ðx0; tÞCDV ðy; tÞi ð10Þ

After specializing CDV(x,t) of Eq. (3) to the locations x = x 0

and x = y within DV and substituting the resulting expres-
sions into Eq. (10) we obtain:

hC2
DV ðx; tÞi ¼

1

DV 2

Z
DV

dx0
Z

DV
dy

Z
V 0

da

Z
V 0

db

Z
deX Z deY

� C0ðaÞC0ðbÞ/ðeX; eY; x0 � eX; y� eYÞ ð11Þ

In Eq. (11) / is the joint pdf of eXðt; aÞ, eYðt; bÞ, ðx0 � eXÞ
and ðy� eYÞ, where we used the condition x0 ¼ eX þ Xb

and y ¼ eY þ Yb for a particle originating in a and b,
respectively, stemming from the property of the Dirac delta
function in the Eq. (3). Owing to the independence of
advective and Brownian displacements, / assumes the fol-
lowing form:

/ðeX; eY; x� eX; y� eYÞ ¼ gðeX; eY; t; a; bÞuðx� eXÞ
� uðy� eYÞ ð12Þ

where g is the joint pdf of the advective components of the
trajectory of two-particles simultaneously released at time
t = 0 and positions x = a and x = b, respectively. We refer
to the work of Fiori and Dagan [12] for the discussion of
the hypotheses underlying Eq. (12), while here we report
their conclusion that the first-order approximation of g is
multivariate normal:

gðeX; eY; t; a; bÞ ¼
YN
i¼1

giðeX i; eY i; t; ai; biÞ ð13Þ

where gi is the multivariate normal pdf of the ith compo-
nents of eX and eY:

giðeX i; eY i; t; ai; biÞ

¼ 1

2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Niiðt; a� bÞ

p exp X iiðtÞðxi � ai � d1iUtÞ2
hn

�2Ziiðt; a� bÞðxi � ai � d1iUtÞðyi � bi � d1iUtÞ

þX iiðtÞðyi � bi � d1iUtÞ2
i
� 2Niiðt; a� bÞ½ ��1

o
ð14Þ



Fig. 1. Sketch of the two-dimensional computational domain.
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where Niiðt; a� bÞ ¼ X iiðtÞ2 � Ziiðt; a� bÞ2. Besides Xij,
the two-particle trajectory covariances Zijðt; a� bÞ ¼
heX0iðt; aÞeY 0jðt; bÞi are needed for computing / [12].

The relative importance of PSD with respect to advec-
tion is measured by the Peclet number, which in natural
formations may assume different values in longitudinal,
PeL = UIYh/Dd,11, and transverse horizontal, PeTh =
UIYh/Dd,22 and vertical PeTv = UIYv/Dd,33, directions,
where IYh and IYv are the horizontal and vertical log-con-
ductivity integral scales, respectively. Because we address
the problem in a two-dimensional domain we set PeT =
PeTh, while PeTv is inconsequential. There are experimental
evidences suggesting that Pe = O(102) � O(103) [11] with
the smaller values observed in longitudinal direction. In
order to explore the impact of PSD in the simulations we
kept constant the transverse Peclet number to PeT = 1000
and varied the longitudinal one such as to explore the
impact on concentration moments of different anisotropy
ratios RPe = PeT/PeL. PSD enters in Eq. (14) through Xii

and Zii, which are influenced by mixing between stream-
lines. Streamline mass exchange in turn is controlled by
PeT and is only slightly influenced by PeL (see [10,12] for
an exhaustive treatment of this issue). Thus, the latter
can be neglected in the expression of Xii and Zii proposed
by Fiori [10] and Fiori and Dagan [12], respectively.

The non-linear dependence of Zii on a and b prevents
obtaining a closed form solution of Eq. (11). To overcome
this difficulty Fiori and Dagan [12] limited themselves to
injection volumes of characteristic size smaller than the
log-conductivity integral scale such that Zij(t;a � b) ffi
Zij(t; 0), allowing closed form solutions. Notwithstanding,
we show in Section 4 that results obtained by using this
simplifying assumption are accurate well beyond the for-
mal limit of small source volume.

The computations leading to the first-order solutions of
the first two moments of the solute concentration CDV with
support volume DV for a fully three-dimensional domain
are summarized in the Appendix A.
3. Numerical simulations

In order to contain the computational effort within
acceptable limits we focus on a two-dimensional formation
with hydraulic log-conductivity modeled as a RSF with
constant mean hYi and variance r2

Y , and following an iso-
tropic exponential covariance function:

CY ðrÞ ¼ r2
Y exp½�r=IY �; ð15Þ

where r is the two-point separation distance and IY = IYh is
the log-conductivity integral scale.

We define the sampling volume DV as a rectangular
solid of square area DA, which represents the sampling
area, and height equal to the aquifer thickness, b. Similarly,
the solute source is a volume V0 = A0b, where A0 is the
source area. Furthermore, as shown in Fig. 1, the sampling
area DA is square with side D, and the source area A0 is
rectangular with sides L1 and L2 in longitudinal and trans-
verse directions, respectively.

To reproduce the variations of the hydraulic conductiv-
ity accurately on the computational grid, we used a square
grid with side fixed at 0.25IY, as suggested by Bellin et al.
[5] and supported by Rubin et al. [17], who showed that
the contribution of the wiped-out variability on solute
spreading is negligible for block’s sizes smaller than
0.25IY. Flow is solved by using the Galerkin’s finite element
method with triangular elements and linear shape func-
tions. The grid’s block is divided into two triangles, which
share the longest side and same hydraulic conductivity.
Furthermore, the uniform grid’s spacing leads to elements
of same size, such that the maximum principle is respected
everywhere within the domain, and velocity distribution is
consistent with Darcy’s law [15].

Transport following an instantaneous release of solute
with constant concentration C0 within the source volume
V0 is solved in a Lagrangian framework with the total sol-
ute mass, M0 = nC0V0, partitioned into Np particles each
one of mass Dm = M0/Np. As customary, we assume that
particles travel without deformation along the trajectory
of their centers of mass [18]:

X t;jðt; aÞ ¼ X t;jðt � Dt; aÞ þ V j Xtðt � Dt; aÞ½ �Dt

þ X b;jðtÞ ð16Þ
where X b;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DtDd;jj

p
ej is the jth component of the

Brownian jump simulating diffusion by PSD; here Dd,jj is
jth component of the diagonal dispersion tensor, and ej is
a random variable normally distributed with zero mean
and unitary variance. Furthermore, a is the location where
the particle is released within the source volume V0, Vj(x) =
Ud1j + uj(x) is the jth component of the local ‘‘Eulerian’’
velocity field with constant mean U = (U, 0) and fluctuation
u = (u1,u2), while d1j is the Kronecker’s delta.

Eq. (16) is applied recursively to all particles, and the
mean concentration of the solute within the sampling vol-
ume DV = DAb centered at the position x is computed as
follows:

CDV ðx; tÞ ¼
npðx; tÞDm

nDV
¼ C0V 0

DV
npðx; tÞ

Np

ð17Þ
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where np(x, t) is the number of particles that are within the
horizontal projection DA of the sampling volume DV at
time t. According to this methodology, commonly known
as forward particle tracking (FPT), a particle is considered
either inside, or outside of DV, depending on the position
of its center of mass. It can be shown that this procedure
converges to the exact solution of the transport equation
when Np!1.

According to Eq. (17), particle tracking results in step-
wise variations of the solute concentration with discrete
increment equal to DCDV,min = C0V0/(NpDV), which is also
the minimum detectable concentration. Consequently, in
order to maintain constant DCDV,min, a reduction of the
ratio DV/V0 should be counterbalanced by an increase of
the total number of particles (Np). Thus, an exceedingly
large number of particles is needed in order to assess
point sampling accurately when the source volume is large
making FPT inefficient particularly for Monte Carlo
studies.

In such cases, a valuable alternative is the backward par-
ticle tracking (BPT) approach proposed by Vanderborght
[19] and applied successfully in numerical simulations by
Caroni and Fiorotto [6], who showed convergence of this
method with the analytical solution of point concentrations
for different degrees of pore-scale dispersion. The method-
ology consists of two steps. A given number, nf, of solute
particles are placed within the sampling volume DV cen-
tered at x. Successively, each particle is moved backward
in time toward the source at each time step with two succes-
sive displacements: a Brownian jump, modeled as:

X �j ðt � Dt; xÞ ¼ X t;jðt; xÞ � X b;j j ¼ 1; 2 ð18Þ

and an advective motion, based on the local velocity
V = U + u at the position x = X* (t � Dt;x):

X t;jðt�Dt;xÞ ¼ X �j ðt�Dt; xÞ � V j½X�ðt�Dt; xÞ�Dt j¼ 1;2:

ð19Þ

If a particle changes grid element and hence velocity during
the time interval Dt, its path is divided into as many sub-
paths as the changes in velocity and the interval is updated
at each sub-step. Eqs. (18) and (19) are applied recursively
to all particles. At the last step of the backward procedure
the position of all particles at t = 0 is identified and solute
concentration is computed by the following equation:

Cðx; tÞ ¼ npðV 0; tÞ
nf

C0 ð20Þ

where np(V0, t) is the number of particles inside the source
volume at time t = 0, and C0 is the solute concentration
within the source. Eq. (20) considers the fact that only
the particles ending their backward path within the source
area contribute to the solute concentration at time t and
location x. In this scheme the minimum detectable concen-
tration is given by: DCDV,min = C0/nf, corresponding to the
case when only one of the particles released within DV ends
its journey backward in time within the source.
Notice that BPT and FPT are complementary method-
ologies; for a given number of particles BPT is more accu-
rate than FPT when DV� V0, while FPT is preferable
when DV ’ V0, or larger. For this reason numerical results
presented in this work are obtained either by using FPT or
BPT depending on the ratio DV/V0.

4. Comparison of first-order and numerical solutions

In this section, we compare our first-order solutions of
hCDVi, r2

CDV
and CV(CDV) for finite sampling volume with

numerical Monte Carlo simulations. We considered a
square source area with side L1 = L2 = L = 0.5IY and
RPe = 10. Additionally, we adopted a minimum detectable
concentration of 6.2510�4C0 and 2000 Monte Carlo simu-
lations (MC), which obtained convergence of the large time
CV(CDV).

Fig. 2a–c show hCDVi, r2
CDV

and CV(CDV), respectively,
at the center of mass of the mean plume in a weakly heter-
ogeneous formation with r2

Y ¼ 0:2 for the following three
sampling volumes: D = 0.2IY, 0.5IY and 1IY. In addition,
the corresponding first-order solutions of Fiori and Dagan
[12] for point concentrations are depicted by a dashed-dot
line in each one of the three plots. Our first-order solutions
of both the ensemble mean and variance compare very well
with the numerical simulations, as one can observe by com-
paring lines and symbols in Fig. 2a and 2b, respectively.
Furthermore, these figures show the impact of sampling
volume, which reduces the peak of both moments with
respect to point concentration solutions.

An important property of a plume is ergodicity, which
facilitates data interpretation and modeling because in this
situation the ensemble mean concentration resembles the
actual (observable) concentration. Strictly speaking ergo-
dicity is reached when CV(CDV)! 0, a condition that,
however, is hard to obtain, as clearly shown in Fig. 2c,
which compares our first-order solution of CV(CDV) (Eq.
(8)) with the Monte Carlo simulations. As expected, a lar-
ger sampling volume results in a smaller CV(CDV), and our
first-order solution captures this feature accurately. Fig. 2c
also shows that the sampling volume has a significant
impact on uncertainty affecting small plumes at short to
intermediate times. At longer times since injection, the
impact of the sampling volume reduces and becomes negli-
gible for t > 100IY/U when convergence to ergodicity is
controlled by PSD. Later in the paper, we will explore
the reciprocal role of V0 and DV in obtaining an opera-
tional ergodicity.

For DV = 0.2IY the ensemble mean concentration
obtained with our first-order model is in a good agreement
with numerical simulations and both show small differences
with the first-order solution of Fiori and Dagan [12] for
point concentrations. The three solutions show a slightly
larger difference when considering the concentration vari-
ance of Fig. 2b, but reduces to a level comparable to that
of the ensemble mean when the coefficient of variation of
Fig. 2c is considered. These results are in line with what



(a)

(b)

(c)

Fig. 2. First-order solutions of (a) hCDVi (Eq. (A.1)), (b) r2
CDV

(Eq. (9)),
and (c) CV(CDV) (Eq. (8)) at the center of mass of the mean plume (i.e., at
x = (Ut,0)) are compared with numerical simulations (symbols) and the
first-order solutions for point concentration of Fiori and Dagan [12]
(dashed-dot lines). Several sampling volumes are considered and in all
cases, the source area is a square with side L = 0.5IY, r2

Y ¼ 0:2,
PeT = 1000, and RPe = 10.
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was previously observed by Bellin et al. [4], and suggest
that if we use CV as a measure of uncertainty then point
concentrations can be operationally defined as the concen-
tration detected with a sampling device, whose size is smal-
ler than 0.2IY.

Formation heterogeneity play an important role in sol-
ute transport and in the performance of the first-order solu-
tions. Consequently, we investigated its effect by repeating
the previous simulations with increased r2

Y to 1. Numerical
and first-order solutions are reported in Fig. 3, which
shows that our models perform well also for moderate het-
erogeneity (r2

Y ¼ 1) and capture the sampling size mixing
process, which is absent in Fiori and Dagan [12] solutions.
Additionally, our results show a faster decline of the
ensemble mean concentration as a consequence of a stron-
ger solute spreading due to the more complex spatial vari-
ability of the velocity field than in the previous weakly
heterogeneous case. A closer inspection of Figs. 2b and
3b reveals that a larger formation heterogeneity results in
an earlier and higher peak of the concentration variance,
followed by a faster decline (for instance compare r2

CDV
val-

ues at time t = 10 tU/IY in Figs. 2b and 3b), due to a
quicker decay of the ensemble mean concentrations.

However, the most important consequence of a larger r2
Y

is that CV(CDV) increases dramatically and in turn also the
uncertainty, as shown in Fig. 3c where the peak is roughly
twice than in Fig. 2c. It is also visible that the sampling vol-
ume DV exerts a less intense attenuating effect on CV(CDV)
than in the previous case.

So far we considered solute concentrations at the center
of mass of the mean plume. To test our solution in other
parts of the plume in Fig. 4 we analyze the evolution of
the first two moments and the coefficient of variation of
solute concentrations at the following two positions:
x = (2.5IY,0) and x = (10IY,0), with the origin of the refer-
ence system at the center of the source. These two positions
may be assumed as representative of resident concentra-
tions at short and intermediate distances from the source,
respectively. In Fig. 4, our first-order solutions are com-
pared with numerical simulations for weakly heterogenous
formations, i.e. r2

Y ¼ 0:2 and for RPe = 1. Source dimen-
sions are L1 = L2 = 1IY, and results are shown for both
D = 0.2IY and D = 1IY. At both distances from the source,
our first-order solutions of hCDVi (Eq. (A.1)) and r2

CDV
(Eq.

(9)) are in good agreement with numerical simulations with
the maximum difference observed for D = 1IY. The attenu-
ating effect of the sampling volume on hCDVi is significant
close to the source, but reduces with the distance and
becomes small to negligible at intermediate distances. Sim-
ilarly, this effect on r2

CDV
reduces with distance, but less rap-

idly than for hCDVi. This different behavior of the first two
moments is reflected to CV(CDV) shown in Fig. 4c. Notice
that in Fig. 4b and a the reduction of r2

CDV
is partially com-

pensated by the concomitant reduction of hCDVi, such that
only a moderate reduction of CV(CD), and thus of the
uncertainty, is associated with the significant enlargement
of the sampling volume from D = 0.2IY to D = 1IY at both
distances from the source (see Fig. 4c).

The attenuation effect of the sampling volume on hCDVi
reduces when larger values of r2

Y are used, as it is shown in
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Fig. 5a, which is obtained with r2
Y ¼ 1:2. As spreading

increases with heterogeneity, solute is dispersed over a lar-
ger area faster resulting in two effects: a reduction of the
smoothing effect due to mixing within the sampling volume
and a lowering of the concentration peaks (c.f., Figs. 4a
and 5a). For instance, Fig. 5a (numerical results) shows
that the peak of hCDVi at x = (2.5IY,0) reduces by 6.7%
when D is enlarged from 0.2IY to 1IY, while the same
enlargement produced a more pronounced reduction (i.e.,
23.8%) for r2

Y ¼ 0:2 (see numerical results in Fig. 4). How-
ever, a different behavior is observed for r2

CDV
, with the
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relative difference between the peaks for D = 0.2IY and 1IY

that increases from 72% to 76% when r2
Y is changed from

0.2 to 1.2.
On the other hand, for a given DV, the peaks of both

hCDVi and r2
CDV

reduce progressively as r2
Y increases, and
the aquifer becomes more heterogeneous. The drop of the
concentration variance with the distance from the source
is much larger for r2

Y ¼ 1:2 than for r2
Y ¼ 0:2, as emerging

from an accurate inspection of Figs. 4b and 5b. In fact, the
relative reduction of r2

CDV
between x = (2.5IY, 0) and

x = (10IY, 0) increases from 171% for r2
Y ¼ 0:2 to 1000%

for r2
Y ¼ 1:2. Solute spreading mechanisms, whose effi-

ciency increases with higher heterogeneity, could explain
this effect by anticipating the variance peak and conse-
quently the variance decline as supported by comparing
Figs. 2b and 3b. However, uncertainty depends on the coef-
ficient of variation, which is analyzed subsequently.

The coefficient of variation shows a minimum for times
comparable with the mean travel time to the observation
points. Comparison of Figs. 4c and 5c shows that the case
with a higher heterogeneity (r2

Y ¼ 1:2) has a higher mini-
mum. Thus, a larger r2

Y leads to more uncertain predictions
of peak solute concentrations by their ensemble mean.
Additionally, CV(CDV) increases for both shorter and
longer times, when the leading and trailing edges of the
plume cross the observation point, as evidenced in Figs.
4c and 5c (note the use of the logarithmic scale in the ordi-
nate axis). The behavior of CV(CDV) along the trailing edge
of the plume, i.e. the tail of the resident concentration
curve, differentiates the two cases. For long times since
injection, the coefficient of variation shows a more gentle
relative increase with time for r2

Y ¼ 1:2 than for r2
Y ¼ 0:2.

As a consequence, the resident concentration curve shows
a more extensive, yet less uncertain, tailing for r2

Y ¼ 1:2
than for r2

Y ¼ 0:2.
Furthermore, Fig. 5a and 5b shows that the match

between numerical and our first-order solutions of hCDVi
and r2

CDV
deteriorates as the aquifer becomes more hetero-

geneous (r2
Y > 1). Numerical results for both hCDVi and

r2
CDV

show smaller peaks and longer tailings than the corre-
sponding first-order solutions, prolonging the persistence
of solute within the sampling volume. This effect is more
evident for observation points close to the source, where
transport is not fully developed and the hypothesis that
the particle’s trajectory is Gaussian does not hold [8].

5. Effects of PSD, sampling size, and source dimension

5.1. Point concentration

Fig. 6 shows the first two moments and the coefficient of
variation of point concentrations versus the source volume
by increasing L from 0.1IY to 20IY with 0.1IY increments,
and for the following two times: t = 10U/IY and t = 15U/
IY. The source volume has a square horizontal projection
with side L, centered at x = (10IY,0), and extends over
the entire aquifer’s thickness. Concentration measurements
are taken at the center of mass of the mean plume at time
t = 10U/IY, whereas measurements at the latter time, when
the center of the mean plume is ahead (downstream) of the
monitoring location at x = (10IY, 0), represent sampling in
a generic point within the mean plume. Solute mass was



Fig. 6. First-order and numerical solutions of ensemble mean ((a) and (b)), variance ((c) and (d)), and coefficient of variation ((e) and (f)) of solute point
concentrations as a function of source size at x = (10IY,0) for t = 10IY/U (left column) and t = 15IY/U (right column), with r2

Y ¼ 0:2. Solutions obtained
in the absence of PSD (i.e., Pe!1) are compared with those obtained with PeT = 1000, and RPe = 10.
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injected instantaneously and uniformly within the source
volume. The influence of PSD was analyzed by comparing
the concentration moments for Pe!1 with those for
RPe = 10 in the same graph. In all cases considered in
Fig. 6, the first-order solutions of hCDVi (Eq. (A.1)) and
r2

CDV
(Eq. (9)), which as shown previously for DV! 0

resemble the solutions for point concentration obtained
by Fiori and Dagan [12], compare very well with the bench-
marks provided by the numerical simulations.

What is immediately clear from Fig. 6a and b is that
PSD exerts a negligible influence on the ensemble mean
concentration at both times since injection as it was previ-
ously reported (e.g., [8,10]). Nevertheless, it causes a signif-
icant reduction of the concentration variance as shown in
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Fig. 6c and d. The striking result shown in these two figures
is that the first-order solution is accurate beyond its formal
limit of applicability for small source volume, i.e. L� IY,
resulting from assuming Zii(t;a � b) ’ Zii(t; 0); i = 1,2 in
Eq. (18) of Fiori and Dagan [12].

As expected CV(C) decreases with source size reaching
an operational (source size induced) ergodicity when
CV(C)! 0 for large L. However, this limit is not obtained
for the same source size everywhere within the plume. In
fact, CV(C) decreases to zero more rapidly at the center
of mass of the plume, where concentrations are expected
to be the highest, than in other positions, as shown in
Fig. 6e and f. Notice that the drop of the numerical solu-
tion in Fig. 6e for L/IY > 10 is an artifact due to the impos-
sibility of measuring concentrations below the detectable
limit associated with the elementary mass of the particle.
We run a simulation with double number of particles and
the outcome shows that the numerical solution drops at a
higher L. Since we are not interested in analyzing situations
with CV smaller than the one where the drop occurs in
Fig. 6e we do not increase the number of particles, which
would have caused a much higher computational effort.

Because in all the above comparisons with r2
Y < 1 our

first-order solutions are in a good agreement with the
benchmark numerical simulations also with large source
sizes, we investigate the interplay among source size, sam-
pling volume, and PSD with our first-order solutions in the
remaining of this paper without showing their numerical
counterparts.

5.2. Volume-averaged concentration

We analyzed the effect of both source and sampling vol-
umes on the concentration moments at x = (10IY, 0) by
increasing D from 0.05IY to 5IY with 0.05IY increments
and the source volume as described above. Source and
sampling volumes have a square horizontal projection with
side L and D, respectively, and both extend over the entire
aquifer’s thickness. Like in the previous simulations, solute
mass was injected instantaneously and uniformly within
the source volume.

We present the influence of D and L on hCDVi at
x = (10IY,0) in Fig. 7a and b, obtained for t = 10IY/U
and t = 150 IY/U, respectively. Additionally, in the same
figures we compare hCDVi solutions predicted with
(RPe = 10) and without PSD (i.e., Pe!1). Source size
is the major factor controlling hCDVi, as shown by the
nearly vertical contour lines in Fig. 7a and b, while PSD
has a weak influence and sampling dimension plays a more
important, yet minor role. The latter result was expected,
since the solutions for different D values coalesce at
t > 10IY/U in Figs. 2 and 3 and at distances of the order
of 10IY from the source in Figs. 4 and 5.

We can explain these results from a physical point of
view as follows. Dilution associated with PSD and mixing
within the sampling volume both contribute to attenuate
the spatial variability of the solute concentration. How-
ever, since PSD acts at scales of the order of centimeters
(the Darcy’s scale), its influence on hCDV i is marginal with
respect to mixing when D is larger than a few centimeters,
i.e. a small fraction of IY, (D > ‘).

The concentration variance is expected to be much more
sensitive to PSD, but the overwhelming effect of large mix-
ing volumes may mask the PSD effect also for r2

CDV
. Fig. 8a

shows our first-order solution of r2
CDV

(Eq. (9)) with
(RPe = 10) and without PSD (i.e., Pe!1) at
x = (10IY, 0) and for t = 10IY/U. In addition, Fig. 8b repli-
cates Fig. 8a but for t = 15IY/U. We observe that a change
of PSD to values typically encountered in applications (i.e.,
Pe 	 O(102) � O(103)) from the idealized case that
neglects PSD (i.e., Pe!1), causes the concentration var-
iance to reduce noticeably at small DV and negligibly at
large DV, as one would expect, because in the latter case
mixing within the sampling volume exerts an overwhelming
smoothing effect on the solute concentration with respect
to PSD. However, source volume acts differently at
t = 10IY/U and t = 15IY/U, because higher variance values
occur at different locations in the D–L plane. This is the
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consequence of the fact that the effect of PSD is more sig-
nificant where the concentration gradients are large, and
this happens particularly in areas surrounding the positions
where hCDVi ’ 0.5C0.

Furthermore, the most distinct feature of the concentra-
tion variance contour plot is a ‘‘ridge’’ that follows the con-
tour line hCDVi = 0.5C0 in the D–L plane of Fig. 7. Along
this ridge, PSD plays a strong effect on the concentration
variance, but it fades with sampling size. Because of this
ridge, a given value of r2

CDV
can be obtained with several

combinations of D and L. Therefore, our results evidence
the interplay between source and sampling volume and
strengthen the importance of knowing both in order to
compute the concentration variance accurately.

Additionally, as shown in Fig. 9a and b, CV(CDV) is
controlled by L and except for small source volumes (i.e.,
L < 4IY), with a very limited effect of D. Uncertainty
reduces fast with sampling size at small source volumes,
but at a rate that declines with increasing of source size.
In addition, PSD exerts a noticeable effect on CV(CDV) at
small sources, which, however, fades as the source volume
grows large. Additionally, we can observe sampler-induced
ergodicity at small sources and source-induced ergodicity
in both plots.

5.3. Point versus volume-averaged concentrations

Because volume-averaged concentrations are the most
common in applications, it is important to know their devi-
ation from point measurements, which in turn are the most
important for biological and ecological analysis. This is
because microorganisms are in contact with local concen-
trations, whose intensity may vary from volume-averaged
measurements. A measure of this difference (between vol-
ume-averaged and point concentrations) is provided by
the following two quantities: RC = hCDVi/hCi, and
RCV = CV(CDV)/CV(C). Note that values of both ratios
larger than unity denote larger volume-averaged than point
quantities, whereas the inverse is true for values less than 1.

Fig. 10a depicts RC for t = 10U/IY at x = (10IY,0). Solid
contour lines are for finite Peclet values (RPe = 10) and
dashed lines are obtained neglecting pore-scale dispersion
(i.e., Pe!1). As expected, pore-scale dispersion exerts a
negligible impact on RC, which is controlled by both L

and D. Notice that the smallest RC values are observed



1.0

0.99

0.97

0.95

0.90

0.80

0.70

0.60

0.50

0.40

0.30

2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

Δ/
I Y

L/IY

(a)

(b)

Fig. 10. Contour plots of RC at x = (10IY, 0) for (a) t = 10IY/U and (b)
t = 15IY/U. First-order solutions obtained with PeT = 1000, and RPe = 10
(solid lines) are compared with those obtained in the absence of PSD
(Pe!1, dashed lines). In all cases r2

Y ¼ 0:2.

Zone 3 Zone 2 Zone 1 Zone 2 Zone 3

C

C

C

C

C small

small

small

large large∂
∂x

Fig. 11. Sketch of the three zones characterizing the concentration
attenuation within the mean plume.

350 D. Tonina, A. Bellin / Advances in Water Resources 31 (2008) 339–354
when a small plume is sampled with a large sampling vol-
ume (the left upper corner of Fig. 10a), and that RC

increases much rapidly with L for small rather than large
D values. Furthermore, the ensemble mean of point and
volume-averaged concentrations show relative differences
smaller than 1% (i.e., RC P 0.99) for D < L/4, and smaller
than 20% for D < L. In other words, significant differences
between the ensemble mean of point and volume-averaged
concentrations are observed when D > L.

Fig. 10b shows RC for t = 15U/IY and all other quanti-
ties unchanged. This figure shows that RC can assume val-
ues either smaller or larger than 1 depending on the
location of the measurement point with respect to the cen-
ter of mass of the mean plume, and the interplay between D
and L. This behavior of RC measured at a generic point
within the mean plume can be attributed to the change in
rate of spatial attenuation of hCi (Fig. 11). By considering
the mean plume at a given time, one can observe that the
rate of attenuation of hCi first increases with distance from
the center of mass, reaches the maximum value at interme-
diate distances (zone 2 in Fig. 11), and then declines slowly
to zero as the distance from the center of mass grows large
(zone 3 in Fig. 11). Based on these observations, we iden-
tify three zones: zone 1, which denotes the volume sur-
rounding the center of mass of the mean plume with the
slowest attenuation rate and whose extension depends on
L, zone 2, which contains the volume with the highest con-
centration reduction, and zone 3, which comprises the
remaining volume (Fig. 11). Therefore, RC may be either
larger or smaller than one depending on where the sam-
pling volume falls in among these three zones. In particu-
lar, RC > 1 when DV is sampling partially in zone 2 and
3, while RC < 1 when DV is between zone 2 and 1 or
entirely in zone 3. Furthermore, RC 	 1 when DV falls
entirely within zone 1, owing to the small variability of
the solute concentration within this zone, or zone 2, due
to the constant decline of the solute concentration.

The streaking result shown in Fig. 10b is that hCDVi can
be larger than hCi when DV is large enough to collect sol-
ute mass in zone 2 and 3. However, Fig. 10a shows that at
the center of mass of the mean plume hCDVi 6 hCi as one
would expect. Nevertheless, because this is the location
with the highest probability of observing high concentra-
tions, we conclude that the sampling volume introduces a
considerable attenuation effect on the maximum concentra-
tion with important consequence for risk analysis.

In Fig. 12, we investigated RC at the center of mass of
the mean plume as a function of time for L = 10IY and
two sampling volumes; one with D = 2IY and the other
with D = 5IY corresponding to D/L = 0.2 and 0.5, respec-
tively. Our results show that the influence of D varies with
time and is more pronounced for larger D. At early times
when the sampling volume is fully inside zone 1, RC = 1,
but as time increases, macrodispersion acts reducing the
extension of zone 1 such that RC reduces progressively.
As larger portions of the sampling device fall in zone 2,
RC reaches a minimum at intermediate travel times and
then it increases as effect of the homogenization of C over
larger volumes caused by solute spreading. At later times,
RC reaches a relative maximum and then it decreases again.
Note that the position of the minimum is independent on
sampler size, which instead controls the absolute value.
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In the previous sections, we analyzed how uncertainty in
solute concentration, quantified by CV(CDV), is influenced
by D, PSD and source size. In Fig. 13 we present their com-
bined effect on the ratio RCV = CV(CDV)/CV(C) between
the coefficients of variation of volume-averaged and point
concentrations at x = (10IY,0) for both t = 10U/IY and
t = 15U/IY. Fig. 13a and b are obtained with RPe = 10,
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while Fig. 13c and 13d are obtained in the absence of
PSD. Pair comparisons of Fig. 13a with c and b with d sug-
gest that the influence of the sampling volume on RCV

depends on measurement location with respect to the
expected position of the center of mass besides on source
size and PSD.

Let us first focus on the case with pure advection
(Pe!1). At the center of the mean plume (Fig. 13a),
an increase of D causes RCV to decrease for small sources
(let say L < 6IY), and to increase for large sources (let say
L > 6IY). The latter result suggests that uncertainty are
higher for volume-averaged than point concentrations at
large source sizes. This has important consequences in risk
analysis, because point concentration uncertainty does not
always provide an upper limit. Therefore, it is important to
take into account sampler and source sizes in assessing sol-
ute exposure in applications. However, CV values are small
in these cases as shown in Fig. 9a.

On the other hand as shown in Fig. 13c, for a location
outside the center of the mean plume (for t = 15IY/U, i.e.
when the sampling volume is ahead of the expected posi-
tion of the center of mass) an increase of D leads always
(except for very large sampler and source sizes) to a reduc-
tion of RCV, and this reduction attenuates with L.

In Fig. 13b and d we show the effect of PSD, which causes
an attenuation of the differences between volume-averaged
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and point concentration coefficients of variation. However,
its effect on RCV is a function of sampler and source sizes as
shown in Fig. 13b and d. PSD maintains RCV 	 1 at small
sampler sizes (e.g., D < 0.2IY), because of its smoothing
mechanism that attenuates concentration spatial fluctua-
tions. However, at larger D its effect may fade or reverse
depending on source size. At small source sizes (e.g., L < 6
IY), as the sampler size increases PSD effect fades disappear-
ing at large sampling sizes, thereby leaving the sampler size
as the major controlling factor. On the other hand, at large
source and large sampling volumes PSD causes an increased
difference of RCV from unity and RCV grows larger than 1 as
observed previously. Therefore, the overall effect of PSD is
of reducing the difference between CV(CDV) and CV(C),
with the exception of large source and sampling volumes,
for which PSD leads to larger uncertainty in volume aver-
aged solute concentrations. (right-up corner of Fig. 13a
and b and of c and d).

6. Conclusions

Ground water is an important resource and its careful
quality management depends on water concentration anal-
ysis. However, concentration measurements are strongly
dependent on the choice of the support volume (D) espe-
cially as sampler size grows larger than the Darcy’s scale
‘. Additionally, source size (L), pore-scale dispersion
(PSD), and aquifer heterogeneity (r2

Y ) affect concentration
moments.

Therefore, our first-order solutions of concentration
ensemble mean, variance, and coefficient of variation are
important tools in performing concentration analysis,
because they account for all these factors. An important
outcome of our analysis is that applicability of our models
is not limited to small sources, despite their derivation
under the limiting condition of L! 0. Additionally, com-
parison between numerical and first-order solutions shows
that our model performance is accurate up to moderate
heterogeneity of the formation hydraulic properties (i.e.
r2

Y ¼ 1) and then decreases with aquifer heterogeneity
(r2

Y > 1:2).
Our analysis reveals a complex interplay among sampler

size, source volume, and PSD, whose relative importance is
also a function of time since injection and aquifer heteroge-
neity. Sampler volume smoothing effect on the concentra-
tion first moment depends on the measurement location
with respect to the mean plume center and the interplay
between sampler and source volume. Whereas, mixing
within the sampler’s volume always exerts an attenuating
effect at the center of the mean plume, this is not always
true in a generic point within the plume, where concentra-
tions may be larger for volume-averaged than for point
measurements. However in all cases, sampling effect fades
with source size and time since injection. This is accelerated
by an increase of formation heterogeneity, which attenu-
ates the concentration first moment strongly, but increases
concentration uncertainties at the center of the mean
plume. However, concentration uncertainties (CV) may
decrease with larger r2

Y at the plume fringe.
Additionally, source size has a paramount influence on

the mixing effect of the sampler volume on concentration
uncertainty. At the center of the mean plume, the coeffi-
cient of variation decreases rapidly with sampler volume
at small source size. However as source size increases, this
effect fades and eventually reverses causing concentration
uncertainty to increase with sampling size. Notwithstand-
ing, sampler volume causes a decrease of CV for other loca-
tions around the center of the mean plume except for very
large source and sampling volumes.

Furthermore, we suggest that sampler size mechanism
might be enhanced in a three-dimensional field as water is
captured and mixed from different elevations. On the other
hand, its effect should decrease faster with distance or time
since injection, because as the plume spreads within the
aquifer, it samples the formation heterogeneity more effi-
ciently [9]. Another, factor, which we did not analyze in this
work, but might affect the relative importance of PSD, sam-
pler, and source volume is source shape, which has been
shown to influence concentration moments (e.g., [1]). How-
ever, we hypothesize that source shape should not change
the outcome of our analysis, but it could probably antici-
pate or postpone the onset of one factor’s influence.

Nevertheless, as time passes pore-scale dispersion, which
acts at a scale much smaller than the sampler volume mix-
ing mechanism, starts influencing solute concentration
moments. Whereas, PSD has a negligible effect on ensem-
ble mean solute concentrations regardless of source and
sampling dimensions, it attenuates concentration variance
and thus reduces uncertainty plaguing analyses based on
the evolution of ensemble mean concentrations. Addition-
ally, PSD has another beneficial effect by reducing the dif-
ference between point and volume-averaged CVs.
However, its influence fades quickly with sampler size. It
is important to notice that PSD effect on the difference
between point and volume-averaged concentration CVs
reverses for very large source and sampler sizes causing vol-
ume-averaged measurements to have higher uncertainty.

As last remarks, we summarize the following 4 findings
for the zone around the plume center of mass, which com-
prises the highest solute concentrations and thus bear
important information in risk assessment:

(1) At short times since injection, and as long as D� L,
the main factor controlling concentration distribu-
tion is the sampling volume, with pore-scale disper-
sion and source size both playing a minor role.

(2) Source size should be considered when it is of the
same order or smaller than the sampling size
(L 6 D), and both sampling volume dimension and
PSD play an equal important role.

(3) At long times since injection, which may be the case
for old contaminations, PSD introduces an apprecia-
ble additional smoothing to the concentration, while
sampling volume plays a minor role.
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(4) Increases of aquifer heterogeneity causes a reduction
of the ensemble mean concentration, but an increase
in uncertainty.
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Appendix A. Ensemble mean and variance of passive solute
concentrations

We consider a two- or three-dimensional formation with
hydraulic property variations described by a geostatistical
model of spatial variability epitomized through the mean,
variance and covariance function of the hydraulic log-con-
ductivity (or log-transmissivity in the case of a two-dimen-
sional regional model). Pore-scale dispersion is
parameterized through the longitudinal PeL = UIYh/Dd,11

and transverse horizontal PeTh = UIYh/Dd,22 and vertical
PeTv = UIYv/Dd,33 Peclet numbers. For a two-dimensional
formation only the longitudinal and horizontal transverse
Peclet numbers are defined. Notice that our results are
not limited to these two models of spatial variability, and
other geostatistical models can be utilized provided that
the moments Xii and Zii are available.

By substituting Eq. (5) of the joint probability distribu-
tion of eX and Xb into Eq. (4) we obtain, after integration,
the following expression for hCDVi (Eq. (4)):

hCDV ðx; tÞi
C0

¼
YN
i¼1

I iiðxi; tÞ ðA:1Þ

where the functions Iii, i = 1, . . . , N are given by

I iiðxi; tÞ ¼
1

Li

1

4
ð2xi � Di þ Li � 2di1tÞ½

�

� erf
Di � Li � 2xi þ 2di1t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X t;iiðtÞ

p" #
þ ðDi þ Li � 2xi þ 2di1tÞ

� erf
Di þ Li � 2xi þ 2di1t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X t;iiðtÞ

p" #
� ð2xi þ Di � Li � 2di1tÞ

� erf
Di � Li þ 2xi � 2di1t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X t;iiðtÞ

p" #
þ ð2xi þ Di þ Li � 2di1tÞ

� erf
Di þ Li þ 2xi � 2di1t
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2X t;iiðtÞ

p" ##
þ
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X t;iiðtÞ

2p

r

� � exp �ðDi � Li þ 2di1t � 2xiÞ
8X t;iiðtÞ

� ��
þ exp �ðDi þ Li þ 2di1t � 2xiÞ
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ðA:2Þ
In Eq. (A.2), Xt,ii(t) = Xii(t) + 2Dd,iit is the total dis-
placement variance. Notice that as shown by Fiori [10]
Xij is influenced by the transverse Peclet numbers (i.e. PeTh

and PeTv for the three-dimensional case and PeT = PeTh for
the two-dimensional case) and only slightly by PeL, which
is then neglected in the expression of Xii. The source and
the sampling volume have dimensions Li, and Di

i = 1,2,3, respectively, in the three-dimensional case. In
the two-dimensional case the source is rectangular with
sides Li, i = 1,2 and extending over the aquifer thickness
b. The sampling volume is also of thickness b with dimen-
sions Di, i = 1,2 in the horizontal plane. As shown in Fig. 1
the subscript ‘‘1’’ refers to quantities measured along the
mean flow direction. Furthermore, in Eq. (A.2) lengths
are dimensionless with respect to the log-conductivity inte-
gral scale IYh, time t with respect to IYh/U, and particles
displacement variances Xt,ii with respect to I2

Yh. In the
absence of pore-scale dispersion Eq. (A.1) specialized to
the two-dimensional case resembles the first-order solution
obtained by Bellin et al. [4].

We consider now r2
CDV

, which according to Eq. (9) can
be decomposed into two components. We also assume that
Zii is independent from the releasing points of the particles.
Under this simplifying assumption and after substituting
Eq. (12) into Eq. (11), and integrating the resulting expres-
sion, we obtain:

hC2
DV ðx; tÞi ¼

C2
0QN

i¼1

Di

� �2

YN
i¼1

Z xiþDi=2

xi�Di=2

dr

�
Z Li=2

�Li=2

daiHðr; aiÞ ðA:3Þ

where the function H(r,ai) is given by

Hðr; aiÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pX t;iiðtÞ

p exp �ðr � di1t � aiÞ2

2X t;iiðtÞ

" #
� Giðci; xi þ Di=2Þ � Giðci; xi � Di=2Þ½
�Giðai; xi þ Di=2Þ þ Giðai; xi � Di=2Þ� ðA:4Þ

with

Giðf; sÞ ¼
e�ðf�sbiÞ2ffiffiffi

p
p

bi

þ s� f
bi

� �
erfðsbi � fÞ ðA:5Þ

Finally, the functions ai, bi and ci are given by

ai ¼ bi
Li

2
þ di1t þ r � di1t � aið Þ Ziiðt; 0Þ

X t;iiðtÞ

� �
ðA:6Þ

bi ¼
X t;iiðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2X t;iiðtÞðX t;iiðtÞ2 � Ziiðt; 0Þ2Þ
q ðA:7Þ

ci ¼ ai � Libi ðA:8Þ



354 D. Tonina, A. Bellin / Advances in Water Resources 31 (2008) 339–354
Inspection of Eqs. (A.1) and (9) reveals that for vanish-
ing DV, both hCDVi and r2

CDV
converge to the expressions

proposed by Fiori and Dagan [12].
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