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[1] A variety of formulae has been developed to predict bed load transport in gravel bed
rivers, ranging from simple regressions to complex multiparameter formulations. The
ability to test these formulae across numerous field sites has, until recently, been hampered
by a paucity of bed load transport data for gravel bed rivers. We use 2104 bed load
transport observations in 24 gravel bed rivers in Idaho to assess the performance of eight
different formulations of four bed load transport equations. Results show substantial
differences in performance but no consistent relationship between formula performance
and degree of calibration or complexity. However, formulae containing a transport
threshold typically exhibit poor performance. Furthermore, we find that the transport data
are best described by a simple power function of discharge. From this we propose a
new bed load transport equation and identify channel and watershed characteristics that
control the exponent and coefficient of the proposed power function. We find that the
exponent is principally a factor of supply-related channel armoring (transport capacity in
excess of sediment supply), whereas the coefficient is related to drainage area (a surrogate
for absolute sediment supply). We evaluate the accuracy of the proposed power function
at 17 independent test sites. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1815

Hydrology: Erosion and sedimentation; 3210 Mathematical Geophysics: Modeling; KEYWORDS: gravel bed

rivers, sediment transport, fluvial geomorphology
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1. Introduction

[2] Fang [1998] remarked on the need for a critical
evaluation and comparison of the plethora of sediment
transport formulae currently available. In response, Yang
and Huang [2001] evaluated the performance of 13 sedi-
ment transport formulae in terms of their ability to describe
the observed sediment transport from 39 data sets (a total of
3391 transport observations). They concluded that sediment
transport formulae based on energy dissipation rates or
stream power concepts more accurately described the
observed transport data and that the degree of formula
complexity did not necessarily translate into increased
model accuracy. Although the work of Yang and Huang
[2001] is helpful in evaluating the applicability and accu-
racy of many popular sediment transport equations, it is
necessary to extend their analysis to coarse-grained natural
rivers. Of the 39 data sets used by Yang and Huang [2001],
only 5 included observations from natural channels
(166 transport observations) and these were limited to sites
with a fairly uniform grain-size distribution (gradation
coefficient �2).

[3] Prior to the extensive work of Yang and Huang
[2001], Gomez and Church [1989] performed a similar
analysis of 12 bed load transport formulae using 88 bed
load transport observations from 4 natural gravel bed rivers
and 45 bed load transport observations from 3 flumes. The
authors concluded that none of the selected formulae
performed consistently well, but they did find that formula
calibration increases prediction accuracy. However, similar
to Yang and Huang [2001], Gomez and Church [1989] had
limited transport observations from natural gravel bed
rivers.
[4] Reid et al. [1996] assessed the performance of several

popular bed load formulae in the Negev Desert, Israel, and
found that the Meyer-Peter and Müller [1948] and Parker
[1990] equations performed best, but their analysis consid-
ered only one gravel bed river. Because of small sample
sizes, these prior investigations leave the question unre-
solved as to the performance of bed load transport formulae
in coarse-grained natural channels.
[5] Recent work by Martin [2003], Bravo-Espinosa et al.

[2003] and Almedeij and Diplas [2003] has begun to
address this deficiency. Martin [2003] took advantage of
10 years of sediment transport and morphologic surveys on
the Vedder River, British Columbia, to test the performance
of the Meyer-Peter and Müller [1948] equation and two
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variants of the Bagnold [1980] equation. The author con-
cluded that the formulae generally underpredict gravel
transport rates and suggested that this may be due to
loosened bed structure or other disequilibria resulting from
channel alterations associated with dredge mining within
the watershed.
[6] Bravo-Espinosa et al. [2003] considered the perfor-

mance of seven bed load transport formulae on 22 alluvial
streams (including a subset of the data examined here) in
relation to a site-specific ‘‘transport category’’ (i.e., trans-
port limited, partially transport limited and supply limited).
The authors found that certain formulae perform better
under certain categories of transport and that, overall, the
Schoklitsch [1950] equation performed well at eight of the
22 sites, while the Bagnold [1980] equation performed well
at seven of the 22 sites.
[7] Almedeij and Diplas [2003] considered the perfor-

mance of the Meyer-Peter and Müller [1948], H. A.
Einstein and C. B. Brown (as discussed by Brown
[1950]), Parker [1979], and Parker et al. [1982] bed load
transport equations on three natural gravel bed streams,
using a total of 174 transport observations. The authors
found that formula performance varied between sites, in
some cases overpredicting observed bed load transport
rates by one to three orders of magnitude, while at others
underpredicting by up to two orders of magnitude.
[8] Continuing these recent studies of bed load transport

in gravel bed rivers, we examine 2104 bed load transport
observations from 24 study sites in mountain basins of
Idaho to assess the performance of four bed load transport
equations. We also assess accuracy in relation to the degree
of formula calibration and complexity.
[9] Unlike Gomez and Church [1989] and Yang and

Huang [2001], we find no consistent relationship between
formula performance and the degree of formula calibration
and complexity. However, like Whiting et al. [1999], we
find that the observed transport data are best fit by a simple
power function of total discharge. We propose this power
function as a new bed load transport equation and explore
channel and watershed characteristics that control the
exponent and coefficient of the observed bed load power
functions. We hypothesize that the exponent is principally a
function of supply-related channel armoring, such that
mobilization of the surface material in a well armored
channel is followed by a relatively larger increase in bed
load transport rate (i.e., steeper rating curve) than that of a
similar channel with less surface armoring [Emmett and
Wolman, 2001]. We use Dietrich et al.’s [1989] dimension-
less bed load transport ratio (q*) to quantify channel
armoring in terms of upstream sediment supply relative to
transport capacity, and relate q* values to the exponents of
the observed bed load transport functions. We hypothesize
that the power function coefficient depends on absolute
sediment supply, which we parameterize in terms of drain-
age area.
[10] The purpose of this paper is fourfold: (1) assess the

performance of four bed load transport formulae in moun-
tain gravel bed rivers, (2) use channel and watershed
characteristics to parameterize the coefficient and exponent
of our bed load power function to make it a predictive
equation, (3) test the parameterization equations, and
(4) compare the performance of our proposed bed

load transport function to that of the other equations
in item 1.

2. Bed Load Transport Formulae

[11] We compare predicted total bed load transport rates
to observed values at each study site using four common
transport equations, and we examine how differences in
formula complexity and calibration influence performance.
In each equation we use the characteristic grain size as
originally specified by the author(s) to avoid introducing
error or bias. We also examine several alternative defini-
tions to investigate the effects of grain size calibration on
formula performance. Variants of other parameters in the
bed load equations are not examined, but could also
influence performance.
[12] Eight variants of four formulae were considered:

the Meyer-Peter and Müller [1948] equation (calculated
both by median subsurface grain size, d50ss, and by size
class, di), the Ackers and White [1973] equation as
modified by Day [1980] (calculated by di), the Bagnold
[1980] equation (calculated by the modal grain size of
each bed load event, dmqb, and by the mode of the
subsurface material, dmss), and the Parker et al. [1982]
equation as revised by Parker [1990] (calculated by d50ss
and two variants of di). We use the subsurface-based
version of the Parker [1990] equation because the sur-
face-based one requires site-specific knowledge of how
the surface size distribution evolves with discharge and bed
load transport (information that was not available to us and
that we did not feel confident predicting). The formulae
are further described in Appendix A and are written in
terms of specific bed load transport rate, defined as dry
mass per unit width and time (qb, kg m�1 s�1).
[13] Two variants of the size-specific (di) Parker et al.

[1982] equation are considered, one using a site-specific
hiding function following Parker et al.’s [1982] method and
the other using Andrews’ [1983] hiding function. These two
variants allow comparison of site-specific calibration versus
use of an ‘‘off-the-shelf’’ hiding function for cases where
bed load transport data are not available. We selected the
Andrews [1983] hiding function because it was derived
from channel types and physiographic environments similar
to those examined in this study. We also use single grain
size (d50ss) and size-specific (di) variants of the Meyer-Peter
and Müller [1948] and Parker et al. [1982] equations to
further examine effects of grain size calibration. In this case,
we compare predictions based on a single grain size (d50ss)
versus those summed over the full range of size classes
available for transport (di). We also consider two variants of
the Bagnold [1980] equation, one where the representative
grain size is defined as the mode of the observed bed load
data (dmqb, as specified by Bagnold [1980]) and one based
on the mode of the subsurface material (dmss, an approach
that might be used where bed load transport observations
are unavailable). The latter variant of the Bagnold [1980]
equation is expected to be less accurate because it uses a
static grain size (the subsurface mode), rather than the
discharge-specific mode of the bed load.
[14] The transport equations were solved for flow and

channel conditions present during bed load measurements
and are calibrated to differing degrees to site-specific
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conditions. For example, theMeyer-Peter and Müller [1948]
formula includes a shear stress correction based on the ratio
of particle roughness to total roughness, where particle
roughness is determined from surface grain size and the
Strickler [1923] equation, and total roughness is determined
from the Manning [1891] equation for observed values of
hydraulic radius and water-surface slope (Appendix A).
[15] Except for the Parker et al. [1982] equation, each of

the formulae used in our analysis are similar in that they
contain a threshold for initiating bed load transport. The
Meyer-Peter and Müller [1948] equation is a power func-
tion of the difference between applied and critical shear
stresses, the Ackers and White [1973] equation is a power
function of the ratio of applied to critical shear stress
minus 1, and the Bagnold [1980] equation is a power
function of the difference between applied and critical unit
stream power (Appendix A). In contrast, the Parker et al.
[1982] equation lacks a transport threshold and predicts
some degree of transport at all discharges, similar to
Einstein’s [1950] equation.

3. Study Sites and Methods

[16] Data obtained by King et al. [2004] from 24 moun-
tain gravel bed rivers in central Idaho were used to assess the
performance of different bed load transport equations and to
develop our proposed power function for bed load transport
(Figure 1). The 24 study sites are single-thread channels

with pool-riffle or plane-bed morphology (as defined by
Montgomery and Buffington [1997]). Banks are typically
composed of sand, gravel and cobbles with occasional
boulders, are densely vegetated and appear stable. An
additional 17 study sites in Oregon, Wyoming and Colorado
were used to test our new bed load transport equation
(Figure 1). Selected site characteristics are given in Table 1.
[17] Whiting and King [2003] describes the field methods

at 11 of our 24 Idaho sites (also see Moog and Whiting
[1998], Whiting et al. [1999] and King et al. [2004] for
further information on the sites). Bed load samples were
obtained using a 3-inch Helley-Smith [Helley and Smith,
1971] sampler, which limits the sampled bed load material
to particle sizes less than about 76 mm. Multiple lines of
evidence, including movement of painted rocks and bed
load captured in large basket samplers at a number of the
24 Idaho sites, indicate that during the largest flows almost
all sizes found on the streambed are mobilized, including
sizes larger than the orifice of the Helley-Smith sampler.
However, transport-weighted composite samples across all
study sites indicate that only a very small percentage of the
observed particles in motion approached the size limit of the
Helley-Smith sampler. Therefore, although larger particles
are in motion during flood flows, the motion of these
particles is infrequent and the likelihood of sampling these
larger particles is small.
[18] Each bed load observation is a composite of all

sediment collected over a 30 to 60 second sample period,

Figure 1. Location of bed load transport study sites. Table 1 lists river names abbreviated here. Inset
box shows the location of test sites outside of Idaho. Parentheses next to test site names indicate number
of data sets at each site.
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depending on flow conditions, at typically 20 equally
spaced positions across the width of the wetted channel
[Edwards and Glysson, 1999]. Between 43 and 192 nonzero
bed load transport measurements were collected over a 1 to
7 year period and over a range of discharges from low flows
to those well in excess of the bank-full flood at each of the
24 Idaho sites.
[19] Channel geometry and water surface profiles were

surveyed following standard field procedures [Williams et
al., 1988]. Surveyed reaches were typically 20 channel
widths in length. At eight sites water surface slopes were
measured over a range of discharges and did not vary
significantly. Hydraulic geometry relations for channel
width, average depth and flow velocity were determined
from repeat measurements over a wide range of discharges.
[20] Surface and subsurface particle size distributions

were measured at a minimum of three locations at each of
the study sites during low flows between 1994 and 2000.
Where surface textures were fairly uniform throughout the
study reach, three locations were systematically selected for
sampling surface and subsurface material. If major textural

differences were observed, two sample sites were located
within each textural patch, and measurements were weighted
by patch area [e.g., Buffington and Montgomery, 1999a].
Wolman [1954] pebble counts of 100+ surface grains were
conducted at each sample site. Subsurface samples were
obtained after removing the surface material to a depth equal
to the d90 of surface grains and were sieved by weight. The
Church et al. [1987] sampling criterion was generally met,
such that the largest particle in the sample comprised, on
average, about 5% of the total sample weight. However, at
three sites (Johns Creek, Big Wood River and Middle Fork
Salmon River) the largest particle comprised 13%–14% of
the total sample weight; the Middle Fork Salmon River is
later excluded for other reasons.
[21] Estimates of flood frequency were calculated using a

log Pearson III analysis [U.S. Water Resources Council,
1981] at all study sites that had at least a 10 year record of
instantaneous stream flow. Only five years of flow data
were available at Dollar and Blackmare creeks, and there-
fore estimates of flood frequency were calculated using a
two-station comparison [U.S. Water Resources Council,

Table 1. Study and Test Site Characteristics

Site (Abbreviation)
Drainage Area,

km2
Average Slope,

m m�1
Subsurface d50ss,

mm
Surface d50s,

mm
2-Year Flood,

m3 s�1

Study Sites
Little Buckhorn Creek (LBC) 16 0.0509 15 74 2.79
Trapper Creek (TPC) 21 0.0414 17 75 2.21
Dollar Creek (DC) 43 0.0146 22 83 11.8
Blackmare Creek (BC) 46 0.0299 25 101 6.95
Thompson Creek (TC) 56 0.0153 44 62 3.10
SF Red River (SFR) 99 0.0146 25 95 8.7
Lolo Creek (LC) 106 0.0097 19 85 16.9
MF Red River (MFR) 129 0.0059 18 57 12.8
Little Slate Creek (LSC) 162 0.0268 24 134 16.0
Squaw Creek (SQC) 185 0.0100 29 46 6.62
Salmon River near Obsidian (SRO) 243 0.0066 26 61 14.8
Rapid River (RR) 280 0.0108 16 75 20.3
Johns Creek (JC) 293 0.0207 36 204 36.8
Big Wood River (BWR) 356 0.0091 25 119 26.2
Valley Creek (VC) 386 0.0040 21 50 28.3
Johnson Creek (JNC) 560 0.0040 14 62 83.3
SF Salmon River (SFS) 853 0.0025 14 38 96.3
SF Payette River (SFPR) 1164 0.0040 20 95 120
Salmon River below Yankee Fork (SRY) 2101 0.0034 25 104 142
Boise River (BR) 2154 0.0038 21 60 188
MF Salmon River at Lodge (MFSL) 2694 0.0041 36 146 258
Lochsa River (LR) 3055 0.0023 27 132 532
Selway River (SWR) 4955 0.0021 24 185 731
Salmon River at Shoup (SRS) 16154 0.0019 28 96 385

Test Sites
Fool Creek (St. Louis Creek Test Site) 3 0.0440 15 38 0.320
Oak Creek 7 0.0095 20 53 2.98
East St. Louis Creek 8 0.0500 13 51 0.945
St. Louis Creek Site 5 21 0.0480 14 146 2.52
Cache Creek 28 0.0210 20 46 2.2
St. Louis Creek Site 4a 34 0.0190 13 72 3.96
St. Louis Creek Site 4 34 0.0190 13 91 3.99
Little Beaver Creek 34 0.2300 10 47 2.24
Hayden Creek 47 0.0250 20 68 2.28
St. Louis Creek Site 3 54 0.0160 16 82 5.07
St. Louis Creek Site 2 54 0.0170 15 76 5.08
Little Granite Creek 55 0.0190 18 55 8.41
St. Louis Creek Site 1 56 0.0390 17 129 5.21
Halfmoon Creek 61 0.0150 18 62 7.3
Middle Boulder Creek 83 0.0128 25 75 12.6
SF Cache la Poudre 231 0.0070 12 69 13.8
East Fork River 466 0.0007 1 5 36.0
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1981] based on nearby, long-term USGS stream gages. A
regional relationship between drainage area and flood
frequency was used at Little Buckhorn Creek due to a lack
instantaneous peak flow data.
[22] Each sediment transport observation at the 24 Idaho

sites was reviewed for quality. At nine of the sites all
observations were included. Of the remaining 15 sites, a
total of 284 transport observations (out of 2388) were
removed (between 2 and 51 observations per site). The
primary reasons for removal were differences in sampling
method prior to 1994, or because the transport observations
were taken at a different, or unknown, location compared to
the majority of bed load transport samples. Only 41 trans-
port observations (out of 284) from nine sites were removed
due to concerns regarding sample quality (i.e., significant
amounts of measured transport at extremely low discharges
indicative of ‘‘scooping’’ during field sampling).
[23] Methods of data collection varied greatly among the

additional 17 test sites outside of Idaho and are described in
detail elsewhere (see Ryan and Emmett [2002] for Little
Granite Creek, Wyoming; Leopold and Emmett [1997] for
the East Fork River, Wyoming; Milhous [1973] for Oak
Creek, Oregon; Ryan et al. [2002] for the eight sites on the
St. Louis River, Colorado; and Gordon [1995] for both
Little Beaver and Middle Boulder creeks, Colorado). Data
collection methods at Halfmoon Creek, Hayden Creek and
South Fork Cache la Poudre Creek, Colorado and Cache
Creek, Wyoming were similar to the 8 test sites from St.
Louis Creek. Both the East Fork River and Oak Creek sites
used channel-spanning slot traps to catch the entire bed
load, while the remaining 15 test sites used a 3-inch Helley-
Smith bed load sampler spanning multiple years (typically
1 to 5 years, with a maximum of 14 years at Little Granite
Creek). Estimates of flood frequency were determined using
either standard flood frequency analyses [U.S. Water
Resources Council, 1981] or from drainage area–discharge
relationships derived from nearby stream gages.

4. Results and Discussion

4.1. Performance of the Bed Load Transport Formulae

4.1.1. Log-Log Plots
[24] Predicted total bed load transport rates for each

formula were compared to observed values, with a log10
transformation applied to both. A logarithmic transforma-
tion is commonly applied in bed load studies because
transport rates typically span a large range of values
(6+ orders of magnitude on a log10 scale), and the data tend
to be skewed toward small transport rates without this
transformation. To provide more rigorous support for the
transformation we used the ARC program [Cook and
Weisberg, 1999] to find the optimal Box-Cox transforma-
tion [Neter et al., 1974] (i.e., one that produces a near-
normal distribution of the data). Results indicate that a log10
transformation is appropriate, and conforms with the
traditional approach for analyzing bed load transport data.

[25] Figure 2 provides an example of observed versus
predicted transport rates from the Rapid River study site and
indicates that some formulae produced fairly accurate, but
biased, predictions of total transport. That is, predicted
values were generally tightly clustered and subparallel to
the 1:1 line of perfect agreement, but were typically larger
than the observed values (e.g., Figure 2c). Other formulae
exhibited either curvilinear bias (e.g., Figures 2b, 2f, and 2g)
or rotational bias (constantly trending departure from accu-
racy) (e.g., Figures 2a, 2d, 2e, and 2h). On the basis of
visual inspection of similar plots from all 24 sites, the
Parker et al. [1982] equations (di and d50ss) best describe
the observed transport rates, typically within an order of
magnitude of the observed values. In contrast, the Parker et
al. [1982] (di via Andrews [1983]), Meyer-Peter and Müller
[1948] (di and d50ss), and Bagnold [1980] (dmss and dmqb)
equations did not perform as well, usually over two orders
of magnitude from the observed values. The Ackers and
White [1973] equation was typically one to three orders of
magnitude from the observed values.
4.1.2. Transport Thresholds
[26] The above assessment of performance can be mis-

leading for those formulae that contain a transport threshold
(i.e., the Meyer-Peter and Müller [1948], Ackers and White
[1973], and Bagnold [1980] equations). Formulae of this
sort often erroneously predict zero transport at low to
moderate flows that are below the predicted threshold for
transport. These incorrect zero-transport predictions cannot
be shown in the log-log plots of observed versus predicted
transport rates (Figure 2). However, frequency distributions
of the erroneous zero-transport predictions reveal substan-
tial error for both variants of the Meyer-Peter and Müller
[1948] equation and the Bagnold [1980] (dmss) equation
(Figure 3). These formulae incorrectly predict zero transport
for about 50% of all observations at our study sites. In
contrast, the Bagnold [1980] (dmqb) and Ackers and White
[1973] equations incorrectly predict zero transport for only
2% and 4% of the observations, respectively, at only one of
the 24 study sites. Formulae that lack transport thresholds
(i.e., the Parker et al. [1982] equation) do not predict zero
transport rates.
[27] The significance of the erroneous zero-transport pre-

dictions depends on the magnitude of the threshold
discharge and the portion of the total bed load that is
excluded by the prediction threshold. To examine this
issue we calculated the maximum discharge at which each
threshold-based transport formula predicted zero transport
(Qmax) normalized by the 2-year flood discharge (Q2). Many
authors report that significant bed load movement begins at
discharges that are 60% to 100% of bank-full flow [Leopold
et al., 1964; Carling, 1988; Andrews and Nankervis, 1995;
Ryan and Emmett, 2002; Ryan et al., 2002]. Bank-full
discharge at the Idaho sites has a recurrence interval of 1–
4.8 years, with an average of 2 years [Whiting et al., 1999];
hence Q2 is a bank-full-like flow. We use Q2 rather than the
bank-full discharge because it can be determined objectively

Figure 2. Comparison of measured versus computed total bed load transport rates for Rapid River (typical of the Idaho
study sites): (a) Meyer-Peter and Müller [1948] equation by d50ss, (b) Meyer-Peter and Müller equation by di, (c) Ackers
and White [1973] equation by di, (d) Bagnold equation by dmss, (e) Bagnold equation by dmqb, (f ) Parker et al. [1982]
equation by d50ss, (g) Parker et al. [1982] equation by di (hiding function defined by Parker et al. [1982], and (h) Parker et
al. [1982] equation by di (hiding function defined by Andrews [1983]).
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from flood frequency analyses (section 3) without the
uncertainty inherent in field identification of bank-full stage.
As Qmax/Q2 increases the significance of incorrectly
predicting zero transport increases as well. For instance, at
the Boise River study site, both variants of the Meyer-Peter

and Müller [1948] equation incorrectly predicted zero trans-
port rates for approximately 10% of the transport observa-
tions. However, because this error occurred for flows
approaching only 19% of Q2, only 2% of the cumulative
total transport is lost due to this prediction error. The

Figure 2
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significance of incorrectly predicting zero transport is
greater at Valley Creek where, again, both variants of the
Meyer-Peter and Müller [1948] equation incorrectly predict
zero transport rates for approximately 90% of the transport
observations and at flows approaching 75% of Q2. This
prediction error translates into a loss of 48% of the cumu-
lative bed load transport.
[28] Box plots of Qmax/Q2 values show that incorrect zero

predictions are most significant for the Meyer-Peter and
Müller [1948] equations and the Bagnold [1980] (dmss)
equation, while the Bagnold [1980] (dmqb) and Ackers and
White [1973] equations have few incorrect zero predictions
and less significant error (lower Qmax/Q2 ratios) (Figure 4).
[29] Because coarse-grained rivers typically transport

most of their bed load at near-bank-full discharges [e.g.,
Andrews and Nankervis, 1995], failure of the threshold
equations at low flows may not be significant in terms of
the annual bed load transport. However, our analysis indi-
cates that in some instances the threshold equations fail at
moderate to high discharges (Qmax/Q2 > 0.8), potentially
excluding a significant portion of the annual bed load
transport (e.g., Valley Creek as discussed above). Moreover,
the frequency of incorrect zero predictions varies widely
by transport formula (Figure 4). To better understand the
performance of these equations it is useful to examine the
nature of their threshold formulations.
[30] As discussed in section 2, the Meyer-Peter and

Müller [1948] equation is a power function of the difference
between applied and critical shear stresses. A shear stress
correction is used to account for channel roughness and to
determine that portion of the total stress applied to the bed
(Appendix A). However, the Meyer-Peter and Müller
[1948] stress correction may be too severe, causing the

high number of zero-transport predictions. Bed stresses
predicted from the Meyer-Peter and Müller [1948] method
are typically only 60–70% of the total stress at our sites.
Moreover, because armored gravel bed rivers tend to exhibit
a near-bank-full threshold for significant bed load transport
[Leopold et al., 1964; Parker, 1978; Carling, 1988; Andrews
and Nankervis, 1995], the range of transporting shear
stresses may be narrow, causing transport predictions to be
particularly sensitive to the accuracy of stress corrections.
[31] The Bagnold [1980] equation is a power function of

the difference between applied and critical unit stream
powers. The modal grain size of the subsurface material
(dmss) is typically 32 mm to 64 mm (geometric mean of
45 mm) at our study sites, whereas the modal grain size of
the bed load observations varied widely with discharge and
was typically between 1.5 mm at low flows and 64 mm
during flood flows. Not surprisingly, the Bagnold [1980]
equation performs well when critical stream power is
based on the modal grain size of each measured bed load
event (dmqb), but not when it is defined from the mode of
the subsurface material (dmss) (Figures 3 and 4). When
calibrated to the observed bed load data, the critical unit
stream power scales with discharge such that at low flows
when the measured bed load is fine (small dmqb) the critical
stream power is reduced. Conversely, as discharge increase
and the measured bed load data coarsens (larger dmqb) the
critical unit stream power increases. However, the mode of
the subsurface material (dmss) does not scale with discharge
and consequently the critical unit discharge is held constant
for all flow conditions when based on dmss. Consequently,
threshold conditions for transport based on dmss are often
not exceeded, while those of dmqb were exceeded over 90%
of the time.

Figure 3. Box plots of the distribution of incorrect predictions of zero transport for the 24 Idaho sites.
Median values are specified. MPM stands for Meyer-Peter and Müller.
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[32] In contrast, the Ackers and White [1973] equation is
a power function of the ratio of applied to critical shear
stress minus 1, where the critical shear stress is, in part, a
function of d50ss, rather than dmss. At the Idaho sites, d50ss is
typically about 20 mm, and therefore the critical shear stress
is exceeded at most flows, resulting in a low number of
incorrect zero predictions (Figure 3).
4.1.3. Statistical Assessment
[33] The performance of each formula was also assessed

statistically using the log10-difference between predicted
and observed total bed load transport. To include the
incorrect zero predictions in this analysis we added a
constant value, e, to all observed and predicted transport
rates prior to taking the logarithm. The lowest nonzero
transport rate predicted for the study sites (1 � 10�15 kg
m�1 s�1) was chosen for this constant.
[34] Formula performance changes significantly com-

pared to that of section 4.1.1 when we include the incorrect
zero-transport predictions. The distribution of log10 differ-
ences across all 24 study sites from each formula is shown
in Figure 5. Both versions of the Meyer-Peter and Müller
[1948] equation and the Bagnold [1980] (dmss) equation
typically underpredict total transport due to the large
number of incorrect zero predictions, with the magnitude
of this underprediction set by e. All other equations included
in this analysis have few, if any, incorrect zero predictions
and tend to predict total transport values within 2 to 3 orders
of magnitude of the observed values.
[35] To further examine formula performance, we con-

ducted paired sample c2 tests to compare observed versus
predicted transport rates for each equation across the
24 study sites. We use Freese’s [1960] approach, which

differs slightly from the traditional paired sample c2

analysis in that the c2 statistic is calculated as

c2 ¼

Pn
i¼1

xi � mið Þ2

s2
ð1Þ

where xi is the ith predicted value, mi is the ith observed
value, n is the number of observations, and s2 is the
required accuracy defined as

s2 ¼ E2

1:96ð Þ2
ð2Þ

where E is the user-specified acceptable error, and 1.96 is
the value of the standard normal deviate corresponding to a
two-tailed probability of 0.05. We evaluate c2 using log-
transformed values of bed load transport, with e added to
both xi and mi prior to taking the logarithm, and E defined as
one log unit (i.e., ± an order of magnitude error).
[36] Freese’s [1960] c2 test shows that none of the

equations perform within the specified accuracy (± an order
of magnitude error, a = 0.05). Nevertheless, some equations
are clearly better than others (Figure 5). To further quantify
equation performance, we calculated the critical error, e*, at
each of the 24 study sites (Figure 6), where e* is the
smallest value of E that will lead to adequate model
performance (i.e., acceptance of the null hypothesis of equal
distributions of observed and predicted bed load transport
rates assessed via Freese’s [1960] c2 test). Hence we are
asking how much error would have to be tolerated to accept

Figure 4. Box plots of the distribution of Qmax/Q2 (maximum discharge at which each threshold-based
transport formula predicted zero transport normalized by the 2-year flood discharge) for the 24 Idaho
sites. Median values are specified. MPM stands for Meyer-Peter and Müller.
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a given model (bed load transport equation) [Reynolds,
1984].
[37] Results show that at best, median errors of less than

2 orders of magnitude would have to be tolerated for

acceptance of the best performing equations (Ackers and
White’s [1973] and Parker et al.’s [1982] (di) equations),
while at worst, median errors of more than 13 orders of
magnitude would have to be tolerated for acceptance of the

Figure 6. Box plots of the distribution of critical error, e*, for the 24 Idaho sites. Median values are
specified. MPM stands for Meyer-Peter and Müller. Power function is discussed in section 4.3.

Figure 5. Box plots of the distribution of log10 differences between observed and predicted bed load
transport rates for the 24 Idaho study sites. Median values are specified. MPM stands for Meyer-Peter and
Müller. Power function is discussed in section 4.3.
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poorest performing equations (Figure 6). In detail, we find
that the Parker et al. [1982] (di) equation outperformed all
others except for the Ackers and White [1973] formula
(paired c2 test of e* values, a = 0.05). However, the
median critical errors of these two equations were quite
poor (1.62 and 1.93, respectively). The Bagnold [1980]
(dmss) equation and both variants of the Meyer-Peter and
Müller [1948] equation had the largest critical errors, with
the latter not statistically different from one another (paired
c2 test, a = 0.05). The Parker et al. [1982] (d50ss) and the
Parker et al. [1982] (di via Andrews [1983]) equations were
statistically similar to each other and performed better than
the Bagnold [1980] (dmqb) equation (paired c2 test, a =
0.05).
[38] Although the c2 statistic is sensitive to the magni-

tude of e, specific choice of e between 1 � 10�15 and 1 �
10�7 kg m�1 s�1 does not change the relative performance
of the equations or the significance of the differences in
performance between them. Nor does it alter the finding that
none of the median critical errors, e*, are less than or equal
to E; the formulae with the lowest critical errors have little
to no incorrect zero transport predictions and are thus least
affected by e (see Figures 3 and 6).
[39] It should be noted that our analysis of performance

does not weight transport events by their proportion of the
annual bed load transport (in the sense of Wolman and
Miller [1960]), but by the number of transport observations.
Because there are more low-flow transport events than high-
flow ones during a given period of record, the impact of the
low-flow events (and any error associated with them) is
emphasized. This analysis artifact is common to all previous
studies that have examined the performance of bed load
transport equations. Hence geomorphic performance (in the
sense of Wolman and Miller [1960]) remains to be tested in
future studies.

4.2. Effects of Formula Calibration and Complexity

[40] Accuracy was also considered in relation to degree of
formula calibration and complexity. The number and nature
of calibrated parameters determines the degree of formula
calibration which, in turn, determines equation complexity.
In general, formulae computed by grain size fraction (di),
using site-specific particle size distributions, are more
calibrated and more complex than those determined from
a single characteristic particle size. Moreover, formulae that
are fit to observed bed load transport rates and that use site-
specific hiding functions (e.g., the Parker et al. [1982] (di)
equation) are more calibrated and complex than those that
that use a hiding function derived from another site (e.g.,
our use of the Andrews [1983] function in variants of the
Parker et al. [1982] and Meyer-Peter and Müller [1948]
equations). The Bagnold [1980] formula does not contain a
hiding function, is based on a single grain size, has a limited
number of user-calibrated parameters and is therefore
ranked lowest in terms of both calibration and complexity.
However, we have ranked the Bagnold [1980] (dmqb) variant
higher in terms of calibration because the modal grain size
varied with discharge and was calculated from the observed
bed load transport data. We consider the Ackers and White
[1973] equation equal in terms of calibration and complex-
ity to both the Meyer-Peter and Müller [1948] (di) equation
and the Parker et al. [1982] (di via Andrews [1983])
equation because all three are calculated by di, have a

similar number of calibrated parameters and contain ‘‘off
the shelf’’ particle-hiding functions that are calibrated to
other sites, rather than to site-specific conditions.
[41] Results from our prior analyses (Figures 5 and 6)

indicate that the most complex and calibrated equation (i.e.,
Parker et al. [1982] (di)) outperforms all other formulae
except for the Ackers and White [1973] equation. However,
we find no consistent relationship between formula perfor-
mance and degree of calibration and complexity. Size-
specific formulae (those calculated by di) do not consistently
outperform those based on a single characteristic particle
size (d50ss, dmqb or dmss), nor does a site-specific hiding
function (i.e., Parker et al. [1982] (d50ss)) guarantee better
performance than an ‘‘off the shelf’’ hiding function (i.e.,
Parker et al. [1982] (di) via Andrews [1983]).

4.3. A New Bed Load Transport Equation

[42] The bed load equations examined in sections 4.1 and
4.2 are some of the most common and popular equations
used for gravel bed rivers. However, their performance is
disconcerting and makes us ask whether there is a better
alternative?
[43] Similar to Whiting et al. [1999], we find that bed

load transport at our sites is generally well described in
log10 space (0.50 < r2 < 0.90) by a simple power function of
total discharge (Q)

qb ¼ aQb ð3Þ

where qb is bed load transport per unit width, and a and b
are empirical values [Leopold et al., 1964; Smith and
Bretherton, 1972; Vanoni, 1975]. Figure 7 shows a sample
fit of this function at the Boise River study site. Moreover,
we find that equation (3) performs within the accuracy
specified in section 4.1.3 (Freese’s [1960] c2, a = 0.05) and
is superior to the other bed load equations examined in
terms of describing the observed transport (Figures 5 and 6).
In particular, the median critical error, e*, for equation (3) is
significantly lower than that of the other equations (paired
c2 test, a = 0.05) and is within the specified accuracy (E =
1 log10 unit). We expect this result because equation (3) is
empirically fit to the data and thus fully calibrated.
Nevertheless, the results demonstrate that a power function
of discharge may be a viable alternative to the other
equations examined in sections 4.1 and 4.2. To generalize
equation (3) and make it predictive, we next parameterize a
and b in terms of channel and watershed characteristics.

4.4. Parameterization of the Bed Load
Transport Equation

[44] We hypothesize that the exponent of equation (3) is
principally a factor of supply-related channel armoring.
Emmett and Wolman [2001] discuss two types of supply
limitation in gravel bed rivers. First, the supply of fine
material present on the streambed determines, in part, the
magnitude of phase I transport (motion of finer particles
over an immobile armor) [Jackson and Beschta, 1982].
Second, supply limitation occurs when the coarse armor
layer limits the rate of gravel transport until the larger
particles that make up the armor layer are mobilized thus
exposing the finer subsurface material to the flow (phase II
transport [Jackson and Beschta, 1982]). Mobilization of the
surface material in a well armored channel is followed by a
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relatively larger increase in bed load transport rate com-
pared to a similar channel with less surface armoring.
Consequently, we expect that a greater degree of channel
armoring, or supply-limitation, will delay mobilization of
the armor layer and result in a steeper bed load rating curve
(larger exponent of the bed load equation (3)) compared to a
less armored channel [Emmett and Wolman, 2001].
[45] Dietrich et al. [1989] proposed that the degree of

channel armoring is related to the upstream sediment supply
relative to the local transport capacity, and presented a
dimensionless bed load transport ratio, q*, to represent this
relationship. Here, we use q* as an index of supply-related
channel armoring and examine its effect on the exponent (b)
of the observed bed load rating curves (3).
[46] We define q* as

q* ¼ tQ2
� td50s

tQ2
� td50ss

� �1:5

ð4Þ

where tQ2
is the total shear stress at Q2 calculated from the

depth-slope product (rgDS, where r is fluid density, g is
gravitational acceleration, D is flow depth at Q2 calculated
from hydraulic geometry relationships, and S is channel
slope) and td50s and td50ss are the critical shear stresses
necessary to mobilize the surface and subsurface median
grain sizes, respectively. Channel morphology and bed load
transport are adjusted to bank-full flows in many gravel bed
rivers [e.g., Leopold et al., 1964; Parker, 1978; Andrews
and Nankervis, 1995], hence bank-full is the relevant flow
for determining q* in natural rivers [Dietrich et al., 1989].
However, we use Q2 because it is a bank-full-like flow that
can be determined objectively from flood frequency

analyses without the uncertainty inherent in field identifica-
tion of bank-full stage (section 4.1.2). The critical shear
stresses are calculated as

td50s ¼ t*c50 rs � rð Þgd50s ð5aÞ

td50ss ¼ t*c50 rs � rð Þgd50ss ð5bÞ

where t*c50 is the dimensionless critical Shields stress for
mobilization of the median grain size. We set this value
equal to 0.03, corresponding with the lower limit of
dimensionless critical Shield stress values for visually
based determination of incipient motion in coarse-grained
channels [Buffington and Montgomery, 1997].
[47] Values for q* range from 0 for low bed load supply

and well-armored surfaces (d50s � d50ss and td50s � tQ2
) to

1 for high bed load supply and unarmored surfaces (d50s �
d50ss and td50s � td50ss). As demonstrated by Dietrich et al.
[1989], q* does not measure absolute armoring (i.e., it is not
uniquely related to d50s/d50ss), but rather relative armoring
(a function of transport capacity relative to bed load supply).
The denominator of (4) is the equilibrium transport capacity
of the unarmored bed and is a reference transport rate
(theoretical end-member) that quantifies the maximum bed
load transport capacity for the imposed boundary shear
stress and the size of supplied bed load material. The
numerator is the equilibrium transport rate for the actual
bed load supply (equilibrium excess shear stress), with
equilibrium transport achieved by textural adjustment of
the bed (fining or coarsening in response to bed load supply)
[e.g., Dietrich et al., 1989; Buffington and Montgomery,
1999b]. Hence q* is a relative index of armoring (textural
adjustment as a function of excess shear stress that provides
equilibrium bed load transport). It describes armoring as a
function of bed load supply relative to boundary shear stress
and transport capacity. Consequently, q* is not a measure of
absolute armoring (d50s/d50ss). For the same degree of armor-
ing, one can have different values of q*, depending on the
bed load supply and the corresponding equilibrium excess
shear stress [Dietrich et al., 1989; Lisle et al., 2000].
Similarly, for a given q*, a lower degree of armoring will
occur for lower values of equilibrium excess shear stress
[Dietrich et al., 1989; Lisle et al., 2000].
[48] We determined values of q* at 21 of the 24 study

sites. Values of q* could not be determined for three of the
study sites because their median grain sizes were calculated
to be immobile during Q2 (Salmon River at Shoup, Middle
Fork Salmon River at Lodge and Selway River). Results
show an inverse relationship between q* and the exponent
of our bed load power function (Figure 8) supporting the
hypothesis that supply-related changes in armoring relative
to the local transport capacity influence the delay in bed
load transport and the slope of the bed load rating curve. We
parameterize q* in terms of low-flow bed material for
practical reasons (safety during grain size measurement
and feasibility of future application of our approach).
However, surface grain size can change with discharge
and transport rate [Parker and Klingeman, 1982; Parker
et al., 2003], thereby potentially making b discharge depen-
dent. Nevertheless, b is an average value across the range of
observed discharges (including channel-forming flows) and

Figure 7. Example bed load rating curve from the Boise
River study site (qb = 4.1 � 10�8Q2.81, r 2 = 0.90).
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any textural changes are empirically incorporated into our
relationship between b and q*.
[49] Two sites (Thompson Creek and Little Buckhorn)

appear to be outliers and therefore were removed from the
analysis (shown as open diamonds in Figure 8). The anom-
alous Thompson Creek q* value may be due to an extensive
network of upstream beaver dams. The availability of
sediment at all but the greatest flows is likely influenced
by dam storage, delaying transport and increasing b by
compressing the effective flows into a smaller portion of
the hydrograph. In contrast, the large q* value for Little
Buckhorn may be due to a lack of peak flow information.

TheQ2 at this site was calculated from a drainage area versus
Q2 relationship developed from the other 23 Idaho study
sites where peak flow information was available. This
relationship may overpredictQ2 at Little Buckhorn, resulting
in an anomalously high q* value.
[50] Because q* is a relative measure of armoring (i.e.,

relative to bed load supply and transport capacity), it is
unlikely to be biased by site-specific conditions (climate,
geology, channel type, etc.). For example, the relative
nature of q* implies that channels occurring in different
physiographic settings and possessing different particle size
distributions (e.g., a fine gravel bed stream versus a coarse

Figure 8. Relationships between (a) q* and the exponent of the bed load rating curves (equation (3))
and (b) drainage area and the coefficient of the bed load rating curves (equation (3)) for the Idaho sites.
Dashed lines indicate 95% confidence interval about the mean regression line. Solid lines indicate 95%
prediction interval (observed values) [Neter et al., 1974; Zar, 1974].
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cobble bed one) may have identical values of q*, indicating
identical armoring conditions relative to transport capacity
and bed load sediment supply and thus identical bed load
rating curve slopes. Although, q* is not uniquely related to
absolute armoring (d50s/d50ss), we examined its effect on the
exponent of our transport function (3), and found that the
relationship was not significant (F test, a = 0.05). Hence
relative armoring (q*) is more important than absolute
armoring (d50s/d50ss). Because q* is a relative index of
armoring, it should be a robust predictor of the exponent
of our bed load power function and unbiased by changing
physiography and channel morphology.
[51] In contrast, the coefficient of the bed load power

function (a) describes the absolute magnitude of bed load
transport, which is a function of basin-specific sediment
supply and discharge. In general, sediment transport rate
(qb) and discharge (Q) both increase with drainage area (A)
[Leopold et al., 1964], however discharge increases faster,
such that the coefficient of the bed load power function is
inversely related to drainage area (a surrogate for transport
rate relative to discharge, a / 1/A / qb/Q) (Figure 8). The
rate of downstream increase in unit bed load transport rate
(qb) also depends on 1) downstream changes in channel
width (a function of discharge, riparian vegetation, geology
and land use) and 2) loss of bed load material to the
suspended fraction due to particle abrasion [Cui and Parker,
2004]. Factors that affect channel width also influence flow
depth, boundary shear stress, and surface grain size and
thus may influence, and be partially compensated by, b. We
hypothesize that the Figure 8 relationship is a region-
specific function of land use and physiography (i.e., topog-
raphy, geology, and climate). Consequently, care should
be taken in applying this function to other regions. In
contrast, prediction of the exponent of our bed load trans-
port equation may be less restrictive, as discussed above.
[52] On the basis of the relationships shown in Figure 8

we propose the following empirically derived total bed load
transport function with units of dry mass per unit width and
time (kg m�1 s�1).

qb ¼ 257 A�3:41Q �2:45q*þ3:56ð Þ ð6Þ

where the coefficient and exponent are parameterized in
terms of channel and watershed characteristics. The
coefficient is a power function of drainage area (a surrogate
for the magnitude of basin-specific bed load supply) and the
exponent is a linear function of q* (an index of channel
armoring as a function of transport capacity relative to bed
load supply).
[53] The 17 independent test sites (Table 1) allow us

to consider two questions concerning our bed load
equation (6). First, how well can we predict the coefficient
and exponent of the bed load power function at other
sites? Second, how does our bed load formula perform
relative to those examined in section 4.1? These questions
are addressed in the next two sections.

4.5. Test of Equation Parameters

[54] We test our parameterization of equation (6) by
comparing predicted values of the formula coefficient (a)
and exponent (b) to observed values at 17 independent test
sites in Wyoming, Colorado and Oregon (Figure 1). The

independent test sites cover a generally similar range of
slopes and particle sizes as the 24 Idaho sites used to
develop equation (6) (Table 1). However, the East Fork
River test site occurs at the gravel/sand transition [e.g.,
Sambrook Smith and Ferguson, 1995; Ferguson et al.,
1998; Parker and Cui, 1998] and is significantly finer than
the coarse-grained Idaho study sites. The Idaho study sites
and the supplemental test sites are all snowmelt-dominated
streams, except for Oak Creek which is a rainfall-dominated
channel. The geology is also similar across the study and
test sites. The channels are predominantly underlain by
granitics, with some metamorphic and sedimentary geolo-
gies, except for Oak Creek which is underlain by basalt.
Bed load transport was measured with Helley-Smith sam-
plers at all sites, with the exception of the East Fork and
Oak Creek sites, where slot traps were used [Milhous, 1973;
Leopold and Emmett, 1997].
[55] As expected, the exponent of our bed load function is

better predicted on average at the 17 test sites than the
coefficient (Figure 9). The observed exponents are reason-
ably well predicted by equation (6) with a median error of
less than 3%. This suggests that q*, determined in part
through measurements of the surface and subsurface
material during low flow, is able to accurately predict the
rating curve exponent over a range of observed discharges
(including channel-forming flows) despite any stage-
dependent changes in surface grain size [Parker and
Klingeman, 1982; Parker et al., 2003]. Moreover, the rating
curve exponents are accurately predicted across different
climatic regimes (snowmelt- and rainfall-dominated),
different lithologies (basalt and granite), and different bed
load sampling methods (Helley-Smith and slot samplers),
despite the fact that the predictive equation is derived from a
subset of these conditions (i.e., snowmelt rivers in granitic
basins, sampled via Helley-Smith). In particular, b is rea-
sonably well predicted at the two test sites that are most
different from the Idaho study sites (Oak Creek and East
Fork; observed b values of 2.55 and 2.19 versus predicted
values of 2.43 and 1.82, respectively). We suspect that the
success of our exponent function is due to the robust nature
of q* to describe supply-related channel armoring regardless
of differences in physiography and channel conditions
(section 4.4).
[56] In contrast, the predicted coefficients are consider-

ably less accurate and were over 3 times larger than the
observed values at many of the 17 test sites (Figure 9).
Prediction errors, however, can be significant for both
parameters, which is expected given the spread of the
95% prediction intervals shown in Figure 8. The largest
errors in predicting the coefficient occurred at the Oak
Creek and East Fork sites (3 orders of magnitude over-
prediction, and 2 orders of magnitude underprediction,
respectively). The cause of the error at these sites is
examined below.
[57] The Oak Creek watershed is unique relative to the

24 Idaho study sites in that it is composed primarily of
basalt, rather than granite, and has a climatic regime
dominated by rainfall, rather than snowmelt. Because
equation (6) accurately predicts the exponent of the Oak
Creek bed load rating curve, as discussed above, the over-
prediction of total bed load transport at this site is princi-
pally due to prediction error of the transport coefficient
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(observed a of 1.9 � 10�4 versus predicted a of 0.39),
which may be due to differences in basin geology and
sediment production rates. Basalt is typically less erosive
and produces less sediment per unit area than the highly
decomposed granites found in the Idaho batholith [e.g.,
Lisle and Hilton, 1999]. Consequently, one would expect
equation (6) to overpredict the transport coefficient at Oak
Creek, as observed. Alternatively, the bed load supply and
transport coefficient may be influenced by climate and
runoff regime; however the relationship between these
two variables is not well documented. Previous studies
suggest that in temperate climates bed load supplies may
be higher in rainfall regimes than snowmelt-dominated ones
[Lisle et al., 2000]. Therefore our a prediction, which is
derived from snowmelt streams, would be expected to
underpredict transport rates in the rainfall-dominated Oak
Creek, contrary to what we observe. Consequently, differ-
ences in runoff regime do not appear to explain the observed
error at Oak Creek. Regardless of the exact physical cause,
the prediction error highlights the site-specific nature of our
coefficient function (a) (discussed further in section 4.7).
[58] In contrast, the underprediction of the transport

coefficient at East Fork may be due to a difference in
channel type. The East Fork site occurs at the gravel/sand
transition and has a finer, more mobile bed than the coarser-
grained Idaho sites. The gravel/sand transition represents a
shift in the abundance of sand-sized material that likely
increases the magnitude of phase I transport and total
sediment load compared to gravel bed channels. Conse-
quently, one might expect equation (6) to underpredict the
coefficient at East Fork, as observed.
[59] The Oak Creek and East Fork sites also differ from

the others in that bed load samples were obtained from
channel-spanning slot traps, rather than Helley-Smith
samplers. Recent work by Bunte et al. [2004] shows that
differences in sampling method can dramatically affect bed

load transport results, although Emmett [1980] demonstrates
reasonably good agreement between slot and Helley-Smith
samples at the East Fork site. Consequently, differences in
sampling method do not explain the observed prediction
error of the transport coefficient, at least at the East Fork
site.
[60] Differences in climate and runoff regime may also

influence the rating curve exponent (b). This is not a source
of error in our analysis (b is accurately predicted by
equation (6), even at Oak Creek), but rather a source of
systematic variation in b. A rainfall-dominated climate
produces greater short-term variability in the annual hydro-
graph (i.e., flashier hydrograph) than one dominated by
snowmelt [Swanston, 1991; Lisle et al., 2000] and typically
generates multiple peak flows throughout the year versus
the single, sustained peak associated with spring snowmelt.
Consequently, the frequency and magnitude of bed load
events differs between rainfall- and snowmelt-dominated
hydrographs. The magnitude of flow associated with a given
return period is typically greater in a rainfall-dominated
watershed than in a similarly sized snowmelt-dominated
watershed [Pitlick, 1994]. This is seen at our study sites in
that the highest Q2 unit discharge (0.44 m3 km�2) occurs at
the rainfall-dominated Oak Creek test site and is almost
twice the second highest Q2 unit discharge (0.27 m3 km�2)
at the snowmelt-dominated Dollar Creek study site. Further-
more, because of the greater short-term variability of rain-
fall-dominated hydrographs, the duration of intermediate
flows is reduced, which can lead to fining of the bed surface
and a decrease in the degree of the channel armoring
[Laronne and Reid, 1993; Lisle et al., 2000; Parker et al.,
2003]. Consequently, one might expect less armoring and
lower bed load rating curve exponents (b) in rainfall-
dominated environments compared to snowmelt ones.
However, b and the degree of armoring are also influenced
by bed load supply and boundary shear stress (section 4.4),

Figure 9. Box plots of predicted versus observed values of (a) coefficient and (b) exponent of our bed
load transport function (6). Median values are specified.
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so those parameters must be factored into any comparison of
runoff regimes. Lack of data (only one rainfall-dominated
site in our data set) precludes further examination of this
issue here.

4.6. Comparison With Other Equations

[61] To compare the accuracy of our bed load transport
equation (6) to those presented in section 4.1, we performed
a test of six formulae (including equation (6)) at the 17 test
sites. The test procedure was similar to that used in section
4.1.3; however, we assume no transport observations are
available for formula calibration (i.e., blind test), and
therefore we do not include the two variants of the Parker
et al. [1982] (di and d50ss) equation or the Bagnold [1980]
(dmqb) equation which require measured bed load transport
data. Consequently, only five of the eight variants of the
formulae from section 4.1 are included here, plus our power
law equation (6).
[62] Similar to section 4.1, incorrect zero-transport pre-

dictions are a problem for threshold-based equations, but the
number of zero predictions is significantly less at the test
sites (about 50% less compared to those shown in Figure 3
for the Idaho study sites). For both variants of the Meyer-
Peter and Müller [1948] equation the median percentage of
incorrect zero transport predictions is about 22%, while
the median percentage of incorrect zero predictions for the
Bagnold [1980] (dmss) equation is 28%. In contrast, the
Ackers and White [1973] equation incorrectly predicted zero
transport at only one test site (Oak Creek) for 35% of the
observations. The significance of incorrect zero-transport
predictions is similar at the 17 test sites as at the 24 Idaho
sites. The Qmax/Q2 ratio for both variants of theMeyer-Peter
and Müller [1948] (d50ss and di) equation had a median

value of 29% and 26%, respectively, at the Idaho sites and
about 30% at the test sites. The Qmax/Q2 ratio for the
Bagnold [1980] (dmss) equation decreased slightly from a
median value of 40% at the Idaho sites to 27% at the test
sites.
[63] Figure 10 shows the distribution of log10 differences

across the 17 test sites and demonstrates a significant
improvement in the performance of both versions of the
Meyer-Peter and Müller [1948] equation and the Bagnold
[1980] (dmss) equation due to fewer incorrect zero transport
predictions; median log10 differences improve from an
underprediction of almost 10 orders of magnitude at the
24 Idaho sites to an overprediction of only 1.3 to 2.2 orders
of magnitude at the test sites. The performance of both the
Parker et al. [1982] (di via Andrews [1983]) equation and
the Ackers and White [1973] equation decreased slightly at
the test sites with median log10 differences increasing from
2.73 and 0.25, respectively, at the Idaho sites to 3.27 and
0.80, respectively, at the test sites. Our bed load equation (6)
had the lowest median log10 difference (0.62) at the 17 test
sites.
[64] As in section 4.1.3, the performance of each formula

was evaluated using Freese’s [1960] c2 test, with results
similar to those of the Idaho sites; all formulae perform
significantly worse than the specified accuracy (E = 1 log10
unit, a = 0.05), including equation (6). We also evaluated
the critical error, e* [Reynolds, 1984], at each test site and,
like the Idaho study sites, we found that a given formula
may occasionally provide the required accuracy, but gener-
ally no equation performs within the specified accuracy
(Figure 11, all median e* values >E ).
[65] Nevertheless, our bed load transport equation (6)

outperformed all others at the 17 test sites, except for the

Figure 10. Box plots of the distribution of log10 differences between observed and predicted bed load
transport rates at the 17 test sites. Median values are specified. MPM stands for Meyer-Peter and Müller.
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Ackers and White [1973] equation which was statistically
similar to ours (paired c2 test of e* values, a = 0.05)
(Figure 11). As with the Idaho sites, the worst performers
were the Bagnold [1980] (dmss) equation and both variants
of the Meyer-Peter and Müller [1948] equation, both of
which were similar to one another, but different from the
Bagnold [1980] (dmss) equation (paired c2 test, a = 0.05).
Critical errors for the Parker et al. [1982] (di via Andrews
[1983]) equation were between these two groups of best and
worst performers and statistically different from them
(paired c2 test, a = 0.05). Overall, the patterns of formula
performance were similar to those of the Idaho study sites,
but the 17 test sites tended to have lower values of critical
error (see Figures 6 and 11).

4.7. Formula Calibration

[66] A principle drawback of our proposed bed load
transport equation (6) appears to be the site-specific nature
of the coefficient function (a). However, it may be possible
to back calculate a local coefficient from one or more low-
flow bed load transport measurements coupled with predic-
tion of the rating curve exponent as specified in equation (6),
thus significantly reducing the cost and time required
to develop a bed load rating curve from traditional bed
load sampling procedures [e.g., Emmett, 1980]. A similar
approach of formula calibration from a limited number of
transport observations was proposed by Wilcock [2001].
Our suggested procedure for back calculating the coefficient
assumes that the exponent can be predicted with confidence
(as demonstrated by our preceding analyses).
[67] By way of example, we used equation (6) to calcu-

late the exponent of the bed load rating curve at Oak Creek
and then randomly selected 20 low-flow bed load transport

observations to determine 20 possible rating curve coeffi-
cients. Low flows are defined as those less than the average
annual value. The average predicted coefficient using this
calibration method is 0.00032, which is much closer to the
observed value (0.00019) than our original prediction (0.39)
from equation (6). Thus our calibration method better
approximates the observed coefficient. Using the exponent
predicted from equation (6) and the calibrated coefficient of
0.00032, we predict total transport for each observation
made at Oak Creek. Results show that the critical error, e*,
improves from 6.17 to 1.53. Figure 12 illustrates the
improved accuracy of our bed load formula with calibration
to a limited number of low-flow transport observations.

5. Summary and Conclusions

[68] The bed load transport data sets obtained from
24 study sites in central Idaho, USA, provide an opportu-
nity to extend the analyses of Gomez and Church [1989]
and Yang and Huang [2001] into coarse-grained mountain
rivers and to continue recent studies of those environments
[Almedeij and Diplas, 2003; Bravo-Espinosa et al., 2003;
Martin, 2003]. We evaluated the performance of eight
different formulations of four common bed load transport
equations, each of which are calibrated to some degree
with site-specific data and vary in their complexity and
difficulty of use. Although we find considerable differences
in formula performance, there is no consistent relationship
between performance and degree of formula calibration or
complexity at the 24 Idaho sites. However, formulae
containing a threshold for bed load transport commonly
predict a substantial number of incorrect zero-transport
rates and typically perform worse than nonthreshold

Figure 11. Box plots of the distribution of critical error, e*, for the 17 test sites. Median values are
specified. MPM stands for Meyer-Peter and Müller.
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formulae. Moreover, we find that a simple power function of
discharge best describes the observed transport at the Idaho
sites (Freese’s [1960] c2, a = 0.05). This result is expected
because the power function is empirically fit to the observed
data. Nevertheless, the simplicity of the equation is attractive,
and we develop it into a predictive transport equation by
parameterizing its coefficient and exponent in terms of
channel and watershed conditions at the 24 Idaho study sites.
[69] We find that the exponent of the bed load rating

curve is inversely related to q* which describes the degree
of channel armoring relative to transport capacity and
sediment supply [Dietrich et al., 1989]. Because q* is a
relative index of supply-limited channel armoring we expect
our exponent equation to be transferable to other physiog-
raphies and channel types. In contrast, we find that the
coefficient of our bed load power function is inversely
related to drainage area and is likely a function of site-
specific sediment supply and channel type. As such, the
coefficient equation may not be as transferable to other
locations, but can be locally calibrated (section 4.7). We use
an additional 17 independent data sets to test the accuracy of
our bed load power function.

[70] As expected, the exponent is better predicted than
the coefficient at the 17 independent test data sets, with
typical errors of less than 3% and almost 300%, respec-
tively. We find that our coefficient function is sensitive to
local geology and channel type. In particular, our bed
load formula was developed from watersheds composed
principally of granitics and coarse-grained channel types,
and when applied to a less erosive lithology, such as
basalt (Oak Creek), we tend to overpredict bed load
transport. This is due to the site-specific nature of our
coefficient function rather than errors associated with our
exponent function (at Oak Creek the observed a = 1.9 �
10�4, predicted a = 0.39; observed b = 2.55, predicted
b = 2.43). Conversely, when we apply our formula to a
channel at the gravel/sand transition (East Fork River)
we underpredict the amount of bed load transport for a
given drainage area, again, due to the site-specific nature
of our coefficient function (observed a = 8.26 � 10�5,
predicted a = 2.06 � 10�7; observed b = 2.19, predicted
b = 1.82).
[71] Despite these concerns, we find that our bed load

formula significantly outperformed three of the four trans-

Figure 12. Observed versus predicted bed load transport rates at Oak Creek, illustrating improved
performance by calibrating the coefficient of our equation (6) to a limited number of observed, low-flow,
transport values.
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port formulae examined and was statistically similar to the
Ackers and White [1973] equation at the 17 independent test
sites.
[72] Although our exponent function appears to be

robust, a more thorough test of both the coefficient and
exponent functions, covering a wider range of geologies
and climatic regimes, is warranted. Moreover, our defini-
tion of q* requires stage–discharge data to determine
Q2 from flood frequency analyses and to determine the
Q2 flow depth from hydraulic geometry relationships.
Because the cost and time involved in stream gauging
may be prohibitive, an alternative and simpler approach
might be to define q* based on field measurements of
bank-full parameters. Bank-full depth can be determined
from cross-sectional surveys, and bank-full discharge can
be estimated from the Manning [1891] equation combined
with channel surveys of slope, bank-full radius, and an
appropriate estimate of channel roughness [e.g., Barnes,
1967].
[73] Our proposed transport equation also has applica-

tions for channel maintenance flows [Whiting, 2002]
which are often based on identifying discharges that
transport the most sediment over the long term (i.e.,
effective flows [Wolman and Miller, 1960]). This type
of analysis does not require knowledge of the actual
amount of sediment in transport, but rather requires only
an understanding of how bed load transport changes with
discharge (i.e., quantifying the bed load rating curve
exponent). Consequently, our bed load formula offers a
means to determine the exponent of the rating curve
without the time or expense of a full bed load measure-
ment campaign. For example, with the exponent of the
bed load rating curve predicted from equation (6), the
‘‘effective discharge’’ can be calculated following
the procedure outlined by Emmett and Wolman [2001]
and does not depend on the coefficient of the bed load
rating curve.
[74] The bed load formulae examined here are all one-

dimensional equations parameterized by reach-average
hydrologic and sedimentologic variables. However, most
natural channels exhibit patchy surface textures [e.g.,
Kinerson, 1990; Paola and Seal, 1995; Buffington and
Montgomery, 1999a; Laronne et al., 2000] and spatially
variable hydraulics. Moreover, because transport rate is a
nonlinear function of excess boundary shear stress, whole-
channel transport rates based on reach-average conditions
tend to under predict transport rates unless empirically
adjusted [Lisle et al., 2000; Ferguson, 2003]. Thus pre-
dictions of bed load transport rates ultimately would be
more accurate and true to processes in natural channels if
they were integrated over the distribution of excess shear
stress for a given flow [Gomez and Church, 1989].
[75] Nor does our analysis consider the short-term vari-

ability of the flux–discharge relationship. We relate the
available bed load transport record of each site to channel
and sediment-supply conditions at the time of field mea-
surement. Hence our analysis examines record-average
transport phenomena, but does not consider annual, seasonal
or flood event variability. For example, annual hysteresis
of bed load transport has been observed at some of the
Idaho sites [Moog and Whiting, 1998]. Nevertheless, the
same computational procedure outlined here could be used to

develop shorter-term values of a and b for use in
equation (6).

Appendix A: Bed Load Transport Equations

A1. Meyer-Peter and Müller [1948] (by d50ss)

[76] The Meyer-Peter and Müller [1948] formula is
written as

qb ¼ 8
rs

rs � r

� � ffiffiffi
g

r

r
n0

nt

� �3=2

rSD� 0:047 rs � rð Þd50ss

" #3=2
ðA1Þ

where qb is the total specific bed load transport rate (dry
mass per unit width and time), r and rs are water and
sediment densities, respectively (assumed equal to 1000 and
2650 kg m�3 throughout), n0/nt is the ratio of particle
roughness to total roughness which corrects the total
boundary shear stress to the skin friction stress (that portion
applied to the bed and responsible for sediment transport), S
is channel slope,D is average flow depth, 0.047 is the critical
Shields stress, g denotes gravitational acceleration, and
d50ss is the subsurface particle size for which 50% of the
sediment sample is finer. The original Meyer-Peter and
Müller [1948] equation specifies the characteristic grain size
as the mean particle size of the unworked laboratory
sedimentmixture, which is reasonably approximated by d50ss.
[77] The total roughness (nt) is determined from the

Manning [1891] equation as

nt ¼
S1=2R2=3

V
ðA2Þ

where V is average velocity and R is hydraulic radius. The
grain roughness (n0) is determined from the Strickler [1923]
equation as

n0 ¼ d
1=6
90s

26
ðA3Þ

where d90s is the surface particle size for which 90% of the
sediment sample is finer.

A2. Meyer-Peter and Müller [1948] (by di)

[78] Here, we modify the Meyer-Peter and Müller [1948]
formula for transport by size class

qbi ¼ 8fi
rs

rs � r

� � ffiffiffi
g

r

r
n0

nt

� �3=2

rSD� t*ci rs � rð Þdi

" #3=2
ðA4Þ

where qbi is the size-specific bed load transport rate, fi is the
proportion of subsurface material in the ith size class, t*ci is
the size-specific critical Shields stress, and di denotes mean
particle diameter for the ith size class. t*ci is determined
from the Andrews [1983] hiding function as

t*ci ¼ 0:0834 di=d50ssð Þ�0:872 ðA5Þ

We choose the Andrews [1983] function because it was
derived from channel types and physiographic environ-
ments similar to those examined in this study.
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A3. Ackers and White [1973] (by di)

[79] The Ackers and White [1973] equation as modified
by Day [1980] for size-specific transport is

qbi ¼ GgrifirsdiV
V

u*

� �n

ðA6Þ

where u* denotes shear velocity

u* ¼
ffiffiffiffiffiffiffiffiffi
gDS

p
ðA7Þ

and Ggri is the dimensionless transport rate of the ith size
class, defined as

Ggri ¼ C
Fgri

Ai

� 1

� �m
ðA8Þ

[80] Fgri is the dimensionless particle mobility parameter
(analogous to a noncritical Shields stress), Ai is a
dimensionless hiding function analogous to a critical
Shields stress, and C and m are empirical values. Fgri is
defined as

Fgri ¼
u*n

gD
rs�r
r

� �1
2

Vffiffiffiffiffi
32

p
log 10D

di

� �
2
4

3
5
1�n

ðA9Þ

where n is an empirical parameter that accounts for mobility
differences between the fine and coarse components of the
bed load [Ackers and White, 1973]. Ai, C, m, and n are
functions of dimensionless particle size (Dgri)

Dgri ¼ di g rs � rð Þ= rv2
� �� �1=3 ðA10Þ

where v denotes kinematic viscosity (water temperature
assumed 15	C throughout).
[81] For 1 < Dgri � 60

n ¼ 1� 0:56 log Dgri

� �
ðA11Þ

m ¼ 9:66

Dgri

þ 1:34 ðA12Þ

C ¼ 10 2:86log Dgrið Þ� log Dgrið Þð Þ2�3:53
� �

ðA13Þ

Ai ¼ 0:4
di

DA

� ��1=2

þ 0:6

" #
A ðA14Þ

where

DA ¼ d50ss 1:62

ffiffiffiffiffiffiffiffiffi
d84ss

d16ss

s �0:55
2
4

3
5 ðA15Þ

A ¼ 0:23ffiffiffiffiffiffiffiffi
Dgri

p
 !

þ 0:14 ðA16Þ

and d84ss and d16ss are, respectively, the subsurface particle
sizes for which 84% and 16% of the sediment sample is

finer. Day [1980] defines equation (A15) in terms of grain
size percentiles of the unworked laboratory sediment
mixture, which we approximate here by the subsurface
grain size distribution.
[82] For Dgri > 60

n ¼ 0 ðA17Þ

m ¼ 1:5 ðA18Þ

C ¼ 0:025 ðA19Þ

Ai ¼ 0:4
di

DA

� ��1=2

þ 0:6

" #
A ðA20Þ

where

A ¼ 0:17 ðA21Þ

A4. Bagnold [1980] (by dmqb)

[83] The Bagnold [1980] formula is

qb ¼
rs

rs � r

� �
q
b*

w� w0

w� w0ð Þ
*

" #3=2
D

D
*

 !�2=3
dmqb

d
*

 !�1=2

ðA22Þ

where qb* denotes the reference transport rate (0.1 kg s�1

m�1), w and w0 are the applied and critical values of unit
stream power, respectively, (w � w0)*

denotes the reference
excess stream power (0.5 kg s�1 m�1), D

*
is a reference

stream depth (0.1 m), d* denotes the reference particle size
(0.0011 m), and dmqb is the modal grain size of a given bed
load transport observation.
[84] Unit stream power is defined as

w ¼ rDSV ðA23Þ

Note that this definition of stream power lacks a gravity
term, which Bagnold [1980] factors out of all of his
equations.
[85] Critical unit stream power for unimodal sediments is

defined as

w0 ¼ 5:75
rs
r
� 1

� �
r0:04

� �3=2
g

r

� �1=2

d3=2mss log
12D

dmqb

� �
ðA24Þ

For bimodal sediments, Bagnold [1980] replaces w0 with
v0, the geometric mean of the critical stream power for the
two modes

v0 ¼ w0ð Þ1 w0ð Þ2
� �1=2 ðA25Þ

where (w0)1 and (w0)2 are solved individually from (A24),
but with dmqb replaced by the modes of the bed load size
distribution (dm1 and dm2, respectively). Separate computa-
tions of (A22) were made under bimodal conditions,
replacing dmqb with dm1 for one set of computations and
dm2 for the second set of computations [Bagnold, 1980],
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which were then summed to determine the total bed load
transport of each event.

A5. Bagnold [1980] (by dmss)

[86] We use the same approach as above, but with the
modal grain size defined from the subsurface material (dmss)
(a proxy for the high-flow bed load distribution).

A6. Parker et al. [1982] (by d50ss)

[87] The Parker et al. [1982] formula is

qb ¼
ffiffiffi
g

p
DSð Þ3=2G f50ssð ÞWr*

rs
R ðA26Þ

where W*r is the reference dimensionless transport rate
(equal to 0.0025), R is the submerged specific gravity of
sediment (rs/r � 1), and G(f50ss) is a three-part bed load
transport function [as revised by Parker, 1990] that depends
on the excess Shields stress of the median subsurface grain
size (f50ss)

G f50ssð Þ ¼ 5474 1� 0:853

f50ss

� �4:5

f50ss > 1:59 ðA27aÞ

G f50ssð Þ ¼ exp 14:2 f50ss � 1ð Þ � 9:28 f50ss � 1ð Þ2
h i

1 � f50ss � 1:59 ðA27bÞ

G f50ssð Þ ¼ f14:2
50ss f50ss � 1 ðA27cÞ

[88] The excess Shields stress is defined as the ratio of the
applied Shields stress (t*50ss) to that of the reference value
(t*50r, that capable of producing the reference dimensionless
transport rate, W *r = 0.0025)

f50ss ¼
t*50ss
t*50r

� �
ðA28Þ

[89] The applied Shields stress is given by

t*50ss ¼
t0

rg R d50ss
ðA29Þ

where t0 is the total boundary shear stress calculated from
the depth-slope product (rgRS). The reference Shields stress
(t*50r) is empirically determined from site-specific bed load
transport data following the procedure described by Parker
et al. [1982]. Their approach involves regressing size-
specific dimensionless transport rates (W *i )

W*i ¼
R qbi

fi
ffiffiffi
g

p
DSð Þ3=2

ðA30Þ

against corresponding Shields stress values (t*i )

t*i ¼
t0

rg R di
ðA31Þ

and collapsing the size-specific curves into a single function

W*i ¼ aiti*M ðA32Þ

where M is the weighted mean exponent of the size-specific
functions of W *i versus t*i , and ai is the size-specific
coefficient of regression [Parker et al., 1982]. Finally, t*50r
is determined from equation (A32) for the reference
transport rate (W *i = W *r = 0.0025) and the site-specific
value of a50.

A7. Parker et al. [1982] (by di)

[90] The Parker et al. [1982] equation by size class (di) is

qbi ¼ fi
ffiffiffi
g

p
DSð Þ3=2G fið ÞW*r

rs
R ðA33Þ

where fi denotes the size-specific excess Shields stress

fi ¼
t*i
t*ri

� �
ðA34Þ

which replaces f50ss in equation (A27) for solution of G(fi).
t*ri values are determined from site-specific bed load
transport data as described above for Parker et al. [1982]
by d50ss.

A8. Parker et al. [1982] (by di via Andrews [1983])

[91] Here we use the same approach as above, but t*ri
values are determined from the Andrews [1983] hiding
function (A5).
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