A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers

John M. Buffington and David R. Montgomery

Department of Geological Sciences, University of Washington, Seattle

Abstract. Data compiled from eight decades of incipient motion studies were used to calculate dimensionless critical shear stress values of the median grain size, $au_{c_{50}}^{*}$. Calculated τ_{cso}^* values were stratified by initial motion definition, median grain size type (surface, subsurface, or laboratory mixture), relative roughness, and flow regime. A traditional Shields plot constructed from data that represent initial motion of the bed surface material reveals systematic methodological biases of incipient motion definition; $\tau^*_{c_{50}}$ values determined from reference bed load transport rates and from visual observation of grain motion define subparallel Shields curves, with the latter generally underlying the former; values derived from competence functions define a separate but poorly developed field, while theoretical values predict a wide range of generally higher stresses that likely represent instantaneous, rather than time-averaged, critical shear stresses. The available data indicate that for high critical boundary Reynolds numbers and low relative roughnesses typical of gravel-bedded rivers, reference-based and visually based studies have $\tau_{c_{50}}^*$ ranges of 0.052–0.086 and 0.030–0.073, respectively. The apparent lack of a universal $\tau_{c_{50}}^*$ for gravel-bedded rivers warrants great care in choosing defendable $\tau_{c_{50}}^*$ values for particular applications.

Introduction

Incipient motion of streambeds is a fundamental process with applications to a wide variety of research problems, such as paleohydraulic reconstructions [Church, 1978], placer formation [Komar and Wang, 1984; Li and Komar, 1992], canal design [Lane, 1955], flushing flows [Milhous, 1990; Kondolf and Wilcock, 1992], and assessment of aquatic habitat [Buffington, 1995; Montgomery et al., 1996]. Regardless of whether one advocates equal mobility [Parker et al., 1982], selective transport [e.g., Komar, 1987a, b], or some other style of sediment movement, most investigators use a standard or modified form of the critical Shields parameter to define incipient motion of a grain size of interest. The Shields parameter, or dimensionless critical shear stress, is defined as $\tau_{c_i}^* = \tau_{c_i}/(\rho_s - \rho)gD_i$, where τ_{c_i} is the critical shear stress at incipient motion for a grain size of interest, D_i ; g is the gravitational acceleration; and ρ_s and ρ are the sediment and fluid densities, respectively. Of particular interest for fluvial geomorphologists is determination of dimensionless critical shear stress values of the median grain size, $\tau_{c_{50}}^*$, for high boundary Reynolds numbers characteristic of gravel-bedded streams.

Shields [1936] demonstrated that $\tau_{c_{50}}^*$ of near-uniform grains varies with critical boundary Reynolds number, Re_c^* , and hypothesized on the basis of an analogy with Nikuradse's [1933] findings that $\tau_{c_{50}}^*$ attains a constant value of about 0.06 above $Re_c^* = 489$ (Figure 1). The critical boundary Reynolds number is defined as $Re_c^* = u_c^* k_s / \nu$, where u_c^* is the critical shear velocity for incipient motion $(u_c^* = (\tau_c / \rho)^{1/2})$, k_s is the boundary roughness length scale, and ν is the kinematic viscosity; Shields [1936] set $k_s = D_{50}$, the median grain size of the sediment. Although Shields' [1936] boundary Reynolds num-

Copyright 1997 by the American Geophysical Union.

Paper number 96WR03190. 0043-1397/96WR-03190\$09.00 bers differ from *Nikuradse*'s [1933], the general form of *Shields*' [1936] curve (Figure 1) is quite similar to *Nikuradse*'s [1933] curve, indicating regions of hydraulically smooth, transitional, and rough turbulent flow. The commonly quoted value of $\tau_{c_{50}}^* \approx 0.06$ for rough turbulent flow reflects a single data point within the overall swath of *Shields*' [1936] data (Figure 1).

There have been numerous additions, revisions, and modifications of the Shields curve since its original publication. Shields [1936], Grass [1970], Gessler [1971], and Paintal [1971] recognized that incipient motion of a particular grain size is inherently a statistical problem, depending on probability functions of both turbulent shear stress at the bed and intergranular geometry (i.e., friction angles) of the bed material, the latter being controlled by grain shape, sorting, and packing [Miller and Byrne, 1966; Li and Komar, 1986; Kirchner et al., 1990; Buffington et al., 1992]. Consequently, there is a frequency distribution of dimensionless critical shear stresses for any grain size of interest. Reanalyzing Shields' [1936] data and correcting for sidewall effects and form drag, Gessler [1971] reported $\tau^*_{c_{50}} \approx 0.046$ for a 50% probability of movement in rough turbulent flow. Without consideration of the probability of movement, Miller et al. [1977] arrived at a similar value of $\tau^*_{c_{50}} \approx 0.045$ for rough turbulent flow using compiled flume data from various sources. Miller et al. [1977, p. 507] employed data from "flumes with parallel sidewalls where flows were uniform and steady over flattened beds of unigranular, rounded sediments"; sidewall corrections were applied and each source used a consistent definition of incipient motion. Although Miller et al. [1977] used carefully selected data to ensure compatibility within their compilation, scrutiny of their data shows use of both uniform and nonuniform sediment mixtures, differing incipient motion definitions between studies, and in some cases bed load transport rates influenced by bed forms.

Using a larger data set and ignoring differences in sediment

Figure 1. Shields' [1936] curve redrafted from Rouse [1939].

characteristics, channel roughness, or definition of incipient motion, *Yalin and Karahan* [1979, Figure 5] also report $\tau_{c_{50}}^* \approx 0.045$ for rough turbulent flow. They further demonstrate the existence of a second Shields curve for fully laminar flow, which for the same Re_c^* values behaves differently than the traditional Shields curve derived from turbulent flow with variable hydrodynamic boundary conditions (i.e., smooth, transitional, or rough). The $\tau_{c_{50}}^*$ values reported by *Miller et al.* [1977] and *Yalin and Karahan* [1979] are average values of data sets with considerable scatter; in both studies individual $\tau_{c_{50}}^*$ values for rough turbulent flow range from about 0.02 to 0.065.

Previous compilations of $\tau^*_{c_{50}}$ values combine data derived from quite different experimental conditions and methodologies with little assessment of compatibility. Continued proliferation of incipient motion studies using new definitions of initial motion further complicates comparison and understanding of published studies. Although differences in experimental condition and methodology have been recognized and discussed [e.g., Tison, 1953; Miller et al., 1977; Carson and Griffiths, 1985; Lavelle and Mofjeld, 1987; Wilcock, 1988, 1992b], their influence on reported $\tau^*_{c_{50}}$ values has not been well examined. Here we compile eight decades of incipient motion data and stratify calculated $\tau^*_{c_{50}}$ values by (1) initial motion definition, (2) choice of surface, subsurface or laboratory mixture median grain size, (3) relative roughness, and (4) flow regime, providing a systematic reanalysis of the incipient motion literature. We also evaluate the compatibility of different investigative methodologies and interpret the range of reported $\tau^*_{c_{50}}$ values.

Data Compilation and Stratification

All available incipient motion data are summarized in Tables 1a–1e. Values of $\tau_{c_{50}}^*$, critical boundary Reynolds number (Re_c^*) , and median grain size (D_{50}) are reported for each source, as well as experimental conditions and dimensionless critical shear stress equations where these are different than *Shields*' [1936]. Where available, the graphic sorting coefficient $(\sigma_g [Folk, 1974])$, sediment density (ρ_s) , and relative roughness (D_{50}/h_c) , where h_c is the critical flow height at incipient motion) are also reported. In many cases values of Re_c^* and $\tau_{c_{50}}^*$ (or particular types of $\tau_{c_{50}}^*$, as discussed later) were not reported but could be calculated from the data and equations presented by the author(s); to be consistent with *Shields* [1936], we used $k_s = D_{50}$ when calculating Re_c^* . The graphic sorting

coefficient is defined as $(\phi_{84} - \phi_{16})/2$, where ϕ_{84} and ϕ_{16} are the 84th and 16th percentiles of the grain size distribution expressed in units of the phi (log₂) scale. Values of h_c used to determine relative roughness were back-calculated from depth-slope products where sufficient data were reported. Detailed notes regarding both our calculations and the investigative procedures used by each source are presented by *Buffington* [1995] and are abbreviated in the appendix.

The data compiled in Tables 1a–1e are stratified by incipient motion definition. The four most common methods of defining incipient motion are: (1) extrapolation of bed load transport rates to either a zero or low reference value (Table 1a) [e.g., *Shields*, 1936; *Day*, 1980; *Parker and Klingeman*, 1982]; (2) visual observation (Table 1b) [e.g., *Gilbert*, 1914; *Kramer*, 1935; *Yalin and Karahan*, 1979]; (3) development of competence functions that relate shear stress to the largest mobile grain size, from which one can establish the critical shear stress for a given size of interest (Table 1c) [e.g., *Andrews*, 1983; *Carling*, 1983; *Komar*, 1987a]; and (4) theoretical calculation (Table 1d) [e.g., *White*, 1940; *Wiberg and Smith*, 1987; *Jiang and Haff*, 1993].

Dimensionless critical shear stresses determined from the first method are based on critical shear stresses associated with either a zero or low reference transport rate extrapolated from paired shear stress and bed load transport measurements. Values determined from this approach are sensitive to the extrapolation method [cf. *Parker and Klingeman*, 1982; *Diplas*, 1987; *Ashworth and Ferguson*, 1989; *Ashworth et al.*, 1992] and the particular reference transport value that is chosen [*Wilcock*, 1988].

Visual observation, used in the second method, is direct but can be subjective depending on one's definition of how much movement constitutes initial motion [e.g., *Gilbert*, 1914; *Kramer*, 1935; *Neill and Yalin*, 1969; *Wilcock*, 1988]. *Paintal* [1971] argues that there will always be some probability of grain movement as long as there is any fluid motion; hence the threshold of movement becomes a definitional construct [see also *Lavelle and Mofjeld*, 1987]. Standardized definitions of incipient motion have been proposed on the basis of the number of grains in motion, the area of bed observed, and the duration of observation [*Neill and Yalin*, 1969; *Wilcock*, 1988]; however, these definitions have not been widely adopted.

Competence functions, used in the third method, are sensitive to the size and efficiency of the sediment trap, sample size, sampling strategy, availability of coarse grain sizes, and curvefitting technique [*Wilcock*, 1992b; *Wathen et al.*, 1995]. Furthermore, the competence method is inappropriate for sediment that exhibits equal mobility, as the competence approach relies on selective transport [*Wilcock*, 1988, 1992b].

The fourth method utilizes simple force balance arguments to predict initial motion thresholds and is sensitive to model parameters such as grain protrusion, packing, and friction angle. In our analysis, $\tau^*_{c_{50}}$ values corresponding to these four methods of measuring incipient motion are symbolized as $\tau^*_{c_{r50}}$ (reference), $\tau^*_{c_{v50}}$ (visual), $\tau^*_{c_{q50}}$ (competence), and $\tau^*_{c_{r50}}$ (theoretical).

Data compiled for each definition of incipient motion are further subdivided by median grain size type (e.g., Table 1a). Values of $\tau^*_{c_{50}}$ have been variously reported in the literature for the median grain size of the surface (D_{50s}) , subsurface (D_{50ss}) , and laboratory sediment mixture (D_{50m}) , the three of which are equal only for uniform-sized sediment; corresponding dimensionless critical shear stresses for these three median grain size types are denoted here as $\tau^*_{c_{50s}}$, $\tau^*_{c_{50ss}}$, and $\tau^*_{c_{50m}}$. Expression of dimensionless critical shear stress in terms of the subsurface grain size distribution was popularized by Andrews [1983], who expressed the Shields stress of a given grain size of interest $(\tau_{c_i}^*)$ as a power law function of the ratio D_i/D_{50ss} ; Andrews [1983] found that for his data, D_i/D_{50ss} was better correlated with $\tau_{c_i}^*$ than was D_i/D_{50s} ($r^2 = 0.98$ versus 0.89 [Andrews, 1983]). Although expression of bed load transport formulations in terms of D_{50ss} [e.g., Parker et al., 1982] seems reasonable because of the general correspondence of bed load and subsurface grain size distributions [Milhous, 1973; Kuhnle, 1993a], it is counterintuitive to use the dimensionless critical shear stress of the subsurface to define thresholds of motion and the onset of bed load transport in gravel-bedded channels [e.g., Andrews, 1983; Parker et al., 1982]. It is well known that most gravel-bedded rivers are armored and that the surface and subsurface grain size distributions can differ significantly [e.g., Leopold et al., 1964; Milhous, 1973]. Analysis of incipient motion of gravel-bedded rivers therefore should employ surface values of critical shear stress. No matter how well the subsurface grain size distribution correlates with the bed load transport size distribution, the initiation of bed load transport is controlled by bed surface grains. Nevertheless, the correspondence of subsurface and transport size distributions indicates that subsurface-based mobility values are appropriate for describing bed load transport beyond incipient motion. Because the difference between subsurface and surface grain size distributions is unpredictable, there is no a priori conversion of subsurface-based incipient motion values to surface ones.

There is currently little recognition in the incipient motion literature of the difference between $\tau_{c_{50}}^*$ values for the various D_{50} types (i.e., $\tau_{c_{50s}}^*$, $\tau_{c_{50ss}}^*$, and $\tau_{c_{50m}}^*$). As such, careful evaluation of reported values is necessary in order to compare and choose appropriate values of $\tau_{c_{50}}^*$. For example, using an Andrews-type power function expressed in terms of a generic median grain size, *Komar* [1987a] reports a generic $\tau_{c_{50}}^*$ value of 0.045 for three gravel channels studied by *Milhous* [1973], *Carling* [1983], and *Hammond et al.* [1984]. It is only upon close inspection of *Komar*'s [1987a] analysis that it becomes apparent that this value represents incipient motion of grain sizes similar or equal to the median subsurface size (note 32, appendix); the corresponding unreported surface values ($\tau_{c_{50}}^*$) range from 0.021 to 0.027 (Table 1c), roughly half that reported by *Komar* [1987a]. Scaling critical shear stresses by

subsurface median grain sizes generally produces $\tau_{c_{50}}^*$ values larger than surface-based ones because of bed surface armoring (compare $\tau_{c_{50s}}^*$ and $\tau_{c_{50ss}}^*$ values of *Parker and Klingeman* [1982], *Wilcock and Southard* [1988], *Kuhnle* [1992], *Andrews and Erman* [1986], *Komar* [1987a], and *Komar and Carling* [1991], given in Tables 1a and 1c).

We emphasize that the dimensionless critical shear stress values reported here are for the median grain size only. Shields parameters of other grain sizes of interest will vary as a function of size-specific friction angle, grain protrusion, and mobility of neighboring grains.

Analysis

Of the 613 dimensionless critical shear stress values compiled in Tables 1a–1e, we examined only those that represent incipient motion of the bed surface, because of their relevance for determining sediment transport thresholds in armored gravel-bedded channels. Subsurface dimensionless critical shear stress values ($\tau_{c_{50ss}}^*$) were removed from the database, as they were all derived from armored channels and thus do not represent initial motion of the streambed surface.

Sorting coefficients (σ_a) were used to establish conditions in which initial motion of laboratory mixtures could be used as a measure of surface mobility (i.e., establishing when $au^*_{c_{50m}}$ approximates $\tau^*_{c_{50}}$). Poorly sorted laboratory sediment mixtures have the potential to exhibit textural response and reworking prior to measurement of incipient motion in both referencebased and visually based studies. Reference-based laboratory studies commonly employ shear stress and bed load transport data collected after attainment of equilibrium conditions of slope, bed form character, and transport rate [e.g., Gilbert, 1914; Shields, 1936; Guy et al., 1966; Williams, 1970; Wilcock, 1987], prior to which considerable reworking of the bed surface may occur [e.g., Wilcock and Southlard, 1989; Wilcock and McArdell, 1993]. Visually based studies also allow varying degrees of water working and sediment transport depending on the specific definition of initial motion employed [e.g., Kramer, 1935, U.S. Waterways Experimental Station (USWES), 1935]. Consequently, the actual surface grain size distribution of initially poorly sorted mixtures may not resemble the original mixture distribution at the time of incipient motion measurement. This causes potentially erroneous results when measured shear stresses for water-worked sediments are combined with unworked mixture distributions to determine dimensionless critical shear stress, as is commonly done in laboratory studies.

Textural response of laboratory mixtures is controlled by relative conditions of transport capacity and sediment supply [e.g., Dietrich et al., 1989; Kinerson, 1990; Buffington. 1995]. Depending on the direction of textural response, $\tau^*_{c_{50m}}$ values could overestimate or underestimate actual dimensionless critical shear stress values of the surface $(\tau_{c_{50}}^*)$. Mixture median grain sizes will approximate surface median grain sizes only when laboratory sediment mixtures are well sorted, as there is little potential for textural response of a well-sorted bed material. Hence only under these conditions will dimensionless critical shear stresses of the mixture approximate those of the surface. We confined our use of mixture-based studies to those using well-sorted material, where "well sorted" is defined as $\sigma_q \leq 0.5$. Under this definition, some of the laboratory sediment mixtures used by Shields [1936] are mixed-grain (Table 1a). Mixture-based studies with unknown σ_q values were not used.

Figure 2. Variation of dimensionless critical shear stress with relative roughness. Only data with known D_{50}/h_c are shown here; all mixture data have $\sigma_{gm} \leq 0.5$.

We further screened the data for relative roughness effects (D_{50}/h_c) . Bathurst et al. [1983] demonstrated that for a given grain size, $\tau_{c_{50}}^*$ systematically increases with greater relative roughness and that the rate of increase depends on channel slope [see also Shields, 1936; Cheng, 1970; Aksoy, 1973; Mizuyama, 1977; Torri and Poesen, 1988]. The increase in $\tau_{c_{50}}^*$ with greater relative roughness can be explained through the concept of shear stress partitioning

$$\tau_0 = \tau' + \tau'' + \cdots \tau^n \tag{1}$$

which is predicated on the hypothesis that the total channel roughness and shear stress (τ_0) can be decomposed into linearly additive components (τ' , τ'' , etc.), each characterizing a particular roughness element [*Einstein and Barbarossa*, 1952; *Engelund*, 1966; *Hey*, 1979, 1988; *Parker and Peterson*, 1980; *Brownlie*, 1983; *Prestegaard*, 1983; *Dietrich et al.*, 1984; *Griffiths*, 1989; *Nelson and Smith*, 1989; *Petit*, 1989, 1990; *Robert*, 1990; *Clifford et al.*, 1992; *Millar and Quick*, 1994; *Shields and Gippel*, 1995]. The effective shear stress (τ') is defined here as that which is available for sediment transport after correction for other roughness elements (i.e., $\tau' = \tau_0 - \tau'' - \cdots \tau^n$).

Based on this concept of shear stress partitioning, greater form drag caused by increased relative roughness (D_{50}/h_c) will decrease the shear stress available at the bed for sediment transport (τ'), resulting in a higher total shear stress (τ_0) required for incipient motion and thus an apparently greater τ^*_{cso} value. The compiled data demonstrate a general positive correlation between $\tau^*_{c_{50}}$ and D_{50}/h_c over the range 0.01 $\leq D_{50}/h_c \leq 2$ (Figure 2). The apparent inverse correlation of $au^*_{c_{50}}$ and D_{50}/h_c for $D_{50}/h_c < 0.01$ is a coincident effect of flow regime and is not a relative roughness effect. The compiled data with $D_{50}/h_c < 0.01$ generally have $Re_c^* \leq 20$, which corresponds with the hydrodynamically transitional and smooth portions of the *Shields* [1936] curve for which $\tau_{c_{50}}^*$ is negatively correlated with Re_c^* (Figure 1). It is the association with these low Re_c^* flow regimes, not the relative roughness itself, that causes the apparent inverse correlation of $\tau_{c_{s_0}}^*$ and D_{50}/h_c for $D_{50}/h_c < 0.01$. Because of the influence of relative roughness on $\tau^*_{c_{50}}$, we restricted our analysis to data with $D_{50}/h_c \leq 0.2$, a value that we chose to be generally representative of gravel-bedded streams. We excluded data from studies with unknown D_{50}/h_c values.

We also excluded data from convergent-wall flume studies because of their apparent incompatibility with those from parallel-wall flumes [Vanoni et al., 1966; Miller et al., 1977]. The above screening results in a database of 325 $\tau_{c_{50}}^*$ values, roughly half of the total compilation.

A traditional Shields plot constructed from data representing initial motion of the bed surface exhibits the expected general form of the original Shields curve but reveals systematic methodological biases of incipient motion definition (Plate 1). Values of $\tau_{c_{50}}^*$ determined from reference bed load transport rates ($\tau_{c_{50}}^*$) and from visual observation of grain motion $(\tau_{c_{v50}}^*)$ define subparallel Shields curves, with the visual data generally underlying the reference data. Reference-based dimensionless critical shear stress values determined from wellsorted laboratory mixtures ($au_{c_{r50m}}^{*}$) and from surface grains of natural channels $(\tau^*_{c_{r50s}})$ dovetail quite well. Dimensionless critical shear stress values derived from competence functions $(\tau_{c_{a50s}}^*)$ define a separate but poorly developed field. Although not shown, theoretical values $(\tau_{c_{150s}}^*)$ exhibit no trend in relation to Re_c^* and are widely variable depending on choice of intergranular friction angle and grain protrusion (Table 1d). Furthermore, the theoretical values generally predict high stresses that likely represent instantaneous, rather than timeaveraged, critical shear stresses [Buffington et al., 1992]. Scatter within Shields curves has long been attributed to methodological differences between experiments [e.g., Tison, 1953; Miller et al., 1977; Carson and Griffiths, 1985; Lavelle and Mofjeld, 1987], but our reanalysis presents the first comprehensive support for this hypothesis.

The data in Plate 1 are also segregated by flow condition (i.e., fully laminar versus hydraulically smooth, transitional, or rough turbulent flow). We did not limit the laminar data to $D_{50}/h_c \leq 0.2$, as relative roughness effects are unlikely for laminar flow conditions. As demonstrated by *Yalin and Karahan* [1979], two Shields curves are defined for laminar versus turbulent flow conditions over similar Re_c^* values. The lower-angle trend of our compiled laminar curve is similar to that identified by *Yalin and Karahan* [1979].

Despite eight decades of incipient motion studies there remains a lack of $\tau_{c_{50}}^*$ values representative of fully turbulent flow and low relative roughness typical of gravel-bedded rivers (Plate 1). The available data indicate that for such conditions reference-based and visually based studies have $\tau_{c_{50}}^*$ ranges of 0.052–0.086 and 0.030–0.073, respectively (Figure 3). The visual range, however, is rather speculative because of the lack of data for high critical boundary Reynolds numbers.

Scatter within the stratified data sets likely reflects a variety of factors, such as differences in bed material properties (i.e.,

Plate 1. Shields curve for empirical data that represent initial motion of the bed surface material. All mixture-based values have known $\sigma_{gm} \leq 0.5$. Circled triangles are values reported for Oak Creek by *Parker and Klingeman* [1982], *Diplas* [1987], *Wilcock and Southard* [1988], *Parker* [1990], and *Wilcock* [1993]; these values are variations of the same data set (that of *Milhous* [1973]) analyzed using *Parker et al.*'s [1982] definition of incipient motion. The reference-based subcategory of protruding grains indicates significant grain projection and exposure sensu *Kirchner et al.* [1990].

grain sorting, packing, shape, and rounding), neglect of roughness elements (i.e., sidewalls, form drag, etc.), method of shear stress measurement, sampling technique used to characterize grain size distributions (and hence D_{50}), differences in the scale and duration of sediment transport observations, and finer-scale differences in incipient motion definition [e.g., Wilcock, 1988]. Differences in bed material properties can either increase or decrease particle mobility. Greater sorting and angularity cause grains to be more resistant to movement and increase $\tau^*_{c_{50}}$ values [Shields, 1936; Miller and Byrne, 1966; Li and Komar, 1986; Buffington et al., 1992]. In contrast, increased sphericity, looser packing, and surfaces with protruding grains increase grain mobility, resulting in lower $\tau^*_{c_{50}}$ values [Fenton and Abbott, 1977; Church, 1978; Reid et al., 1985; Li and Komar, 1986; Kirchner et al., 1990; Powell and Ashworth, 1995]. Incipient motion of nonspherical particles is also influenced by their orientation with respect to the downstream flow direction [Carling et al., 1992]. Platy grains (i.e., slates, micaceous flakes, etc.) tend to have very low incipient motion thresholds (Plate 1 and Figure 3) [Mantz, 1977].

Neglecting roughness effects (i.e., use of τ_0 rather than τ') causes overestimation of $\tau_{c_{50}}^*$ and introduces a range of scatter that varies with the magnitude of neglected roughness. Form drag caused by relative roughness is a source of scatter that is particularly evident in the visually based data. Many of these data cluster into steeply sloping lineaments (Figure 3b). Bathurst et al. [1983] explained this observation as a relative roughness effect, with greater relative roughness causing apparently larger $\tau_{c_{50}}^*$ values, as discussed above. Each lineament in Figure 3b is generally composed of data from a single investigation of a particular bed material [Gilbert, 1914; Liu, 1935; Wolman and Brush, 1961; Neill, 1967; Everts, 1973]. We

examined each lineament and found that most demonstrate the expected positive correlation between D_{50}/h_c and $\tau^*_{c_{50}}$; however, *Neill's* [1967] data inexplicably show a negative correlation despite Re^*_c values greater than 200. Use of the effective shear stress (τ') rather than the total shear stress (τ_0) in calculating $\tau^*_{c_{50}}$ would likely collapse most of the observed relative roughness lineaments, decreasing $\tau^*_{c_{50}}$.

Although reference-based $\tau^*_{c_{50}}$ values are less variable than visually based ones (Figure 3), potentially large roughness effects caused by bed form drag are commonly neglected in reference studies (Table 1a), which may, in part, explain their larger $\tau^*_{c_{s_0}}$ values. However, bed form drag also is typically neglected in competence-based studies, which underlie reference-based values (Plate 1). In both reference-based and visually based studies some sidewall corrections are only partial (cf. Tables 1a and 1b). Accurate sidewall correction requires accounting for both differences in bed and wall roughness [e.g., Vanoni and Brooks, 1957; Knight, 1981; Flintham and Carling, 1988; Shimizu, 1989] and dissipation of bed shear stress caused by proximity of walls [e.g., Johnson, 1942; Williams, 1970; Parker, 1978; Knight, 1981; Flintham and Carling, 1988; Shimizu, 1989]. Although frequently neglected, the latter correction is of most importance in flume studies, as they typically have narrow width-to-depth ratios (i.e., W/h < 10). Partial accounting of sidewall effects can lead to the erroneous conclusion that sidewalls increase the effective bed shear stress [e.g., Brooks, 1958; Wilcock, 1987; Kuhnle, 1993b].

The method used to measure shear stress can also influence $\tau_{c_{50}}^*$. In some instances shear stress is measured as a simple depth-slope product [e.g., *Powell and Ashworth*, 1995], while in other investigations shear stress is estimated from one or more velocity profiles [e.g., *Grass*, 1970; *Ashworth and Ferguson*,

1997

Figure 3. Comparison of (a) reference-based and (b) visually based $\tau_{c_{50}}^{*}$ data shown in Plate 1. Circled triangles in Figure 3a are discussed in caption to Plate 1. See appendix note 12 regarding open circles of Figure 3a.

1989]. Each of these methods can result in different estimates of shear stress, and thus distinct $\tau^*_{c_{50}}$ values, particularly if shear stress is nonuniform through a study reach.

Use of different sampling techniques to characterize grain size distributions, and hence D_{50} , may also cause some of the observed scatter. The compiled studies use a variety of areal, grid, and volumetric sampling techniques each of which can yield different results [e.g., *Kellerhals and Bray*, 1971; *Diplas and Sutherland*, 1988; *Diplas and Fripp*, 1992; *Fripp and Diplas*, 1993]. Reference-based studies that use *Parker and Klingeman*'s [1982] method are particularly sensitive to grain size sampling technique, as their method employs the proportion of each size class of the grain size distribution.

Although dimensionless critical shear stress is trigonometrically related to bed slope [e.g., *Wiberg and Smith*, 1987] (a factor not accounted for in the traditional Shields equation), its effect on the compiled $\tau_{c_{50}}^*$ values is minimal, as most of the data are derived from experiments with bed slopes less than 0.01. The data of *Bathurst et al.* [1987] and *Mizuyama* [1977] are notable exceptions; however, $\tau_{c_{50}}^*$ values reported for these studies are based on modified Shields stresses that account for both bed slope and bulk friction angle of the sediment (Table 1a).

Use of appropriate k_s values when calculating Re_c^* may reduce some of the observed scatter [e.g., *Ippen and Verma*, 1953]. There have been numerous k_s empiricisms proposed [cf. *Einstein and Barbarossa*, 1952; *Leopold et al.*, 1964; *Kamphuis*, 1974; *Hey*, 1979; *Bray*, 1980], most of which are greater than D_{50s} for heterogeneous bed surfaces; Whiting and Dietrich [1990], for example, suggest $k_s = 3D_{84s}$. Although we use $k_s = D_{50s}$ for comparison with historical Shields curves, $k_s = D_{50s}$ is only appropriate for uniformly sized sediment. However, Re_c^* correction using appropriate k_s values will not improve the $\tau_{c_{50}}^*$ uncertainty, which accounts for most of the observed scatter.

Differences in the scale and duration of observation within and between methodologies may also contribute to the scatter of compiled data [e.g., Neill and Yalin, 1969; Fenton and Abbott, 1977; Wilcock, 1988]. For example, the spatial scale of observation in visually based studies varies from the entire bed surface [e.g., Gilbert, 1914] to that viewed from a microscope [White, 1970]. Similarly, reference- and competence-based studies may employ channel-spanning bed load traps that sample all material passing a cross section [e.g., Milhous, 1973] or they may combine several point measures of bed load transport [e.g., Ashworth and Ferguson, 1989], representing a smaller scale of observation. Temporal scales of observation also vary among and within methodologies. For example, visually based studies are typically of short duration and made while the channel adjusts to perturbations of slope or hydraulic discharge. In contrast, reference-based studies conducted in flumes employ data collected over long time periods and after attainment of equilibrium conditions of channel morphology and hydraulics. However, reference- and competence-based studies conducted in the field are influenced by nonequilibrium conditions and may require shorter periods of data collection because of logistics and safety during high flows [e.g., Ashworth and Ferguson, 1989; Wilcock et al., 1996]. Differences in spatial and temporal scales of observation can yield different estimates of critical conditions for incipient motion, particularly in channels that exhibit nonuniformities of shear stress, grain size, and bed material properties that cause spatial differences in mobility [e.g., Powell and Ashworth, 1995; Wilcock et al., 1996]. Rules for standardizing incipient motion definition and the spatial and temporal scales of observation between investigations have been proposed [e.g., Neill and Yalin, 1969; Yalin, 1977; Wilcock, 1988] but are not widely used. Wilcock [1988] proposed a standard definition of incipient motion for mixedgrain sediments that accounts for the number of grains moved, their size and proportion of the grain size distribution, and the area and duration of observation. Even when such rules are applied, channels with identical reach-average shear stresses and grain size distributions may demonstrate different $\tau^*_{c_{50}}$ values because of subreach differences in the spatial variability of shear stress, sediment supply, and bed surface textures (i.e., grain size, sorting, and packing).

Differences of incipient motion definition within each methodology may also contribute to the observed scatter. For example, *Kramer*'s [1935] three definitions of visual grain motion (weak, medium, and general) represent a two-fold difference in $\tau_{c_{50}}^*$ values. Similarly, differences in the choice of dimensionless reference transport rate used to define incipient motion can result in a three-fold variation of reference-based $\tau_{c_{50}}^*$ values [*Paintal*, 1971, Figure 6]. Despite this potential for variation, *Wilcock* [1988] found that reference-based $\tau_{c_{50}}^*$ values determined from the *Parker and Klingeman* [1982] and *Ackers and White* [1973] methods differed by only 5% for the same data set.

Scatter within the reference- and competence-based data may also reflect choice of curve fitting technique [Diplas, 1987; Ashworth and Ferguson, 1989; Ashworth et al., 1992; Wathen et al., 1995]. In an extreme example, Paintal [1971, Figure 8] demonstrates that nonlinear relationships between bed load transport rate and dimensionless shear stress that are mistakenly fit with a linear function can cause up to a five-fold overestimation of reference-based τ_{c50}^* values. In many cases it is difficult to assess or correct differences in curve-fitting technique between investigations due to incomplete documentation of measurements and analysis procedure. The results of Shields [1936], in particular, are often used as the standard for comparison, yet Shields' [1936] basic measurements and curve fitting technique are unreported, making it difficult to fully assess the causes of discrepancy between Shields' [1936] data and those reported by others.

The above influences on $\tau_{c_{50}}^*$ values can be of comparable magnitude and can easily account for the observed scatter of values within methodologies. For example, neglect of roughness effects and natural variation of bed surface characteristics have the potential to cause similar magnitudes of scatter. Variation in particle protrusion and packing can result in an order of magnitude range in $\tau_{c_{50}}^*$ [Fenton and Abbott, 1977; Powell and Ashworth, 1995], while bed form drag in natural rivers can comprise 10%–75% of the total channel roughness [Parker and Peterson, 1980; Prestegaard, 1983; Dietrich et al., 1984; Hey 1988], indicating a similar range of $\tau_{c_{50}}^*$ variation if bed form resistance is not accounted for. Nonetheless, despite potentially similar sources and/or magnitudes of scatter, the compiled data demonstrate distinct methodological biases (Plate 1).

Discussion

Our reanalysis and stratification of incipient motion values reveal systematic methodological biases and highlight fundamental differences of median grain size type and their associated values of dimensionless critical shear stress. The Shields curve constructed from our data compilation (Plate 1) (1) specifically represents incipient motion of the bed surface, (2) excludes data associated with large relative roughness values that are uncharacteristic of gravel-bedded rivers, and (3) includes for the first time reference- and competence-based $\tau_{c_{50}}^*$ values for surface material ($\tau_{c_{r50}}^*$ and $\tau_{c_{50}}^*$). We find that the rough, turbulent flow value of $\tau_{c_{50}}^* \approx 0.045$ reported in previous compilation studies [*Miller et al.*, 1977; *Yalin and Karahan*, 1979] is typical of visually determined mobility thresholds of laboratory mixtures ($\tau_{c_{r50m}}^*$), but underestimates dimensionless critical shear stresses determined from reference transport rates ($\tau_{c_{r50m}}^*$ and $\tau_{c_{r50}}^*$) (Figure 3).

Although methodological bias explains much of the scatter in our constructed Shields curve, one is still faced with deciding which investigative method to rely on when choosing a $\tau^*_{c_{50}}$ value. None of the four investigative methods is demonstrably superior; each has its strengths and weaknesses. However, some methods may be more appropriate for particular applications [Carson and Griffiths, 1985]. For example, because reference- and competence-based values are derived from bed load transport measures, they may be more well suited to application in bed load transport investigations. Depending on the bed load sampling strategy, reference- and competencebased methods may also integrate differential bed mobility resulting from bed surface textural patches and reach-scale divergence of shear stress and sediment supply and thus may be more appropriate for representing reach-average bed mobility. In contrast, visually based methods typically record local incipient motion and are best applied to mobility studies of discrete bed surface textural patches. Because of methodological biases, care should be taken to choose $\tau_{c_{so}}^*$ values from an investigative method that represents the scale and type of incipient motion needed for one's particular study goals. Conversely, study results should be interpreted in light of the incipient motion method used and the sediment transport processes that it measures. For example, $\tau_{c_{50}}^*$ values from either competence- or reference-based methods could be used to predict reach-average incipient motion, but competencebased values describe motion of the coarsest bed load sizes, whereas reference-based values describe motion of the full bed load distribution; the two methods describe the mobility of different subpopulations of the bed material and may yield different results if equivalent scaling factors are not used [Wilcock, 1988].

Of the four methods from which to choose $\tau^*_{c_{50}}$ values, competence-based and theoretically based methods can be excluded because of a paucity of data that precludes confident interpretation of the functional relationship between $\tau^*_{c_{50}}$ and Re^*_c . Nevertheless, the competence-based data define a horizontal band of roughly constant dimensionless critical shear stresses at high Re^*_c values as expected for a Shields-type relationship (Plate 1). Furthermore, this band of data generally lies within the Shields curve defined by visually based methods and systematically underlies the reference-based data (cf. Plate 1 and Figure 3), contrary to expectations that competence values should be greater than reference-based ones due to underrepresentation of coarse grain sizes [Wilcock, 1992b].

The fact that some of the data in both methods are derived from the same study sites [*Milhous*, 1973; *Ashworth et al.*, 1992; *Wathen et al.*, 1995] makes this difference between competence- and reference-based approaches credible. For the same study site, competence-based $\tau_{c_{50}}^*$ values are roughly 15%– 30% smaller. The systematically lower incipient motion values determined from the competence approach may reflect an inherent bias associated with use of the largest mobile grain size. Larger bed surface grains may have lower mobility thresholds because of greater protrusion and smaller intergranular friction angles [e.g., *Buffington et al.*, 1992]. *Komar and Carling*'s [1991] variant of the competence approach using the median grain size of the load, rather than the maximum grain size, produces $\tau_{c_{50}}^*$ values similar to reference-based ones (Table 1e).

In contrast to theoretically based and competence-based methods, functional relationships between $\tau^*_{c_{50}}$ and Re^*_{c} are well defined for reference-based and visually based approaches. Both the reference-based and visually based studies exhibit a roughly twofold range in $\tau^*_{c_{50}}$ values for conditions typical of gravel-bedded channels (Figure 3), which represents significant uncertainty in dimensionless critical shear stress. Many bed load transport equations are based on the difference between the applied and critical grain shear stresses raised to some power greater than 1 (see the review by Gomez and Church [1989]). Differences between applied and critical shear stresses are typically small in gravel-bedded channels [Parker et al., 1982] because of the approximately bankfull-threshold nature of bed mobility (see the review by *Buffington* [1995]). Consequently, small errors in $\tau_{c_{50}}$ due to uncertainty in $\tau^*_{c_{50}}$ can cause significant errors in calculated bed load transport rates.

Consideration of the sources of scatter and their systematic influence on the reference-based and visually based data provides further guidance in choosing specific $\tau_{c_{50}}^*$ values. In particular, neglect of form drag effects may cause systematic overestimation of $\tau^*_{c_{50}}$ values. It is commonly implied that because flume-based studies of incipient motion employ initially planar bed surfaces they are free of form drag influences caused by bed forms [e.g., Miller et al., 1977]. This is true for the visually based studies, but it is not so for most of the reference-based investigations, such as Shields' [1936]. In the visual studies, flow is typically increased gradually until grains are observed to move from a plane-bed surface [e.g., Kramer, 1935; White, 1970; Yalin and Karahan, 1979]. In contrast, most of the reference studies are based on bed load transport data collected after attainment of equilibrium conditions, which in many instances are characterized by the presence of bed forms [e.g., Gilbert, 1914; Shields, 1936; Guy et al., 1966; Wilcock and Southard, 1988]. Because bed form resistance can comprise up to 75% of the total channel roughness [Hey, 1988], there is a potentially significant difference between τ' and τ_0 , and hence the calculated $\tau^*_{c_{50}}$ value, if bed form roughness is not accounted for. Moreover, it is uncertain whether bed load transport data from surfaces characterized by bed forms can provide a meaningful extrapolation to conditions of initial motion from a lower-regime plane bed, as is commonly intended in laboratory reference-based studies. Although bed form resistance is not an issue in visually based studies, relative roughness effects common to these studies (i.e., lineaments of Figure 3b) may provide an equally important source of form drag and overestimation of $\tau^*_{c_{50}}$ values if not accounted for.

In analyzing incipient motion data it is common practice to fit a single average curve through the scatter of data. However, a Shields curve defined by minimum $\tau_{c_{50}}^*$ values will minimize overestimation of $\tau_{c_{50}}^*$ caused by neglect of form drag resistance in both reference-based and visually based studies (Tables 1a and 1b) and may be more representative of poorly sorted sediments typical of gravel channels. Poorly sorted sediments tend to have lower intergranular friction angles and thus lower incipient motion thresholds [*Buffington et al.*, 1992]. The necessarily narrow range of sorting ($\sigma_g \leq 0.5$) of the mixture data, however, may preclude any meaningful analysis of sorting effects. The $\tau_{c_{50}}^*$ values for rough turbulent flow derived from minimum Shields curves are 0.052 and 0.030 for reference-based and visually based studies, respectively (Figure 3). However, thorough accounting of roughness effects may produce even lower values.

Regardless of whether an average or minimum curve is chosen for the reference-based data, Oak Creek is an outlier (Figure 3a). It does not fit with the expected general form of the traditional Shields curve as defined by the other data. This is somewhat disconcerting, as Oak Creek is believed to be one of the best bed load transport data sets available for natural channels and has been used by many authors as the standard for comparison. Although the issue warrants further investigation, the discrepancy between Oak Creek and the other reference-based data may be due to unaccounted for differences in channel roughness (Table 1a).

Conclusions

Our reanalysis of incipient motion data for bed surface material indicates that (1) much of the scatter in Shields curves is due to systematic biases that investigators should be aware of when choosing and comparing dimensionless critical shear stress values from the literature; and (2) there is no definitive $\tau_{c_{50}}^*$ value for the rough, turbulent flow characteristic of gravelbedded rivers, but rather there is a range of values that differs between investigative methodologies. Our analysis indicates that less emphasis should be placed on choosing a universal $\tau_{c_{50}}^*$ value, while more emphasis should be placed on choosing defendable values for particular applications, given the observed methodological biases, uses of each approach, and systematic influences of sources of uncertainty associated with different methods and investigative conditions.

Note added in proof. During the time this article was in press we discovered several other referenced-based values similar to those of Oak Creek [see *Andrews*, 1994; *Andrews and Nankervis*, 1995].

Notation

D_{50}, D_{84}, D_i	grain size for which 50%,
	84%, and $i\%$ of the grains
	are finer.
$D_{50s}, D_{50ss}, D_{50m}, D_{50l}$	median grain sizes of the
	surface, subsurface,
	laboratory mixture, and bed
	load.
D_{gs}	geometric mean surface
-	grain size.
g	gravitational constant.
h	critical flow depth for

- incipient motion.
- k_s boundary roughness length scale (equivalent to

ort Rate	
Transpo	
Reference	
Values:	
$\tau^*_{c_{50}}$	
Reported	
Previously	
la.	
Table	

П

					Surface Grain	ı Size Distril	oution		
Source	Note*	$ au_{c_{r50s}}^*$	$Re_{c}^{*}\dot{\uparrow}$	Proposed τ_c^* Function Other Than Shields'	$D_{50s},$ mm	$\sigma_{gs}~(\phi)$	$\rho_s, \mathrm{kg/m^3}$	$D_{50s}/h_c \ddagger$	Experimental Conditions
Parker and Klingeman [1982]	-	0.035\$	6,744	$\begin{array}{l} Parker \ and \ Klingerman \ \left[1982 \right] \\ \tau_{c_{r_{i}}}^{*} = \ 0.035 (D_{i}/D_{50s})^{-0.94} \end{array}$	keference Trans 54	iport Rate 1.09	2850	0.15	natural pool-rifile channel (Oak Creek);
Diplas [1987] From Wilcock and Southard	7	0.034§	6,647	$ au_{c_{ri}}^{*} = 0.087 (D_i/D_{50ss})^{-0.94}$	54	1.09	2850	0.16	no form drag or sidewall correction same as <i>Parker and Klingeman</i> [1982]
[1988] Milhous [1973] Ashworth and Ferguson [1989]	б	0.027§ 0.072§	5,923 ~7,773	$ au_{c_{ri}}^{*} = 0.073 (D_i/D_{50s})^{-0.98} \ au_{c_{ri}}^{*ii} = 0.072 (D_i/D_{50s})^{-0.65}$	54 ~50	1.09 m	2850 2540	0.20 0.11	same as <i>Parker and Klingeman</i> [1982] natural pool-riffle channel (Alt Dubhaig), variable sinuosity; sidewall
		0.054§	\sim 8,463	$ au^*_{c_{ri}} = 0.054 (D_i/D_{50s})^{-0.67}$	~57.5	Е	2600	0.10	correction implicit natural pool-riffie channel (River Feshie), mildly braided; sidewall
		0.087\$	$\sim 16,138$	$ au^*_{c_{H^i}} = \ 0.087 (D_i/D_{50s})^{-0.92}$	~ 69	ш	3090	0.13	correction implicit natural braided channel (Lyngsdalselva);
Parker [1990] Ashworth et al. [1992]		0.034\$ 0.061\$	6,731 2,463	$ au_{c_{ii}}^{*}=0.039(D_{i}/D_{gs})^{-0.90} \ au_{c_{ii}}^{*}=0.061(D_{i}/D_{50s})^{-0.79}$	54 24	1.02 m	2850 2650	0.16 0.06	suceval correction implicit same as <i>Parker and Klingeman</i> [1982] natural, braided, gravel channel (Sunwapta River); form drag and
Kuhnle [1992]		0.065\$	869	$ au_{c_{ii}}^{*} = 0.086 (D_i/D_{50ss})^{-0.81}$	11.73	06.0	÷	0.03	sidewall correction as in note 3 natural channel with mixed gravel and sand bed exhibiting macroscale dunes [Kuhnle and Bowie, 1992] (Goodwin Creek); no sidewall or form drag correction
From Wilcock [1993] Milhous [1973]	4	0.012\$	3,949	$ au_{c_{ri}}^{*} = 0.033 (D_i/D_{50ss})^{-0.98}$	54	1.09	2850	0.20	same as <i>Parker and Klingeman</i> [1982]; <i>Einstein</i> [1950] sidewall and form drag
Wilcock and McArdell [1993]	5	0.028\$	88	$ au^*_{c_{P_i}} = 0.028 (D_i/D_{50s})^{-0.45}, \ 0.77 \le D_i/D_{50s} \le 17.3$	2.6	2.51	2610	0.12	correction¶ straight, rectangular flume; variable bedforms; <i>Einstein</i> [1950] sidewall and
Wathen et al. [1995]		0.086§	2,445	$ au^*_{c_{ij}} = 0.086 (D_i/D_{50s})^{-0.90}$	21.3	~ 1.6	2650	0.01-0.14	torm drag correction ¹¹ natural pool-rifte channel (Alt Dubhaig), variable sinuosity; no sidewall or form drag correction
Day [1981]	9	0.035	2,129	Ackers and White [1973] Ref 	erence Transpo 20	nt Rate 0.92	÷	≥0.24-0.41	straight, rectangular flume; plane bed; no
		0.036	2,491	:	22	0.86	:	≥0.28-0.45	sidewall correction as above
Ippen and Verma [1953]		0.045	30	Zero Reference	lransport 2.0	≤0.13	1280	0.23	straight, rectangular flume; plastic test
									grain placed on fixed plane bed; significant grain projection and exposure;** sidewall effects insignificant

					Surface Grain	Size Distrib	ution		
Source	Note*	$ au_{c,50s}^*$	$Re_{c}^{*\ddagger}$	Proposed τ_c^* Function Other Than Shields'	D_{50s}, mm	$\sigma_{gs} \left(\phi ight)$	$\rho_s, \mathrm{kg/m^3}$	$D_{50s}/h_c\ddagger$	Experimental Conditions
Meland and Norman [1966]	Р	0.044§ 0.045§ 0.008§	33 35 33	:::	2.0 2.0 2.09	$ \leq 0.13 \\ \leq 0.13 \\ 0$	1280 1280 2560	0.19 0.16 ≥0.05	as above as above straight, rectangular flume; fixed plane bed: glass test grain placed on
		0.022§ 0.016§	390 330	::	7.76 7.76	0 0	2510 2510	≥0.16 ≥0.16	rbonbohedrally packed bed; significant grain projection and exposure;** sidewall correction implicit as above as above, but with a loose bed
				Labo	oratory Mixture	Grain Size I	Distribution		
Source	Note*	$ au_{cr50m}^{*}$	$Re_{c}^{*} \ddot{\dagger}$	Proposed τ_c^* Function Other Than Shields'	$D_{50m}, { m mm}$	$\sigma_{gm}~(\phi)$	$\rho_s, \mathrm{kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions
	c			Zero Reference Tr	ansport Rate				
From Sneeds [1950] Gilbert [1914]††	ø	0.059\$	489	÷	7.01	<0.22	2690?	0.16	straight, rectangular flume; bed form types not reported; partial sidewall correction (?);## no form drag
		0.051	227	:	4.94?	<0.26	2690?	0.18	correction, subrounded granns as above
Casey [1935]		0.067\$	1.9	:	0.17	0.41	2650	≤0.03	<pre>straight, rectangular flume; various bed forms; partial sidewall correction (?); ## no form drag correction; subangular to rounded grains</pre>
		0.052\$	3.3 11		0.27	0.42	2650	≤0.04	as above
		0.0358	11	: :	0.00	0.10 0.17	2650	≤0.10 ≤0.12	as above as above
		0.038§	18	:::::::::::::::::::::::::::::::::::::::	0.94	0.19	2650	≤0.05	as above
		0.042§	$\frac{31}{2}$		1.26	0.20	2650	< 0.20?	as above
		0.0438	49 80		C/ T	0.19	2650	≤0.10 <0.10	as above
Kramer [1935]		0.033	6.6	÷	0.53	0.81	2700?	≤0.04	fraght, rectangular flume; various bed forms; partial sidewall correction (?); ## no form drag correction; well-
		0.039	7.6	: :	0.51	0.74	2700?	≤0.04	rounded grams as above
USWES [1935]\$\$?		0.051\$	2.2	:	0.21?	0.32	2650	0.02	as acove straight, rectangular flume; various bed forms; partial sidewall correction (?); ## no form draw correction
		0.046	4.1	:	0.31?	0.53?	2650	0.02	as above

as above as above as above as above as above straight, rectangular flume; various bed form types; form drag and sidewall correction as in note 3; angular barite grains	as above as above as above as above as above as above, but with angular amber grains; and and a station of the static sta	partial sucteon correction,++ no torm drag correction as above as above, but with angular granitic grains as above, but with angular granitic grains	as above as above, but with angular coal grains as above as above as above	straight, rectangular flume; various bed forms; <i>Einstein</i> [1942] sidewall correction;¶ no form drag correction; subaroular orains	as above as above straight, rectangular flume; bed form types not reported; sidewall correction implicit (?); rounded grains	as above, but with plane-bed or dune morphology; no form drag correction	as above, but with planar or rippled bed; no form drag correction	as above straight, rectangular flume; various bed forms; form drag and sidewall correction same as in note 3: plass orains	straight, rectangular flume; plane bed (?); Johnson [1942] sidewall correction¶	as above sandy marine channel (Pickering Passage) with rippled bed; roughness correction similar to that for note 3	straight, rectangular flume; bed form type not reported; <i>Einstein</i> [1942] sidewall correction:¶ no form drag correction	as above as above as above as above
0.02 0.03 0.03 ≤0.04?	≤ 0.04 ? ≤ 0.04 ? ≤ 0.04 ? ≤ 0.04 ? ≤ 0.04 ?	$\leq 0.04?$ $\leq 0.04?$ $\leq 0.04?$ $\leq 0.04?$	≤0.04? ≤0.04? ≤0.04? ≤0.04?	0.02	0.02 0.03	0.02	0.02	$^{0.03}_{-0.08?}$	0.12	$<2 \times 10^{-5}$	0.12	0.27 0.49 0.12 0.33
2650 2650 2650 2650 4300	4200 4190 4200 1060	1060 1060 2700 2710	2690 1270 1270 1270 1270	2690	2690	: :	2670	2670 2560	2650		2507	2507 2507 2656 2656
0.37? 0.53? 0.82? 0.53? 0.30	$\begin{array}{c} 0.35\\ 0.22\\ 0.16\\ 0.41\\ 0.59\end{array}$	$\begin{array}{c} 0.59\\ 0.59\\ 0.23\\ 0.23\end{array}$	$\begin{array}{c} 0.23\\ 0.78?\\ 0.78\\ 0.78\\ 0.72\\ 0.56\end{array}$	<0.09	<0.11 0.38	1.23	0.85	0.61	0.18	1.09	<0.12	<0.12 <0.12 <0.21 <0.21
0.357 0.527 0.517 0.527 0.36	1.52 2.46? 3.44 1.56	1.56 1.56 0.85 1.23	2.44 1.77? 1.88 2.53	0.305	0.375 0.67	0.60	0.62	0.92 3.9	7.95	6.4 0.42	6.4	6.4 6.4 12.0 12.0
:::::		::::	:::::	:	::	: :	:	::	:	::	$ au_{c,\mathrm{Sjm}}^{*} = au_{c,\mathrm{Sim}}^{*} [(ho_{s} - ho)gD_{\mathrm{SOm}} (au_{c,\mathrm{Sim}} + au_{c,\mathrm{Sim}})]$	as above as above as above as above
4.4 7.4 7.8 6.3	56 124 219 142 8.8	8.9 9.3 29	100 15 23 38	12	15 16	14 2	16	24 207	638	4.8	437	$481 \\ 507 \\ 1,076 \\ 1,096$
0.039\$ 0.035 0.036 0.036 0.037\$	0.036 0.042 0.046 0.046 0.038 0.038	0.041 0.045 0.030§ 0.035§	0.049§ 0.030 0.040 0.040	0.297	0.262 0.055§	0.062	0.064	0.047	0.050\$	0.048	0.038§ (0.049)	$\begin{array}{c} 0.047 \ (0.060) \\ 0.053 \ (0.066) \\ 0.042\$ \ (0.041) \\ 0.044 \ (0.043) \end{array}$
			c	10				11	12		13	
Shields [1936]			E [1042]	Gilbert [1914]††	MacDougall [1933]; River Hydraulics Laboratory, (unpublished report)	Chyn [1935]	Jorissen [1938]	Meland and Norman [1969]	Paintal [1971]	Stemberg [1971]\$\$,	Mizuyama [1977]††,¶¶	

					Labora	ory Mixture (Grain Size D	Distribution		
Source	Note*	$ au_{cr50m}^*$	Re_{c}^{*} †	Proposed τ_c^* Fu Other Than Sh	inction lields'	D_{50m}, mm	$\sigma_{gm}~(\phi)$	$ ho_s,~{ m kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions
		0.052(0.049) 0.058(0.054) 0.067(0.060)	1,174 1,227 1.297	as above as above as above		12.0 12.0 12.0	<0.21 <0.21 <0.21	2656 2656 2656	$\begin{array}{c} 0.59 \\ 0.83 \\ 1.00 \end{array}$	as above as above as above
		0.083 (0.072)	1,419	as above		12.0	<0.21	2656	1.04	as above
		0.043(0.042)	2,057 2,841	as above as above		5.27	<0.08 <0.08	2490 2490	0.63 0	as above as above
		0.057 (0.053)	2.971	as above		22.5	<0.08	2490	06.0	as above
		0.069(0.061)	3,199	as above		22.5	< 0.08	2490	1.05	as above
		(0.079) (0.066)	3,320	as above		22.5	<0.08	2490	1.47	as above
Pazis and Graf [1977]	14	~0.020 ~ 0.020	6.2–92	as above		0.49–3.02	<u?< li=""><u?< li=""></u?<></u?<>	2490 2650– 1410		as above straight, rectangular flume; sand and plastic grains; bed form types unreported; <i>Einstein</i> [1950] sidewall
From <i>Bathurst et al.</i> [1987] École Polytechnique Fédérale de Lausanne	15	0.052\$ (0.036)	905	$\tau^*_{c_{r}^{c_{0}}_{0}} = \tau_{c_{r}^{c_{0}}_{0}}/[(\rho_s$	$\left[\begin{array}{c} \rho \end{pmatrix} g D_{50m} \end{array}\right]$	11.5	~u?	2650	0.08	straight, rectangular flume; various bed forms; <i>Einstein</i> [1950] (?) sidewall and
							d		0	form drag (?) correction
		0.063§ (0.043) 0.0708/0.048)	944 1 036	as above as above		11.5 7 1	~u.~	2650 2650	0.10	as above as above
		0.062§ (0.053)	3.231	as above		22.2	0.34	2570	0.12	as above
		0.087(0.071)	3,436	as above		22.2	0.34	2570	0.27	as above
		0.102(0.082)	3,621	as above		22.2	0.34	2570	0.39	as above
		0.113(0.088)	3,753	as above		22.2	0.34	2570	0.50	as above
		0.115(0.088)	3,886	as above		22.2	0.34	2570	0.65	as above
		0.068 (0.054)	016,1 8 366	as above		0.44 0.67	~u~	0526	0.53	as above
		(+0.0) 00.0 (+0.0) (+0.0)	8 714	as above		0.44 5.44	~11 ²	2750	0.50	as above
		0.087 (0.065)	9,131	as above		44.3	~u?	2750	0.79	as above
Bathurst et al. [1979]	16	0.094\$ (0.092)	881	as above		8.8	0.42	2629	0.13	straight, rectangular flume; plane-bed or low amplitude bed forms; no form
		0 176 /0 113)	07.4	or chore		00	<i>c</i> 7 0	0191		urag Or Sidewall correction (?)
		0.120 (0.113) 0.185 (0.170)	1.194	as above as above		0.0 8.8	$0.42 \\ 0.42$	2029 2629	0.28	as above
		0.095(0.079)	6,198	as above		34	0.44	2629	0.61	as above
Li and Komar [1992]	17	0.048§	3.3	:		0.24	≤0.13	÷	0.03	straight, rectangular flume; nonuniform flow; bed form types unreported; no form drag or sidewall correction
[1000]				Ackers and White	[1973] Refer	ence Transpor	t Rate			
rrom Day [1980]	0	0.050	5			0,0		0270		
[6661] 62460	10	000.0	1.4	:		0.47	0.00	0.007	70.0	straight, rectanguar nume, yarious bed forms; no sidewall or form drag correction; subangular to subrounded grains
		0.047	7.3	:		0.44	0.59	2650	0.02	as above, but with angular to subrounded grains

Table 1a. (Continued)

		0.034	189	::	4.10	0.54	2650	0.07	as above, but with subrounded to
Day [1980]		0.024	37	:	1.75	2.10	÷	0.04	subangular grains straight, rectangular flume; bed form type not reported; no sidewall or form
Day [1981]	19	0.029 0.045	34 1,025	::	1.55 11.3	1.70 1.41	::	0.03 ≥0.24- 0.47	drag correction as above straight, rectangular flume; plane bed; no sidewall correction
Leopold and Emmett [1976, 1977]] From Wilcock and Southard	20	0.072	32	Parker and Klingeman [1982] Ref $ au_{c_{r_i}}^* = 0.072 (D_i / D_{s_{0m}})^{-0.86}$	èrence Transp 1.25	ort Rate 2.8	2650	0.006	natural, dune-ripple channel (East Fork); no sidewall or form drag correction
[1988] Day $[1980]$		0.037	48	$ au_{c_{ij}}^{*} = 0.037 (D_{i}/D_{50m})^{-0.81}$	1.82	2.09	÷	0.03	straight, rectangular flume; bed form type not reported; no form drag or
Dhamotharan et al. [1980]		$0.037 \\ 0.071$	39 108	$\begin{aligned} \tau^*_{\frac{5}{6}''} = & 0.037 (D_j/D_{50m})^{-0.95} \\ \tau^*_{c_{\prime\prime}} = & 0.071 (D_j/D_{50m})^{-1.1} \end{aligned}$	1.57 2.16	1.73 1.43	 2630	0.03	sidewall correction (?) as above straight, rectangular flume; bed form type not reported by <i>Wilcock and</i> <i>Continued</i> (1088), no form <i>drag or</i>
Misri et al. [1984]		0.048	101	$ au_{c_{ri}}^{*} = 0.048 (D_{i}/D_{50m})^{-1.0}$	2.36	1.05	2650	<0.05	sidewall correction (?) straight, rectangular flume; bed form type not reported; <i>Einstein</i> [1950]
Wilcock [1987]		$0.042 \\ 0.037 \\ 0.030$	194 196 61	$\begin{array}{llllllllllllllllllllllllllllllllllll$	3.81 4.00 1.83	1.65 1.29 0.53	2650 2650 2650	<0.07 <0.07 0.04	sidewall and form drag correction¶ as above as above straight, rectangular flume; various bed forms; <i>Einstein</i> [1950] sidewall and
		0.036 0.023§ 0.037§	67 12 332	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.83 0.67 5.28	1.06 0.29 0.20	2650 2650 2650	0.03 0.02 0.06	form drag correction¶ as above as above straight, rectangular flume; plane bed; <i>Einstein</i> [1950] sidewall and form drag
Wilcock [1992a]	21	0.049	115	$\tau^*_{c_{ii}} = 0.049 (D_i/D_{50m})^{-1.04}$	2.55	0.89	÷	0.07	correction¶ straight, rectangular flume; various bed forms; <i>Einstein</i> [1950] sidewall and form drag correction¶ sindal
		د.	د.	$egin{array}{lll} & au_{c_1}^* &= & 0.017 (D_i/D_{50m})^{-1.25}, \ & 0.27 &\leq & D_i/D_{50m} &\leq & 0.39; \ & au_{c_n}^* &= & 0.063 (D_i/D_{50m})^{-1.14}, \end{array}$	2.00	1.65	÷	÷	sediment as above, but with strongly bimodal sediment; D_{som} is fictitious, not a size occurring in the mixture
		0.052	19	$\begin{array}{l} 2.1 \leq D_i / D_{50m} \leq 3.1 \ au^{c_i} = 0.52 (D_i / D_{50m})^{-0.73}, \ 0.7 \leq D_i / D_{50m} \leq 1.0; \ au^{-s} = 0.042 (D_i D_{50m})^{-1.17}. \end{array}$	0.75	1.67	:	0.01	as above, but D_{50m} is real
Kuhnle [1993b]		0.035	8.4	$ au_{c_{ii}}^{c_{ii}} = 0.035 (D_i / D_{50m})^{-1.0}, \ au_{c_{ii}}^{c_{ii}} = 0.035 (D_i / D_{50m})^{-1.0}$	0.47	2.18	÷	0.02	straight, rectangular flume; plane bed or low amplitude bed forms; <i>Vanoni and</i>
		0.039§ 0.043	404 8.7	$ \begin{aligned} \tau^*_{\mathcal{E}''} &= 0.039 (D_i / D_{50m})^{-1.1} \\ \tau^*_{o'_i} &= 0.043 (D_i / D_{50m})^{-1.1}, \\ 0.45 &\leq D_i / D_{50m} &\leq 2.5; \\ \tau^*_{o'_i} &= 0.019 (D_i / D_{50m})^{-0.32}, \\ 3.6 &\leq D_i / D_{50m} &\leq 20.4 \end{aligned} $	5.58 0.47	0.36 0.87	::	0.12 0.02	<i>Brooks</i> [1957] sidewall correction¶,*** as above as above

Table 1a. (Continued)									
				La	boratory Mixtu	ıre Grain Siz	e Distributi	on	
Source	Not	${ m e}^*$ $ au_{cr50m}^*$	$Re_{c}^{*} \dagger$	Proposed τ_c^* Function Other Than Shields'	D_{50m} , mr	$\mathfrak{n} \sigma_{gm} (\phi)$	$ ho_s,~{ m kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions
		0.041	11	$ au_{c_{i_{1}}}^{*} = 0.041 (D_{i}/D_{50m})^{-1.0}, \ 0.37 \leq D_{i}/D_{50m} \leq 3.0; \ au_{c_{i_{1}}}^{*} = 0.035 (D_{i}/D_{50m})^{-0.55}, \ au_{110}^{*}$	0.57	1.89	:	0.02	as above
		0.045	29	$ \begin{aligned} \tau_{c_{ji}}^{*} &= D_{ji} D_{500} = 11.9 \\ \tau_{c_{ji}}^{*} &= 0.045 (D_{ji} D_{500})^{-1.0}, \\ 0.22 &\leq D_{ji} (D_{500} \leq 1.2; \\ \tau_{c_{ji}}^{*} &= 0.037 (D_{ji} / D_{500})^{-0.42}, \\ \tau_{c_{ji}}^{*} &= D_{ji} / D_{500} \leq 7.1 \end{aligned} $	0.95	2.03	:	0.03	as above
Wilcock and McArdell [1993]	5	2 0.020	219	$ au_{c_{ij}}^{*} = 0.028 (D_{i}/D_{50s})^{-0.45}, \ 0.77 \leq D_{i}/D_{50s} \leq 17.3$	5.3	2.88	2610	0.16	straight, rectangular flume; variable bed forms; <i>Einstein</i> [1950] sidewall and form
	170			Other Reference Tra	nsport Definiti	ис			
From Brage and Dommic [19 Gilbert [1914]††	04]	0.040§	4.2	:	0.30	<0.09	2690	0.08	straight, rectangular flume; upper stage plane bed; <i>Williams</i> [1970] sidewall correction; submonilar river sand
		0.052§ 0.042§	6.9 9.6	::	$0.38 \\ 0.51 \\ 0.50 \\ 0.70 \\ $	<0.11 <0.26	2690 2690	0.13 0.17	auourguan nyet sana as above as above
		0.040	10 145	::	0.79 3.17	<0.24	2690 2690	0.24 0.24	as above as above, but lower stage plane bed and
Williams [1970]		0.041 0.040	286 36	::	4.94 1.35	<0.26 0.20	2690 	$0.19 \\ 0.40$	autourneed itver graves as above straight, rectangular flume; upper stage plane
Guy et al. [1966]		0.040§ 0.040§	41 2.1	::	$1.35 \\ 0.19$	0.20 0.45	::	$0.07 \\ 0.02$	bed; <i>mutants</i> [19/0] suewall correction as above, but lower stage plane bed straight rectangular flume; upper stage plane had no eidearoll correction
		0.040 0.040 0.040	3.3 4.4 22		$\begin{array}{c} 0.28 \\ 0.32 \\ 0.93 \end{array}$	$\begin{array}{c} 0.81 \\ 0.65 \\ 0.59 \end{array}$:::	$\begin{array}{c} 0.03 \\ 0.07 \\ 0.008 \end{array}$	ueu, no suewan concernon as above as above, but lower stage plane bed
					Subsurface G	tain Size Dist	ribution		
Source	Note*	$\tau^*_{c_{r50ss}}$	Re_{c}^{*} †	Proposed τ_c^* Function Other Than Shields'	D_{50ss} , mm	σ_{gss} (ϕ) ρ_{s}	, kg/m ³ D_{i}	$_{50ss}/h_c \ddagger$	Experimental Conditions
Parker and Klingeman [1982]		0.088	2,410	$\tau^*_{c_{ri}} = 0.088 (D_i/D_{50ss})^{-0.98}$	l Reference Tra 20	nsport Rate 2.20	2850	0.06 sa	me as <i>Parker and Klingeman</i> [1982], first entry of Table 1a
From Wilcock and Southard									
Milhous [1973] Kuhnle [1992] Kuhnle [1993b]		0.073 0.086 0.089	2,113 596 606	$\begin{array}{llllllllllllllllllllllllllllllllllll$	19.5 8.31 8.31	2.20 2.77 2.77	2850 	0.07 as 0.02 sa 0.02 as	above me as <i>Kulmle</i> [1992], seventh entry of Table 1a above seventh entry of Table 1a

Note that symbols for sin article or bed form veloci or values in parentheses. J $c_{0}[k, 1974]$. *See appendix. $Re_{c}^{*} = u_{c}^{*}D_{so}(\nu)$. Most v llowing determination of u of μ were 2650 and 1000 h	nilar footne by [e.g., <i>Ipp</i> Here "u" d ralues are b $t_c^* = (\tau_{c,50,}^{c,50,}$ kg/m ³ , resp	otes may be different en and Verma, 195; lenotes uniform gra- pack-calculated fror $_{0}^{/P}$, and hence ectively, and hence	ant in Tables Ia. 3, Meland and in sizes $(\sigma_g \leq m_g \leq m_g)$ n reported dat Re_{c}^{*} , with ν es	-le. While most τ^*_{c,s_0} values ar <i>Norman</i> , 1966; <i>Sternberg</i> , 1971 5 0.5), and "m" denotes mixe . For example, using τ^*_{c,s_0} , and timated from water temperatur timated from water temperatur	e determined fr . See notation d grain sizes (σ D_{50s} reported 1 es reported by tudies and 1.5	tom extrapol section for $T_g > 0.5$), v_f by <i>Parker an</i> <i>Milhous</i> [19] $\times 10^{-6}$ m ² /s	lation of bed 1 symbols not p where σ_g is th <i>d Klingeman</i> [73]. Where un for field stud	oad transpo reviously de ne graphic s 1982], we ca rreported by ies.	tr rates, some are based on extrapolation of fined in text. See respective appendix notes tandard deviation defined as $(\phi_{84} - \phi_{16})/2$ leulated $\tau_{c_{c_{54}}}$ from <i>Shields'</i> [1936] equation, the original source, it was assumed that ρ_s
#Where unreported by a e original source, where a <i>minic</i> [1984] we used the duced for roughness effec §Used in Plate 1.	source, h_c wailable). I subset of a cts.	values are back-ca For example, we us slopes correspondii	lculated from t ed the average ng with plane b	he <i>Shields</i> [1936] equation with slope of <i>Gilbert's</i> [1914] 7.01-m ed morphologies for each sedir	1 the τ_c express im experiments nent. This proce	sed as a depi for the first edure may c	th-slope prod Gilbert entry ause overestir	Let $(h_c = \tau)$ from <i>Shield</i> nation of D_5	$(\rho_s - \rho) D_{s0}/\rho_s$, with S determined from $[1936]$; for Gilbert entries from <i>Bridge and</i> $_0/h_c$ where depth-slope products have been
Reported data are with UUse of the average velo **Here we describe grain ††Reported data are with e similar for near-uniform	respect to city in the . 1 protrusion 1 respect to	the geometric mea <i>Einstein</i> [1942; 195 n in terms of proje the mean nomina	n grain size. 0], <i>Johnson</i> [19 ction and expo 1 grain diametu	42] and <i>Vanoni and Brooks</i> [19 sure [sensu <i>Kirchner et al.</i> , 1999 sr. Nominal diameters are assu	957] equations 1 0]. med equivalent	likely overes	timates τ' (se diate grain dia	e note 3). meters [<i>Cui</i>	and Komar, 1984]. Mean and median sizes
t similar tot near uniton ##Sidewall correction for \$\$\$Reported data are with \$\$\$Reported data are dete \$\$\$\$Malso given by Ashida a \$	the proximulation of the proximulation of the proximulation of the proximulation of the transmission of the proving the difference of the proving the provin	inty of walls (i.e., <i>V</i> o mean grain sizes. om bulk (i.e., surfac [1973]	V/h), but not f Mean and me e and subsurfa	or the difference in wall and b dian grain sizes are assumed si ce mixture) grain size sampling mess but not for the moximity	ed grain roughr milar for near-1 3, treated here 3 of walls (i = 10	ness. uniform sedi as mixture-b	iment. ased values.		
able 1b. Previously R	keported	$ au_{c_{50}}^{*}$ Values: Visu	al Observatio	Ę	Surface Grain	Cira Dictuit			
							IIOIIIO		
Source	Note*	$ au_{cv50s}^*$	$Re _{c}^{*} \dagger$	Proposed τ_c^* Function Other Than Shields'	D_{50s} , mm	$\sigma_{gs}\left(\phi ight)$	$ ho_s,~{ m kg/m^3}$	D_{50s}/h_c ‡	Experimental Conditions
oleman [1967]	23	0.284 (0.005)	6.2	Various Movemen	t Definitions 12.7	0	1278	÷	straight rectangular flume; sidewall
									correction implicit; plastic test grain on fixed plane bed of like grains;
									significant projection and exposure,s saddle rotation; shear measured with
									strain gauge; water or sodium carboxymethyl-cellulose fluid medium
		0.284 (0.005)	7.3	:	12.7	0	1278	÷	as above
		0.255 (0.004)	7.3	: :	12.7		1278	: :	as above
		0.195 (0.004)	1, 10	, . , . , .	12.7		1278	: :	as above as ahove
		0.166 (0.004)	12	:	12.7	0	1278	÷	as above
		0.160(0.004)	15	:	12.7	0	1278	÷	as above
		0.142(0.004)	19		12.7	0	1278	÷	as above
		0.121 (0.005)	31	:	12.7	0 0	1278	÷	as above
		(110,00,011)	150	• •	12.7		1278 8/21		as above
		$(110.0) \times (0.111)$	190	: :	12.7	00	1278 1278	: :	as above as above
		0.138(0.014)	380	:	12.7	0	1278	÷	as above

					Surface Grain	Size Distrib	oution		
Source	Note*	$\tau^*_{c_{v50s}}$	$Re_{c}^{*}_{c}\dagger$	Proposed τ_c^* Function Other Than Shields'	D_{50s}, mm	$\sigma_{gs} \left(\phi ight)$	$\rho_s, \text{ kg/m}^3$	$D_{50s}/h_c \ddagger$	Experimental Conditions
		0.123(0.012)	360	:	12.7	0	1278	:	as above
		0.116(0.004)	19		12.7	0	7822	:	as above, but with steel test grain
		0.117(0.004)	33		12.7	0	7822	:	as above
		0.084(0.004)	43	:	12.7	0	7822	:	as above
		(0.008)(0.006)	58	:	12.7	0	7822	:	as above
		(100.0)660.0	82	:	12.7	0	7822	:	as above
		0.108(0.010)	140	::	12.7	0	7822	:	as above
		0.107(0.011)	2005	:	12.7		7822	:	as above
		0.116(0.011)	500 610		12.7		7701	:	as above
		0.107(0.011)	1240	:::::::::::::::::::::::::::::::::::::::	10.1		7701		
Fenton and Abbott [1977]		0.248	99		2.5	0,0		:	as access straight rectangular flume: angular
		2	8		ì	;			polystyrene grain on fixed plane bed of
									like grains;** sidewall correction
			ì			0			implicit; protrusion of -0.20
		0.164	54	•••	2.5	0.5	:	:	as above, but with protrusion of -0.06
		0.085	68	•••	2.5	0.5	:	:	as above, but with protrusion of 0.30
		0.050	30	:	2.5	0.5	:	÷	as above
		0.040	27	::	2.5	$0\dot{2}$	÷	÷	as above, but with protrusion of 0.34
		0.149	51	•	2.5	0	:	:	as above, but with protrusion of 0.04
		0.119	46	::	2.5	03	÷	:	as above, but with protrusion of 0.16
		0.070	35	::	2.5	03	÷	:	as above, but with protrusion of 0.25
		0.072	72	•	2.5	0	:	:	as above, but with lead-filled test grains
									and protrusion of 0.34
		0.032	48	::	2.5	03	÷	:	as above, but with protrusion of 0.41
		0.083	78	•	2.5	0	:	:	as above, but with protrusion of 0.08
		0.107	88	::	2.5	0	÷	:	as above, but with protrusion of 0.05
		0.053	61		2.5	0	÷	÷	as above, but with protrusion of 0.44
		0.071	20		2.5	0	÷	÷	as above, but with protrusion of 0.35
		0.076	73	:	2.5	0	:	:	as above, but with protrusion of 0.16
		0.009	1690	::	38	0	:	0.23	straight rectangular flume; fixed plane
									bed of wooden grains; table tennis test
									grains filled with lead shot or
									polystyrene grains and sand; sidewall
						,			correction implicit; protrusion of 0.82
		0.010	1700	•	38	0	÷	0.23	as above
		0.010	1760	:	38	0	÷	0.36	as above
		0.011	3200		38	0	÷	0.36	as above
		0.012	3280	•	38	0	:	0.24	as above
Petit [1994]		0.058	1403	$ au_{c}^{*} = 0.058(D_{i}/D_{50s})^{-0.66}$	12.8	< 0.20?	2650	:	straight rectangular flume; natural grains
				5					on plane bed of like grains; Vanoni
									unu Drows [1237] suucwall
		0.047	3284	$\pi^* = 0.047(D_{.}/D_{})^{-0.73}$	24.2	< 0 349	2650	:	as above
		0.045	6624	$\tau_{\pi^{*vi}}^{*vi} = 0.045(D_{i}/D_{z0})^{-0.81}$	39.2	< 0.152	2650	:	as above
		0.049	2444	$\tau^{cvi}_{*} = 0.049(D_i/D_{c0.2})^{-0.68}$	19.6	<0.54?	2650	:	as above. but with fixed bed
				$c_{vic} = a = b = c_{vic} = b = c_{vic}$					

Table 1b. (continued)

State Note $T_{cont.}$ R_{cy} Properial T_{c} Fundam D_{cont} $T_{cont.}$ $R_{cont.}$ </th <th></th> <th></th> <th></th> <th></th> <th>Lab</th> <th>oratory Mixture</th> <th>e Grain Size</th> <th>Distributio</th> <th>-</th> <th></th>					Lab	oratory Mixture	e Grain Size	Distributio	-	
	Source	Note*	τ^*_{cv50m}	$Re _{c}^{st} \dagger$	Proposed τ_c^* Function Other Than Shields'	D_{50m}, mm	$\sigma_{gm} \; (\phi)$	$ ho_s, \mathrm{kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions
(133) (002) 23 (0)<	au [1914]**	24	0.052††	322	"Medium Movement" [Krame	r; 1935] or Its 1 4.94	Equivalent <0.26	2690	0.11	straight, rectangular flume; plane bed; <i>Shimizu</i> [1989] sidewall correction;‡‡ Subrounded orains
(1)33 (0)38;1 (0)3			$0.052^{++}_{0.069^{++}_{}}$	323 377	: :	4.94 4 94	<0.26	2690 2690	0.16	as above as above
$ \left. $			0.048++	310	:	4.94	<0.26	2690	0.17	as above
$ \left[1933 \right] \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0.058††	341	::	4.94	< 0.26	2690	0.18	as above
			0.046††	304		4.94	< 0.26	2690	0.12	as above
$ \left[\left[1933 \right] \\ \left[\left[1933 \right] \\ \left[\left[1933 \right] \\ \left[1934 \right] \\ \left[193$			0.047††	308	::	4.94	< 0.26	2690	0.16	as above
$ \left[1935 \right] \ \ 10027 + \ 1002 - \ 1002 $			0.062 + +	352	::	4.94	< 0.26	2690	0.18	as above
$ \left[1935 \right] \qquad 0.057 + 32 \\ 0.067 + 16 \\ 0.087 + 16 \\ 0.087 + 16 \\ 0.087 + 16 \\ 0.087 + 16 \\ 0.087 + 16 \\ 0.098 + 16 \\ 0.009 + 16 \\ 0.000 + 28 \\ 0.000 + 28 \\ 0.000 + 28 \\ 0.000 + 16 \\ 0.01 & 30 \\ 0.00 + 17 \\ 0.01 & 30 \\ 0.00 + 17 \\ 0.01 & 30 \\ 0.00 + 17 \\ 0.01 & 30 \\ 0.01 & 30 \\ 0.01 & 30 \\ 0.02 & 30 \\ 0.01 & 30 \\ 0.02 & 30 \\ 0.01 & 30 \\ 0.02 & 30 \\ 0.01 & 0.01 & 0.01 \\ 0.01 & 0.01 & 0.01 \\ 0.01 & 0.01 & 0.01 \\ 0.01 & 0.01 & 0.01 \\ 0.01 & 0.01 & 0.01 \\ 0.01 & 0.01 & 0.01 \\ 0.01 & $			0.053	326	•	4.94	< 0.26	2690	0.27	as above
			0.032^{++}	52	•	1.71	<0.48	2690	0.09	as above
$ \left[1935 \right] \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			0.057	69	•	1.71	<0.48	2690	0.20	as above
			0.049	160	•	3.17	< 0.24	2690	0.11	as above
			0.049††	161	::	3.17	< 0.24	2690	0.11	as above
[1935] 0043 8.2 0.33 0.81 2700 0.03 straight, retengular filmer; plane bed; 0049 8.7 0.33 0.81 2700 0.03 salewall 0047 7.1 0.33 0.81 2700 0.02 salewall 0047 7.1 0.33 0.81 2700 0.02 salewall 0047 7.1 0.31 0.74 2700 0.03 salewall 0039 6.5 0.53 0.27 0.01 salewall 0037 8.2 0.53 0.27 0.01 salewall 0038 7.8 0.53 0.27 2700 0.02 salewall 0037 8.3 0.53 0.27 2700 0.02 salewall 0037 8.3 0.55 0.27 0.01 salewall salewall 01041 8.8 0.55 0.02 230 0.01 salewall 01042 9.3 0.02 230 0.01 salewall salewall 01041 8.8 0.55 0.02 sa			0.060 + +	587	:	7.01	< 0.22	2690	0.08	as above
(1935) (1935)<	[1935]		0.043	8.2	:	0.53	0.81	2700	0.03	straight, rectangular flume; plane bed; Shimin [1080] sidewall correction.++
(1935) 87 0.53 0.81 2700 0.02 as above 0.037 7.7 0.51 0.74 2700 0.01 as above 0.037 7.1 0.51 0.74 2700 0.01 as above 0.037 7.1 0.51 0.74 2700 0.01 as above 0.039 6.5 0.51 0.74 2700 0.01 as above 0.039 7.5 0.53 0.62 2700 0.01 as above 0.037 8.3 0.55 0.62 2700 0.01 as above 0.037 8.0 0.55 0.62 2700 0.01 as above 0.037 8.0 0.55 0.62 2700 0.01 as above 0.044 8.0 0.55 0.62 2700 0.01 as above 0.041 0.74 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>well-rounded grains</td></t<>										well-rounded grains
			0.048	8.7	:::::::::::::::::::::::::::::::::::::::	0.53	0.81	2700	0.02	as above
			0.039	7.7	:	0.53	0.81	2700	0.02	as above
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.040	8.0	••••	0.53	0.81	2700	0.01	as above
$ [1935] \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.037	7.3	:::	0.51	0.74	2700	0.04	as above
$ \left[\left[1933 \right] \begin{tabular}{lllllllllllllllllllllllllllllllllll$			0.037	7.1	••••	0.51	0.74	2700	0.02	as above
$ \begin{bmatrix} [1935] & 0.03 & 0.5 & 0.0 & 0.02 & 83 above \\ & 0.03 & 8.2 & 0.0 & 0.5 & 0.62 & 2700 & 0.02 & 83 above \\ & 0.03 & 8.2 & 0.0 & 0.2 & 83 above \\ & 0.03 & 8.2 & 0.0 & 0.0 & 83 above \\ & 0.03 & 8.2 & 0.0 & 0.0 & 102 & 83 above \\ & 0.03 & 0.02 & 0.0 & 0.01 & 81 above \\ & 0.01 & 81 above & 0.01 & 100 & 0.01 & 100 & 100 \\ & 0.01 & 81 above & 0.01 & 100 & 0.01 & 100 & 100 \\ & 0.01 & 10 & 0.01 & 100 & 0.01 & 100 & 100 & 100 \\ & 0.02 & 10 & 0.01 & 100 & 0.01 & 100 & 100 & 100 \\ & 0.01 & 10 & 0.01 & 100 & 0.01 & 100 & 100 & 100 & 100 & 100 \\ & 0.01 & 10 & 0.02 & 100 & 0.01 & 100 & $			0.034	0.7	••••	0.51	0.74	2700	0.02	as above
$ \left[\left[1935 \right] \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.030	0.0	•••	10.0	0.4	2700	0.02	as above
$ \left(\left 1935 \right \right) \left(\left 1935 \right \left 1936 \right 100 \left 193 \right 100 \left 1936 \right 100 \left 133 \right 100 \left 1936 \right 100 \left 133 \right 100 \left 133 \right 100 \left 100 \left 100 \right 100 \left 100 \left 100 \left 100 \left 100 \left 100 \right 100 \left 100 \left 100 \left 100 \left 100 \right 100 \left 10$			0200	0.0	• •	55 0	70'0	00/7	0.04	as above
$ \begin{bmatrix} [1935] & 0.037 & 8.0 & \cdots & 0.55 & 0.62 & 2700 & 0.01 & as above \\ 0.052 & 9.5 & \cdots & 0.43 & 0.95 & 2650 & 0.01 & straight, rectangular flume; plane bed; \\ Simizat [1989] sidewall correction; \ddagger \\ Simizat [1989] sidewall correction; {\ddagger } \\ Simizat [1989] sidewall correction; {\ddagger } \\ Simizat [1989] sidewall correction; {\implies } \\ Simizat [1980] sidewall correction;$			920.0 0.038	7.0	: :	0.55	0.02 0.67	00/2	20.0	
$ \begin{bmatrix} [1935] & 0.052 & 9.5 & \cdots & 0.43 & 0.05 & 2.60 & 0.01 & \text{straight, rectangular fhme; plane bed,} \\ & Shimizu [1989] sidewall correction; \\ & Shimizu [1980] sidew$			0.030	6.7 0.8		0.55	0.62	2700	0.01	
0.0448.8 0.43 0.95 2650 0.02 $as above0.0529.60.430.9526500.02as above0.051100.430.9526500.02as above0.051100.450.6626500.01as above0.067120.450.6626500.01as above0.0438.00.480.5325600.01as above0.0498.60.480.5325600.01as above0.0498.60.440.5325600.01as above0.0498.60.440.5325600.01as above0.0498.60.440.8225600.01as above0.0638.20.440.8225600.01as above0.0638.20.440.8225600.02as above0.0535.60.01as above0.140.8225600.02as above0.0638.20.440.8225600.02as aboveargular to subrounded0.0336.70.400.6925600.02as aboveargular to subrounded0.059$	S [1935]		0.052	9.5	:	0.43	0.95	2,650	0.01	as access straight, rectangular flume: plane bed:
0.0448.8manualsubangular to subrounded river sand 0.043 9.6 0.95 2650 0.02 as above 0.057 10 0.43 0.95 2650 0.02 as above 0.067 12 0.45 0.66 2650 0.01 as above 0.067 12 0.45 0.66 2650 0.01 as above 0.043 8.0 0.48 0.53 2650 0.01 as above 0.049 8.6 0.48 0.53 2650 0.01 as above 0.049 8.6 0.44 0.53 2650 0.01 as above 0.049 8.6 0.44 0.82 2650 0.01 as above 0.049 8.6 0.44 0.82 2650 0.01 as above 0.049 8.6 0.44 0.82 2650 0.01 as above 0.063 8.2 0.44 0.82 2650 0.02 as above 0.063 6.7 0.40 0.69 2650 0.01 $as above0.0536.70.400.6926500.01as above0.0530.02as aboveas aboveas aboveas above0.06926500.02as aboveas aboveas above0.0530.6926500.02$				2		2		1		Shimizu [1989] sidewall correction;##
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										subangular to subrounded river sand
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.044	8.8	•	0.43	0.95	2650	0.02	as above
0.051 10 \cdots 0.45 0.66 2650 0.01 as above as above 0.067 12 \cdots 0.45 0.66 2650 0.01 as above as above 0.043 8.0 \cdots 0.48 0.53 2650 0.01 as above as above 0.049 8.6 \cdots 0.48 0.53 2650 0.01 as above as above 0.049 8.6 \cdots 0.48 0.53 2650 0.01 as above as above 0.049 8.6 \cdots 0.44 0.82 2650 0.01 as above arans 0.049 7.6 \cdots 0.44 0.82 2650 0.01 as above arans 0.049 7.6 \cdots 0.44 0.82 2650 0.02 as above arans 0.049 7.6 \cdots 0.44 0.82 2650 0.02 as above arans 0.049 7.6 \cdots 0.44 0.82 2650 0.02 as above arans 0.053 6.7 \cdots 0.40 0.69 2650 0.01 as above arans 0.053 6.7 \cdots 0.40 0.69 2650 0.02 as above arans 0.059 2.050 0.02 2.02 0.02 2.02 0.02 2.02 0.059 2.050 0.02 2.02 0.02 2.02 0.02 0.059 0.02 2.06 0.02 2.02 0.02 0.02 0.059			0.052	9.6		0.43	0.95	2650	0.02	as above
0.06712 0.45 0.66 2650 0.01 as above as above, but subrounded to rounded grains 0.048 0.043 8.0 0.33 2650 0.01 as above, as above 0.01 as above as above 0.048 9.0 0.48 0.53 2650 0.01 as above as above 0.049 8.6 0.48 0.53 2650 0.01 as above as above 0.049 8.6 0.48 0.53 2650 0.01 as above 			0.051	10	:	0.45	0.66	2650	0.01	as above
0.043 8.0 \dots 0.48 0.53 2650 0.01 as above, but subrounded to rounded grains 0.048 9.0 \dots 0.33 2650 0.01 as above $ut subrounded to rounded grains0.0498.6\dots0.480.5326500.02as aboveut subrounded to rounded grains0.0498.6\dots0.480.5326500.01as aboveut angular to subrounded0.0497.6\dots0.440.8226500.02as aboveut angular to subrounded0.0497.6\dots0.440.8226500.02as aboveut angular to subrounded0.0638.2\dots0.400.6926500.01as aboveut angular to subrounded0.0536.7\dots0.400.6926500.01as aboveut angular to subangular grains0.0590.0526500.01as aboveut angular to subangular grainsut angular to subangular grains0.0590.0526500.02as aboveut angular to subangular grainsut angular to subangular grains0.0590.0526500.02as aboveut angular to subangular grainsut angular to subangular grains0.0590.02ut angular to subangular to subangular grainsut angular to subangular grainsut angular grains0.0600.02ut angular grains$			0.067	12	:	0.45	0.66	2650	0.01	as above
0.048 9.0 \dots 0.48 0.53 2650 0.02 as above 0.049 8.6 \dots 0.48 0.53 2650 0.02 as above 0.052 7.8 \dots 0.44 0.82 2650 0.012 as above 0.049 7.6 \dots 0.44 0.82 2650 0.012 as above 0.063 8.2 \dots 0.44 0.82 2650 0.02 as above 0.063 8.2 \dots 0.40 0.69 2650 0.01 as above 0.053 6.7 \dots 0.40 0.69 2650 0.01 as above 0.053 6.7 \dots 0.40 0.69 2650 0.01 as above 0.059 7.0 \dots 0.40 0.69 2650 0.02 as above 0.059 7.0 \dots 0.69 2650 0.02 as above			0.043	8.0 2.0	•	0.48	0.53	2650	0.01	as above, but subrounded to rounded grains
0.049 8.6 \cdots 0.48 0.53 2650 0.012 as above 0.052 7.8 \cdots 0.44 0.82 2650 0.01 same as above, but angular to subrounded 0.052 7.6 \cdots 0.44 0.82 2650 0.02 as above, but angular to subrounded 0.063 8.2 \cdots 0.44 0.82 2650 0.02 as above, but angular to subangular grains 0.053 6.7 \cdots 0.40 0.69 2650 0.01 as above, but angular to subangular grains 0.059 7.0 \cdots 0.40 0.69 2650 0.01 as above 0.059 7.0 \cdots 0.40 0.69 2650 0.02 as above			0.048	9.0	•••	0.48	0.53	2650	0.02	as above
0.002 0.02 0.02 0.001 0.01 <td></td> <td></td> <td>0.049</td> <td>0.0</td> <td>• •</td> <td>0.48</td> <td>0.03</td> <td>2650</td> <td>0.02</td> <td>as above</td>			0.049	0.0	• •	0.48	0.03	2650	0.02	as above
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			700.0	0.1		0.44	0.02	0007	10.0	same as above, but angular to subrounded
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.049	7.6	:	0.44	0.82	2650	0.02	as above
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.063	8.2		0.44	0.82	2650	0.02	as above
0.053 6.7 0.40 0.69 2650 0.02 as above 0.059 7.0 0.40 0.69 2650 0.02 as above 0.05			0.053	6.6		0.40	0.69	2650	0.01	as above, but angular to subangular grains
0.059 7.0 0.40 0.69 2650 0.02 as above			0.053	6.7	::	0.40	0.69	2650	0.02	as above
			0.059	7.0	::	0.40	0.69	2650	0.02	as above

				Labc	statory Mixture	Grain Size L	Distribution		
Source	Note*	$\tau^*_{c_{v50m}}$	$Re_{c}^{*\ddagger}$	Proposed τ_c^* Function Other Than Shields'	D_{50m}, mm	$\sigma_{gm}~(\phi)$	$ ho_s, \mathrm{kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions grains
		0.076	5.1	•	0.25	0.53	2650	0.008	as above
		0.038	196	÷	4.0	0.56	2650	0.04	as above
		0.042	200	÷	4.0	0.56	2650	0.05	as above
		0.045	212	:	4.0	0.56	2650	0.06	as above
		0.074^{++}	2.4	:	0.18	0.32	2650	0.008	as above, but subangular to angular
									grains
Chang [1939]**		0.061	1.5	:	0.134		2520	0.0008	<pre>straight, rectangular flume, and convergent-walled flume; plane bed; Shimizu [1989] sidewall correction‡;</pre>
				"General Movement"	[Kramer, 1935]				
From Kramer [1935] Schaffernab [1016]		0.030	41	:	1 S	5 0	2650	:	unrenorted by Kromor [1035] but
[OTET] vnuslimusc		0.00.0	TF		C: T	C-0	0.007		experimental procedure directly
									comparable to his [<i>Kramer</i> , 1935]
H. Krey (unpublished Elbe		0.057	14	:	0.60	0.94	2650	÷	as above
approximiting report		0.060	13	:	0.57	0.69	2650	÷	as above
		0.056	15	:	0.63	0.89	2650	:	as above
		0.053	13	÷	0.57	0.71	2650	÷	as above
		0.034	21	:	0.92	1.20	2650	÷	as above, but less comparable [Kramer,
									1935]
		0.038	14	:	0.67	1.19	2650	:	as above
		0.069	3.2	:	0.21	0.67	2650	:	as above
H. Krey (unpublished		0.038	5.8	÷	0.38	0.21	2680	÷	as above
report)		0.033	8.8	:	0.53	0.18	2610	÷	as above
		0.025	14	:	0.8	0.24	2570	:	as above
Schoklitsch [1914]		0.052	476	:	6.52	0	2600	:	straight, rectangular flume [Mantz, 1977];
									slate grains (?); experimental procedure less comparable [<i>Knamer</i> , 1935]
		0.041	206	:	4.05	0	2600	:	as above
		0.031	75	:	2.26	0	2600	:	as above
		0.022	26	:	1.24	0	2600	:	as above
		0.019	15	:	0.92	0	2600	:	as above
Engels [1932]		0.061	31	:	1.00	1.35	2650	< 0.02	meandering. large-scale flume [Engels
			5		•				and Kramer, 1932]; plane bed; no
									correction for sidewalls or channel
									curvature (?); experimental procedure less comparable [Kromer 1935]
									Love (with us a very standard cover

Table 1b. (Continued)

From O'Brien and Rindlaub [1934] and Mavis et al.									
Ho [1933]	U	.015	5	:	0.5	≤0.25	2620	÷	straight, rectangular flume; plane bed; no
)	014	0	:	0.7	≤ 0.25	2680	:	arcowar correction (), mer same
		0.024	20	:	1.0	≤0.25	2630	÷	as above
	Ŭ	0.028	35	:	1.4	≤0.25	2630	÷	as above
	U	0.030	62	:	2.0	≤0.25	2620	÷	as above
)	0.029	102	:	2.8	≤0.25	2660	÷	as above
)	0.024	159	:	4.0	≤0.25	2650/2660	÷	as above, but uncertain whether grains
									are river sand or crushed limestone
		0.036	194	•••	4.0	≤0.25	2650/2660	÷	as above
	<u> </u>	0.028	287	:	5.7?	≤0.25 	2650/2660	÷	as above
From Mavis et al. [1937]		.028	288	:	5.7	≤0.25	2650/2660	:	as above
Liu [1935]	0	0.022††	198	:	4.3	0.31	2660	0.03	straight, rectangular flume; plane bed; <i>Shimizu</i> [1989] sidewall correction±±
)	0.026++	213	:	4.3	0.31	2660	0.05	as above
	<u> </u>	0.024++	207	:	4.3	0.31	2660	0.12	as above
)	0.032 ± 1	235	:	4.3	0.31	2660	0.19	as above
	Ŭ	.019††	110	÷	3.1	0.33	2660	0.04	as above
	U	0.028††	135	:	3.1	0.33	2660	0.05	as above
	<u> </u>	0.029††	137	:	3.1	0.33	2660	0.10	as above
	<u> </u>	0.037††	156	:	3.1	0.33	2660	0.16	as above
		0.024††	75	:	2.2	0.35	2660	0.03	as above
	<u> </u>	0.02877	82	:	2.2	0.35	2660	0.05	as above
		02247	82	:	2.2	0.35	2660	0.10	as above
		0.03577	06	:	7.7	0.31 520	2000	0.17	as above
		0.022++	3/ 27	: :	1.1 1	10.0	0996	0.05 0.06	as above
		++9700	30		1.1	0.31	2660	0.00	as above
		030++	43	:	1.4	0.31	2660	0.20	as above
		0.021++	158	:	3.8	0.36	2660	0.03	as above
	U	0.023++	165	:	3.8	0.36	2660	0.06	as above
	0	0.033††	198	:	3.8	0.36	2660	0.09	as above
	0	.034††	204	÷	3.8	0.36	2660	0.17	as above
		0.026††	53	:	1.7	0.45	2660	0.03	as above
		0.02877		•••	1.7	0.45	2660	0.0 2	as above
		0.02677	53	:	1.7	0.45	2660	0.11	as above
		0.030##	10	:	1./	0.40	7000	07.0	as above
White [1940]	52	1.33877	0.043	•••	0.21	~u?	:	c0.0	straight, rectangular flume; plane bed; no
									sidewall correction; oil fluid medium; entirely laminar flow
	0	$.168^{++}$	0.30	:	0.90	~u?	:	0.11	as above
		0.180	2.4	:	0.122	⊓~	:	:	convergent-walled nozzle: nlane hed: no
									sidewall correction; water fluid medium: Jaminar houndary Javer
									within steady "inviscid" flow
	0	.119	33	:	0.90	n∼	2600	÷	as above, but with turbulent boundary
)	.101	480	:	5.6	n~	2600	÷	iayei as above
	U	.064	35	÷	0.71	Ш	7900	÷	as above, but with steel shot grains

Other Visual Movement Definition

	I			Labora	atory Mixture G	irain Size Di	stribution		
Source	Note*	$\tau^*_{c_{v50m}}$	Re_{c}^{*} †	Proposed τ_c^* Function Other Than Shields'	D_{50m}, mm	$\sigma_{gm}~(\phi)$	$ ho_s, \mathrm{kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions
		0.098	80	:	0.90	n~	2100	:	as above, but with natural grains and
		0.102	1280	::	5.6	n~	2100	÷	as above
Meyer-Peter and Müller [1948]		0.033††	133	$ au_{c_{1} \in \{0\}}^{*} = [au_{c_{2} \in \{0\}m}^{*}(Q_{b}/Q)(n_{g}/n_{b})^{3/2}]/ [(au_{s}^{*} - ho)gD_{50m}]$	3.2	<0.12?	2680	0.01	straight, rectangular flume; plane bed or very low amplitude bed forms; form
									drag and sidewall correction; rounded grains
		0.032 ± 1	101	as above	2.7	<0.15?	2680 2680	0.02	as above
		0.030++	151	as above as above	9.0 9.0	<0.102	2000 2680	0.01	as above
		0.039++	178	as above	3.66	<0.13?	2680	0.03	as above
		0.040++	179	as above	3.66	< 0.13?	2680	0.06	as above
		0.037 + +	609	as above	8.5	<0.19?	2680	0.06	as above
		0.050^{++}	575	as above	7.4	< 0.28?	2680	0.10	as above
		0.047††	686	as above	8.5	< 0.23?	2680	0.10	as above
		0.04077	142	as above	3.14	< 0.15?	2680	0.13	as above
		0.03311	59	as above	1.86	< 0.33?	2680	0.01	as above, but with angular grains
		0.025 ± 7	113	as above	3.14 2.1	<0.15?	2680	0.01	as above
		0.038++	171	as above as above	3.1 3.66	<0.17?	2680 2680	0.02	as above as above
		0.040++	137	as above	3.06	<0.10?	2680	0.0	as above
		0.040	106	as above	2.58	<0.18?	2680	0.02	as above
		0.048 + +	119	as above	2.61	< 0.20?	2680	0.05	as above
		0.050++	233	as above	4.04	<0.22?	2680	0.05	as above
		0.043 ± 7	241	as above	4.34	< 0.22?	2680	0.10	as above
		0.043 + +	81	as above	2.10	< 0.16?	2680	0.11	as above
		0.043 ± 7	147	as above	3.14	< 0.15?	2680	0.10	as above
Wolman and Brush [1961]		0.020††	6	:	0.67	0.26	:	0.05	straight, rectangular flume; plane bed; erodible banks; <i>Shimizu</i> [1989] sidewall
			ç						correction‡‡
		0.020+11	D] (• •	10.0	07.0		10.0	as above
		11050.0	11	: :	0.07	070		0.0	as abuve
		0.048++	86		(0.0 C	0.50		0.16	as above
		0.049††	91	:	1 (1	0.5	÷	0.06	as above
		0.052++	94	:	7	0.5	÷	0.12	as above
		0.036^{++}	80	:	2	0.5	÷	0.05	as above
		0.044^{++}	86	:::::::::::::::::::::::::::::::::::::::	2	0.5	:	0.09	as above
		0.030^{++}	71	•••	7	0.5	÷	0.04	as above
Raudkivi [1963]\$\$		0.036††	6.0	:	0.40	0.42	2600	0.003	straight, rectangular flume; plane bed; Vanoni and Brooks [1957] sidewall
Vanoni [1064]88		0.007++	1 2	:	0.102	0.10	7650	0,000	correction ,1 straight regtangular flume: plane hed:
88[±0/1] monm i			C-1		701.0	(1.0	0007	00000	suage recording the second state occ, side wall correction implicit; quartz
		$0.126\dot{1}\dot{1}$	1.5	:	0.102	0.19	2650	0.001	grans as above
		0.120 + +	1.5	•••	0.102	0.19	2650	0.001	as above

Table 1b. (Continued)

as above, but with glass beads as above	straight, rectangular flume; plane bed;	o <i>nunuzu</i> [1909] sucewan correction+; as above	as above	as above	as above	as above		as above		as above	as above	as above	as above	as above	as above	as above	as above	as above	as auove	as autove se shows hut with alsee arsine	as above, but with glass grains	as above	as above as above	as above	as above	straight, rectangular flume; plane bed Vanoni and Brooks [1957] sidewall	correction ,1	convergent-walled flume; plane bed; sidewall correction implicit; water fluid medium	as above	as above	as above, but with taconite grains	as above	as above	as above but with Douglas sand #2	as above but with Douglas sand #1	as above	as above, but with lead shot grains	as above, but with steel shot grains	convergent-walled flume; plane bed; sidewall correction implicit; oil fluid medium; fully	attilliat 110W as above	as above	as above	as above, but with glass beads	as above, but with styrene grains	as above as above, but with taconite grains
0.0005	0.04	0.04	0.05	0.05	0.06	0.07	0.0/	0.12	71.0	c0.0	0.07	0.14	0.28	0.11	0.14	0.18	0.23	0.33	60.0 22 0	0.03	50.0	0.04	0.04	0.05	0.08	0.005		:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	÷	: :
2490 2490	2540	2540	2540	2540	2540	2540	0407	2540 2540	0407	0727	0757	0707	07.52	07.07	2520	2520	0752	07.52	0752	0707	2490	2490 2400	2490 2490	2490	2490	2650		2640	2640	2640	3100	3100	3100	2710	2560	2560	11,340	/,830	2640	2640	2040	2640	2950	1050	1050 3100
0.25	$\sim 0.48?$	$\sim 0.48?$	$\sim 0.48?$	$\sim 0.48?$	$^{-0.48?}_{0.16?}$	~0.48?	~0.40?	~ 0.46 ?	104.0	~0.48?	~0.487	~0.487	~0.48?	~0.487	$^{-0.48?}$	$^{-0.48?}$	~0.48?	~0.48?	~0.40?					0	0	1.26		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<.u>	<0>	<05	₹0 20	<0.5	$<\!0.5$	<0.5	<0.5 <0.5
0.037	6.2	6.2	6.2	6.2	6.2	6.2	7.0	0.2 6.9	7.0	C.0 7 0	C.0 7.0	C.X	0.00	20.0	20.0	20.0	20.0	20.0	0.02	20.02	0.0	0.0	5.0	5.0	5.0	0.3		0.70	1.43	2.29	0.70	1.80	2.29	0.70	1.43	1.80	2.04	5.03	0.24	0.70	07.0	1.80	0.37	0.52	0.70 0.70
::	:	:	:	:	÷	•		: :		•				:	:	:	:		: :			: :		÷	÷	:		:	÷	:	÷	÷	:	:	:	:	:	÷	:	:	:	:	:	:	: :
0.43 0.43	328	340	327	382	372	339 250	400 LCC	100 180	607 512	C/0	(1) 201	100 101	660 0000	6607	1938	2006	1900	1050	10.00	020 250	270	007	264	261	221	3.4		21	56	119	25	85	125	21	56	73	159	1/2	0.63	74	11	7.8	1.2	0.91	2.2
$0.226 \ddagger 1$	0.030 ± 1	0.032 ± 5	0.030++	0.041††	0.038^{++}	0.03277		0.023++	11070.0		11000.0	17/50.0	0.039	0.03/77	0.03177	0.03677	0.031	/70.0	0.021	0.037++	11/20.0	116000	0.04211	0.037++	0.027++	0.026		0.102	0.084	0.092	0.110	0.075	0.079	0.098	0.086	0.075	0.036	0.489	0.170	0.103	0.063	0.066	0.148	0.368	0.387 0.104
	Neill [1967]**																									Rathburn and Guy [1967]		Ward [1968]]																	

(Continued)
1b.
Table

				Labo	oratory Mixture	Grain Size I	Distribution		
Source	Note*	$ au_{cv50m}^{*}$	Re_{c}^{*} †	Proposed τ_c^* Function Other Than Shields'	D_{50m}, mm	$\sigma_{gm}~(\phi)$	$ ho_s,~{ m kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions
		0.061	8.4	•	1.80	<0.5	3100	:	as above
		0.051	11	:	2.29	<0.5	3100	:	as above
		0.114	2.6	•	0.70	<0.5	2710	:	as above, but with Douglas sand #2
		0.065	7.9	:	1.80	<0.5	2710	:	as above
		0.081	6.1	:	1.43	<0.5	2560	:	as above, but with Douglas sand #1
		0.620	9.7	:	3.05	<0.5	930	:	as above, but with polyethylene grains
White [1970]		0.053^{++}	36	:	2.2	n∼	1050	< 0.2	straight, rectangular flume; plane bed;
									sidewall correction; polystyrene grains
		0.037^{++}	53	::	2	n~	1540	< 0.2	as above, but with PVC grains
		0.055††	1.7	:::	0.137	n~	2600	< 0.2	as above, but with glass ballotini grains
		0.073††	0.94	::	0.088	n~	2600	<0.2	as above
		0.055††	2.2	: :	0.17	n~	2520	<0.2	as above, but with natural grains
		0.058^{++}	1.9	::	0.153	n~	2520	<0.2	as above
		0.071††	1.6	:	0.133	n~	2520	< 0.2	as above
		0.06677	0.92	:	0.093	n_{\sim}	2520	< 0.2	as above
		0.073^{++}	0.73	•	0.077	n~	2520	<0.2	as above
		$0.125 \ddagger \dagger$	0.42	:::	0.044	n~	2520	<0.2	as above
		0.102^{++}	0.21	•	0.030	n~	2520	<0.2	as above
		0.103^{++}	0.20	•	0.029	n~	2520	<0.2	as above
		0.146^{++}	0.23	•	0.028	n~	2520	<0.2	as above
		0.110^{++}	0.16	:	0.024	n~	2520	<0.2	as above
		0.112^{++}	0.26	:	0.033	n~	2550	<0.2	as above, but with crushed silica grains
		0.151 + +	0.10	:	0.016	n∼	2550	<0.2	as above
		$0.037 \ddagger 1$	16	:	2.2	n~	1050	<0.2	as above, but with polystyrene grains in
			0						oil; fully laminar flow (?)
		0.03477	40	•	2	n~	1540	<0.2	as above, but with PVC grains
		0.143 + 1	0.20	:	0.088	n~	2600	<0.2	as above, but with glass ballotini grains
		0.132 + +	0.32	:	0.133	n~	2520	<0.2	as above, but with natural grains
		0.122 + +	0.19	:	0.093	n~	2520	<0.2	as above
		0.166 + +	0.16	:	0.077	n~	2520	<0.2	as above
		0.218 ± 1	0.086	:	0.046	n~	2520	<0.2	as above
		0.254	0.055	•	0.033	n~	2520	<0.2	as above
		0.28811	0.048	:	0.030	n∼	2520	<0.2	as above
	ò	0.21977	0.033	:	0.020 0.000	n~ ,	2520	<0.2	as above
Grass [19/0]	07	0.14177 (0.174)	(16.0) 18.0	:	060.0	<0.24	0007	.70.0>	straight, rectangular flume; plane bed; sidewall correction implicit
		0.131 ++ (0.154)	0.84 (0.91)	:	060.0	< 0.24	2650	< 0.02?	as above
		$0.110^{++} (0.131)$	1.6(1.7)	:	0.115	< 0.13	2650	< 0.02?	as above
		0.08611 (0.095)	1.8(1.9)	:	0.138	< 0.13	2650	< 0.03?	as above
		0.06911 (0.093)	2.1(2.5)	:	0.165	< 0.13	2650	< 0.03?	as above
		0.072++ (0.079)	2.8 (2.9)	::	0.195	< 0.11	2650	< 0.04?	as above
		0.058(0.091)	1.6(2.0)	::	0.143	<0.74	2650	< 0.03?	as above
Sternberg [1971] , ¶¶		0.094	5.9	:	0.42	1.09	÷	$<2 \times 10^{-5}$	sandy, rippled, marine channel
									(Pickering Passage); form drag
									correction similar to that in note 3
		0.048	6.2 ~ _	•	0.50	1.0	:	$<2 \times 10^{-5}$	as above
		0.038	5.5	÷	0.50	1.0	:	$<2 \times 10^{-3}$	as above

sandy marine channel (Clovis Passage) with random roughness elements; form	urag correction similar to mai in note <i>3</i> straight, rectangular flume; plane bed; <i>Williams</i> [1970] sidewall correction	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above as above	as above	as above	as above	as above	as above	as above, but with ilmenite grains	as above	as above	as autro	as above as above	as above	straight, rectangular flume; plane bed; sidewall correction implicit; bed slope of	as above	as above	as above, but with magnetite grains	as above, but with walnut (shell?) grains	straight, rectangular flume; plane bed;	sidewall correction implicit; bed slope is	as above	as above				
≪0.20	0.06	0.08	0.19	0.03	0.04	0.06	0.08	0.01	0.02	0.02	0.04	0.006	0.009	0.01	0.02	500.0	0.006	0.00	0.04	500.0	0.004	0.002	0.005	0.002	0.002	0.01	0.003	0.005	0.006	700.0	0.003	0.004	0.001	0.002	0.002	0.004	0.01	0.02	0.04	0.02	0.01	0.01		0.02	0.04
÷	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	2650	0202	3650	0220	0596	0590	2650	2650	2650	2650	2650	2650	4700	4700	4700	1700	4/00	4700	4700	4700	4700	4700	2640	2640	2640	4580	1340	2640		2,640	2640
1.12	<0.25?	< 0.25?	<0.25?	<0.25?	<0.25?	<0.25?	<0.25?	<0.25?	< 0.25?	< 0.25?	<0.25?	<0.25?	<0.25?	<0.25?	<0.25?	20250	<0.25%	20200	207.0×	3C7.0~	<0.259	< 0.252	< 0.25?	< 0.25?	<0.25?	<0.25?	<0.25?	<0.25?	<0.25?	6200/	<0.259	< 0.252	<0.25?	< 0.25?	<0.25?	<0.25?	0.25	0.25	0.25	0.25	0.25	0.25		0.25	0.25
0.33	3.57	3.57	3.57	1.79	1.79	1.79	1.79	0.895	0.895	0.895	0.895	0.508	0.508	0.508	0.508	965.0 0250	0.359	965.0 025.0	900.U	0.254	0.254	0.18	0.18	0.127	0.127	0.127	0.18	0.18	0.18	0.127	0.127	0.127	0.09	0.09	0.09	0.09	0.9	1.8	3.3	1.8	1.5	0.9		1.8	3.3
:	:	:	::	:	:	:		•••	:	:			::	:	:	:::	•••		: :		: :	:	:	:	•••	:	:	•••			: :	:	::	:	•••	:	:	::	:	:	:	:		:	:
3.1	145	157	162	51	54	47	44	16	17	16	17	7.2	8.0	7.7	8.1 2.0	7.0	4.9	1.0	0.4 0.7	0.0 4	9.4 7	2.1	2.3	1.5	1.5	1.3	3.9 3.9	3.9	4.1 22) ()	7.4 4	2.4	1.4	1.5	1.4	1.6	18	48	127	74	16	16		43	114
0.041	0.023††	0.027 ± 2	0.029††	0.023 ± 1	$0.025 \ddagger \ddagger$	0.019††	0.017††	0.017 + +	0.021 ± 1	0.018^{++}	$0.020 \ddagger \ddagger$	0.020^{++}	0.024††	0.022++	$0.025 \ddagger 1$	11670.0	0.02677	0.022++	0.027++	112000	0.041++	0.039++	0.046††	0.052 ± 1	0.052††	0.040††	0.056††	0.05677	0.06277	110000	0.059++	0.063++	0.057††	0.070++	0.058††	0.081^{++}	0.039††	0.038^{++}	0.047++	0.043††	0.039 + +	0.031		0.030	0.037
																																					28								
	$Everts [1973] \parallel \parallel$																																				Femandez Luque and van Beek [1976]								

				La	boratory Mixture	e Grain Size	Distribution	u	
Source	Note*	$ au^*_{c v50m}$	$Re_{c}^{*} \ddagger$	Proposed τ_c^* Function Other Than Shields'	D_{50m},mm	$\sigma_{gm}~(\phi)$	$\rho_s, \text{ kg/m}^3$	$D_{50m}/h_c \ddagger$	Experimental Conditions
		0.035	67	:	1.8	0.25	4580	0.02	as above, but with magnetite grains
		0.031	14	:	1.5	0.25	1340	0.01	as above, but with walnut (shell?) grains
		0.027	14	:	0.9	0.25	2640	0.01	straight, rectangular flume; plane bed;
									sidewall correction implicit; bed slope is
			00		6		07.10		18
		070.0	95		1.8	0770 2000	2040	20.0	as above
		0.031	112	:	3.3 2.3	0.25	2640	0.04	as above
		870'0	ون د ز		1.8	0770 200	4280 1240	0.01	as above, but with magnetite grains
		07070	ci 5		C.1	C7.U	1540	10.0	as above, but with wainut (sheli?) grains
		C70.0	14	:	6.0	C7.N	2040	10.0	straight, rectangular nume; plane bed; sidewall correction implicit; bed slope is
		0.021	36	:	1.8	0.25	2640	0.02	22 as above
		0.027	66	:		0.25	2640	0.04	as above
		0.023	55	:	1.8	0.25	4580	0.02	as above. but with magnetite grains
		0.024	12	:	1.5	0.25	1340	0.01	as above, but with walnut (shell?) grains
From <i>Mantz</i> [1977] Schoklitsch [1914]**		0.066	176	:	3.06	0	2700	:	straight, rectangular flume; plane bed; slate
									grains; no sidewall correction (?)
		0.041	37	::	1.24	0	2700	:	as above
$Ho \ [1939]^{**}$		0.018	265	:	6.71	0.56	2660	≤0.17	straight, rectangular flume; plane bed; slate
		**3000	300		5 71	77 0	0996	1010	grains; no sidewall correction (?)
		110200	C77	•	1/.0	0.40	0020	≤0.00	as above
		170.0	701		07.0 17.0	C1.1	00/2	€0.0≍	
		0.024	6		1.62	06.0	2450	≥0.05 ≤0.05	as above
		0.00444	07.0		1.00	06.0	05470 0220	CU.U ≈	as auove
[C/61] ZINBM		0.09477	00	•	0.000	\sim 0.20	0007	0.000 /	straight, rectangular nume; plane bed; Shinnizu [1989] sidewall correction;##
									quartz grains
		$0.121 \ddagger \ddagger$	0.79	::	0.066	~ 0.20	2650	0.0008	as above
		0.127 + +	0.81	:	0.066	~ 0.20	2650	0.001	as above
		0.122††	0.79	:	0.066	~ 0.20	2650	0.002	as above
		0.12677	0.81	•	0.066	~ 0.20	2650	0.003	as above
		0.15577	0.48	•	0.045	~ 0.20	2650	0.0004	as above
		0.14777	0.47	•	0.045	$^{-0.20}_{0.20}$	2650	0.0006	as above
		0.13477	0.45		0.045 0.045	~ 0.20	2650	0.0008	as above
		0.127777	0.44	:	0.045	~ 0.20	2650	0.001	as above
		0.140 + 1	0.46	•	0.045	~ 0.20	2650	0.002	as above
		0.140^{++}	0.27	•	0.030	$^{-0.20}$	2650	0.0003	as above
		$0.133 \ddagger 1$	0.27	÷	0.030	~ 0.20	2650	0.0004	as above
		0.164††	0.29	:	0.030	~ 0.20	2650	0.0005	as above
		0.161††	0.29	:	0.030	~ 0.20	2650	0.0008	as above
		$0.165 \ddagger \ddagger$	0.28	:::	0.030	~ 0.20	2650	0.001	as above
		0.198^{++}	0.12	:	0.015	~ 0.20	2650	0.0002	as above
		$0.070 \ddagger 1$	0.77	:	0.076	$\sim 0.2?$	2740	≤0.004	as above, but with micaceous flakes ^{**} and
								100 0-	no sidewall correction
		U.U6277	0./1	•	0/0.0	\sim 0.2?	Z/4U	≤0.004	as above

BUFFINGTON AND MONTGOMERY: REVIEW

Table 1b. (Continued)

as above as above as above as above as above as above as above as above	sandy, rippled, marine channel (Straights of Florida); form drag correction similar to that in note 3	straight, rectangular flume; plane bed; sidewall correction implicit?	as above	as above	as above	as above, but with glass bead grains	as above, but with hattrai grains in a water- glycerin mixture and fully laminar flow	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	as above	laterally tilting wind tunnel; straight, rectangular walls; plane bed; <i>Adachi</i> [1962] sidewall correction	as above	⁵ straight, rectangular sea flume; plane bed or low-amplitude bed forms; sidewall correction implicit; skeletal carbonate	grains	s above	6 as above	⁶ as above	o as above	as above	as above s as above
≤ 0.003 ≤ 0.003 ≤ 0.002 ≤ 0.002 ≤ 0.002 ≤ 0.001 ≤ 0.001 ≤ 0.001	5×10^{-7}	0.16	0.12	20:0 0.09	0.03	0.03	60.0	0.24	0.38	0.04	0.10	0.30	0.04	0.41	0.07	0.03	0.16	0.04	0.31	0.18	0.09	0.006	0.02	1.5×10^{-1}	$22 < 10^{-1}$	1.4×10^{-10}	$7.3 imes 10^{-1}$	$5.3 imes 10^{-1}$	5.3×10^{-10}	1.0×10^{-10}	2.3×10^{-10}
2740 2740 2740 2740 2740 2740 2740	2930(?)-1100	2650	2650 2650	2650	2650	2500 2660	0007	2650	2650	2650	2650	2650	2650	0590	2650	2650	2650	2650	2650	2650	0007	:	÷	1500	1500	1500	1500	1500	1500	1500	1500
$^{-0.2?}_{-0.2?}$	≤0.84	<0.34-<0.54?	<0.34-<0.54?	< 0.34 - < 0.54?	<0.34-<0.54?	0	+C.U>-+C.U>	< 0.34 - < 0.54	<0.34 - <0.54	< 0.34-< 0.54	<0.34-<0.54	< 0.34 - < 0.54	<0.34-<0.54	<pre><0.34-<0.54</pre>	< 0.34 - < 0.54	<0.34-<0.54	<0.34-<0.54	<0.34-<0.54	<0.34-<0.54	< 0.34 - < 0.54	<0.34-<0.34	0.36	0.31	1.8		<2.0	<2.1	<2.0	<2.1	772	2.2
$\begin{array}{c} 0.053\\ 0.053\\ 0.042\\ 0.042\\ 0.033\\ 0.033\\ 0.024\\ 0.024\\ 0.016\end{array}$	0.35	1.00	0.56	0.40	0.19	0.14	1.UU	1.88	2.86	0.56	1.00	1.88	0.56 20 C	7 86 2 86	1.00	0.56	1.88	0.56	2.86	1.88	1.00 î	0.42	1.3	0.36	0.53	0.18	0.19	0.14	0.16	0.25	0.35
::::::::	÷	:	: :		:			:	:	:	:	•••	:	: :	:	:	:	::	:	:	•	÷	:	÷	:	:	:	:	:	• •	::
$\begin{array}{c} 0.39\\ 0.44\\ 0.29\\ 0.30\\ 0.20\\ 0.15\\ 0.15\\ 0.10\\ 0.10\end{array}$	2.4	25	9.4 1.5	6.1	2.5	1.8	CT.U	0.30	0.55	0.054	0.78	1.9	0.38	ې 4. د	0.86	0.38	2.0	0.80	6.4	3.8 2.8	1.0	8.7	72	2.5	7	1.6 1.6	1.5	0.58	1.4 2.0	2.0	0.c 3.0
0.055 0.070 0.070 0.061 0.068 0.068 0.063 0.063 0.076 0.002 0.087 0.087 0.087 0.040 0.140 0.140 0.030	0.030	$0.038 \dot{\tau} \dot{\tau}$	$0.030^{++}_{-0.113^{++}_{-0.113^{++}_{-0.113^{++}_{-0.113^{++}_{-0.113^{++}_{-0.113^{++}_{-0.113^{++}_{-0.13^{+-}_{-0.13^{++}_{-0.13^{+-}_{-0.13^{+-}_{-0.13^{+-}_{-0.13^{+-}_{-0.13^{+}$	0.036	0.053††	$0.079^{++}_{$	110/110	0.156^{++}	0.135 + +	0.172††	0.110 + +	0.09211	0.14177	0.001++	0.134++	0.143 + 1	$0.110 \div \div$	$0.140 \ddagger 7$	++690.0	0.086††	0.10677	0.02077	0.047	0.030	0.076	0.109	0.075	0.026	0.105	0.00	0.047
	27																							28							
	Wimbush and Lesht [1979] , ¶¶	Yalin and Karahan [1979]																				Ikeda [1982]		Young and Mann [1985]11							

					Laboratory Mixtu	ıre Grain Siz	e Distributio	-	
Source	- Note*	$ au_{cv50m}^*$	Re_{c}^{*} †	Proposed τ_c^* Function Other Than Shields'	D_{50m}, \min	$\sigma_{gm}~(\phi)$	$ ho_s, \mathrm{kg/m^3}$	$D_{50m}/h_c \ddagger$	Experimental Conditions
Prager et al. [1996]¶¶		0.025††	7.1	:	0.5	≤0.5?	2660	0.04	straight, rectangular flume; plane bed; Shimizu [1989] sidewall correction;‡‡ well-
		0.021††	6.6	:	0.5	≤0.5?	2770	0.04	as above, but with ooid grains
		$0.025 \ddagger \ddagger$	7.3	:	0.5	≤0.5?	2730	0.04	as above, but with rounded, mixed carbonate
		0.022 ± 4	6.2	:	0.5	≤0.5?	2500	0.04	and terrigenous grains as above, but with platy, skeletal carbonate grains
		0.020	11	:	0.7	0.80	2700?	0.05	as above
		0.017	19	:	1.1	0.93	2670?	0.09	as above
Note that symbols for simi "u" denotes uniform grain si "See appendix. "Re" $= u^e D_{50}(\nu)$. Where "Re" $= u^e D_{50}(\nu)$. Where "Where unreported by a s "Here we describe grain p [Sidewall correction for the "IUse of the average veloci "*Reported data are with are similar for near-uniform ± 1 [sed in Plate 1	lar footnot zes ($\sigma_g \leq \cdots$ unreported ource, h_c <i>N</i> rotrusion i e difference ty in the <i>E</i> respect to sediment.	es may be diffe 0.5) and "m" (1 by a source, alues are back in terms of pro e in wall and t <i>instein</i> [1942; the mean nom	rent in Tables flenotes mixed Re_{c}^{*} values are -calculated frc jection and ex ped grain roug 1950], <i>Johnson</i> innal grain diar	1a–1e. See notation section f grain sizes ($\sigma_g > 0.5$), where σ_g back-calculated from availa om critical depth-slope produ posure [sensu <i>Kirchner et al.</i> , hness but not for the proxim [1942] and <i>Vanoni and Broc</i> neter. Nominal diameters ar	or symbols not pr or symbols not pr σ_g is the graphin ble data (see foo tets using reporte 1990]. <i>ity</i> of walls (i.e., <i>iks</i> [1957] equatio e assumed equive	eviously defin e standard de tnote keyed 1 d data (see f <i>W</i> / <i>h</i>). ons likely ove ulent to interr	red in text. Sc viation defin $0 \ ^{+}$, Table 1a ootnote keyee restimates τ' nediate grain	te respective ed as $(\phi_{84} - \psi_{84} - \psi_{84})$ 1 to ‡, Tablo (see note 3 diameters (appendix notes for values in parentheses. Here φ ₁₆)/2 [<i>Folk</i> , 1974]. : 1a). : <i>Cui and Komar</i> , 1984]. Mean and median sizes

Table 1b. (Continued)

#5idewall correction applied by current authors. *Shimizu's* [1989] correction accounts for both the difference in wall and bed grain roughness and the proximity of walls (i.e., *W/h*). We assumed a bed grain roughness 100 times greater than wall roughness for smooth flume walls.
§§Reported data are with respect to the geometric mean grain size.
MReported data are with respect to mean grain sizes. Mean and median grain sizes are assumed similar for near-uniform sediment.
MReported data are determined from bulk (i.e., surface and subsurface mixture) grain size sampling, treated here as mixture-based values.

Table 1c. Previously Rep	orted $\tau_{c_i}^*$	¹⁰ Values: Co	mpetence ((Largest Mobile Grain)					
					Surface Grai	in Size Distrib	ution		
Source	Note*	$\tau^*_{c_{q50s}}$	$Re_{c}^{*}_{c}$	Proposed τ_c^* Function Other Than Shields'	$D_{50s}, { m mm}$	$\sigma_{gs}~(\phi)$	ρ_s , kg/m ³	$D_{50s}/h_c \ddagger$	Experimental Conditions
Carling [1983]	29	0.020	6,629	$\tau^*_{c_{qi}} = 1.17 Re^{*-0.46}_{i}$	62	~2	2710	0.29	natural, steep, gravel-bedded channel (Great Eggleshope Beck); coarse- grained plane bed/alternate bar morphology (?); no form drag or
		0.080	18,634	$\tau^*_{c_{qi}} = 4.99 Re^{*-0.42}_{i}$	ΓL	~ 1.7	2460	0.34	sucewall correction natural, steep, narrow, gravel-bedded channel (Carl Beck); coarse-grained plane bed morphology (?); no form drag
Hammond et al. [1984]	30	0.025\$	877	$ au^*_{c_{q_i}} = 0.025 (D_i/D_{50s})^{-0.60}$	15.5	06.0	2650	≪0.20	or sucewan correction natural, planar, tidal channel (West
Andrews and Erman [1986]	31	0.050§	8,377	$ au^*_{c_{qi}} = 0.101 (D_i/D_{50ss})^{-1.07}$	58	0.97	:	0.14	solent) natural, meandering, pool-riffle channel (Sagehen Creek); no form drag or sidewall correction
From Komar [1987a] Milhous [1973] Milhous [1973] Carling [1983]	32 33 33 33 32	0.027§ 0.024 0.021	7,277 6,861 6,738	$egin{array}{lll} au_{eqi}^{*} &= 0.044 (D_i/D_{50x3})^{-0.43} \ au_{eqi}^{*qi} &= 0.044 (D_i/D_{50x3})^{-0.53} \ au_{eqi}^{*qi} &= 0.044 (D_i/D_{50})^{-0.68} \ au_{eqi}^{*qi} &= 0.045 (D_i/D_{50})^{-0.68} \end{array}$	63 62	$< 0.71 < < 0.71 < < 0.71 < \sim 2$	2850 2850 2710	$\begin{array}{c} 0.20\\ 0.23\\ 0.28\end{array}$	same as first entry of Table 1a as above same as <i>Carling</i> [1983], first entry of Table
Carling [1983] Hammond et al. [1984]	34 35	0.022 0.027§	6,896 911	$\begin{array}{lll} \tau^*_{\frac{\varphi_{qi}}{2}} &= 0.045 (D_i/D_{50})^{-0.64} \\ \tau^*_{e_{qi}} &= 0.045 (D_i/D_{50})^{-0.71} \end{array}$	62 15.5	$^{\sim2}_{0.90}$	2710 2650	$0.27 \\ \ll 0.20$	tc (Ureat Eggleshope Beck) as above same as <i>Hammond et al.</i> [1984], second entry of Table 1c
From Komar [1987b] Fahnestock [1963]	36	0.031	21,033	÷	134	1.79	÷	0.61	natural, proglacial, braided channel (White River); no form drag or sidewall
Ferguson et al. [1989]		0.047§	37,880	$ au^*_{c_{qi}} = \ 0.047 (D_i/D_{50s})^{-0.88}$	73	÷	2800	0.20	correction natural, proglacial, braided, gravel channel (White River); form drag and sidewall correction as in note 3
From Komar and Carling [1991]	37								
Milhous [1973] Komar and Carling [1991] Ashworth et al. [1992]		0.028 0.039§ 0.049§	$7,601 \\ 9,182 \\ 1,807$	$\begin{array}{rcl} \tau^*_{\xi q i} &= 0.059 (D_i / D_{50s})^{-0.64} \\ \tau^*_{\xi q i} &= 0.039 (D_i / D_{50s})^{-0.82} \\ \tau^*_{c q i} &= 0.049 (D_i / D_{50s})^{-0.69} \end{array}$	63 62 21	${<}0.71$ ${\sim}2$ \cdots	2850 2710 2650	$\begin{array}{c} 0.27\\ 0.15\\ 0.07\end{array}$	same as first entry of Table 1a same as <i>Carling</i> [1983] from <i>Komar</i> [1987a] same as <i>Ashworth et al.</i> [1992], sixth entry
Lepp et al. [1993]	38	0.149	28,421	$ au^*_{c_{qi}} = 0.149 (D_i/D_{50s})^{-0.40}$	91	0.40	÷	0.35	Natural, steep, gravel-bedded river; bed form type not reported; <i>Shimizu</i> [1989] sidewall correction, but no form drag
		$0.143 \\ 0.155$	24,693 40,645	$egin{array}{lll} au_{eqi}^{*} &= 0.143 (D_{i}/D_{50s})^{-0.50} \ au_{eqi}^{2} &= 0.155 (D_{i}/D_{50s})^{-0.47} \end{array}$	84 114	$0.33 \\ 0.38$::	$0.45 \\ 0.48$	correction as above as above

					Surface Grai	n Size Distrib	ution		
Source	Note*	$\tau^*_{c_q 50s}$	$Re_{c}^{*}_{c} \dagger$	Proposed τ_c^* Function Other Than Shields'	$D_{50s}, { m mm}$	$\sigma_{gs}~(\phi)$	$ ho_s, \mathrm{kg/m^3}$	$D_{50s}/h_c \ddagger$	Experimental Conditions
Ferguson [1994]		0.074	14,096	$\tau^*_{c_{qi}} = 0.074 (D_i/D_{50s})^{-0.87}$	72	1.56	2650	0.38	natural boulder-bed stream (Roaring River); bed form type not reported; no sidewall correction; <i>Thompson and</i> <i>Campbell</i> [1979] form drag correction
		0.078 0.061 0.070	16,005 34,701 24.606	$\begin{array}{lll} \tau_{\xi^{q_i}}^* &=& 0.078 (D_i/D_{50s})^{-0.88} \\ \tau_{\xi^{q_i}}^* &=& 0.061 (D_i/D_{50s})^{-0.89} \\ \tau_{\xi^{q_i}}^* &=& 0.061 (D_i/D_{50s})^{-0.78} \end{array}$	77 140? 106	$1.14 \\ 1.06? \\ 1.06$	2650 2650 2650	$\begin{array}{c} 0.40 \\ 0.47? \\ 0.31 \end{array}$	for relative roughness as above as above as above
Wathen et al. [1995]		0.047§ 0.059§	11,943 2,025	$ au_{c_{qi}}^{*qi} = 0.047 (D_i^{1/D} S_{0x}^{000})^{-0.69} \ au_{c_{qi}}^{*gi} = 0.059 (D_i^{1/D} S_{0x}^{000})^{-0.70}$	75 21.3	~ 1.6	2650 2650	0.03 0.02-0.21	as above, but for the Gaula River same as <i>Wathen et al.</i> [1995], tenth entry of Table 1a
					Subsurface Gra	ain Size Distr	ibution		
Source	Note*	$\tau^*_{c_{q50ss}}$	$Re_{c}^{*\ddagger}$	Proposed τ_c^* Function Other Than Shields'	D_{50ss}, \min	$\sigma_{gss}~(\phi)$	$ ho_s, \mathrm{kg/m^3}$	$D_{50ss}/h_c \ddagger$	Experimental Conditions
Andrews and Erman [1986]		0.101	4,429	$ au_{c_{qi}}^{*} = 0.101 (D_{i}/D_{50ss})^{-1.07}$	30	2.25	:	0.07	same as <i>Andrews and Erman</i> [1986], third entry of Table 1c
From Komar [1987a] Milhous [1973]		0.044	1,662	$ au_{cqi}^{*} = 0.044 (D_{i}/D_{50ss})^{-0.43}$	20	<2.67	2850	0.12	same as <i>Parker and Klingeman</i> [1982], first
Carling [1983] Erom Vouce and Carling [1001]	39	0.037	2,570	$ au_{c_{qi}}^{*} = 0.045 (D_i/D_{50})^{-0.68}$	27	:	2710	0.16	entry of 1 aore 1a same as <i>Carling</i> [1983], first entry of Table 1c
Milhous [1973]		0.059	1,974	$ au_{c_{qi}}^{*} = 0.059 (D_i/D_{50ss})^{-0.64}$	20	<2.67	2850	0.13	same as Parker and Klingeman [1982], first
Komar and Carling [1991]		0.077	3,707	$ au^*_{c_{qi}} = 0.039 (D_i/D_{50s})^{-0.82}$	27	÷	2710	0.08	surv of 1 able 14 same as <i>Carling</i> [1983], first entry of Table 1c
Note that symbols for simil *See appendix. $\overrightarrow{r}Re_{c}^{2} = u_{c}^{2}D_{50}/\nu$. Where u	ar footnot	es may be difi by a source,	ferent in Tab. Re_c^* values at	les 1a–1e. See notation section for re back-calculated from available	r symbols not pr data (see footne	reviously defin ote keyed to	ned in text. †, Table 1a).		

 $U_{\rm e}$ where unreported by a source, h_c values are back-calculated from critical depth-slope products using reported data (see footnote keyed to \ddagger , Table 1a). $U_{\rm e}$ SUse and Plate 1. $U_{\rm e}$ Submatrixes and the proximity of walls (i.e., W/h). We assumed a bed grain roughness and the proximity of walls (i.e., W/h). We assumed a bed grain roughness 100 times greater than wall roughness for smooth flume walls.

BUFFINGTON AND MONTGOMERY: REVIEW

Table 1c. (Continued)

Theoretical	
Values:	
$\tau^*_{c_{50}}$	
Reported	
Previously	
1d.	
Table	

					Surface Grain	n Size Distribu	ıtion		
Source	Note*	$\tau^*_{c_{l50s}}$	$Re_{c}^{*} \dagger$	Proposed τ_c^* Function Other Than Shields'	D_{50s}, mm	$\sigma_{gs} \; (\phi)$	$ ho_s,~{ m kg/m^3}$	D_{50s}/h_c ‡	Experimental Conditions
White [1940]	40	0.209	44	see reference	6.0	n~	2600	na	theoretical plane bed; single grain within like bed; variable packing, projection and exposure; $\$ \Phi = 45^{\circ}$
		0.136	51	see reference	0.71	n~	7900	na	as above
		0.210	693	see reference	5.6	n~	2600	na	as above
		0.209	117	see reference	0.9	n~	2100	na	as above, but with air fluid medium
		0.208	1,829	see reference	5.6	n~	2100	na	as above
Chepil [1959]		0.018	:	see reference	:	u, m	:	na	theoretical plane bed undergoing en masse motion: variable packing, projection and
									exposure; $\delta \Phi = 24^{\circ}$
Egiazaroff [1965]		0.060	1,000	see reference	:	u, m	÷	na	theoretical plane bed; single grain on like, uniform, or mixed-grain bed; significant
	Ţ		1 000			c		1	projection and exposure§
Ikeda [1982]	41	0.061 (0.034)	1,000	see reference	:	D	:	na	theoretical plane bed; single grain on like, uniform bed; significant projection and evnosure 8 d = 45°
Naden [1987]	42	$0.046\ (0.030,\ 0.021)$	>77 (62, 52)	see reference	~	0	2650	na	theoretical plane bed; single grain on like,
1									uniform bed; full projection and exposure; $\delta \Phi = 35^{\circ}$
		$0.216\ (0.124,\ 0.080)$	>167 (127, 102)	see reference	>2	0	2650	na	as above, but with two grains on like, uniform bed; full projection, but no exposures for orain of interest
		0.063 (0.036 , 0.023)	>90 (68, 55)	see reference	>2	0	2650	na	as above, but with single grain within like,
									uniform bed; no projection or exposure§
Wiberg and Smith [1987]		0.060	1,000	see reference	:	0	2650	na	theoretical plane bed; single grain on like, uniform bed; significant projection and
		0.040	1.000	see reference	:	0	2650	na	exposure; $\Psi = 00^{\circ}$ as above, but with $\Phi = 50^{\circ}$
James [1990]		0.046	100	see reference	:	0	÷	na	theoretical plane bed; single grain within hed: moderate projection and exposure.8
									$\Phi = 64^{\circ}$
		0.011	130	see reference	:	0;	÷	na	theoretical plane bed; single grain on like, uniform bed; significant projection and exposure: $\$ \Phi = 10^{\circ}$
Kirchner et al. [1990]	43	0.125	325-480	see reference	3.74-4.85	$\sim 0.94 - 1.18$	2650	na	theoretical plane bed; single grain on like, mixed-grain bed; distribution of friction
	1			c					angle, protrusion and exposures
Buffington et al. [1992]	4	0.100	334-12,145	see reference	C 4 -1.4	0.0-1-/0.0	0007	na	theoretical plane bed; single grain on like, mixed-grain bed; distribution of friction
Bridge and Bennett [1992]		0.060	1,000	see reference	÷	0	÷	na	angle, protrusion and exposures theoretical plane bed with $\Phi \approx 39^{\circ}$,
									protrusion of 0.5 [sensu <i>Fenton and</i> <i>Abbott</i> , 1977], Corey shape factor of 1, and Powers roundness of 6 single grain on like, uniform bed

					Surface Grain	n Size Distrib	ution		
Source	Note*	$\tau^*_{c_{t50s}}$	$Re_{c}^{*}_{c} \dagger$	Proposed τ_c^* Function Other Than Shields'	D_{50s}, \min	σ_{gs} (ϕ)	ρ_s , kg/m ³	$D_{50s}/h_c \ddagger$	Experimental Conditions
Jiang and Haff [1993]	45	0.042 0.086-0.161	10,000 700-1,000	see reference see reference	 7.2 (?)	0 H	 2650	na na	as above simulated, heterogeneous, plane bed surface undergoing a "slab" shear;
Ling [1995]	46	0.050	500	see reference	÷	0	:	па	variable projection and exposures theoretical plane bed; single grain on like, uniform bed; significant projection and exposures
Note that symbols for simi "u" denotes uniform grain si "See amondiv	lar footnot izes $(\sigma_g \leq$	es may be differ 0.5), and "m"	rent in Table denotes mix	s 1a-1e. See notation section for s xed grain sizes ($\sigma_g > 0.5$), where	ymbols not prev σ_g is the grapl	iously defined hic standard	l in text. See deviation def	respective a ined as $(\phi_{8_4}$	ppendix notes for values in parentheses. Here $-\phi_{16}/2$ [Folk, 1974]; na, not applicable.
$Re_c^{*} = u_c^* D_{50}^{*} \nu$. Where $Re_c^{*} = u_c^* D_{50}^{*} \nu$. Where Rere we describe grain p $Reported data are with re- r$	unreported source, h_c v vrotrusion i espect to m	d by a source, <i>H</i> alues are back- n terms of proji iean grain sizes.	Re_c^* values a calculated fine calculated fine control of the first of the control of the co	re back-calculated from available rom critical depth-slope products xposure [sensu <i>Kirchner et al.</i> , 195 median grain sizes are assumed s.	data (see footno using reported o 0]. imilar for near-u	ote keyed to lata (see fooi miform sedin	†, Table 1a). inote keyed t nent.	:0 ‡, Table 1	a).
Table 1e. Previously Re	sported τ_c^*	₅₀ Values: Ot	her						
					Surface Grain	n Size Distrib	ution		
Source	1	$\tau^*_{c_{50s}}$	Re_{c}^{*} †	Proposed τ_c^* Function Other Than Shields'	$D_{50s}, ext{ mm}$	$\sigma_{gs}~(\phi)$	$ ho_s, \mathrm{kg/m^3}$	$D_{50s}/h_c \ddagger$	Experimental Conditions
Çeçen and Bayazit [1973]		0.044	1,481	Equivalence of Bed Load	and Surface Gr 14.6	ain Size 0.72	÷	0.26	straight, rectangular flume; plane bed; no
From Komar and Carling [1991] Milhous [1973]		0.037	8,738	$ au_{e,s00}^{*} = 0.104 (D_{501}/D_{5038})^{-0.8!}$	69	<0.71	2850	0.20	sidewall correction same as <i>Parker and Klingeman</i> [1982], first
Komar and Carling [1991]		0.055	10,904	$ au_{c_{q_{50l}}}^{*} = 0.055 (D_{50l}/D_{50s})^{-0.89}$	62	~ 2	2710	0.11	entry of Table 1a same as <i>Carling</i> [1983], first entry of Table 1c
Powell and Ashworth [1995]		0.010	2,790	Smallest Transport Captu 	tred by Bed Loau 49	d Trap	2586	0.20	natural, straight, gravel-bedded channel with low-amplitude medial bar (River
		0.011	2,860 6,700	::	49 49	::	2586 2586	0.18 0.03	Wharfe); loose, open framework, subangular grains; no sidewall or form drag correction as above as above, but with imbricated algal-covered
		0.067	7,590	:	49	:	2586	0.03	graıns as above
Note that symbols for sim	ilar footnot	es may be diffe	srent in Tab	les 1a-1e. See notation section for	c symbols not pr	reviously defin	ned in text.		

*See appendix. *See appendix. $Re_{e}^{*} = u_{e}^{*}D_{s0}/\nu$. Where unreported by a source, Re_{e}^{*} values are back-calculated from available data (see footnote keyed to \dagger , Table 1a). Where unreported by a source, h_{c} values are back-calculated from critical depth-slope products using reported data (see footnote keyed to \ddagger , Table 1a).

Table 1d. (Continued)

Nikuradse [1933] sand grain roughness).

- *m* mixed grain size.
- n_g, n_b Manning roughnesses due to grains and the combined effects of grains and bed forms [*Meyer-Peter and Müller*, 1948].
- Q, Q_b total volumetric fluid discharge and that acting on the grains and bed forms [*Meyer-Peter and Müller*, 1948].
- Re_{c}^{*}, Re_{ci}^{*} critical grain/boundary Reynolds number for D_{50} and D_{i} .
 - *u* uniform grain size.
 - u^* , u_c^* general and critical shear velocities.
 - W/h width-to-depth ratio.
 - α coefficient.
 - β exponent.
 - θ angular bed surface slope.
 - ν kinematic viscosity.
 - ρ, ρ_s fluid and sediment densities.

 $\sigma_g, \sigma_{gs}, \sigma_{gss}, \sigma_{gm}$

 $au_{c_{qi}}^{*}, \ au_{c_{q50}}^{*}, \ au_{c_{q50s}}^{*}, \ au_{c_{q50s}}^{*}, \ au_{c_{q50l}}^{*}$

m sorting coefficient (*Folk*'s [1974] graphic standard deviation) and those for the surface, subsurface, and laboratory mixtures. τ_0 total boundary shear stress.

 τ', τ'', \ldots

.. components of total boundary shear stress due to roughness elements such as grains (τ'), bed forms, walls, large woody debris, etc.

- au_c critical shear stress for incipient motion.
- $\begin{aligned} \tau_c^* & \text{dimensionless critical shear} \\ \tau_{c_i}^*, \ \tau_{c_{50}}^*, \ \tau_{c_{50s}}^*, \ \tau_{c_{50s}}^*, \ \tau_{c_{50s}}^*, \ \tau_{c_{50s}}^*, \ \tau_{c_{50s}}^*, \end{aligned}$

$$\tau_c \text{ of } D_i, D_{50}, D_{50}$$

 $D_{50ss}, \text{ and } D_{50m}.$

 τ_c^* of D_i , D_{50} , D_{50s} , D_{50ss} , and D_{50l} based on empirical competence equations determined from coupled bed load sampling and shear stress measurement.

 $\tau_{c_{ri}}^*, \tau_{c_{r50}}^*, \tau_{c_{r50s}}^*, \tau_{c_{r50m}}^*$ τ_c^* of D_i, D_{50}, D_{50s} , and D_{50m} for a specified reference bed load transport rate.

$$\tau_{c_{vi}}^*, \tau_{c_{v50}}^*, \tau_{c_{v50m}}^*, \tau_{c}^*$$
 of D_i, D_{50} , and D_{50m} based on visual observation of incipient motion.

 ϕ_{16}, ϕ_{84} log₂ grain sizes for which 16% and 84% of the grains

are finer.

$$\Phi$$
 intergranular friction angle.

Appendix: Notes for Tables 1a–1e

1. We estimated the exponent of the *Parker and Klingeman* [1982] $\tau_{c_{ri}}^*$ function from their Figure 3. To calculate D_{50s}/h_c , we used a slope of 0.01 based on armor-breaching discharges (over 40 feet³/s (1.13 m³/s)) during the winter of 1971 [*Milhous*, 1973, Table I-3]; except where reported differently, we assumed this same slope for all sources using *Milhous*' [1973] data.

2. We calculated $\tau^*_{c_{r50s}}$ with $D_i = D_{50s} = 54$ mm [Parker and Klingeman, 1982] and $D_{50ss} = 19.5$ mm [Wilcock and Southard, 1988, Table 1].

3. D_{50s} values are averages of those reported in Ashworth and Ferguson's [1989] Table 1. Although Ashworth and Ferguson [1989] used local velocity profiles rather than depth-slope products to determine shear stress, they used the full velocity profile rather than just near-bed values. The full profile includes all local roughness effects (bed form drag, etc.) and likely overestimates the effective shear stress (τ') (see discussion of segmented velocity profiles by *Middleton and Southard* [1984] and *Smith and McLean* [1977]). Their local velocity measures do, however, implicitly account for sidewall effects.

4. We estimated $\tau_{c_{r50s}}^*$ from *Wilcock and Southard*'s [1988] Oak Creek equation using the same D_i and D_{50ss} values as those in note 2 but with the coefficient of the equation reduced by 55% for bed form drag [*Wilcock*, 1993].

5. We calculated $\tau_{c_{r50s}}^{*}$ from the Shields equation using $\tau_{c_{r50s}}$ determined from *Wilcock and McArdell*'s [1993] Figure 8 expression, with D_{50s} estimated by averaging their Figure 5 data for runs 7b, 7c, 2, 4, 5, 6, and 14c (assumed to be equal to "start-up").

6. We estimated $\tau_{c_{r50s}}^*$ for runs 4 and 5 from *Day*'s [1981] Figure 2 using D_{50s} values [*Day*, 1981, Figure 1] from the immediately preceding runs (i.e., 3 and 4, respectively) and recognizing that τ_c^* is the square of the Ackers-White mobility number.

7. We calculated $\tau^*_{c_{r50s}}$ from the Shields equation using $\tau_{c_{r50s}}$ regressed from particle velocity and u^* data for D_{50s} values in *Meland and Norrman*'s [1966] Figure 4.

8. We estimated $\tau^*_{c_{r50m}}$ and Re^*_c values from *Shields*' [1936] Figure 6. Because the corresponding grain sizes are unreported by Shields, we assigned D_{50m} values reported by each source based on a sensible match of grain size with estimated $\tau^*_{c_{r50m}}$ and Re^*_c pairs. Kramer's data are included here, however, it is uncertain if they are reference- or visual-based values; Kramer measured bed load transport rates but did not report them. D_{50m} and h_c values for *Casey* [1935] are from *Tison* [1953].

9. Using data in *Johnson*'s [1943] Tables 27–30, we linearly extrapolated τ_c values from plots of bed load transport rate versus shear stress for each sediment mixture and used these data to calculate $\tau^*_{c,s_{0m}}$ values from the Shields equation. Lack of bedload size distributions precluded analysis of nonlinear relationships between bedload transport and shear stress using a *Parker and Klingeman* [1982] type method.

10. Curiously, *Gilbert*'s [1914] data analyzed in this fashion are very different than the other reference-based data and are excluded from our analysis.

11. We applied the method of note 7 to *Meland and Norrman*'s [1969] Figure 5, with $D_{50m} \approx 3.9$ mm [*Meland and Norrman*, 1969].

12. Although *Paintal* [1971] questions the existence of a definitive threshold for mobility [see also *Lavelle and Mofjeld*,

1987], two potential $\tau^*_{c_{r50m}}$ values can be estimated from his analysis. Extrapolating high bed load transport rates to a zero value yields $\tau^*_{c_{r50m}} \approx 0.05$ for D_{50m} values of 2.5 and 7.95 mm [*Paintal*, 1971, Figure 8]. The resultant $\tau^*_{c_{50}}$ and Re^*_c pairs agree with other referenced-based values determined by unreported curve-fitting techniques [e.g., *Shields*, 1936]. However, a more appropriate nonlinear fit of *Paintal*'s [1971, Figure 8] data can yield $\tau^*_{c_{50}}$ values as low as 0.01, depending on the chosen reference bedload transport rate.

13. We corrected *Mizuyama*'s [1977] modified Shields equation for a neglected buoyancy term (left-hand side of his equation (3.27); see work by *Wiberg and Smith* [1987] for a similar correct derivation). Using this corrected equation, we calculated $\tau^*_{c_{r50m}}$ values with data from *Mizuyama*'s [1977] Tables 3.1 and 3.2; $\tau^*_{c_{r50m}}$ values using a traditional Shields equation are shown in parentheses for comparison. Φ values used by *Mizuyama* [1977] are mass angles of repose for the bulk sediment mixture [sensu *Miller and Byrne*, 1966], rather than intergranular values.

14. The $\tau^*_{c_{r,50m}}$ is for the lowest dimensionless bed load transport rate (10⁻⁶) of the composite data set [*Pazis and Graf*, 1977, Figure 3].

15. We calculated $\tau^*_{c_{r50m}}$ values using *Bathurst et al.*'s [1987] equation (15.1) and values in their Table 15.3; equivalent $\tau^*_{c_{r50m}}$ values determined from a traditional Shields expression are shown in parentheses for comparison. We estimated Re^*_c values from *Bathurst et al.*'s [1987] Figure 15.3. As with *Mizuyama* [1977], Φ is the mass angle of repose of the sediment mixture.

16. We estimated $\tau_{c_{r50m}}^*$ values from *Bathurst et al.*'s [1987] Figure 15.3. Equivalent $\tau_{c_{r50m}}^*$ values using a traditional Shields expression are shown in parentheses [*Bathurst et al.*, 1979, Table 6].

17. We calculated $\tau^*_{c_{r50m}}$ from the Shields equation using $\tau_{c_{r50m}}$ of *Li and Komar*'s [1992] Figure 1b. 18. Using *Day*'s [1980] Figure 9 we determined $\tau^*_{c_{r50m}}$ val-

18. Using *Day*'s [1980] Figure 9 we determined $\tau_{c_{r50m}}^*$ values for dimensionless particle sizes corresponding to reported D_{50m} values [*Day*, 1980, Table 1], recognizing that τ_c^* is the square of the Ackers-White mobility number.

19. We estimated $\tau^*_{c_{r50m}}$ for run 3 from *Day*'s [1981] Figure 2 using D_{50m} of *Day*'s [1981] Figure 1 and recognizing that τ^*_c is the square of the Ackers-White mobility number.

20. We calculated $\tau_{c,s_{0m}}^*$ from the *Parker and Klingeman* [1982] method as modified by *Ashworth and Ferguson* [1989] using data reported in *Leopold and Emmett*'s [1976, 1977] Tables 1 and 2.

21. Using the Shields equation we developed power law functions for $\tau_{c_{ri}}^*$ from data in *Wilcock*'s [1992a] Figure 6.5 and Table 6.2.

22. We used the same procedure as in note 5, but with $D_i = D_{50m}$ estimated from the bulk bed distribution of *Wilcock and McArdell*'s [1993] Figure 5.

23. Coleman [1967] reports critical boundary Reynolds numbers in terms of u (the flow velocity measured at a height of $0.5D_{50s}$) rather than u^* . Consequently, his Re_c values must be converted to Re_c^* values by replacing u with u^* . We used Re_c^* values estimated from Coleman's [1967] data by Fenton and Abbott [1977], but we did not use their corrected $\tau_{c_{50}}^*$ values, as Coleman's [1967] shear stresses are not calculated from measures of u but instead are based on direct measures of strain and can be read from his Figure 3 without need for conversion. Fenton and Abbott's [1977] $\tau_{c_{50}}^*$ values are shown for comparison in parentheses.

24. Reported data were derived from Gilbert's [1914] Table

10 using his definition of incipient motion (i.e., "several grains moving" from a plane-bed surface [*Gilbert*, 1914, pp. 68, 71]) which we consider similar to *Kramer*'s [1935] "medium movement."

25. We calculated the first two $\tau_{c_{v50m}}^*$ and Re_c^* pairs from *White*'s [1940] Table 1 (experiments 1a, 1bii, and 2a) assuming $\rho_s = 2650 \text{ kg/m}^3$ and $\rho \approx 900 \text{ kg/m}^3$; ρ was estimated by comparing the reported depth-slope products [*White*, 1940, Table 1, "from d"] with those calculated for a fluid medium of water. We calculated the third $\tau_{c_{v50m}}^*$ and Re_c^* pair from *White*'s [1940, p. 328] data assuming $\nu = 10^{-6} \text{ m}^2/\text{s}$. All other reported values were taken from *White*'s [1940] Table 2.

26. Reported data are derived from *Grass'* [1970] averages of instantaneous shear stresses and are assumed equivalent to time-averaged values; instantaneous equivalents are shown in parentheses for comparison. *Grass'* [1970] direct shear stress measures implicitly account for sidewall effects.

27. We calculated $\tau_{c_{x50m}}^*$ from the Shields equation using the reported u_c^* value for initiation of grain motion [*Wimbush* and Lesht, 1979, Table 1], $\rho = 1027.6 \text{ kg/m}^3$ (sea water of 3.5% salinity and 7.3°C [*Todd*, 1964]) and $\rho_s = 2015 \text{ kg/m}^3$. We estimated ρ_s by averaging the densest possible carbonate (aragonite) with the least dense skeletal test measured by *Wimbush* and Lesht [1979].

28. We estimated $\tau_{c_{x50m}}^*$ by replacing the mean sand diameter in reported Shields stresses with D_{50m} values determined from the full grain size data of *Young and Mann*'s [1985] Table 1. We calculated corresponding Re_c^* values in a similar fashion.

29. The $\tau_{c_{q50s}}^{*}$ of Great Eggleshope Beck was calculated from the Shields equation, with D_{50s} taken as the median grain size of the framework distribution [*Komar and Carling*, 1991, Table 1] and $\tau_{c_{q50s}}$ determined from *Carling*'s [1983] equation (7) using the above D_{50s} value. The framework distribution is observationally similar to the censored (i.e., armored) surface layer distribution [*Carling and Reader*, 1982]; $\tau_{c_{q50s}}^{*}$ for Carl Beck was calculated in a similar fashion using a median framework gravel size estimated from *Carling*'s [1989] Figure 2, with the distribution truncated at 4 mm [*Carling*, 1989].

30. We developed a power law function for $\tau_{c_{qi}}^*$ using D_i and $\tau_{c_{qi}}^*$ data from *Hammond et al.*'s [1984] Table 1 and D_{50s} = 15.5 mm estimated from the grab sample data of their Figure 3 truncated at 2 mm; the surface material was observationally devoid of sand [*Hammond et al.*, 1984].

31. Rather than using the *Andrew*'s [1983] equation, we regressed a power law function through *Andrews and Erman*'s [1986] Figure 7 data and evaluated $\tau^*_{c_q 50s}$ with $D_i = D_{50s} = 58$ mm and $D_{50ss} = 30$ mm [*Andrews and Erman*, 1986].

32. Using bed load transport data from Milhous [1973], Carling [1983], and Hammond et al. [1984], Komar [1987a] developed empirical competence equations for each study site, expressing competence as a power law function between shear stress and the largest mobile grain size [Komar, 1987a, Table 1]. To facilitate convergence of different data sets, Komar [1987a] proposed that Shields stress be expressed as a power law function of the form $\tau_{c_{ai}}^* = \alpha (D_i/D_{50})^{\beta}$ (similar to that used by Parker et al. [1982] and Andrews [1983]), where D_{50} is a generic term that Komar [1987a] inconsistently evaluated as either D_{50ss} or the "crossover" grain size [Komar, 1987a, p. 205]. For *Milhous*' [1973] data, *Komar* [1987a] set $D_{50} = D_{50ss}$ and algebraically manipulated the competence equation into the desired form of $\tau^*_{c_{qi}}$ [Komar, 1987a, p. 207]. For the Carling [1983] and Hammond et al. [1984] data, Komar [1987a] chose D_{50} values based on the empiricism that competence curves

cross the Miller et al. [1977] incipient motion curve at values of $D_i \approx D_{50}$, as demonstrated by Day's [1980] data [Komar, 1987a, Figure 2], where $D_{50} = D_{50m}$ for *Day*'s [1980] data. However, the crossover value for Carling's [1983] data (20 mm [Komar, 1987a, Figure 3]) is similar to the D_{50ss} value for that site (27 mm [Komar and Carling, 1991, Table 1]); while the Hammond et al. [1984] D_{50ss} value is not known, the crossover value (7.5 mm [Komar, 1987a, Table 1]) is less than D_{50s} (15.5 mm, note 30) and more like the D_{50} of their grab sample (10.3 mm [Hammond et al., 1984, Figure 3]) which is likely to be composed predominantly of subsurface material. These observations indicate that *Komar*'s [1987a] $\tau_{c_{ai}}^*$ equations for Milhous [1973], Carling [1983], and Hammond et al. [1984] [Komar, 1987a, Table 1] are functions of median grain sizes similar or equal to those of the subsurface (i.e., Komar's [1987a] generic D_{50} is defined as D_{50ss} in the Milhous equation and is roughly equivalent to D_{50ss} in the Carling and Hammond et al. equations).

Komar [1987a, Figure 4] fixed α values for the *Carling* [1983] and *Hammond et al.* [1984] $\tau_{c_{qi}}^*$ equations from crossover points with the *Miller et al.* [1977] curve, forcing $\alpha = 0.045$ and leaving β to be back-calculated. *Komar* [1987a] found that the resultant $\tau_{c_{qi}}^*$ equation for *Carling*'s [1983] data appeared to describe *Milhous*' [1973] data quite well, so he used it to represent *Milhous*' [1973] data, abandoning the algebraically defined Milhous equation (cf. p. 207, Figure 5, and Table 1 of *Komar* [1987a]). Rejecting this unsound rationale, we have maintained the original algebraically defined Milhous equation in Table 1c (as also preferred by *Komar and Shih* [1992]).

We calculated $\tau_{c_{q50s}}^*$ values from these "derived" $\tau_{c_{qi}}^*$ equations using values of $D_i = D_{50s}$ culled from other sources (see following notes) and D_{50} as defined by *Komar* [1987a, Table 1]. *Komar*'s [1987a] $\tau_{c_{qi}}^*$ equations for *Day*'s [1980] data were not used, as they represent $D_i/D_{50m} > 1$ only [*Komar*, 1987a, p. 209].

33. We calculated $\tau^*_{c_{q50s}}$ from the algebraically manipulated Milhous equation [Komar, 1987a, p. 207] and values of $D_{50} = D_{50ss} = 20$ mm [Komar, 1987a, Table 1] and $D_i = D_{50s} = 63$ mm [Milhous, 1973, Table 2; Winter, 1971]. We estimated a second set of values from a power law fit of data presented in Komar's [1987a] Figure 5.

34. We calculated $\tau_{c_{q50s}}^*$ from the Carling equation [*Komar*, 1987a, Table 1] and values of $D_{50} \approx 20$ mm [*Komar*, 1987a, Table 1] and $D_i = D_{50s} = 62$ mm, the median grain size of the framework distribution [*Komar and Carling*, 1991, Table 1] (see also note 29). We estimated a second set of values from a power law fit of data presented in *Komar*'s [1987a] Figure 6.

35. We calculated $\tau^*_{c_{q50s}}$ from the *Hammond et al.* [1984] $\tau^*_{c_{qi}}$ equation [*Komar*, 1987a, Table 1] and values of $D_{50} = 7.5$ mm [*Komar*, 1987a, Table 1] and $D_i = D_{50s} = 15.5$ mm (note 30).

36. We calculated $\tau_{c_{q50s}}$ from the Fahnestock competence equation reported by *Komar* [1987b, Table 1], and used this value to determine $\tau^*_{c_{q50s}}$ from the Shields equation. For these calculations D_{50s} was determined from the composite White River grain size data [*Fahnestock*, 1963, Table 2].

37. We calculated $\tau_{c_{q50s}}^*$ values from relevant equations [Komar and Carling, 1991, Figure 9] and grain sizes [Milhous, 1973, p. 16; Komar and Carling, 1991, Table 1]. Although the legend for Komar and Carling's [1991] Figure 9 indicates that the Carling equation is expressed as a function of D_{50ss} , the normalizing grain size used by the authors (62 mm) is that of the framework gravel [Komar and Carling, 1991, p. 498], which

is equivalent to the censored (i.e., armored) surface size [Carling and Reader, 1982].

38. Values of $\tau_{c_{q50s}}^*$ were determined from power functions for $\tau_{c_{qi}}^*$ developed from *Lepp et al.*'s [1993, Tables 2–4] data. 39. We used $D_i = D_{50ss} = 27$ mm [*Komar and Carling*, 1991, Table 3] and $D_{50} = 20$ mm (see note 32).

40. We determined $\tau_{c_{t50s}}^*$ values using the Shields equation and $\tau_{c_{t50s}}$ values presented in *White*'s [1940] Table 2. However, he erroneously adds tan θ to tan Φ , rather than subtracting it [cf. *Wiberg and Smith*, 1987]; our reported values reflect this correction.

41. The $\tau^*_{c_{150s}}$ values were estimated from *Ikeda*'s [1982] Figure 5 for dimensionless lift-to-drag ratios of 0 and 0.8 (shown in parentheses).

42. Reported $\tau_{c_{r50s}}^{*}$ values are means for velocity fluctuations of zero, one, and two standard deviations, respectively [*Naden*, 1987, Table 2].

43. Φ and grain protrusion measurements were made from flume-worked heterogeneous bed surfaces with plane-bed or low-amplitude topography. The specific $\tau^*_{c_{150s}}$ value reported here was read from *Kirchner et al.*'s [1990] Figure 18 for D/K_{50} = 1 and n = 10.

44. Φ measurements were made from bed surfaces of a natural pool-riffle stream (Wildcat Creek), and protrusion values were derived from *Kirchner et al.*'s [1990] experiments. The specific $\tau^*_{c_{r50}}$ value reported here was read from *Buffington et al.*'s [1992] Figure 13 for $D/K_{50} = 1$ and n = 0.1.

45. Reported $\tau^*_{c_{150s}}$ values bracket the calculated threshold of "continuous" motion, defined as one or more particles moving at all times during a simulation [*Jiang and Haff*, 1993].

46. Ling [1995] proposes two Shields curves representing sediment motion characterized by lifting and rolling, respectively. These curves coalesce at high Re_c^* values. The $\tau_{c_{150s}}^*$ value reported here is half that of Ling's [1995] Figure 3, corresponding to $k_s/D_{50s} = 1$ [Ling, 1995, p. 477].

Acknowledgments. This work was funded by the Pacific Northwest Research Station of the U.S. Department of Agriculture Forest Service (cooperative agreement PNW 94-0617) and by the Washington State Timber, Fish, and Wildlife agreement (TFW-SH10-FY93-004, FY95-156). Bill Dietrich, Peter Wilcock, and two anonymous reviewers provided insightful criticism that significantly improved this work.

References

- Ackers, P., and W. R. White, Sediment transport: New approach and analysis, J. Hydraul. Div. Am. Soc. Civ. Eng., 99, 2041–2060, 1973.
- Adachi, S., The effects of side walls in rectangular cross sectional channel, Proc. Jpn. Soc. Civ. Eng., 81, 17–26, 1962.
- Aksoy, S., The influence of the relative depth on threshold of grain motion, in *Proceedings of the International Association for Hydraulic Research International Symposium on River Mechanics*, pp. 359–370, Int. Assoc. for Hydraul. Res., Delft, Netherlands, 1973.
- Andrews, E. D., Entrainment of gravel from naturally sorted riverbed material, Geol. Soc. Am. Bull., 94, 1225–1231, 1983.
- Andrews, E. D., Marginal bed load transport in a gravel-bed stream, Sagehen Creek, California, *Water Resour. Res.*, 30(7), 2241–2250, 1994.
- Andrews, E. D., and D. C. Erman, Persistence in the size distribution of surficial bed material during an extreme snowmelt flood, *Water Resour. Res.*, 22, 191–197, 1986.
- Andrews, E. D., and J. M. Nankervis, Effective discharge and the design of channel maintenance flows for gravel-bed rivers, in *Natural* and Anthropogenic Influences in Fluvial Geomorphology, Geophys. Monogr. Serv., vol. 89, edited by J. E. Costa, A. J. Miller, K. W. Potter, and P. R. Wilcock, pp. 151–164, AGU, Washington, D. C., 1995.

- Ashida, K., and M. Bayazit, Initiation of motion and roughness of flows in steep channels, in *Proceedings of the 15th Congress of the International Association for Hydraulic Research*, vol. 1, pp. 475–484, Int. Assoc. for Hydraul. Res., Delft, Netherlands, 1973.
- Ashworth, P. J., and R. I. Ferguson, Size-selective entrainment of bed load in gravel bed streams, *Water Resour. Res.*, 25, 627–634, 1989.
- Ashworth, P. J., R. I. Ferguson, P. E. Ashmore, C. Paola, D. M. Powell, and K. L. Prestegaard, Measurements in a braided river chute and lobe, 2, Sorting of bed load during entrainment, transport, and deposition, *Water Resour. Res.*, 28, 1887–1896, 1992.
- Bathurst, J. C., R. M. Li, and D. B. Simons, Hydraulics of mountain rivers, *Rep. CER78-79JCB-RML-DBS55*, 229 pp., Eng. Res. Cent., Colo. State Univ., Fort Collins, 1979.
- Bathurst, J. C., W. H. Graf, and H. H. Cao, Initiation of sediment transport in steep channels with coarse bed material, in *Mechanics of Sediment Transport*, edited by B. M. Sumer and A. Müller, pp. 207–213, A. A. Balkema, Rotterdam, 1983.
- Bathurst, J. C., W. H. Graf, and H. H. Cao, Bed load discharge equations for steep mountain rivers, in *Sediment Transport in Gravelbed Rivers*, edited by C. R. Thorne, J. C. Bathurst, and R. D. Hey, pp. 453–491, John Wiley, New York, 1987.
- Bray, D. I., Evaluation of effective boundary roughness for gravel-bed rivers, *Can. J. Civ. Eng.*, 7, 392–397, 1980.
- Bridge, J. S., and S. J. Bennett, A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities, *Water Resour. Res.*, 28, 337–363, 1992.
- Bridge, J. S., and D. F. Dominic, Bed load grain velocities and sediment transport rates, *Water Resour. Res.*, 20, 476–490, 1984.
- Brooks, N. H., Mechanics of streams with movable beds of fine sand, *Trans. Am. Soc. Civ. Eng.*, 123, 526–549, 1958.
- Brownlie, W. R., Flow depth in sand-bed channels, J. Hydraul. Eng., 109, 959–990, 1983.
- Buffington, J. M., Effects of hydraulic roughness and sediment supply on surface textures of gravel-bedded rivers, M.S. thesis, 184 pp., Univ. of Wash., Seattle, 1995.
- Buffington, J. M., W. E. Dietrich, and J. W. Kirchner, Friction angle measurements on a naturally formed gravel streambed: Implications for critical boundary shear stress, *Water Resour. Res.*, 28, 411–425, 1992.
- Carling, P. A., Threshold of coarse sediment transport in broad and narrow natural streams, *Earth Surf. Processes Landforms*, 8, 1–18, 1983.
- Carling, P. A., Bedload transport in two gravel-bedded streams, Earth Surf. Processes Landforms, 14, 27–39, 1989.
- Carling, P. A., and N. A. Reader, Structure, composition and bulk properties of upland stream gravels, *Earth Surf. Processes Landforms*, 7, 349–365, 1982.
- Carling, P. A., A. Kelsey, and M. S. Glaister, Effect of bed roughness, particle shape and orientation on initial motion criteria, in *Dynamics* of *Gravel-bed Rivers*, edited by P. Billi, R. D. Hey, C. R. Thorne, and P. Tacconi, pp. 24–39, John Wiley, New York, 1992.
- Carson, M. A., and G. A. Griffiths, Tractive stress and the onset of bed particle movement in gravel stream channels: Different equations for different purposes, J. Hydrol., 79, 375–388, 1985.
- Casey, H., Über geschiebebewegung, Mitt. Preuss. Versuchsanst. Wasserbau Schiffbau, 19, 86, 1935.
- Çeçen, K., and M. Bayazit, Critical shear stress of armored beds, in Proceedings of the 15th Congress of the International Association for Hydraulic Research, vol. 1, pp. 493–500, Int. Assoc. for Hydraul. Res., Delft, Netherlands, 1973.
- Chang, Y. L., Laboratory investigation of flume traction and transportation, *Trans. Am. Soc. Civ. Eng.*, 104, 1246–1284, 1939.
- Cheng, E. D. H., Incipient motion of large roughness elements in turbulent open channel flow, Ph.D. dissertation, 179 pp., Utah State Univ., Logan, 1970.
- Chepil, W. S., Equilibrium of soil grains at the threshold of movement by wind, *Soil Sci. Soc. Proc.*, 23, 422–428, 1959.
- Church, M., Palaeohydrological reconstructions from a Holocene valley fill, in *Fluvial Sedimentology, Can. Soc. Petrol. Geol. Mem.*, vol. 5, edited by A. D. Miall, pp. 743–772, Can. Soc. of Petrol. Geol., Calgary, Alberta, Canada, 1978.
- Chyn, S. D., An experimental study of the sand transporting capacity of flowing water on a sandy bed and the effect of the composition of the sand, M.S. thesis, 33 pp., Mass. Inst. of Technol., Cambridge, 1935.
- Clifford, N. J., A. Robert, and K. S. Richards, Estimation of flow resistance in gravel-bedded rivers: A physical explanation of the

multiplier of roughness length, *Earth Surf. Processes Landforms*, 17, 111–126, 1992.

- Coleman, N. L., A theoretical and experimental study of drag and lift forces acting on a sphere resting on a hypothetical streambed, in *Proceedings of the 12th Congress of the International Association for Hydraulic Research*, vol. 3, pp. 185–192, Int. Assoc. Hydraul. Res., Delft, Netherlands, 1967.
- Cui, B., and P. D. Komar, Size measures and the ellipsoidal form of clastic sediment particles, J. Sediment. Petrol., 54, 783–797, 1984.
- Day, T. J., A study of the transport of graded sediments, *Rep. IT190*, 10 pp., Hydraul. Res. Stn., Wallingford, U. K., 1980.
- Day, T. J., An experimental study of armouring and hydraulic properties of coarse bed material channels, in *Erosion and Sediment Transport in Pacific Rim Steeplands, Publ. 132*, edited by T. R. H. Davies and A. J. Pearce, pp. 236–251, Int. Assoc. of Hydrol. Sci., Gentbrugge, Belgium, 1981.
- Dhamotharan, S., A. Wood, G. Parker, and H. Stefan, Bedload transport in a model gravel stream, *Proj. Rep. 190*, St. Anthony Falls Hydraul. Lab., Univ. of Minn., Minneapolis, 1980.
- Dietrich, W. E., J. D. Smith, and T. Dunne, Boundary shear stress, sediment transport and bed morphology in a sand-bedded river meander during high and low flow, in *River Meandering, Proceedings* of the Conference Rivers '83, edited by C. M. Elliot, pp. 632–639, Am. Soc. Civ. Eng., New York, 1984.
- Dietrich, W. E., J. W. Kirchner, H. Ikeda, and F. Iseya, Sediment supply and the development of the coarse surface layer in gravelbedded rivers, *Nature*, 340, 215–217, 1989.
- Diplas, P., Bedload transport in gravel-bed streams, J. Hydraul. Eng., 113, 277–292, 1987.
- Diplas, P., and J. B. Fripp, Properties of various sediment sampling procedures, J. Hydraul. Eng., 118, 955–970, 1992.
- Diplas, P., and A. J. Sutherland, Sampling techniques for gravel sized sediments, J. Hydraul. Eng., 114, 484–501, 1988.
- Egiazaroff, I. V., Calculation of nonuniform sediment concentrations, J. Hydraul. Div. Am. Soc. Civ. Eng., 91, 225–247, 1965.
- Einstein, H. A., Formulas for the transportation of bed load, *Trans. Am. Soc. Civ. Eng.*, 107, 561–597, 1942.
- Einstein, H. A., The bed-load function for sediment transportation in open channel flows, U.S. Dep. Agric. Soil Conserv. Serv. Tech. Bull. 1026, 73 pp., 1950.
- Einstein, H. A., and Barbarossa, N. L., River channel roughness, *Trans. Am. Soc. Civ. Eng.*, *117*, 1121–1146, 1952.
- Engels, H., Grossmodellversuche über das Verhalten eines geschiebeführenden gewundenen Wasserlaufes unter der Einwirkung sechselnder Wasserstande und verschiedenartiger Eindeichungen, *Wasserkraft Wasserwirt.*, no. 3/4, 1932.
- Engels, H., and H. Kramer, Large-scale experiments in river hydraulics, *Civ. Eng.*, 2, 670–674, 1932.
- Engelund, F., Hydraulic resistance of alluvial streams, J. Hydraul. Div. Am. Soc. Civ. Eng., 92, 315–326, 1966.
- Everts, C. H., Particle overpassing on flat granular boundaries, J. Waterw. Harbors Coastal Eng. Div. Am. Soc. Civ. Eng., 99, 425–439, 1973.
- Fahnestock, R. K., Morphology and hydrology of a glacial stream— White River, Mount Rainier, Washington, U.S. Geol. Surv. Prof. Pap. 422A, 70 pp., 1963.
- Fenton, J. D., and J. E. Abbott, Initial movement of grains on a stream bed: The effect of relative protrusion, *Proc. R. Soc. London A*, 352, 523–537, 1977.
- Ferguson, R. I., Critical discharge for entrainment of poorly sorted gravel, *Earth Surf. Processes Landforms*, 19, 179–186, 1994.
- Ferguson, R. I., K. L. Prestegaard, and P. J. Ashworth, Influence of sand on hydraulics and gravel transport in a braided gravel bed river, *Water Resour. Res.*, 25, 635–643, 1989.
- Fernandez Luque, R., and R. van Beek, Erosion and transport of bed-load sediment, J. Hydraul. Res., 14, 127–144, 1976.
- Flintham, T. P., and P. A. Carling, The prediction of mean bed and wall boundary shear in uniform and compositely rough channels, in *International Conference on River Regime*, edited by W. R. White, pp. 267–287, John Wiley, New York, 1988.
- Folk, R. L., *Petrology of Sedimentary Rocks*, 182 pp., Hemphill Publ., Austin, Tex., 1974.
- Fripp, J. B., and P. Diplas, Surface sampling in gravel streams, J. Hydraul. Eng., 119, 473-490, 1993.
- Gessler, J., Beginning and ceasing of sediment motion, in River Me-

chanics, edited by H. W. Shen, pp. 7:1-7:22, H. W. Shen, Fort Collins, Colo., 1971.

- Gilbert, G. K., The transportation of débris by running water, U.S. Geol. Surv. Prof. Pap. 86, 263 pp., 1914.
- Gomez, B., and M. Church, An assessment of bed load sediment transport formulae for gravel bed rivers, *Water Resour. Res.*, 25, 1161–1186, 1989.
- Grass, A. J., Initial instability of fine bed sand, J. Hydraul. Div. Am. Soc. Civ. Eng., 96, 619–632, 1970.
- Griffiths, G. A., Form resistance in gravel channels with mobile beds, *J. Hydraul. Eng.*, *115*, 340–355, 1989.
- Guy, H. P., D. B. Simons, and E. V. Richardson, Summary of alluvial channel data from flume experiments, 1956–61, U.S. Geol. Surv. Prof. Pap. 462-I, 96 pp., 1966.
- Hammond, F. D. C., A. D. Heathershaw, and D. N. Langhorne, A comparison between Shields' threshold criterion and the movement of loosely packed gravel in a tidal channel, *Sedimentology*, 31, 51–62, 1984.
- Hey, R. D., Flow resistance in gravel-bed rivers, J. Hydraul. Div. Am. Soc. Civ. Eng., 105, 365–379, 1979.
- Hey, R. D., Bar form resistance in gravel-bed rivers, J. Hydraul. Eng., 114, 1498–1508, 1988.
- Ho, C., Determination of bottom velocity necessary to start erosion in sand, Ph.D. dissertation, Univ. of Iowa, Iowa City, 1933.
- Ho, P.-Y., Abhangigkeit der geschiebebewegung von der kornform und der temperatur, *Mitt. Preuss. Versuchsanst. Wasserbau Erdbau Schiffbau*, 37, 43, 1939.
- Ikeda, S., Incipient motion of sand particles on side slopes, J. Hydraul. Div. Am. Soc. Civ. Eng., 108, 95–114, 1982.
- Ippen, A. T., and R. P. Verma, The motion of discrete particles along the bed of a turbulent stream, in *Proceedings of the Minnesota International Hydraulics Convention*, pp. 7–20, Int. Assoc. Hydraul. Res., Delft, Netherlands, 1953.
- James, C. S., Prediction of entrainment conditions for nonuniform noncohesive sediments, J. Hydraul. Res., 28, 25–41, 1990.
- Jiang, Z., and P. K. Haff, Multiparticle simulation methods applied to the micromechanics of bed load transport, *Water Resour. Res.*, 29, 399–412, 1993.
- Johnson, J. W., The importance of considering side-wall friction in bed-load investigations, *Civ. Eng.*, *12*, 329–331, 1942.
- Johnson, J. W., Laboratory investigations on bed-load transportation and bed roughness, a compilation of published and unpublished data, U.S. Dep. Agric. Soil Cons. Serv. SCS-TP-50, 116 pp., 1943.
- Jorissen, A. L., Étude expérimentale du transport solide des cours d'eau, Rev. Univ. Mines, 14, 269-282, 1938.
- Kamphuis, J. W., Determination of sand roughness for fixed beds, J. Hydraul. Res., 12, 193–203, 1974.
- Kellerhals, R., and D. I. Bray, Sampling procedures for coarse fluvial sediments, J. Hydraul. Div. Am. Soc. Civ. Eng., 97, 1165–1180, 1971.
- Kinerson, D., Bed surface response to sediment supply, M.S. thesis, 420 pp., Univ. of Calif., Berkeley, 1990.
- Kirchner, J. W., W. E. Dietrich, F. Iseya, and H. Ikeda, The variability of critical shear stress, friction angle, and grain protrusion in water worked sediments, *Sedimentology*, 37, 647–672, 1990.
- Knight, D. G., Boundary shear in smooth and rough channels, J. Hydraul. Div. Am. Soc. Civ. Eng., 107, 839–851, 1981.
- Komar, P. D., Selective grain entrainment by a current from a bed of mixed sizes: A reanalysis, J. Sediment. Petrol., 57, 203–211, 1987a.
- Komar, P. D., Selective gravel entrainment and the empirical evaluation of flow competence, *Sedimentology*, *34*, 1165–1176, 1987b.
- Komar, P. D., and P. A. Carling, Grain sorting in gravel-bed streams and the choice of particle sizes for flow-competence evaluations, *Sedimentology*, 38, 489–502, 1991.
- Komar, P. D., and S.-M. Shih, Equal mobility versus changing bedload grain sizes in gravel-bed streams, in *Dynamics of Gravel-bed Rivers*, edited by P. Billi, R. D. Hey, C. R. Thorne, and P. Tacconi, pp. 73–106, John Wiley, New York, 1992.
- Komar, P. D., and C. Wang, Processes of selective grain transport and the formation of placers on beaches, J. Geol., 95, 637–655, 1984.
- Kondolf, G. M., and P. Wilcock, The flushing flow problem, *Eos Trans. AGU*, *73*, 239, 1992.
- Kramer, H., Sand mixtures and sand movement in fluvial models, Trans. Am. Soc. Civ. Eng., 100, 798-878, 1935.
- Kuhnle, R. A., Fractional transport rates of bedload on Goodwin Creek, in *Dynamics of Gravel-bed Rivers*, edited by P. Billi, R. D.

Hey, C. R. Thorne, and P. Tacconi, pp. 141–155, John Wiley, New York, 1992.

- Kuhnle, R. A., Equal mobility on Goodwin Creek, *Eos Trans. AGU*, 74, 158, 1993a.
- Kuhnle, R. A., Incipient motion of sand-gravel sediment mixtures, J. *Hydraul. Eng.*, 119, 1400–1415, 1993b.
- Kuhnle, R. A., and A. J. Bowie, Loop rating curves from Goodwin Creek, in *Hydraulic Engineering '92*, edited by M. Jennings and N. G. Bhowmik, pp. 741–746, Am. Soc. Civ. Eng., New York, 1992.
- Lane, E. W., Design of stable channels, *Trans. Am. Soc. Civ. Eng.*, 120, 1234–1279, 1955.
- Lavelle, J. W., and H. O. Mofjeld, Do critical stresses for incipient motion and erosion really exist?, J. Hydraul. Eng., 113, 370–385, 1987.
- Leopold, L. B., and W. W. Emmett, Bedload measurements, East Fork River, Wyoming, Proc. Natl. Acad. Sci. U.S.A., 73, 1000–1004, 1976.
- Leopold, L. B., and W. W. Emmett, 1976 bedload measurements, East Fork River, Wyoming, Proc. Natl. Acad. Sci. U.S.A., 74, 2644–2648, 1977.
- Leopold, L. B., M. G. Wolman, and J. P. Miller, *Fluvial Processes in Geomorphology*, 522 pp., W. H. Freeman, New York, 1964.
- Lepp, L. R., C. J. Koger, and J. A. Wheeler, Channel erosion in steep gradient, gravel-paved streams, *Bull. Assoc. Eng. Geol.*, 30, 443–454, 1993.
- Li, M. Z., and P. D. Komar, Laboratory measurements of pivoting angles for applications to selective entrainment of gravel in a current, *Sedimentology*, *33*, 413–423, 1986.
- Li, Z., and P. D. Komar, Selective entrainment and transport of mixed size and density sands: Flume experiments simulating the formation of black-sand placers, J. Sediment. Petrol., 62, 584–590, 1992.
- Ling, C.-H., Criteria for incipient motion of spherical sediment particles, J. Hydraul. Eng., 121, 472–478, 1995.
- Liu, T.-Y., Transportation of the bottom load in an open channel, M.S. thesis, 34 pp., Univ. of Iowa, Iowa City, 1935.
- MacDougall, C. H., Bed-sediment transportation in open channels, *Eos Trans. AGU*, 14, 491–495, 1933.
- Mantz, P. A., Low transport stages by water streams of fine, cohesionless granular and flaky sediments, Ph.D. dissertation, Univ. of London, London, 1975.
- Mantz, P. A., Incipient transport of fine grains and flakes by fluids— Extended Shields diagram, J. Hydraul. Div. Am. Soc. Civ. Eng., 103, 601–615, 1977.
- Mavis, F. T., C. Ho, and Y.-C. Tu, The transportation of detritus by flowing water, I, Univ. Iowa Studies Eng., 5, 1–53, 1935.
- Mavis, F. T., T. Liu, and E. Soucek, The transportation of detritus by flowing water, II, Univ. Iowa Studies Eng., 11, 1–28, 1937.
- Meland, N., and J. O. Norrman, Transport velocities of single particles in bed-load motion, *Geogr. Ann.*, 48A, 165–182, 1966.
- Meland, N., and J. O. Norrman, Transport velocities of individual size fractions in heterogeneous bed load, *Geogr. Ann.*, 51A, 127–144, 1969.
- Meyer-Peter, E., and R. Müller, Formulas for bed-load transport, in *Proceedings of the 2nd Meeting of the International Association for Hydraulic Structures Research*, pp. 39–64, Inter. Assoc. for Hydraul. Res., Delft, Netherlands, 1948.
- Middleton, G. V., and J. B. Southard, *Mechanics of Sediment Movement*, 401 pp., Soc. of Econ. Paleontol. and Mineral., Tulsa, Okla., 1984.
- Milhous, R. T., Sediment transport in a gravel-bottomed stream, Ph.D. dissertation, 232 pp., Oreg. State Univ., Corvallis, 1973.
- Milhous, R. T., The calculation of flushing flows for gravel and cobble bed rivers, in *Hydraulic Engineering, Proceedings of the 1990 National Conference*, vol. 1, edited by H. H. Chang, pp. 598–603, Am. Soc. Civ. Eng., New York, 1990.
- Millar, R. G., and M. C. Quick, Flow resistance of high-gradient gravel channels, in *Hydraulic Engineering*, '94, vol. 1, edited by G. V. Controneo and R. R. Rumer, pp. 717–721, Am. Soc. Civ. Eng., New York, 1994.
- Miller, R. T., and R. J. Byrne, The angle of repose for a single grain on a fixed rough bed, *Sedimentology*, 6, 303–314, 1966.
- Miller, M. C., I. N. McCave, and P. D. Komar, Threshold of sediment motion under unidirectional currents, *Sedimentology*, 24, 507–527, 1977.
- Misri, R. L., R. J. Garde, and K. G. R. Raju, Bed load transport of coarse nonuniform sediment, J. Hydraul. Eng., 110, 312–328, 1984.

Mizuyama, T., Bedload transport in steep channels, Ph.D. dissertation, 118 pp., Kyoto Univ., Kyoto, Japan, 1977.

- Montgomery, D. R., J. M. Buffington, N. P. Peterson, D. Schuett-Hames, and T. P. Quinn, Streambed scour, egg burial depths and the influence of salmonid spawning on bed surface mobility and embryo survival, *Can. J. Fish. Aquat. Sci.*, 53, 1061–1070, 1996.
- Naden, P., An erosion criterion for gravel-bed rivers, Earth Surf. Processes Landforms, 12, 83–93, 1987.
- Neill, C. R., Mean-velocity criterion for scour of coarse uniform bedmaterial, in *Proceedings of the 12th Congress of the International Association of Hydraulics Research*, vol. 3, pp. 46–54, Inter. Assoc. for Hydraul. Res., Delft, Netherlands, 1967.
- Neill, C. R., and M. S. Yalin, Quantitative definition of beginning of bed movement, J. Hydraul. Div. Am. Soc. Civ. Eng., 95, 585–588, 1969.
- Nelson, J. M., and J. D. Smith, Flow in meandering channels with natural topography, in *River Meandering, Geophys. Monogr. Ser.*, vol. 12, edited by S. Ikeda and G. Parker, pp. 69–126, AGU, Washington, D. C., 1989.
- Nikuradse, J., Strömungsgesetze in rauhen Rohren, Forschg. Arb. Ing. Wes., 361, 22, 1933. (English translation, Laws of flow in rough pipes, Tech. Memo. 1292, Natl. Adv. Comm. for Aeron., Washington, D. C., 1950.)
- O'Brien, M. P., and B. D. Rindlaub, The transportation of bed-load by streams, *Eos Trans. AGU*, *15*, 593–603, 1934.
- Paintal, A. S., Concept of critical shear stress in loose boundary open channels, J. Hydraul. Res., 9, 91–113, 1971.
- Parker, G., Self-formed straight rivers with equilibrium banks and mobile bed, 2, The gravel river, J. Fluid Mech., 89, 127–146, 1978.
- Parker, G., Surface-based bedload transport relation for gravel rivers, *J. Hydraul. Res.*, 28, 417–436, 1990.
- Parker, G., and P. C. Klingeman, On why gravel bed streams are paved, *Water Resour. Res.*, 18, 1409–1423, 1982.
- Parker, G., and A. W. Peterson, Bar resistance of gravel-bed streams, J. Hydraul. Div. Am. Soc. Civ. Eng., 106, 1559–1575, 1980.
- Parker, G., P. C. Klingeman, and D. G. McLean, Bedload and size distribution in paved gravel-bed streams, J. Hydraul. Div. Am. Soc. Civ. Eng., 108, 544–571, 1982.
- Pazis, G. C., and W. H. Graf, Weak sediment transport, J. Hydraul. Div. Am. Soc. Civ. Eng., 103, 799–802, 1977.
- Petit, F., The evaluation of grain shear stress from experiments in a pebble-bedded flume, *Earth Surf. Processes Landforms*, 14, 499–508, 1989.
- Petit, F., Evaluation of grain shear stresses required to initiate movement of particles in natural rivers, *Earth Surf. Processes Landforms*, 15, 135–148, 1990.
- Petit, F., Dimensionless critical shear stress evaluation from flume experiments using different gravel beds, *Earth Surf. Processes Landforms*, 19, 565–576, 1994.
- Powell, D. M., and P. J. Ashworth, Spatial pattern of flow competence and bed load transport in a divided gravel bed river, *Water Resour. Res.*, 31, 741–752, 1995.
- Prager, E. J., J. B. Southard, and E. R. Vivoni-Gallart, Experiments on the entrainment threshold of well-sorted and poorly sorted carbonate sands, *Sedimentology*, 43, 33–40, 1996.
- Prestegaard, K. L., Bar resistance in gravel bed steams at bankfull stage, *Water Resour. Res.*, 19, 473–476, 1983.
- Rathburn, R. E., and H. P. Guy, Measurement of hydraulic and sediment transport variables in a small recirculating flume, *Water Resour. Res.*, *3*, 107–122, 1967.
- Raudkivi, A. J., Study of sediment ripple formation, J. Hydraul. Div. Am. Soc. Civ. Eng., 89, 15–33, 1963.
- Reid, I., L. E. Frostick, and J. T. Layman, The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels, *Earth Surf. Processes Landforms*, 10, 33–44, 1985.
- Robert, A., Boundary roughness in coarse-grained channels, Prog. Phys. Geog., 14, 42–70, 1990.
- Rouse, H., Discussion of "Laboratory investigation of flume traction and transportation," *Trans. Am. Soc. Civ. Eng.*, 104, 1303–1308, 1939.
- Schaffernak, F., Die Ausbildung von Gleichgewichtsprofilen in geraden Flusstrecken mit Geschiebebett, *Mitt. Versuchsanst. Wasserbau Minist. Offentliche Arb.*, 1916.
- Schoklitsch, A., Über Schleppkraft und Geschibebewegung, Englemann, Leipzig, Germany, 1914.

- Shields, F. D., and C. J. Gippel, Prediction of effects of woody debris removal on flow resistance, J. Hydraul. Eng., 121, 341–354, 1995.
- Shields, A., Anwendung der Aehnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, *Mitt. Preuss. Versuch*sanst. Wasserbau Schiffbau, 26, 26, 1936. (English translation by W. P. Ott and J. C. van Uchelen, 36 pp., U.S. Dep. of Agric. Soil Conser. Serv. Coop. Lab., Calif., Inst. of Technol., Pasadena, 1936.)
- Shimizu, Y., Effects of lateral shear stress in open channel flow, *Rep. Civ. Eng. Res. Inst. Publ.* 439, 22 pp., Hokkaido Develop. Bur., River Hydraul. Hydrol. Lab., Sapporo, Japan, 1989.
- Smith, J. D., and S. R. McLean, Spatially averaged flow over a wavy surface, J. Geophys. Res., 82, 1735–1746, 1977.
- Sternberg, R. W., Measurements of incipient motion of sediment particles in the marine environment, *Marine Geol.*, 10, 113–119, 1971.
- Thompson, S. M., and P. L. Campbell, Hydraulics of a large channel paved with boulders, J. Hydraul. Res., 17, 341–354, 1979.
- Tison, L. J., Recherches sur la tension limite d'entrainment des materiaux constitutifs du lit, in *Proceedings of the Minnesota International Hydraulics Convention*, pp. 21–35, Inter. Assoc. Hydraul. Res., Delft, Netherlands, 1953.
- Todd, F. H., Tables of coefficients for A.T.T.C. and I.T.T.C. model ship correlation and kinematic viscosity and density of fresh and salt water, *Tech. Res. Bull. 1-25*, 36 pp., Soc. Nav. Architects Marine Eng., New York, 1964.
- Torri, D., and J. Poesen, Incipient motion conditions for single rock fragments in simulated rill flow, *Earth Surf. Processes Landforms*, 13, 225–237, 1988.
- U.S. Waterways Experimental Station (USWES), Study of river-bed material and their use with special reference to the Lower Mississippi River, *Pap. 17*, 161 pp., Vicksburg, Miss., 1935.
- Vanoni, V. A., Measurements of critical shear stress for entraining fine sediments in a boundary layer, *KH-R-7*, 47 pp., W. M. Keck Lab., Hydraul. Water Resour. Div. Eng. Appl. Sci., Calif. Inst. of Technol., Pasadena, 1964.
- Vanoni, V. A., and N. H. Brooks, Laboratory studies of the roughness and suspended load of alluvial streams, *Sediment. Lab. Rep. E68*, 121 pp., Calif. Inst. of Technol., Pasadena, 1957.
- Vanoni, V. A., P. C. Benedict, D. C. Bondurant, J. E. McKee, R. F. Piest, and J. Smallshaw, Sediment transportation mechanics: Initiation of motion, J. Hydraul. Div. Am. Soc. Civ. Eng., 92, 291–314, 1966.
- Ward, B. D., Surface shear at incipient motion of uniform sands, Ph.D. dissertation, 88 pp., Univ. of Ariz., Tucson, 1968.
- Wathen, S. J., R. I. Ferguson, T. B. Hoey, and A. Werritty, Unequal mobility of gravel and sand in weakly bimodal river sediments, *Water Resour. Res.*, 31, 2087–2096, 1995.
- White, C. M., The equilibrium of grains on the bed of a stream, *Proc. R. Soc. London A*, *174*, 322–338, 1940.
- White, S. J., Plane bed thresholds of fine grained sediments, *Nature*, 228, 152–153, 1970.
- Whiting, P. J., and W. E. Dietrich, Boundary shear stress and roughness over mobile alluvial beds, J. Hydraul. Eng., 116, 1495–1511, 1990.
- Wiberg, P. L., and J. D. Smith, Calculations of the critical shear stress for motion of uniform and heterogeneous sediments, *Water Resour. Res.*, 23, 1471–1480, 1987.
- Wilcock, P. R., Bed-load transport of mixed-size sediment, Ph.D. dissertation, 205 pp., Mass. Inst. of Technol., Cambridge, 1987.
- Wilcock, P. R., Methods for estimating the critical shear stress of individual fractions in mixed-size sediment, *Water Resour. Res.*, 24, 1127–1135, 1988.
- Wilcock, P. R., Experimental investigation of the effect of mixture properties on transport dynamics, in *Dynamics of Gravel-bed Rivers*, edited by P. Billi, R. D. Hey, C. R. Thorne, and P. Tacconi, pp. 109–139, John Wiley, New York, 1992a.
- Wilcock, P. R., Flow competence: A criticism of a classic concept, *Earth Surf. Processes Landforms*, 17, 289–298, 1992b.
- Wilcock, P. R., Critical shear stress of natural sediments, J. Hydraul. Eng., 119, 491–505, 1993.
- Wilcock, P. R., and B. W. McArdell, Surface-based fractional transport rates: Mobilization thresholds and partial transport of a sand-gravel sediment, *Water Resour. Res.*, 29, 1297–1312, 1993.
- Wilcock, P. R., and J. B. Southard, Experimental study of incipient motion in mixed-size sediment, *Water Resour. Res.*, 24, 1137–1151, 1988.
- Wilcock, P. R., and J. B. Southard, Bed-load transport of mixed-size

sediment: Fractional transport rates, bed forms, and the development of a coarse bed-surface layer, *Water Resour. Res.*, 25, 1629–1641, 1989.

- Wilcock, P. R., A. Barta, C. C. Shea, G. M. Kondolf, W. V. G. Matthews, and J. Pitlick, Observations of flow and sediment entrainment on a large gravel-bed river, *Water Resour. Res.*, 32, 2897–2909, 1996.
- Williams, G. P., Flume width and water depth effects in sedimenttransport experiments, U.S. Geol. Surv. Prof. Pap. 562-H, 37 pp., 1970.
- Wimbush, M., and B. Lesht, Current-induced sediment movement in the deep Florida Straits: Critical parameters, J. Geophys. Res., 84, 2495–2502, 1979.
- Wolman, M. G., and L. M. Brush, Factors controlling the size and shape of stream channels in coarse noncohesive sands, U.S. Geol. Surv. Prof. Pap. 282-G, 37 pp., 1961.

- Yalin, M. S., Mechanics of Sediment Transport, Pergamon, Tarrytown, N. Y., 1977.
- Yalin, M. S., and E. Karahan, Inception of sediment transport, J. Hydraul. Div. Am. Soc. Civ. Eng., 105, 1433-1443, 1979.
- Young, R. A., and R. Mann, Erosion velocities of skeletal carbonate sands, St. Thomas, Virgin Islands, *Marine Geol.*, 69, 171–185, 1985.

J. M. Buffington and D. R. Montgomery, Department of Geological Sciences, University of Washington, Box 351310, Seattle, WA 98195. (e-mail: jbuff@u.washington.edu)

(Received April 17, 1996; revised August 9, 1996; accepted October 18, 1996.)