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Abstract.—Absence of a species when it is not observed from a given area is ensured only when
the probability of observation, when present, is 1. This condition is rarely satisfied in surveys of
animals in natural environments, particularly with elusive targets such as fish. Detectability (prob-
ability of species encounter) is a function of probability of individual capture, which varies widely
with sampling method, fish size, physical habitat, and number of individuals present in a given
area. An empirical Bayesian approach was developed for estimating probability of presence for
zero-catch samples, in which the number of individuals present for a species is predicted from
independent samples and used as an empirical prior. The model was illustrated for 16 species of
fish sampled in 121 blocked-off stream reaches in which samples were collected using one of five
primary gear methods; treatment with an ichthyocide followed. All species present were caught
by the primary gear in only 17 (14%) of the samples. Of the empirical Bayesian predictions of
presence or absence from zero-catch samples, 69% were correct. Of these zero-catch samples,
20% of samples in which a species was present and 93% of samples in which a species was absent
were correctly predicted. The mean species richness was 10.3, compared with 7.4 for species
richness from catch data of (mean bias of 227.4%). The model predicted a mean of 9.6 species
(mean bias of 23.3%). Sampling design and subsequent analysis should account for catchability
and fish densities (predicted as functions of physical habitat variables) and area sampled in order
to reliably estimate probability of presence by species and, subsequently, species richness.

Analyses of the presence and absence of spe-
cies individually and collectively (e.g., species
richness) are increasingly being used by fishery
biologists to examine the influence of natural
and anthropogenic factors on fish distribution
and community structure (e.g., Tonn and Mag-
nuson 1982; Matthews and Robinson 1988; Kru-
se et al. 1997; Sekine et al. 1997; Dunham and
Rieman 1999) and for developing biodiversity
conservation strategies (Burley 1988; Lee et al.
1997). Estimates of species presence and species
richness are usually only based on catch, but are
assumed or implied to be representative of the
identity and numbers of species actually present
in the sampled area. Unfortunately, complete ob-
servation or capture of all species is frequently
impossible for mobile, aquatic organisms such
as fish (Zalewski and Cowx 1990; Dolloff et al.
1996). Consequently, species presence and spe-
cies richness estimates from samples underes-
timate true values to varying degrees.
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Approaches to minimize the influence of in-
complete observation or capture on estimates of
species presence and fish species richness can
be roughly categorized as ‘‘sampling effort’’ and
‘‘inferential.’’ Sampling-effort approaches to
detect the presence of individual species in a
region of interest (sampling frame) rely on a pre-
determined number of samples and usually are
based on an arbitrary threshold density and pre-
sumed statistical distribution (Bonar et al.
1997). Hence, inferences regarding species pres-
ence are restricted to the region of interest rather
than at the site (sampling unit) level. For species
richness estimates, the sampling-effort approach
depends on cumulative catches indicating an as-
ymptotic value of richness as the sampled area
increases (Lyons 1992; Angermeier and Smogor
1995). Subsequently, a sampled area is prede-
termined for each sample (usually a stream-
reach length that is a constant multiple of its
mean width) in which the catch is estimated to
be a fixed proportion of the asymptotic value.
The sampling-effort approach therefore attempts
to optimize the individual sample procedure
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rather than the sampling design covering the re-
gion of interest.

In contrast, inferential approaches explicitly
account for imperfect detectability and can be
used with existing data that are consistent with
an overall design. Although there are currently
no inferential approaches for individual species
presence, a variety of species richness estimators
have been developed to take into account species
that may have been missed during sampling (Su-
gihara 1980; Smith and Belle 1984; Palmer
1990; Bunge and Fitzpatrick 1993; Solow 1994).
These estimators assume that individuals are en-
countered at random and that probability of de-
tection does not differ among individuals or spe-
cies (however, see jackknife approach of Burn-
ham and Overton 1979; Boulinier et al. 1998).

However, detectability (the probability of de-
tecting a species), is a function of the number
of vulnerable individuals in a given area and the
probability of individual capture (i.e., catcha-
bility or sampling efficiency), both of which may
be influenced by habitat features. Furthermore,
differences in catchability due to method (e.g.,
Figure 1), species, and individual size can also
strongly affect detectability. Failure to account
for differences in detectability can introduce dif-
ferent biases into estimates of species presence
when catchability is strongly influenced by
changes in habitat type and scale and the types
of species present (Bayley and Dowling 1993).
Therefore, a model predicting probability of
presence that specifically accounts for empiri-
cally derived abundance and catchability esti-
mates of each species is a more desirable ap-
proach to estimating species richness and would
also provide useful information on distributions
of individual species. Here we describe one such
approach.

We developed a model that predicts probabil-
ity of presence by species. Using several sam-
pling methods and a gear-efficiency calibration
method, we derived empirical relationships pre-
dicting abundance and catchability of 16 fish
species in warmwater streams of the midwestern
United States. This information was then incor-
porated in a Bayesian model to estimate prob-
ability of species presence for each sample in
which a species was not collected (henceforth:
‘‘zero-catch sample’’). All probabilities of spe-
cies presence, including those caught, were then
used to estimate species richness by sample. We
validated the accuracy of model predictions by
comparing them with presence determined by a

combination of several gear passes and subse-
quent rotenone treatment.

Methods

Model Development

When estimating species-specific detection
probabilities (detectability), it is important to
first consider the process of sampling. Capturing
a species in a sampling unit (detection) requires
that the species be present and at least one in-
dividual be captured. To estimate probability of
detection of a species requires two components:
an estimate of the number of fish in a sampling
site (i.e., the number of chances you get) and an
estimate of catchability (i.e., the probability of
capturing any individual of the species). Thus,
if we consider ni individuals of species i and
individual probability of capture qi (catchabili-
ty), then given independence among individuals
(an assumption that is relaxed later), the prob-
ability of collecting one or more individuals (de-
tectability) is

n id 5 1 2 (1 2 q ) .i i (1)

If the complement of di (di 5 detect) is mi (mi 5
miss 5 1 2 di), then the binomial expansion,

s

(d 1 m ) 5 1 (2)P i i
i51

describes all possible joint occurrence combi-
nations of s species in the catch. From this the
probability distribution function (PDF) of the
species richness in the catch (cj) can be derived
algebraically as the probability of all possible
combinations of j species, irrespective of their
identities. A simulation with six species of con-
trasting but realistic catchabilities and densities
(Figure 2), shows that large biases in catch-
based species richness estimates are possible and
to be expected given typical differences in catch-
ability and numbers of vulnerable fish.

Inference from zero catches.—The foregoing il-
lustration does not provide a practical solution
because individual samples often do not reveal
the presence of a species. Consequently, a means
to estimate the probability of presence for a zero
catch is needed. Such an estimate requires a con-
sideration of total probability, which simply
means that all occurrences that might have caused
a zero catch must be considered. During fish sam-
pling, there are two cases that would result in a
zero catch (event C0): (1) a species was present
in the sampling unit and missed, or (2) a species



622 BAYLEY AND PETERSON

was not in the sampling unit. In standard Bayesian
terminology, the total probability of a zero catch
occurring, P(C0), can be expressed as the sum of
probabilities of cases 1 and 2:

P(C ) 5 P(C z F ) · P(F )0 0

1 P(C z ;F ) · P(;F ) (3)0

where the probability of case 1 is estimated as the
product of P(C0zF), the probability of missing a
species (C0) when it is present (event F), and P(F),
the prior estimate of probability of species pres-
ence (Bayes empirical prior). The probability of
case 2 is estimated as the product of P(C0z;F), the
probability of not capturing a species when it is
absent (5 1), and P(;F), the probability of species
absence (event ;F), where, logically, P(F) 1
P(;F) 5 1.

By definition (i.e., conditional probability sym-
metry), the joint probability that a sampling unit
contains a species and that it is also missed during
sampling is equal to the joint probability that the
species is missed (not detected) and that it occurs
in the sampling unit (case 1):

P(FzC )·P(C ) 5 P(C zF)·P(F).0 0 0 (4)

Rearranging (4) and substituting for P(C0) from
equation (3), we obtain the standard Bayes’ rule
that describes the probability of a species being
present (event F) given a zero capture (event C0):

P(C z F ) · P(F )0P(F z C ) 5 .0 P(C z F ) · P(F ) 1 P(C z ;F ) · P(;F )0 0

(5)

Thus, the prior, P(F), is derived independently and
adjusted according to the probability of missing
the species when present, P(C0zF). The numerator
and denominator of equation (5) can be interpreted
respectively as proportional to the number of pos-
sibilities of zero catches when present (numerator)
and the number of possibilities of zero catches
when the species is present or absent (denomi-
nator).

Because the probability of missing a species de-
pends on the number of fish present, we express
the prior as the PDF for the unconditional prob-
ability of n fish being present, P(Fn), and equation
(5) is decomposed thus:

ˆ ˆP(C z F ) · P(F )O 0 n n
1P̂(F z C ) 5 . (6)0 ˆ ˆP(C z F ) · P(F )O 0 n n
0

P(C0zFn) is the probability of missing n fish (5 mi

5 [1 2 qi]n from equation 1); therefore,

nˆ ˆP(C zF ) 5 (1 2 q̂)0 n (7)

for a given species. Terms in the summations in
equation (6) approach zero for increasing n, the
rate of approach being greater for higher catcha-
bility, q.

The prevalence of overdispersion (variance in ex-
cess of that determined by the binomial distribution)
in many catchability and mark–recapture models
suggests that fish do not respond independently (Bay-
ley 1993). Independence refers to how fish react to
the sampling process and its influence on efficiency.
For example, during sampling, a group of fish can
swim away from the sampler (e.g., electrode), so
none are captured (0% efficiency) or it can swim
toward the sampler, so all are captured (100% effi-
ciency). In other words, the group or school is acting
like a single individual. Overdispersion was consis-
tently observed as extrabinomial variance of catch-
ability, predicted from logistic regressions (Bayley
and Dowling 1993), and in the abundance models
derived below. Field observations suggested that at
least some of this additional variance was due to fish
behaving as groups, whereas equation (7) assumes
that fish react independently to the capture process.

Accordingly, we adapted the estimator for
P(C0zFn) to simulate fish responding to gear as ran-
dom groups rather than as individuals. The mean
number of groups corresponds to that which would
produce a binomial variance in catchability equal to
the observed variance; that is,

nˆ ˆeP(C zF ) 5 (1 2 q̂)0 n (8)

where n̂e, the effective number of groups, is esti-
mated by n[n·ŝ2·q̂(1 2 q̂) 1 1]21, and ŝ2 is an es-
timate of extrabinomial variance in catchability
(Bayley and Dowling 1990; Bayley 1993; Bayley
and Dowling 1993). Equation (8) was used to pro-
vide alternative P(FzC0) estimators to equation (7)
and hereafter is referred to as ‘‘overdispersion-
corrected.’’

We did not attempt to derive a theoretical var-
iance estimator for equation (6), but rather depend
on an empirical comparison of predictions with
high efficiency captures in the example below.

Species richness inference.—Equation (8) pro-
vides an estimate of probability of presence of
species i (pi 5 P̂[FzC0]) when it is not caught.
Conversely, pi 5 1 when it is caught. For each
sample, the expansion
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FIGURE 1.—Mean numbers (y-axis) and standard error
(arrows) of indigenous fish species per sample from
catch data (open circles) and after correction for species
richness efficiency (solid circles) for each of four sur-
veys in Champaign County streams (Larimore and Bay-
ley 1996). Corrections to samples were based on gear
calibration models (Bayley and Dowling 1990; Bayley
and Dowling 1993), in which species richness was de-
termined from the total catch using rotenone plus pre-
ceding multiple passes of primary gear between block
nets. The first two surveys used a minnow seine; the
two later surveys were taken primarily with an electric
seine.

s

(p 1 a ) 5 1 (9)P i i
i51

produces probabilities of all combinations of oc-
currences (pi) and absences (ai 5 1 2 pi) for all
possible species, s. Although equation (9) appears
similar to equation (1), the important distinction
is that equation (1) refers to probabilities of ap-
pearing in the catch, whereas equation (9) predicts
probabilities of co-occurrence of species in the
sampling unit on which the pi are based and is
independent of sampling method. Therefore, given
estimates of pi, a distribution of probabilities of
co-occurrence of 0, 1,. . . s, species from equation
(9) provides an empirical estimate of the actual
species richness distribution.

In summary, this process requires a prediction
of catchability and distribution of abundance at
each sampled site to produce an estimate of prob-
ability of presence by species. Such probabilities
among species, including those of species known
to occur at the site, can be subsequently combined
to estimate species richness for each sample. In
the following example such estimates are com-
pared with known species presence from a high-
efficiency method.

Example and Validation Process

Sampling methods.—For validation we sampled
121 fish communities in second to fourth order
streams in Champaign and Vermilion counties, Illi-
nois. Samples were collected during summer from
within blocked-off stream sections with one of five
primary sampling gears (Table 1). We chose sam-
pling gears that were most frequently used for stream
orders 2–5; however, gears were also selected that
enabled us to demonstrate a method that could be
used to synthesize information from several gears
fished separately over a wide range of conditions in
a basin of interest. First, the primary sample, one
pass of one of the five gears (except that two passes
originally had been combined for the net seine), was
collected. This single-pass sample procedure was ad-
vocated by Lyons (1992) and Angermier and Smoger
(1995) and was used by several natural resource
agencies (e.g., Meador et al. 1993; Lazorchak et al.
1998). After the primary sample, we collected all
fish from additional passes and a subsequently ap-
plied treatment of ichthyocide (6 mg/L of a rotenone
formulation for a 10-min exposure) followed by a
calibrated quantity of detoxicant, KMnO4, at the
downstream block net (Bayley et al. 1989). Electri-
cally narcotized and rotenoned fish that drifted into

the downstream block net were also collected and
recorded separately (block-net catch).

Numbers of species caught by the primary sample
and Bayesian estimates described below were com-
pared with the known species richness (i.e., the total
catch in the blocked-off reach obtained from multiple
passes of the primary gear, the block-net catch, and
the rotenone treatment). The high catchabilities of
rotenone alone, ranging from 0.4 to 0.7, based on
mark–recapture experiments, in combination with
several additional passes of the primary gear plus
block-net captures, indicated that chances of missing
small numbers of any of the species considered were
extremely small.

Analysis.—Using a leave-one-out approach from
prediction models based on independent data, prior
estimates of abundance distributions, P(Fn), via
equation (6) were obtained for each primary sample
in which a species was not caught. We used a subset
of 16 species (Table 1) for which robust catchability
models have so far been developed, based on a set
of field calibrations in the region (Bayley and Dowl-
ing 1990; Bayley and Dowling 1993). Abundance,
estimated for each species and primary sample (num-
bers of fish caught/catchability expressed as numbers
per 1,000 m2 of stream surface area), was modeled
for each species as a function of ecologically plau-
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FIGURE 2.—Predicted probability distribution functions (cj) for species richness of catches (j) for a community
of six species with two levels of catchability (probability of individual capture, q), 0.5 and 0.02. Panels (A) and
(C) are from two distributions totaling 450 individuals, whereas (B) and (D) are from similar distributions totaling
45 individuals.

sible habitat variables (Table 2). Zero-catch data from
primary samples were included.

The chosen area standard of 1,000 m2 was close
to the mean of all water surface areas sampled. Any
standard could be chosen for the expression of prob-
ability of presence or species richness, but an area
within the limited range sampled permits reliable
cross-validation using species subsequently caught
by rotenone. When total abundance for each species
captured was computed for the standardized area, no
density estimates less than 0.5 individuals per 1,000
m2 were encountered.

Any modeling approach that reliably predicts a
discrete distribution of fish numbers, P(Fn), would
suffice. A preliminary examination of species-spe-
cific regression model fits to abundance data, assum-
ing a Poisson error distribution, consistently showed
a greater variance than that predicted by the mean
(m). The negative binomial model (White and Ben-
netts 1996), which accounts for an additional vari-
ance term, m2/k, provided better predictions with
well-behaved residuals. These models were fit using

a quasi-likelihood extension of the iteratively rew-
eighted least-squares algorithm (Wedderburn 1974;
McCullagh and Nelder 1989) in GLIM4 (Francis et
al. 1993) and a user-supplied macro (available from
first author) to enable an iterative fit of the additional
parameter, k. There are now several software pack-
ages that, with the aid of available macros, can per-
form fits to this distribution (Francis et al. 1993;
Venables and Ripley 1999).

To obtain species-specific abundance models with
least unexplained variance (i.e., best fitting), we ini-
tially fit negative binomial regression models with a
larger data set of 127 samples that included the 121
samples subsequently used for validation. We did this
using sets of minimally correlated (P . 0.05) ex-
planatory variables describing summer, low-flow
habitat conditions (Table 2). Variables were retained
if there was a significant (P , 0.05) change in de-
viance when excluded (Aitken et al. 1989; Francis
et al. 1993). For each sample in which the species
of interest was absent from the primary gear catch,
fish abundance was estimated using a similar neg-
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TABLE 1.—Mean catchability (based on single pass, except for net seine) and total number of samples in which
species was present by primary gear type and the range of abundances for the species analyzed. Catchability 5 number
of fish caught/number of vulnerable fish, where number of vulnerable fish is the sum of catches from all primary gear
passes, the block net, and the ichthyocide corrected for rotenone efficiency using mark–recapture (Bayley and Dowling
1993).

Species and sizes of
areas sampled

Species
code

Electric
seine:
30 ft

Electric
seine:
50 ft

Backpack
electro-
fisher

Net seine:
20 ft

(2 passes)

Boat-
mounted
electro-
fisher

Abundance
range
(fish/

1,000 m2)

Grass pickerel Esox americanus vermi-
culatus

GRP 0.35 (39) 0.380 (7) 0.028 (10) 0.120 (5) 0.1390 (5) 1–229

Common carp Cyprinus carpio CAP 0.27 (17) 0.480 (8) 0.570 (4) 0.077 (3) 0.1260 (12) 2–682
Creek chub Semotilus atromaculatus CRC 0.31 (55) 0.130 (6) 0.057 (12) 0.490 (9) (0) 1–17,382
Silverjaw minnow Notropis buccatus SJM 0.25 (38) 0.098 (6) 0.044 (5) 0.430 (8) 0.0067 (4) 1–4,856
Sand shiner Notropis stramineus SAS 0.21 (47) 0.076 (10) 0.044 (7) 0.450 (10) 0.0070 (7) 1–7,301
Redfin shiner Lythrurus umbratilis RDS 0.19 (46) 0.075 (13) 0.043 (8) 0.420 (10) 0.0067 (11) 2–1,456
Striped shiner Luxilus chrysocephalus STS 0.36 (66) 0.120 (12) 0.051 (11) 0.480 (10) 0.0075 (11) 4–9,616
Spotfin shiner Cyprinella spiloptera SFS 0.24 (49) 0.130 (12) 0.045 (6) 0.500 (10) 0.0075 (12) 12–4,262
Steelcolor shiner Cyprinella whipplei SES 0.28 (12) 0.170 (4) 0.046 (2) 0.410 (3) 0.0079 (7) 2–1,507
Bluntnose minnow Pimephales notatus BLS 0.21 (63) 0.076 (13) 0.043 (12) 0.048 (12) 0.0069 (12) 3–34,524
Central stoneroller Campostoma anoma-

lum
COS 0.30 (51) 0.120 (10) 0.046 (7) 0.390 (8) 0.0075 (3) 2–9,329

Creek chubsucker Erimyzon oblongus CCS 0.78 (23) 0.750 (5) 0.250 (8) 0.096 (7) (0) 1–2,918
Blackstripe topminnow Fundulus notatus BLT 0.22 (54) 0.020 (9) 0.110 (11) 0.390 (9) 0.0260 (10) 1–6,100
Smallmouth bass Micropterus dolomieu SMB 0.36 (35) 0.220 (9) 0.071 (6) 0.160 (6) 0.1140 (9) 2–606
Green sunfish Lepomis cyanellus GSF 0.30 (51) 0.240 (11) 0.048 (96) 0.081 (10) 0.0270 (12) 1–3,398
Longear sunfish Lepomis megalotis LOS 0.33 (61) 0.210 (13) 0.049 (12) 0.063 (12) 0.0084 (12) 2–31,897
Total
Mean stream length sampled (m)
Mean quadrat size (m2)

70
192
421

13
168
1,063

13
203
381

13
150
289

12
210
1,587

1–34,524

ative binomial model derived only from abundance
estimates from all other samples, including those that
had a zero primary catch. Significances of coeffi-
cients from each leave-one-out data subset were very
similar to those of the corresponding explanatory
variables for the full data set models (Table 2). The
residuals of each model, ordered according to geo-
graphic proximity within years, indicated no auto-
correlation (Wald–Wolfwitz test at P 5 0.05), im-
plying that the abundance prediction of each sample
was independent of the other samples used to derive
each model.

For each species and site combination, P(Fn)
was estimated as a negative binomial PDF by using
abundance estimate (n) and the corresponding dis-
persion parameter (k) from the leave-one-out pro-
cedure; P(Fn) was then multiplied by the P(C0zFn)
term (equation 6) corresponding to each n, in-
cluding the term for n 5 0 for the denominator in
equation (6) (5 P[C0z;F]·P[;F] in equation 5 and
P[C0zF0]·P[F0] in equation 6). Summations in
equation (6) were continued with increasing n until
increments were , 0.0001.

Probability of presence when absent from the
primary sample, P(Fz C0), was estimated for each
of 16 species and 121 samples, whether they were
ultimately found to occur or not. The P(C0zFn) in

equation (6) were estimated for each correspond-
ing n using equation (7) for P(FzC0) estimates un-
corrected for dispersion and using equation (8) for
P(FzC0) estimates corrected for dispersion.

Finally, frequency distributions and mean pre-
dictions of species richness were computed from
the expansion of equation (9) for each sample,
presuming that any of the 16 species could con-
ceivably be present, and 90% confidence limits
were computed based on the upper and lower 5%
portions of each distribution. Means and confi-
dence limits were computed as real numbers, by
including a correction for discontinuity. The con-
fidence range, although computed exactly, was an
underestimate because it assumes that the pi are
known exactly, which is only true when the species
was encountered in the primary sample (pi 5 1).

Results

Two types of error were computed to assess
cross-validations by species when it was not
caught in the primary sample: if P(FzCo) , 0.5
and the species was present (false negative) or if
P(FzCo) $ 0.5 and the species was absent from
the site (false positive). Results were expressed as
percent correct predictions.

Results for overdispersion-adjusted (7) and un-
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TABLE 2.—Coefficients (standard errors) and dispersion parameter (k) of empirical negative binomial regression
models fit to the abundance estimates (corrected for catchability) from all primary sample data. Actual values used for
predicting population size priors, P (Fn), during the cross-validation varied slightly as data from each sample being
estimated (i.e., the left-out sample) were excluded to fit each respective negative binomial model. All coefficients were
statistically significant (P , 0.05) in all models. Each function predicts N as numbers of individuals per 1,000 m2 of
water surface area (e.g., for the bluntnose minnow N 5 exp(7.64 2 3.95·depth 2 4.35·velocity 1 2.64·macrophytes).

Species Constant
Mean depth

(m)

Riffle
(proportion

of water
surface area)

Mean velocity
(m/s)

Aquatic macrophytes
(proportion of

water area)

Grass pickerel
Common carp
Creek chub
Silverjaw minnow
Sand shiner
Redfin shiner
Striped shiner
Spotfin shiner

2.32
21.09

9.93
5.42
8.77
5.91
5.95
5.72

212.1 (1.3)

26.84 (1.09)
25.06 (1.39)
22.03 (0.75)
22.99 (0.84)

25.95 (2.4)

25.03 (2.17)
24.86 (2.70)

23.42 (1.62)

26.03 (3.39)

5.73 (2.02)

3.20 (1.16)
22.77 (1.66)

2.31 (1.25)
22.91 (1.16)

Steelcolor shiner
Bluntnose minnow
Central stoneroller
Creek chubsucker
Blackstripe topminnow
Smallmouth bass
Green sunfish
Longear sunfish

4.52
7.64

10.67
2.60
6.77
3.46
6.25
4.32

23.95 (0.93)
214.87 (1.51)
25.15 (1.81)
28.33 (1.67)

2.59 (0.84)

28.32 (3.18)
5.4 (2.5)

213.0 (6.2)
24.35 (2.33)

27.32 (3.98)

28.33 (2.43)
210.1 (2.1)

212.3 (3.7)
2.64 (0.99)

8.42 (1.80)

3.60 (0.88)

a Nephelometric turbidity units.

adjusted (6) models were similar, but adjusted re-
sults were better at predicting presence. From a
total of 1039 events when a species was absent
from the primary sample, overdispersion-adjusted
models correctly predicted 20% of events for spe-
cies presence and 93% for species absence (Table
3), while for unadjusted models corresponding
predictions were 15% and 96%, respectively. All
detailed results reported below are for overdis-
persion-adjusted models; qualitative conclusions
would not be different for unadjusted results.

All gear types produced conservative results, in
that success rates that correctly predicted absences
were higher than those that correctly predicted
presence (Table 3) from zero-catch samples. Over-
all success rates ranged from 56% to 75% among
methods (Table 3), and from 42% to 89% among
species. Presence of several species occurring at
less than 75% of sites tended to be underestimated
more than widespread species (Figure 3).

Species richness estimates from the model av-
eraged only 3.3% less than the known species rich-
ness from the 121 validation samples (penultimate
column in Table 4). Numbers of species from pri-
mary samples (5species richness of the catch) av-
eraged 27% below known values, and in only 17
samples (14%) were all the species present caught
(Table 4). Species richness was most strongly un-
derestimated (55%) by catches of the boat elec-

trofisher, even though that was the most appro-
priate primary gear for larger, non-wadeable
streams. However, even catches from the most ef-
ficient gear in wadeable streams, the 30-ft electric
seine, underestimated species richness by an av-
erage of 20%. As stated previously, we have not
incorporated all species in this example; but pre-
liminary data indicate lower catchabilities for the
excluded benthic darters (Percidae) and catfishes
(Ictaluridae) (Larimore 1961; Bayley and Dowling
1990) than the species used here, suggesting that
biases of catch data compared to total richness may
be greater than those estimated here.

The 90% confidence limits computed from the
species richness PDFs, included 74% of the known
species richness values, compared with 47% of the
primary sample species numbers (Figure 4, Table
4). There was a tendency for more samples with
high known species richness to be underestimated
by the predictions using most primary methods
(Figure 4).

Discussion

Species Presence

Probability of species presence estimates,
P(FzCo), for individual species can serve as a more
accurate, and gear-independent response variable
than simple presence/absence in the catch. The
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TABLE 2.—Extended.

Species

Overhanging
shoreline vegetation

(proportion of
banks) Turbidity (NTU)a

Water temperature
(8C) k

Grass pickerel
Common carp
Creek chub
Silverjaw minnow
Sand shiner
Redfin shiner
Striped shiner
Spotfin shiner

0.0188 (0.004)
21.69 (0.45)

20.041 (0.019)
20.036 (0.010)
20.035 (0.010)

0.036 (0.012)
20.012 (0.006)

0.022 (0.008)

0.172 (0.081)
0.174
0.090
0.157
0.153
0.190
0.115
0.405
0.321

Steelcolor shiner
Bluntnose minnow
Central stoneroller
Creek chubsucker
Blackstripe topminnow
Smallmouth bass
Green sunfish
Longear sunfish

3.73 (0.85)
23.3 (0.71)

1.24 (0.52)

20.058 (0.013)

20.018 (0.011)
0.021 (0.008)
0.063 (0.007)

20.114 (0.051)

0.037
0.239
0.147
0.073
0.086
0.136
0.233
0.315

TABLE 3.—Summary of zero-capture events and predicted presences and absences from cross-validation of empirical
Bayesian models, by primary sampling method. Empirical Bayesian models were adjusted for overdispersion.

Primary sampling
method

Number of
events in

which one of
16 species

was not
caught

Percent of
correctly
predicted
events in

which species
was present
and misseda

Percent of
correctly
predicted
events in

which species
was absenta

Percent of
events

correctly
predicted for
presence or

absence when
species not

caughta

Electric seine: 30 ft
Electric seine: 50 ft
Backpack electrofisher
Net seine: 20 ft
Boat electrofisher
Combined results

555
112
126
110
136

1,039

8
10
42
18
38
20

98
97
73
97
83
93

75
56
62
73
60
69

a Based on known presence from combined catch from rotenone, all passes with primary gear,
and block net.

prediction success rate of 20% for presence (Table
3) is a considerable improvement on 0% from the
raw catch data, while the 93% success rate for
correctly predicting absence limits false positive
signals when P(FzCo) .0.5.

Because P(FzCo) incorporates catchability it is
independent of habitat features that may influence
catchability and species presence. Often better
habitats that are attractive to the species con-
cerned, such as those with deeper water, result in
lower catchability (Zalewski and Cowx 1990; Bay-
ley and Dowling 1993). The resulting increase in
probability of zero catch would be exacerbated for

rarer species whose numbers are low even in their
favored habitats. Even if some are caught, assum-
ing ‘relative abundance’ on the basis of catches
only will often underestimate the better habitats.
Misguided and costly restoration attempts can re-
sult from erroneous ranking of preferred habitats
when such biases remain uncorrected.

P(FzCo) is an absolute measure and thus differs
from current approaches (e.g., Hillman and Platts
1993; Bonar et al. 1997) that estimate the proba-
bility of species occurrence with a density above
an arbitrary threshold. Estimates of P(FzCo) do not
require the assumption of some arbitrary threshold
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FIGURE 3.—Number of sites at which each of 16 spe-
cies was predicted to be present by an empirical Bayes-
ian model with contagion adjustment for zero catches
plus those present in primary samples versus the number
of sites each species was known to be present (see Table
1 for three-letter codes for the species). The diagonal
line represents perfect agreement between predicted and
actual presence.

and hence, are fully compatible with Endangered
Species Act regulations, which only consider spe-
cies presence (as opposed to density above a cer-
tain threshold).

Additionally, P(FzCo) estimates can be used to
develop predictive models of the effects of land-
use or stream habitat and could be incorporated
into formal decision analysis and risk assessment
(sensu Clemen 1996). A graphical portrayal of
probabilities of presence, such as in GIS systems,
could also be used to derive contours of probability
of presence.

P(FzCo) estimates, combined with information
of known presence when the species is caught, is
also useful in expressing probability of joint pres-
ence, from which the species richness estimates
derived here is one example. Other combinations
could help answer common ecological questions
that require a multispecies response for each sam-
ple, such as the probability of co-occurrence of
two or more species representing a fish guild or a
predator-prey combination.

Any comparable set of P(FzCo) probability es-
timates must, logically, be referenced to a constant
habitat area, which in our example was 1000 m2

of stream surface area. The issue of an area ref-

erence standard is also germane to species richness
estimates, as discussed below.

Sampling Protocol and Design

The example of an inferential approach to es-
timating species richness outlined here contrasts
with the sampling effort approach mentioned in
the Introduction. The latter presumes that a pre-
dictable proportion of species present will be
caught by sampling a predetermined sample area.
Cumulative numbers of species caught suggest that
wider streams require a longer stream length to be
sampled representatively (Lyons 1992; Anger-
meier and Smogor 1995). Even though none of
these authors recommend a specific ratio of length
to width to estimate a given proportion of species
present, constant-ratio sampling protocols are be-
coming widespread in the belief that a consistent
proportion of species will be captured. Although
the method we describe here can accommodate
data from that protocol, we are concerned about
this trend for several reasons.

Angermeier and Smogor (1995) summarized the
available cumulative catch data in streams and
concluded that sampling of reaches from 5 to 105
stream widths was necessary to catch 95% of es-
timated species present and that a sampling-effort
design was not cost-effective across different
streams. Lyons (1992) found that the sampled dis-
tance required to catch 95% of the estimated spe-
cies richness asymptote was positive but variable
and poorly related to stream width (P 5 0.21; over
a 3.5-fold range of widths among 10 streams). He
cautioned that different capture efficiencies must
account for part of the variation.

We agree that the spatial distribution (Anger-
meier and Smogor 1995) and scale of habitats in-
fluence species distributions, but we emphasize
that the large variation in detectability warrants its
inclusion. The longer reaches that typically need
to be sampled for a 95% catch of species richness
in larger streams can be explained by decreasing
catchabilities that have been observed as stream
depth and width increase (Bayley and Dowling
1993). The larger an area sampled, the greater the
number of vulnerable individuals (n in equation
1), which partially compensates for decreasing in-
dividual probability of capture, q. However, for
detectability to be constant, these two factors
would need to change in concert for every species
as a function of stream width. Angermeier and
Smogor (1995) observed that to accurately char-
acterize fish community structure, increased effort
(as area sampled) is needed as relative density of
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TABLE 4.—Summary of known species richness estimates from 121 sites compared with primary sample data only
and with estimates from cross-validation of empirical Bayesian models applied to primary sample data. Empirical
Bayesian models were adjusted for overdispersion (CI 5 confidence interval).

Primary sampling
method

Number
of

samples

Mean of
known
species
rich-
nessa

Primary sample catches

Percent
of

samples
in

which
all

species
present
were

caught

Mean
number

of
species

Percent
biasb

Samples
(%) in
which

number
species
from

primary
sample

was
within
pre-

dicted
90% CI

Empirical Bayesian
model estimates

Mean
species
rich-
ness

Percent
biasb

Samples
(%) in
which
known
species
richness

was
within
pre-

dicted
90% CI

Electric seine: 30 ft
Electric seine: 50 ft
Backpack electrofisher
Net seine: 20 ft
Boat electrofisher
Combined results

70
13
13
13
12

121

10.1
11.4
9.8

10.1
10.6
10.3

20
0
8

15
0

14

8.1
7.4
6.3
7.5
4.7
7.4

219.9
235.1
235.7
225.6
255.4
227.4

62
38
8

54
0

47

9.6
9.6

10.2
9.4
9.0
9.6

21.8
213.8

9.1
23.3

213.9
23.3

79
62
85
62
67
74

a Known species richness was based on combined catch from rotenone, all passes with primary gear, and block net and was limited to
the 16 species considered.

b Percent bias was estimated as 100·(observed or estimated number of species 2 known species richness)/(known species richness) for
each sample; means of these values are reported.

FIGURE 4.—Numbers of species present and 90% confidence intervals as determined by combined catches with
rotenone, primary gear, and block net (large solid circles); by primary gear catches (3); and by the Bayesian model
(small solid squares). The 121 samples were ordered by primary gear and numbers present.
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fish declined. This is expected to be at least partly
the affect of a small n on detectability.

Interpretation of uncorrected catches from a
wide range of sampled areas is problematical. A
typical watershed, through fourth-order streams,
could have fish-bearing reaches with mean summer
widths ranging from 1 m to 30 m (e.g., Bayley and
Dowling 1993). Applying the sampling effort pro-
tocol as a constant-ratio would mean that the areas
sampled covered a 900-fold range (the square of
the ratio of maximum to minimum mean width).
The non-linear, power relationship S 5 aAb (spe-
cies number, S, as a function of area, A, with a and
b fitted constants) encountered in many such sys-
tems and samples (Preston 1962) demonstrates that
a simple correction, proportional to sampled area,
would be invalid because b is less than 1. Applying
a typical value of b 5 0.3 to the numerical example
above would result in an eight-fold range in spe-
cies richness due to sampled area alone. Without
an independent means to estimate the supposed
constants a and b, potential ecological or man-
agement effects on species richness would be con-
founded, due to stream size and position in the
watershed, by the unknown effect of sampled area
that frequently covaries with such effects.

Sampling protocols based on the sampling effort
approach can also be cost-prohibitive or impos-
sible because of access limitations. Maintaining an
effort level for consistent detectability of rare or
difficult-to-sample fish species can result in large
numbers of required samples. For example, 120
samples would be required to maintain a 95%
probability of detecting the presence of rare fish
species (mean density ,0.10) under an assumed
average sampling efficiency of 25% (Bonar et al.
1997). Similarly, applying the sampling effort pro-
tocol to wide streams results in very large sampled
areas. For example, a 30-m-wide stream would
require a sampling quadrat about 1,100 m long to
obtain a reliable estimate of species richness (Ly-
ons 1992).

Conversely, limiting the range of stream widths
sampled in a basin would undersample the natural
range of many riverine species and communities.
We therefore consider it advantageous to be able
to make inferences on species richness and pres-
ence on a standard area basis. Sampled areas do
not have to be constant in order to apply our ap-
proach, but the inference from an observed pres-
ence (pi 5 1), if one or two individuals of a rare
species are caught in a sampled area much larger
than the standard area, would have to be adjusted
so that presence is not a function of area sampled.

Restricting the area sampled to as narrow a range
as is practically possible also has positive impli-
cations for habitat and scale, as discussed below.

When there is a need to design surveys that
relate habitat to fish species, a wide range of sam-
pled areas is problematical. An inferential model
could be applied to survey results with a constant-
ratio protocol to estimate species richness and
probability of presence. However, the data col-
lected by that protocol would be less powerful in
interpreting species-habitat relationships because
(1) the geometric increase of area sampled in wider
streams would typically include more habitat
types, (2) the species-area effect noted above
would confound interpretation, and (3) sample var-
iance is influenced by sample unit size (Wiens
1989). A conventional survey operating within
practical constraints, such as one sampling from a
narrow range of reach lengths or a riffle–pool se-
quence, cannot be perfect in terms of associating
species with specific habitat types for each sample.
However, spending effort on fewer but larger sam-
ples on wider rivers would provide much less in-
formation than taking more but smaller samples,
providing that a practical minimum reach length
that ensures predictable catchability is maintained.
Splitting large samples into subunits will not help
because spatial autocorrelation will reduce statis-
tical power and complicate analyses. A valid de-
sign maintaining site areas close to a standardized
area can include larger streams, even if the habitat
sizes exceed the sampled area.

Using a narrow range of sampled areas also per-
mits valid ecological inferences when dealing with
larger scales within or across habitats. When spa-
tial scale increases beyond that of the individual
sample it is obvious that probability of presence
and richness will tend to increase, but estimating
values at larger scales is not trivial, unless a single
estimate for a large, intensively sampled basin is
desired. When the sample unit is consistent on a
spatial basis, estimates of P(FzC0) from two or
more samples can be combined to estimate joint
probabilities and species richness across larger
units, such as defined reach lengths or habitat
types.

An argument for consistently large sampled ar-
eas or more intensively sampled areas can be made
for less common species because large numbers of
zero catches can decrease the power of statistical
inference. However, accuracy of inferences is gen-
erally more influenced by low numbers of samples
that capture each species than by the number or
proportion of zero catches. Changing the design
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to one comprising a smaller number of larger sam-
ples may not be an improvement, and an optimum
tradeoff should be estimated by incorporating
catchability and a sample variance from prelimi-
nary samples.

Finally, the sampling-effort approach does not
allow for incorporating existing data collected
with different methods or effort levels, such as
from historical fish collection data (Figure 1) or
from current surveys that include different gear
that are more appropriate for different habitats.
Probably the most crucial factor in answering man-
agement or ecological problems related to stream
fishes is the number of quantifiable samples over
the temporal and spatial universe required. We use
the term quantifiable because existing data should
have sufficient protocol and habitat description to
permit estimates of catchability to be applied based
on subsequent calibrations.

In conclusion, using uncorrected catch data from
a constant-ratio protocol to estimate richness in-
corporates biases due to species with variable
abundances, catchabilities, and habitat preferences
that affect catchability. In addition, there are sig-
nificant problems interpreting data based on wide-
ly varying sampled areas. Species detectability
must be accounted for before considering ecolog-
ical effects. Any design approach that attempts to
optimize by sample, rather than through the design
of a set of comparable samples, will have similar
problems. Our arguments for developing inferen-
tial approaches apply to any composite measure
that depends on species detectability, such as the
Shannon–Wiener diversity measure or the Index
of Biotic Integrity and its metrics.

Further developments.—Although the method
described here is logical and supported by vali-
dation tests, it requires significant computation and
some experience with statistics. Alternative statis-
tical approaches, such as the use of conjugate dis-
tributions (Carlin and Louis 1996), would simplify
computation and produce variance predictors for
probability of species presence.

Because of the limited but essential information
provided by the zero-catch observation, the prior
estimate inevitably has a strong effect on the
Bayesian adjusted estimates. Several potential im-
provements may be feasible, such as including a
larger set of existing samples from similar com-
munities in ecologically applicable systems in the
region. Any single predictive model of abundance
will inevitably be incomplete and will tend to over-
estimate abundance in low-density areas. A two-
part, conditional model (e.g., Welsh et al. 1996),

in which one part defines conditions for absence,
may be worth the cost of additional parameters but
may require a larger set of samples for prior es-
timation than we used in our example. Such a pro-
cess is certainly advisable when additional eco-
logical or physiological information precludes any
reasonable likelihood of species presence from
particular sites or regions.

These and other improvements need to be tested
for sensitivity of the predicted values and accu-
racy, given variance estimates for catchability and
abundance. We anticipate that this process may
also lead to simplified computation.

Finally, optimum sampling design of surveys,
as hinted above, needs to explicitly account for
detectability. To assess candidate designs requires
simulation of sampling processes. Catchability es-
timates should be combined with information on
preliminary or historical samples representing spa-
tial and temporal distributions relevant to the ques-
tions being asked. The tradeoff between the cost
of individual sampling intensity (area sampled,
methods used, number of passes) and the costs
associated with sampling frequency is critical and
needs to be assessed in the context of current ques-
tions, as well as those likely to be asked from
surveys in the future.
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