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Abstract:

 

Effective conservation efforts for at-risk species require knowledge of the locations of existing popu-
lations. Species presence can be estimated directly by conducting field-sampling surveys or alternatively by
developing predictive models. Direct surveys can be expensive and inefficient, particularly for rare and diffi-
cult-to-sample species, and models of species presence may produce biased predictions. We present a Bayesian
approach that combines sampling and model-based inferences for estimating species presence. The accuracy
and cost-effectiveness of this approach were compared to those of sampling surveys and predictive models for
estimating the presence of the threatened bull trout (

 

Salvelinus confluentus

 

) via simulation with existing
models and empirical sampling data. Simulations indicated that a sampling-only approach would be the
most effective and would result in the lowest presence and absence misclassification error rates for three
thresholds of detection probability. When sampling effort was considered, however, the combined approach
resulted in the lowest error rates per unit of sampling effort. Hence, lower probability-of-detection thresholds
can be specified with the combined approach, resulting in lower misclassification error rates and improved
cost-effectiveness.

 

Combinación de Inferencias de Modelos de Eficiencia de Captura, Detectabilidad y Hábitat Adecuado para Clasificar
Paisajes para la Conservación de 

 

Salvelinus confluentus

 

Resumen:

 

Los esfuerzos de conservación efectivos para especies bajo riesgo exigen conocer la ubicación de
las poblaciones existentes. La presencia de una especie se puede estimar directamente por medio de mues-
treos a campo o mediante modelos predictivos. Los muestreos directos pueden ser costosos e ineficientes, espe-
cialmente para especies raras y difíciles de muestrear y los modelos que predicen la presencia de especies
pueden generar predicciones sesgadas. Presentamos una aproximación Bayesiana que combina el muestreo
y las inferencias resultantes de modelos para estimar la presencia de especies. La precisión y rentabilidad de
esta aproximación para estimar la presencia de la especie amenazada 

 

Salvelinus confluentus

 

 se comparó con
la del muestreo y de los modelos predictivos por medio de simulación con modelos existentes y con datos de
muestreo empírico. Las simulaciones indicaron que el muestreo únicamente podría ser la más efectiva y ten-
dría las menores tasas de error de clasificación de presencia y ausencia para los tres umbrales de probabil-
idad de detección. Sin embargo, cuando se consideró el esfuerzo de muestreo, la aproximación combinada
resultó tener las menores tasas de error por unidad de muestreo. Por lo tanto, se pueden especificar umbrales
menores de probabilidad de detección con la aproximación combinada, lo que resulta en menores tasas de

 

error de clasificación y mayor rentabilidad.
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Introduction

 

Species conservation begins with two key questions: (1)
Where does the species occur? and (2) Where could it oc-
cur? Answers to these superficially simple questions can
be complex. The answer to the first question must come
from field surveys that document the presence of a spe-
cies. Determination of species presence is absolutely cer-
tain only when a species is detected or captured (assum-
ing species are identified correctly). If a species is not
detected in a survey, there are two alternatives: the spe-
cies was truly absent or it was present but not detected
during the survey. Species of concern typically exhibit
some form of rarity (e.g., Rabinowitz et al. 1986), and
many have cryptic coloration or behaviors that make
them difficult to detect in field surveys. Accordingly, it is
often difficult to determine if records of species “ab-
sence” represent true absence or a lack of detection.

An alternative to direct surveys is to develop models
that predict species presence ( Scott et al. 2002). The
physical and biological characteristics of habitats or locali-
ties can be used to address the question of where a spe-
cies could occur. If the presence of a particular species is
consistently associated with a specific suite of physical
and biological conditions, then it may be reasonable to as-
sume it will occur when those conditions are met. Thus,
the presence of a species may be inferred without direct
sampling in the field. This indirect approach is appealing
because field surveys to determine species presence can
be expensive and time-consuming. There is one major dis-
advantage to this approach, however: models of species
presence typically assume that species are detected with
relatively high efficiency. This assumption is rarely vali-
dated and is likely violated with much greater frequency
than is generally appreciated (Thompson et al. 1998).

If, as seems likely, variability in the detectability of
species is a function of survey conditions (e.g., environ-
mental or habitat conditions, sampling methods), then
observed patterns of species presence may not reflect
actual patterns of presence. In fact, associations be-
tween patterns of species presence and habitat may be a
function of both habitat preferences and variation in de-
tectability (e.g., Bayley & Dowling 1993). Errors in habi-
tat classification based on models with predictions bi-
ased by variation in detectability can compromise species
conservation efforts. For example, some species may de-
pend strongly on habitats where they are difficult to de-
tect. In this case, a model based only on observed pat-
terns of presence would not predict these habitats to be
important. Consequently, key habitats may not receive
adequate consideration in conservation planning.

Both approaches to determining species presence (di-
rect surveys and prediction of presence with models) are
subject to potentially significant shortcomings. Direct sur-
veys alone may be expensive and inefficient, and models
of species presence may produce biased predictions.

Here, we show how information from both sampling
( detectability) and habitat models can be combined in a
third approach to produce more robust inferences about
the probability of a species occurring in a given area (Fig.
1). To provide an example, we compare predictions from
a landscape model of presence for threatened bull trout
(

 

Salvelinus confluentus

 

; Dunham & Rieman 1999) to
those from models of capture efficiency and detectability
(Peterson et al. 2002) to show how each may be used to
estimate the probability of presence. We then show, via
simulation, how a combined approach using predictions
from both models can be used to determine bull trout pres-
ence with greater efficiency and economy. In the com-
bined approach, predictions from the landscape model
serve as a prior probability of presence that is updated with
new information from sampling surveys of bull trout.

 

Methods

 

Landscape Model of Bull Trout Presence

 

To provide a realistic basis for our simulations, we used
predictions from existing models of presence for bull
trout in the Boise River basin in southwestern Idaho (Rie-

Figure 1. Three alternative approaches to determining 
probability of presence for bull trout. In the sampling-
only approach, only information from sampling effort 
is used to estimate probability of presence. In the habi-
tat approach, sampling is not conducted, and inferences 
about probability of presence are based on predictions 
from a habitat model alone. In the combined approach, 
predictions from the habitat model serve as a prior 
probability of presence that is sequentially updated 
with new information from sampling to produce pre-
dicted posterior probabilities of species presence.
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man & McIntyre 1995; Dunham & Rieman 1999; Dunham
et al. 2002). The distribution of suitable habitats in the ba-
sin was inferred from an elevation gradient that delin-
eated the distribution of juvenile bull trout. “Patches” of
suitable habitat in the basin were defined as watersheds
above 1600 m elevation. The area of these individual
patches, their isolation from other occupied patches, and
road densities were significantly associated with presence
of bull trout in a logistic regression model. We used pre-
dictions (predicted probabilities of presence) from this
model as prior probabilities of presence in each patch.

For each simulation, we used 77 patches in the Boise
River basin. In the original data set analyzed by Dunham
and Rieman (1999), bull trout were known to be present
in 29 patches and were believed to be absent in 52 (

 

n

 

 

 

�

 

81). We used only 77 of these 81 observations because
information on fish densities was absent from 4 of the
observations in the full data set. If bull trout were not
observed in a patch (e.g., classified as “absent” by Dun-
ham & Rieman [1999]), then we treated the patch as a
true absence (zero fish density) in the simulations.

The logistic regression model described in Dunham and
Rieman (1999) had a 19.5% overall cross-validation error
rate for presence and absence of bull trout. To more faith-
fully represent out-of-sample performance of the landscape
model, we estimated presence probabilities for each patch
via leave-one-out cross-validation (Efron 1983). In other
words, we sequentially omitted each observation (e.g., a
single patch) from the model and predicted presence by
using the remaining observations. For our simulations, we
classified each patch as “occupied” or “unoccupied” based
on three pairs of cutoff values: 70-30%, 80-20%, and 90-
10%. Patches with predicted probabilities greater than or
equal to the higher and less than or equal to the lower cut-
off value were classified as occupied or unoccupied, re-
spectively ( e.g., 

 

�

 

70% was as predicted present and

 

�

 

30%, absent). Patches with predicted probabilities be-
tween each pair of cutoff values (e.g., 

 

�

 

70% and 

 

�

 

30%)
were classified as “uncertain” and were not considered in
the estimation of classification and prediction error rates.

For comparison, we also classified each patch based on
a 50% cutoff value for probability of presence, which is
commonly done in ecological studies ( e.g., 

 

�

 

50% 

 

�

 

“present”). We computed classification and prediction er-
ror rates for each pair of cutoff values. Classification error
rates were defined as the proportion of patches that were
assigned the incorrect status (e.g., an occupied patch that
was classified as unoccupied). Prediction error rates were
the proportion of status-specific predictions that were in-
correct (e.g., the proportion of patches predicted to be
occupied were actually unoccupied).

 

Sampling Detection Probabilities

 

The sampling-only approach was based on the bull trout
sampling protocols of Peterson et al. (2002). This proto-

col estimated fish-capture efficiency for a given method
(e.g., day snorkeling, night snorkeling, and electrofish-
ing) under a known range of sampling conditions (e.g.,
effects of habitat size, cover) in individual sampling units
(stream reaches). The numbers of fish vulnerable to cap-
ture were similarly estimated using a model parameter-
ized with bull trout sampling data from known occupied
patches across the range of bull trout in the region.
Then estimates of capture efficiency and expected num-
bers of fish vulnerable to capture were used to estimate
bull trout detection probabilities in a single sampling
unit. We estimated detection probabilities for patches by
combining detection probabilities across units sampled
within each patch with the methods detailed in Peter-
son et al. (2002). These estimates served as the basis for
terminating sampling in a patch during our simulations
of the sampling only approach.

With this approach, we assumed sampling units
were randomly selected within each patch and sampled
( sequentially ) with single-pass, backpack electrofish-
ing. If bull trout were not detected in the first sampling
unit, additional units were sampled in each patch until
bull trout were detected or a desired cutoff value for the
probability of detection in the patch was reached. For
example, a survey that failed to detect fish in a patch
was deemed satisfactory if the estimated probability of
detection was 90%. Patch-specific probabilities of detec-
tion, 

 

d

 

, were computed by combining individual proba-
bilities of sampling unit detection (hereafter, threshold
detection probabilities) as

(1)

where 

 

d

 

j

 

 are the sampling unit-specific threshold detec-
tion probabilities and 

 

k

 

 is the maximum number of sam-
ples collected in a patch.

 

Simulated Sampling-Only Approach

 

We conducted 1000 simulation runs for each of three
patch-specific detection probability cutoff values: 70%,
80%, and 90%. During the simulations, we attempted to
emulate the typical sampling process in which sites are
randomly selected and sequentially sampled until bull
trout are detected or the cutoff threshold detection
probability is reached. To more faithfully represent typi-
cal sampling conditions, we randomly generated the
abundance of bull trout and capture efficiency in each
sampling unit by using statistical distributions fit to em-
pirical sampling data from the Boise River basin (B. E. Rie-
man, unpublished data). We randomly assigned the aver-
age density of bull trout to each known occupied patch
through a gamma distribution with shape and scale pa-
rameters 0.22 and 1.95, respectively, and the known un-
occupied patches were assigned zero density. We then

d 1= 1 dj–( )
j 1=

k

∏ ,–
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randomly generated the abundance of fish in each sam-
pling unit within a patch assuming a Poisson distribution
with a mean equal to the randomly assigned patch-spe-
cific density. We also randomly assigned capture effi-
ciency for each unit from a beta distribution with shape
and scale parameters 3.54 and 9.74, respectively. This
resulted in simulated fish abundance and capture effi-
ciency that varied, on average, 20% from those used to
estimate threshold detection probabilities.

We simulated fish sampling by estimating a probability
of detection (henceforth, sampling detection probability)
for each sampling unit with the randomly generated fish
abundance and randomly assigned capture efficiency. If
the sampling detection probability for the unit exceeded
a randomly generated uniform number (i.e., range 0–1),
we assumed detection and ceased simulated sampling in
the patch. Otherwise, we generated additional sampling
units for each patch until the total threshold detection
probability exceeded the pre-specified cutoff. For each
simulation, we computed the error rate for those
patches that were predicted to be unoccupied and were
actually known to be occupied and estimated the aver-
age number of simulated samples per patch.

 

Simulated Combined Approach

 

The combined approach builds on the Bayesian ap-
proach for estimating species presence detailed by Bay-
ley and Peterson ( 2001 ). This approach used both a
prior probability of presence and a probability of detec-
tion to estimate a posterior probability of species pres-
ence, given that it was not detected during sampling.
Thus, it effectively combines the landscape model pre-
dictions ( the empirical prior ) and sampling-only ap-
proach (detection probabilities) to produce a posterior
probability of patch occupancy.

The posterior probability of patch occupancy, given a
species was not detected, 

 

P

 

(

 

F

 

|Co), is estimated as

(2)

where 

 

P

 

(

 

F

 

) is the prior probability of species presence,

 

P

 

(

 

�

 

F

 

) is the prior probability of species absence, and

 

P

 

( Co|

 

F

 

) is the probability of not detecting a species
when it occurs (Bayley and Peterson 2001).

Logically, the probability of species absence is the
complement of presence, 

 

P

 

(

 

�

 

F

 

) 

 

�

 

 1 

 

�

 

 

 

P

 

(

 

F

 

), and the
probability of not detecting a species when it is present
is the complement of detection, 

 

P

 

( Co|

 

F

 

) 

 

�

 

 1 

 

�

 

 

 

d

 

,
where 

 

d

 

 is the threshold probability of detection, and
the probability of not detecting a species when it is ab-
sent is 

 

P

 

(Co|

 

�

 

F

 

) 

 

�

 

 1.
Equation 2 indicates that numerous combinations of

prior probabilities of presence and detection can result in
the same posterior probabilities (Fig. 2). Thus, by rear-

P F Co( )
P Co F( ) P F( )⋅

P Co F( ) P F( )⋅ P Co �F( ) P �F( )⋅+
---------------------------------------------------------------------------------------------,=

 

ranging Eq. 2 we can estimate the probability of detec-
tion, required to achieve various posterior probabilities as

(3)

where 

 

P

 

(

 

�

 

F

 

|Co) is the complement of the desired pos-
terior probability (1 

 

�

 

 

 

P

 

[

 

F

 

|Co]) and the remaining vari-
ables are as defined above. This provides a means to ad-
just the detection probability (and required sample size)
for each patch, based on the value of the empirical prior
derived from the landscape model and the desired cutoff
value of the posterior probability (henceforth, posterior
probability cutoff value) for estimating species presence
or absence.

We conducted 1000 simulation runs for each of three
pairs of posterior probability cutoff values identical to
those used for landscape model evaluation. Prior to each
sampling simulation, patches were classified as occu-
pied, unoccupied, or uncertain based on the cutoff val-
ues and rule set described above. Required probabilities
of detection, 

 

d

 

�

 

, were then estimated for the uncertain
patches with Eq. 3, the empirical landscape prior, and
the ( lower ) cutoff values for defining absence

 

 

 

( i.e.,

 

P

 

[

 

F

 

|Co] equal to 30%, 20%, and 10%). These patches
were then sampled (as outlined above) until a bull trout
was detected or 

 

d

 

�

 

 was exceeded by the total threshold
detection probability. We then computed the prediction
error rates, number of patches sampled, and average
number of simulated samples collected per patch.

To put the sample size requirements estimated during
the simulations in perspective, we contacted four re-
search biologists responsible for planning the field sam-
pling of bull trout and other salmonids in the northwest-
ern United States. We asked each biologist to determine
the size of a crew needed to sample bull trout with the
bull trout protocol (Peterson et al. 2002) and the num-
ber of samples that could be collected per day. We then
averaged these numbers and used the averages to esti-
mate the number of sampling days required for each ap-
proach and probability cutoff value.

 

Results

 

In terms of prediction error rates from the alternative
models (Table 1), landscape models were relatively ac-
curate for the least-restrictive 50% probability cutoff
value, and the accuracy of predictions increased with
the more restrictive cutoff values. For example, for the
landscape model at the 50% cutoff, prediction error
rates for bull trout presences and absences were 0.250
and 0.163, respectively (Table 1 ). The corresponding
prediction error rates for the more restrictive 70–30%
cutoff were 0.074 and 0.038 lower for presences and ab-
sences, respectively, and more than 0.10 lower at the

d′ 1=
P F Co( ) P �F( )⋅
P �F Co( ) P F( )⋅
------------------------------------------,–
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80–20% and 90–10% cutoff values. However, the propor-
tion of patches classified as uncertain increased from
0.260 at the 70–30% probability cutoff to 0.636 at the
90–10% cutoff (Table 1).

For all approaches, we found prediction error rates
were lowest for the most restrictive cutoff values 90–10%
(Table 1). Among approaches, error rates were lowest
for the sampling-only approach for all probability cutoff
levels ( Table 1 ). On average, error rates for the sam-
pling-only approach were 0.071, 0.037, and 0.040 lower
than the landscape model and combined approach at
the 70–30%, 80–20%, and 90–10% cutoff values, respec-
tively (Table 1 ). Much of these differences, however,
were due to the zero error for predicting presence (i.e.,
false presence) with the sampling-only approach. When
these values were not considered, error rates for the
sampling-only approach were only 0.037, 0.022, and
0.021 lower than the landscape model and combined ap-

proaches at the three pairs of cutoff values, respectively.
Expected error rates of the combined approach were
the next best among the approaches considered and
were, on average, 0.020 lower than the landscape-model
across probability cutoff values. Additionally, no patches
were classified as uncertain with the sampling effort and
combined approach.

Although the simulations indicated the greatest accu-
racy for the sampling-only approach, it also required
greater numbers of patches sampled and average num-
ber of samples per patch compared with the combined
approach (Table 2). On average, the number of patches
sampled and the number of samples per patch for the
combined approach were 55.4% and 33.2%, respec-
tively, lower than the sampling-only approach. Based on
the judgment of four research biologists, we estimated
that a four-person crew could collect an average of 2.77
samples per day (range 2.5–4). Thus, we estimate that

Figure 2. Response surface of predicted 
posterior probabilities of species presence, 
given no detection, for various combina-
tions of prior probabilities of presence 
and detection for bull trout. Lines repre-
sent posterior probabilities (numbers) for 
specific prior probability and detection 
combinations. Power of detection is an in-
dex of the amount of sampling effort re-
quired to obtain a given posterior proba-
bility of presence, given no detection. For 
example, if a posterior probability of pres-
ence of 0.05 is desired, lower power (effort) 
is required when prior probabilities of 
presence are lower. Thus, a given amount 
of sampling effort is more informative 
when prior probabilities of presence are 
lower.

 

Table 1. Comparison of the proportion of uncertain patches (

 

n 

 

� 

 

77) and the mean prediction and classification errors for the three 
approaches to predicting bull trout patch occupancy at three probability cut-off levels.

 

Probability cut-off levels
and approach Uncertain patches

Prediction error

 

a,b

 

Classification error

 

b

 

present absent present absent

 

70%, 30%
landscape model 0.260 0.176 (0.250) 0.125 (0.163) 0.263 (0.276) 0.079 (0.146)
sampling only 0.000 0.000 0.114 0.217 0.000
combined 0.000 0.128 0.138 0.255 0.063

80%, 20%
landscape model 0.442 0.111 0.059 0.200 0.030
sampling only 0.000 0.000 0.082 0.150 0.000
combined 0.000 0.044 0.107 0.187 0.021

90%, 10%
landscape model 0.636 0.125 0.050 0.125 0.050
sampling only 0.000 0.000 0.048 0.084 0.000
combined 0.000 0.039 0.063 0.110 0.021

 

a

 

Mean prediction errors for sampling effort and combined approaches based on 1000 simulations.

 

b

 

Category-wise errors for landscape model with 50% probability cut-off level in parentheses.
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the sampling-only approach would take an average of
70.6% more days for a single crew, across probability
cutoff values, to complete a basin survey (assuming 77
patches/basin) compared with the combined approach

 

Discussion

 

Several factors must be considered when developing a
sampling or monitoring strategy, including the effective-
ness and cost of data collection and the interpretability
of the data. Of these, our simulations suggest that a sam-
pling-only approach would be the most effective in
terms of minimizing error rates for a given probability
cutoff. However, the combined approach results in the
lowest error rates per unit of effort when sampling ef-
fort is considered. For example, we estimated that the
average number of sampling days required for a single
crew to complete a basinwide survey with the sampling-
only approach and a 70–30% cutoff was 104 days greater
than the combined approach using a 90–10% cutoff. The
false absent error rate for the combined approach with a
90–10% cutoff also was 0.051 lower than for the sam-
pling-only approach with a 70–30% cutoff. Hence, the
combined approach with a 90–10% cutoff required
fewer samples and resulted in a lower false-absent error
rate compared with the sampling-only approach with a
70–30% cutoff. In practice, the lower cost of the com-
bined approach may be appealing when resources for
field surveys are limited.

Another potential difficulty with the sampling-only ap-
proach is how to interpret an event when a species is
not detected in a sampling frame (e.g., a patch in this
example). Previous approaches have used the comple-
ment of the detection probability (i.e., 1 

 

�

 

 detection) as
an estimate of the probability that a sampling frame (e.g.,
patch ) was occupied, generally in reference to some
pre-specified threshold density (Green and Young 1993;
Watson & Hillman 1997). Because all detection probabil-

ities depend on the sampling frame being occupied or
occupied at some threshold density, the interpretation
of an event when a species is not detected requires the
consideration of total probability ( Bayley & Peterson
2001). To illustrate, assume that 100 patches known to
contain bull trout are sampled with an 80% threshold
detection probability. On average, bull trout would not
be detected in 20 of the patches, yet all of the patches
( 100%) contained bull trout. This 100% would be the
posterior probability of bull trout presence given no de-
tection. In contrast, assume a situation in which 1 of the
100 patches did not contain bull trout. Consequently, on
average, bull trout would not be detected in the known
absent patch and in 20 others (20% of 99) that actually
contained bull trout. Thus, 20 of the 21 patches in
which bull trout were not detected actually contained bull
trout and the posterior probability of presence (given no
detection) would be 95%. In both examples, the poste-
rior probability of presence depended on the prior
knowledge of the actual number of patches containing
bull trout. Similarly, proper interpretation of an event
when a species was not detected required a detection
probability and a prior estimate of the probability of spe-
cies presence. We used a landscape model to provide a
prior estimate of presence for the combined approach
to estimating occurrence. This prior estimate could be
assumed to be unknown ( i.e., an uninformative

 

 

 

prior;
Gelman et al. 1995) or could be based on expert opinion
(Henrion et al. 1991). However, a more sound and de-
fensible approach would be to develop priors based on
empirical models (Bayley and Peterson 2001), as we did
here.

As with all statistical estimation methods, the accuracy
of the combined approach is significantly influenced by
the accuracy of the prior probability of presence and the
species detection probability estimates. The prior proba-
bility of presence has the greatest influence on the pos-
terior probability of presence at high values (Fig. 2). In
other words, if a habitat model predicts a high prior

 

Table 2. Comparison of the level of bull trout sampling effort and number of days required for a four-person crew to complete the sampling-
only approach and combined approach to predicting bull trout patch occupancy at three probability cut-off levels.

 

a

 

Probability cutoff and
approach Patches sampled

Samples per
patch

Sampling days
per patch

 

b

 

Sampling days for
basin-wide survey

 

c

 

70%, 30%
sampling only 77 12.1 4.4 337.5
combined 20 8.2 3.0 59.2

80%, 20%
sampling only 77 15.6 5.6 433.9
combined 34 11.2 4.1 137.8

90%, 10%
sampling only 77 21.6 7.8 601.2
combined 49 13.2 4.8 233.2

 

aValues are means of 1000 simulations.
bBased on average 2.77 samples per days estimated by field biologists.
cBasin-wide estimates include only the 77 patches considered.
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probability of occurrence for a species, more sampling
effort will be required to attain a “low” (e.g., 10–30%)
posterior probability of occurrence, given no detection.
Hence, empirical models that overestimate the probabil-
ity of presence would substantially affect the accuracy
of the combined approach. However, because most
models of presence are based on incomplete determina-
tions of true presence it is more likely by far that “un-
derprediction” is the case for “habitat” or “landscape”
models.

As the value of the prior probability of presence de-
creases, detection probability estimates have a greater in-
fluence on the posterior probability of presence (Fig. 2).
If habitat models predict a low prior probability of oc-
currence, then less sampling effort is required to attain a
low posterior probability of occurrence, given no detec-
tion. Underestimates of detection probabilities would
have the least impact on the accuracy of the combined
approach because a species would likely be detected
when present, but it would likely increase costs by re-
quiring too many samples in locations where a species is
absent. However as we have shown, incorporating prior
information would minimize the increased costs associ-
ated with underestimated detection probabilities. In
contrast, overestimates of detection probabilities would
likely result in an insufficient amount of sampling effort
and increased incidence of falsely concluding absence. To
minimize such errors, we strongly recommend that re-
searchers and managers examine the accuracy of all their
models via an unbiased validation procedure, such as
cross validation.

The accuracy of the bull trout presence and absence
estimates is also significantly influenced by the choice of
probability cutoff. For all three approaches considered,
the highest error rates were associated with the least re-
strictive 70–30% cutoff. Although we arbitrarily selected
three symmetric pairs of cutoff values to use during the
simulations, most practical applications will have to se-
lect cutoff values based on economic and ecological
considerations. For example, falsely predicting the pres-
ence of an endangered species may result in unneces-
sary land-use restrictions and an associated increase in
management costs. Conversely, falsely predicting the ab-
sence of a species could lead to its extirpation through
the failure to enact the proper protection strategies. Ad-
ditionally, the impact of inaccurate prior probability of
presence models and uncertainty regarding estimates of
detection probabilities can be partially compensated by
adjusting the cutoff probability. Thus, the choice of cut-
off should be based on the accuracy of the prior proba-
bility of presence, the accuracy of the probability of de-
tection estimates, the effect of land management actions
on populations, and the costs associated with manage-
ment actions. For example, in cases where the cost of
falsely predicting species absence is a concern (e.g., un-
knowingly harming an endangered species), it may be

prudent to use a more conservative lower cutoff (e.g.,
10%) for assuming “absence,” or low probability of pres-
ence, and a less conservative upper cutoff for “pres-
ence” (e.g., 70%) to ensure that all potentially occupied
habitats are protected.

During our simulations, we did not consider the initial
effort and cost associated with developing the landscape
model necessary for estimating the prior probability of
presence. Although this is certainly a substantial outlay,
we believe that in many instances initial models can be
developed using existing data for the target or ecologi-
cally similar species. Alternatively, empirical priors can
be estimated by combining data for several ecologically
similar species via Bayesian meta-analysis (Tufto et al.
2000 ). These initial models can then be examined
through sensitivity analysis to identify the major sources
of uncertainty and develop monitoring designs that can
collect the most useful data for improving the models.
More efficient approaches also may be possible through
the use of adaptive sampling techniques (Thompson &
Seber 1996) and Bayesian statistical methods for model
updating (Spiegelhalter et al. 1993). Thus, existing sur-
vey and monitoring efforts can be designed to simulta-
neously determine the distribution and status of target
species and improve the prior models.

Management Implications

Bull trout is an excellent example of the management di-
lemmas posed by uncertainty regarding patterns of spe-
cies occurrence. Habitat requirements for bull trout are
specific and sensitive to land-use impacts (e.g., Rieman
& McIntyre 1993). Therefore, efforts to restore and pro-
tect habitat for bull trout could have substantial effects
on land management throughout the broad range of this
species (e.g., Rieman et al. 1997). While many details of
the habitat requirements of bull trout are unknown, it is
clear there are many potentially suitable habitats where
bull trout are unlikely to occur ( Dunham & Rieman
1999). In developing a management strategy, an obvious
first step is to identify habitats where occurrence of bull
trout is known or believed to be likely. As illustrated
above, this is not a simple matter, and expert opinion on
habitat relationships for bull trout is highly variable (Rie-
man et al. 2001).

For several reasons, we believe the combined ap-
proach to determining occurrence is most likely to pro-
vide useful information for bull trout conservation ef-
forts. Because bull trout are difficult to sample, it is
unlikely that a sampling-only approach will suffice for all
cases. Another drawback of a sampling-only approach is
that it does not provide useful information on habitat re-
quirements for bull trout. Finally, without good informa-
tion on the distribution of habitats on the landscape (e.g.,
Dunham et al. 2002 ), it will be difficult to delineate
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where sampling should occur. A habitat-only approach
would be less costly to develop, but uncertainty about
actual patterns of occurrence would likely lead to more
conservative habitat protection. The costs of restrictions
on land use resulting from these protections could be
considerable and controversial. The combined approach
to determination of bull trout occurrence requires greater
initial investment, but it provides managers with much
greater flexibility and information. As such, the longer-
term benefits of the combined approach should far out-
weigh the initial costs.
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