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Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does
not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.
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I. Overview of Work

This document presents a modeling and control study of the Fluid Bed

Gasification (FBG) unit at the Morgantown Energy Technology Center (METC), The
work is performed under contract no. DE-FG21 -94MC3 1384. The purpose of this study
is to generate a simple FBG model from process data, and then use the model to suggest
an improved control scheme which will improve operation of the gasifier. The work first
developes a simple linear model of the gasifier, then suggests an improved gasifier
pressure and MGCR control configuration, and finally suggests the use of a multivariable
control strategy for the gasifier.

A successful control scheme for the FBG must operate successfully in both the
servo and regulatory modes. In the servo mode, the control system must adjust the
reactor input variables so that the reactor output meets operational objectives. A number
of objectives must be met on the FBG:

1. No clinkering
2. High carbon conversion
3. Meet targeted gas make
4. Meet targeted bed density

5. High gas heating value
6. Meet targeted Fuel/non combustible mole ratio
7, Meet targeted mean bed temperature
8. Maintain HOC balances and inventories.

In the regulatory mode, the controller must respond to disturbances such as coal
moisture content, inlet air or steam temperature, and ambient conditions in an intelligent

manner.

Presently all of these objectives and more are considered by operators during
gasifier operation, All inlet gas flow rates are flow controlled with simple PID-type
controllers, gasifier backpressure is controlled via a split range controller, and MGCR
pressure is controlled via a PID controller. The backpressure  control is critical to steady
operation of the gasifier, as fluctuations in backpressure impact inlet gas flowrates and
bed density. More detail on backpressure and MGCR control is given in the next section.
Typically the maximum bed temperature is maintained by adjusting the air flow setpoint,

gas moisture content is maintained at 10% by adjusting the steam flow setpoint.



? T

II. Linear Model

A linear transfer function based model for the FBG was developed based on the

data from Gasifier run 11. The approach was the same as that taken for a transfer
function model derived from Gasifier run 10. The methodology is outlined in the
technical progress report for the period 10/1/94 to 1/31/95 (see Appendix I).

Table 1 below summarizes the steady-state operating conditions for FBG run 11.

Coal Type
Coal Feed rate
Reactor Air flow
Convey Air
Steam flow rate
Cone Nitrogen flow
Cone Steam
Nitrogen Undefflow
Operating Pressure

Montana #7
70 lb/hr

1025 SCfh

1600 SCfh

52 lb/hr
o Scfh
9 lb/hr

250 SCfh
425 psi

Table 1: FBG Run #10 Baseline Operating Condition

Note that during the beginning of the run, 50 scfh of cone Nitrogen was fed instead of
cone steam, The switch to cone steam was made part way through the run.

Tables 2 and 3 give the tests that were made during the gasifier run 11. Note that
the run covered two time periods, from July 16 to 22, and July 24 to August 8. The data
includes changes in reactor air, coal feed rate, underflow N2, reactor steam, switch

from cone steam to cone Nitrogen, and switch from Montana #7 coal to coke breeze. The

transfer function model derived from FBG run 11 is given in Table 4, It should be
recognized that there is a high degree of uncertainty in the model, especially in

temperatures (which were averaged).
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Reactor Air

Reactor Stm

Underfl  N2

Cone Steam

Coal Feed

IOutlet Flow Upper Bed I Lower Bed PDIR718 I Reactor P

Temps Temps PIC 713
3.33 0,52 0.85 0.083 0.083e-GOs

32s + 1 30s + 1 30s + 1 5s+1 50s + 1
-2,3 -3.6e-33s

42s + 1 50s + 1
.055 +052

44s + 1 42s + 1
-2.3 .833

46s + 1 12s+1
2,ee-6h qoe-sss

I 48s + 1 I 58s + 1 I I
Table 4A: Pmlial transfer function matrix derived from gasifier run 11.

Empty elements indicate no detectable change in output,

I

CH4 Comp C02 Comp

‘ p =

CO Corn
-0.003Reactor Air . -0.0167 -0.035
32s + 1 34s + 1 31s+1

Reactor Stm
Underfl N2

Cone Steam

Coal Feed no data no data

Table 4B: Partial transfer function matrix derived from gasifier run 11,

Empty elements indicate no detectable change in output.

111. Fluid Bed Gasifler Control

With the exception of some simple flow controllers on inlet steam and air flows,
present successful operation of the FBG is dependent upon the expertise of process

operators. Part of their strategy for controlling the FBG under steady operation is to use
inlet air flow to control the maximum bed temperature and steam flow to control the
moisture content of the exit gas. Coal feed is used to control hopper level. During

transient periods such as startup or switch to gasification mode, the operation is more
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complex, however, we will focus on improving gasifier operation under steady conditions
in this study. To do this, we will examine two critical issues, first improving
performance of backpressure and MGCR controllers, and second, examining the
interaction between steam and air flows and proposing a multivariable  controller to

eliminate process interactions between them.
Backpressure and MGCR control play an important role in the ability of the

operator to run the gasifier successfully. In gasifier run #12, the backpressure controller
caused cycling in reactor pressure and was a cause of major operational problems.

IV. Backpressure and MGCR Control

Good pressure control is critical to successful operation of the FBG. Fluctuations in
gasifier pressure affect inlet gas flowrates, gasifier temperatures, and downstream
MGCR pressure. Over the last several gasifier runs, the FBG backpressure has been
controlled using a split-range automatic controller, Most of the time this controller
maintains the pressure within plus or minus 5 psi of setpoint. However, frequently the
controller overreacts and the pressure swings dramatically. If the operator does not take
the proper intervention steps immediately, the pressure swings will shut down the
gasifier. This section identifies several sources of problems with the present pressure

control system and then suggests modifications to the present scheme.

i. Problems with the present control scheme
Below are summarized some of the major problems with the present backpressure

controller.

1. Split-rar?ge  control scheme: A large valve and a small valve operating in parallel are

manipulated in order maintain desired FBG pressure. The small valve opens first to

control pressure at low to moderate make-gas flowrates, while the large valve remains

closed. At high make-gas flows, the small valve is open completely, and the large
valve is manipulated to maintain pressure. At the operating condition used in the fkst
four days of 95FBG 11, the make-gas flow was such that the split-range controller

operated at the crossover point from the large valve to the small valve (that is, the
large valve closed, the small valve open). One can not expect good control in this
regi OJI.
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2. Interactions with the MGCR pressure controller: The MGCR pressure fluctuates due
to a large dead time between the upstream valve and the vessel pressure (V-100).
Fluctuations in the valve controlling the MGCR pressure (PV-254) affect the
backpressure  controller.

3, Upstreanz disturbances: The inlet gas flow controllers interact with the backpressure.
Changes in inlet gas flowrates will affect gasifier pressure. Similarly gasifier pressure
will affect inlet flow of gases. Most of the time when the gasifier backpressure

cycles, so do the inlet gas flows.

4. Controller tuning: Optimal controller tuning parameters will change as the operating

condition changes, For example, one would expect markedly different tuning

parameters in the backpressure controller under conditions where the large valve is

adjusted than under conditions where the small valve is being adjusted. In one
observed instance, the backpressure loop was swinging rather dramatically. The
operator on duty intervened by simply putting the controller in manual and
maintaining a constant valve position. Almost immediately, the backpressure

stabilized. This points to poor controller tuning.

5. Buildup of solids at the control valve: There is evidence to suggest that fine solids
particles are accumulating just upstream of the control valve. In one case,
backpressure was oscillating continuously with increasing amplitude. Finally, the
pressure swings were large enough to force solids out of the gasifier and into the
incinerator (and damaging the incinerator). After this ‘burp’ gasifier control was very

good for a long period of time.

ii. Suggested modifications to backpressure and MGCR pressure controllers,

The following modifications are suggested in order to eliminate backpressure control
problems: ,,

A. Backpressure  controller

1. Replace the split-range configuration with the following: Two valves placed in

parallel (similar to the present configuration). One valve should be tied to a PID



controller and will directly control FBG backpressure.  This valve should be sized to
cover the range of desired operating conditions. A second, larger valve will be used

to letdown system pressure quickly. This valve can only be manipulated manually or
through a safety override. With this configuration, under normal, steady operation of
the gasifier, the large valve will remain static and the controller will manipulate the
other valve to maintain backpressure.

2. Install a purge system to remove solids accumulation in the exit line.

3. Establish good controller tuning guidelines - how controllers should be tuned and who

should tune them. An autotuning facility available in most DCS’s should be most
useful.

B. MGCR pressure control

1. Implement a cascade control arrangement to reduce the large time lag between valve
V-254 and vessel V-100, In a cascade arrangement, an inner controller would control
the pressure just downstream of the valve V-254 or in the particulate removal vessel,
F-100. The outer or master controller maintains the pressure in V-1OO by adjusting
the setpoint of the inner controller. The result is a control system that responds much
faster and rejects disturbances in upstream pressure.



<

C. Diagram of suggested buckpressure and MGCR pressure control scheme.
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V. Control of Bed Temperature and Moisture Content

Improvement of the backpressure  controller will greatly improve ease of FBG
operation, however, it will not eliminate interactions between process inputs. It is clear
that process operators have a complex decision making process during transient operation
of the gasifier. Design of a multivariable control scheme which takes into account all of

the operational constraints during all modes of operation is well beyond the scope of what

can be accomplished from the limited number of successful test runs that have been
made, However, we will present a simple analysis of the control of maximum bed

temperature and exit gas moisture content (using inlet air and steam flow) during steady

operation. We will then outline a 2-input, 2-output model based controller which can be
implemented to minimize interactions and improve performance. The model based
controller will be useful for both setpoint tracking and disturbance rejection.

i. Interactions

During steady operation of the FBG, operators typically control the maximum bed

temperature using air flow and control exit gas moisture content using inlet steam flow.
The gain matrix for this simple 2-input, 2-output sub-system can be constructed from the
transfer function matrix given in Section II (moisture content numbers were calculated
from MGAS simulations).

TW Y1120

[

F,i, 0.51 -0.167’
E=

F,t -2.01 0.110

The resulting Relative Gain Array is

‘ =  %[::5 i:!

The RGA indicates that for single-input, single-output control, air flow should control

bed temperature and steam flow should control moisture content (consistent with present
manual control). Note that pairing air with moisture content and steam with temperature

10



would lead to a potentially unstable control scheme. The RGA also reveals a significant
degree of process interaction (a value of 2.55 is quite large for a 2x2 system). Significant
improvement in control can potentially be achieved by using a multivariable controller.

ii. Dynamic Matrix Control
The last 15 to 20 years have seen the development of several control concepts

based on using a model of the process within the controller. Perhaps the most successful
of these model based controllers is Dynamic Matrix Control (DMC),  DMC was
developed at Shell Oil Company in 1979 by C.R. Cutler and B. L. Ramaker. Its basic
concept is to use a time-domain step response model of the process to calculate future
manipulated variable moves which minimize a performance index. This report will

discuss the basics of DMC and then illustrate the method through an example
implementation on the gasifier. A more detailed discussion is given in several references
[Luyben, W.L. Process Modelintz. Simulation, and co ntrol for Chemical En~ineers,
McGraw Hill, and Cutler, C.R. and Ramaker, B. L., “Dynamic Matrix Control -- A
Computer Control Algorithm,” 86th Meeting of AIChE].

DMC Model
The DMC modeling approach must first be explained before the control algorithm

can be presented. The discussion will focus on a single-input, single-output system for
simplicity, but we will also show that the extension for the mult-input, multi-output case
is straightforward.

As mentioned above, the model is based on the step response of the process, As
illustrated below a step change in the manipulated variable is made (AU). The output at

each sampling time, kT, is recorded until the process has reached a new steady-state. As
illustrated in Figure 2 below, dynamic coefficients, ai, are defined at each sampling

time,

ai = Xi/AU.
where Xi is the change at each time sample in output

relative to the initial condition.

11
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Figure 2: Discrete responseofprocess output tostepchange  ininput

For N future time samples

Xl = alAU
X2= a2AU

X3= a3AU

XN = aNAU.

or ~=/4Au

Assuming that thesystem is linear, theoutput can bepredicted inthismanner for any

single input. For a series of inputs implemented at successive time steps (as shown in
Figure 3 below),
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Figure 3: Process output resulting from a series of input changes

the output can be predicted by

XI = alAUl
X2= a2AUl + alAU2
X3= a3AUl + a2AU2 + alAUl

.

XN = aNAUl + aN.lAU2 + alAUN

which can be written in matrix notation as

2J=M

or

x,
X2

X3

x,

XN

al O 0  . . 0

a2 al O 0 . 0

as a2 al O . 0

a4 a3 a2”” o

. . . .

aN aN-l %.2 “ “ +
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In this case A is NxN (N outputs predicted from N inputs). It is often desirable in DMC

to predict M outputs from N inputs. In that case A becomes MxN.

For the multi-input, multi-output case, the model is analogous to a transfer
function matrix, QQ.

G(s) =

G,I(s) G,2(s) . . G,q(s)

G21(s) G22(s) , . G2q(s)
. ,.

1

1“ . .
Gpl(s)  GP2(s) .  .  Gpq(s)“J

where Gij (s) represents the relationship of the ith output to the jth input. An analogous
model is formed for DMC, with &j representing the relationship between the ith output

and the jth input. The overall system dynamic matrix, A, is then a matrix of smaller
matrices

1“
. . . .

Xp, XP2 . . Xpq J
The process is then modeled by X =&J

where

x =

xl -

X2

= process output vector

xP -

14



f ,

u = [’l
u,
U2

Uq

= input vector.

The discussion will now return to single-input, single-output. The prediction of

the process output by the DMC model discussed so far requires the knowledge of future
process inputs. This model is useful for studying the anticipated result of a series of
future control moves, but is of little use if the future control moves are not yet known. A
prediction vector, F (dimension Nxl), is defined which contains the prediction of the
process outputs based on process inputs up to the present time, assuming that the process
input remains constant in the future. The prediction vector can be updated recursively at

each time step by

F’i,new = I’i+l, old + ai+lAU

where

AU= change in process input from previous time sample

i=l, N-1

The prediction vector is usually initialized equal to the process output at the time DMC is

implemented.

15
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DMC Algorithm

This section will discuss the control algorithm of DMC. In Figure 4 below, the
process has been operation for some time so that the process output is predicted from the
prediction vector N time steps into the future,

T 2T 3T 4T ST 6T

x
44

g ‘4 ‘6

6 ‘2
‘1

Setpoint, R t

\
\ +. -

Figure 4: Illustration of prediction vector, ~

The goal of the DMC algorithm is to find a future set of inputs which will minimize error
from setpoint over a future time horizon,

~= [el, ez, . . . . eN]T = error vector

where
ei=R-Pi.

R = Setpoint

If one could find a set of future inputs to give a response represented by the dotted line,
then, when added together, the effects of past inputs and future inputs will give Xi = R,
Such a set of future inputs, AUi is what the DMC algorithm seeks.
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It is now necessary to find the equation for the dotted line in terms of inputs AUi.

Recall the DMC modeling equation, X = ~AU, where X is the output due to the set of
inputs, &J. It can be seen from Figure 4 that the dotted line is given by the equation

The error vector, Q is known at each time step from the prediction vector, and the
dynamic matrix, ~, is a constant matrix formed from step test modeling. The desired set
of future inputs can then be found simply by

However, the dynamic matrix, ~ is often poorly conditioned (near singular) and the
above equation results in erratic manipulated variable movement. Instead the pseudo
inverse of A is calculated by one of the two methods given below.

1. A+= VX-l~T
where

I-J, z, and Y are calculated from the Singular Value

Decomposition (SVD) of A

2. A+= [ATA + &ylAT
where f is an input move suppression factor.

Using the pseudo inverse, the control moves are calculated by the equation

17



Summary of DMC

The following basic steps comprise the DMC algorithm:

1, Step tests to obtain the dynamic matrix, ~.
2, Initialize prediction vector, ~.
3. Given ~old, calculate ~ew,
4. Calculate ~ by ei = R - Pi.
5. Calculate next N control moves by &J = ATE.

6. Implement the first calculated control move.

7. Go to step 3 for next time step,

Notes

1. At each time
measured. A

step, a prediction vector is calculated and an actual process output is
feedback bias can be calculated by

f= X- pl,o]d

where X = measured output

The new prediction vector can then be adjusted by
Pi’ = Pi + f.

2. The number of future inputs calculated and the number of prediction vector

elements are DMC tuning parameters.

3. ~+ can be calculated off-line and stored in memory so that no matrix inversion is
required at each time step. There are methods of adjusting A+ on-line so that the

algorithm becomes adaptive for nonlinear or time varying systems.

4. The method is independent of the complexity of dynamics (dead-time, inverse

response, etc).

5. By using the pseudo-inverse, the following index is minimized:
llA~ - ~ II:

6. The DMC algorithm outlined above does not include constraint handling. For
example suppose it is desired that AUmin < AU < AU1nax.

18



The problem then becomes
minimize Au - ~ 11:
subject to cAU > b

This problem can be solved using Quadratic Programming (QP). The method then

becomes the Quadratic Programming solution to DMC (QDMC) [Garcia, C.E. and
Morshedi, A. M., “Quadratic Programming Solution of Dynamic Matrix Control
(QDMC),”  Chemical Engineering Communications, 1986].

iii. Example implementation

The following example is meant to illustrate an implementation of the basic DMC

algorithm on a 2-input, 2-output system related to the FBG. The inputs will be reactor air
and steam, and the outputs are maximum bed temperature and exit moisture content. We
will assume the following process relationship for simplicity.

[1Tmix

Y =

1120

0.5 -2.0

30s + 1
142s+1 r ‘air 1

11 J-0.0167 0,110 ‘s’’””
1 95s + 1 95s + 1 1

Clearly this model is limited in its accuracy in predicting numbers from the FBG
behavior, and the numbers calculated in this example should not be applied directly on

the FBG. However, the example does serve as a reasonable process for illustrating DMC.

Formation of the dynamic matrix
Responses of the two process outputs to step changes in both process inputs are

shown in Figure 5. The resulting dynamic coefficients for each response are shown in the
Figure. Note that in order to illustrate the method (i.e., to minimize the size of&, only
five dynamic coefficients for each response will be used. Typically more coefficients

should be used so that the entire response is represented in the dynamic matrix. These
dynamic vectors are given by:

19
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Figure 5: Open Loop Responses to Step Changes in A) air flow and B) steam flow
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. 1

A;l = [.0035, .279,.419,.470, .489]

A:, = [-.0392, -1.118, -1.675, -1.881, - 1.956]

A;l = [-6,98 x10-5,-6.48x10-3,  -l,llx10-2,-l.36  xlO-2,-l.5OxlO-2]

A;2 = [4.60x10-4,4.27x10 -2,7.31x10 -2,8.97x10 -2, 9.89x10-2]

These vectors may need to be scaled depending upon the control system. A controller

which inputs and outputs its information in terms of percent of span would require
scaling of the dynamic vectors. We will assume this is the case and scale the vectors.
The scaling factors for each are given by:

1 —

scaling factor = span of output
1-

span of input

In this example, the following ranges were used:
inputs: span of air flow :1025 (baseline value for air flow)

span of steam flow: 57 (baseline value for steam flow)
outputs: span of max bed temp: 1000 (500 -1500 deg F)

span of moisture content: 100 (O -100 percent)

The resulting scaled vectors are:

[.00238, .199, .285,.320, .333]

[-.0015, -.0425,-.0637,-.071, -,074]

[-.00072, -.0663, -.1 14,-.140,-.154]

[.00026, .0243,.0416, .0511, .0564]

21



The resulting dynamic vector, A is

.0024 (1 O 0 0 -.00150 0 0 0

.199 .0024 0 0 0 -.0425-.00150 0 0

.285 .199 .0024 0 0 - . 0 6 3 7 - . 0 4 2 5 - . 0 0 1 5 0  0

.320 ,285 .199 ,0024 0 -.071 -.0637-.0425-.00150
~= .333 .320 .285 .199 .0024 -.074 -.071 -.0637-.0425-.0015

-.00070 0 0 0 . 0 0 0 3 0 0 0 0 ”

-.0633-.00070 0 0 .0243 ,0003 0 0 0

- . 1 1 4  - . 0 6 3 3 - . 0 0 0 7 0  0 .0416 .0243 .0003 0 0

-.140 -.114 -.0633-.00070 .0511 .0416 ,0243 .0003 0

-.154 -.140 -.114 -.0633-.0007.0564 .0511 .0416 .0243 .0003

Formation of the pseudo-inverse

The pseudo-inverse, ~+ was calculated by ~+ = [~T~ + f2D-l~T where f = 0.5.

The result is given below.

Ai-=

0.0030 0.262 0.282

-0.0012-0.0889 0.177

-0.0007 -0.0519 -0.125

-0.0003 -0.0195 -0.0509

-0.0000 -0.0002 -0,0006

-0.0026-0.0517 -0.0572

0.0003 0.0200 -0.0313

0.0002 0.0127 0.0287

0.0001 0.0047 0.0123

0.0000 0.0001 0.0004

0.238 0.197 -0.0009 -0.0816 -o.117 -o.110 -0.095

0.240 0.241 0.0003 0.0295 -0.0428 -0.0904 -0.102

0.180 0.288 0.0002 0.0171 0.0476 -0.0378 -0.10:

-0.0864 ‘0.266 0.0001 0.0064 0.0191 0.0352 -0.07C

-0.0011 0.0032 0,0000 0.0001 0.0002 0.0004 -0.00(

-0.0438 -0.0338 0.0005 0.0376 0.0560 0.0605 0.06C

-0.0471 -0.0453 -0.0001 -0.0070 0.0281 0.0496 0.058

-0.0322 -0.0594 -0.0000 -0.0042 -0.0114 0.0270 0.053

0.0188 -0.0538 -0.0000 -0.0016 -0.0046 -0.0082 0.035

0.0006 -0.0021 -0.0000 -0.0000 -0.0001 -0.0003 0.00C

Manipulated variable calculation
A horizon of future control moves are calculated at each time step by ~ = ~+~.

Only the first input change is actually implemented and a new input horizon is calculated

at the next time step. As an example, assume that the process has been at setpoint for

some time and at the present time sample a step change of 3.0 in both max bed
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temperature and moisture concentration setpoints are made (ignoring the fact that 3
degrees F is unreasonably small for temperature on the FBG). The resulting error vector
will be

E = [3.0, 3,0, 3.0,3.0, 3.0,3.0, 3.0,3.0, 3$0, 3.0]T

and the resulting input horizon is
Au = [.395, .423, .247, ,112,.0015,.0424, .0128, .00612, -.000231, -.00124]

(calculated from Au= A+Q.

Improvement in response
Figure 6 shows the response of the system for the setpoint changes described

above when S1S0 PID control is implemented on the system. Due to control loop
interactions, each loop must be detuned to avoid rapid movement of control valves. As a
result, the responses are quite sluggish. Figure 7 illustrates the same setpoint changes
made on a completely decoupled system using the DMC algorithm. One can see a

dramatic improvement in shape and speed of response.

An important note
A comparison of Figure 6 with 7 illustrates the potential improvement attainable

with DMC. A multivariable, model-based controller like DMC will automatically
compensate for interactions between control loops, and thus there is potential for
significant improvement. However, one should be aware that the success of DMC hinges
upon the ability to obtain a good step response model in the area of a given operating
point. Any model-based controller implemented using an inaccurate model will generally

perform worse than classical S1S0 PID type control.

23
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Figure 6: Responses of bed temperature and moisture content under single-input, single-

output PID control when simultaneous step changes in setpoint.
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Figure 7: Responses of bed temperature and moisture content under DMC to

simultaneous step changes in setpoint.
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VI. Conclusions

Present operation of the FBG is the result of experience and expertise gained over
man y years, It is important that any implementation of automatic control be implemented

by taking small, managable steps, and keeping the operators involved during each step of
the process. This study has presented two small control system modifications which
should contribute to the ease of FBG operation and help to prevent unplanned shutdowns.
Improvement in the FBG and MGCR pressure control loops will improve performance of
all flow control loops and enhance the ability to analyze gasifier data fkom open loop step

tests. Implementation of a multivariable model-based controller on the inlet steam and
air flows will decouple the two control loops resulting in faster overall response times,
While the

significant
represents

improvement realized in the application of DMC

as that realized from improving pressure control,

a simple application of advanced control. Once

will likely not be as

the DMC! application
successful, the DNIC

algorithm can be applied to the FBG on a much larger scale.
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I. Overview of Present Work

This document summarizes work performed for the period 10/1/94 to 2/1/95. The

initial phase of the work focuses on developing a simple transfer function model of the

Fluidimd  Bed Gasifier  (FBG).  This transfer function model will be developed based

purely on the gasifier  responses to step changes in gasifier  inputs (including reactor air,

convey air, cone nitrogen, FBG pressure, and coal feedrate). This transfer function model

will represent a liiear, dynamic model that is valid near the operating point at which the

data was taken. In addition, a similar transfer function model will be developed using

MGAS in order to assess MGAS for use as a model of the FBG for control systems

analysis. :

II. Discussion of FBG Data

The data for which the transfer function model is developed is taken from gasifler

run #1 O (October 1994) only. During the previous gasifier  run (run #9), the gasifier was

operated over a fairly wide range of operadng conditions in an attempt to seek an optiial

set of operating conditions. A ‘good’ condition was identified during run W. That

condition was used as the baseline operating point for run #10 (see Table 1 below).

Coal Type
Coal Feed rate
Reactor Air flow
Convey Air
Steam flow rate
Cone Nitrogen flow
Nitrogen Underflow
Operating Pressure

Montana #7
70 lbfllr
1000 Scfh
1600 Scfh
55 lb/hr
100 Scfh
300 Scfh
425 psi

Table 1: l?BG RUII #10 Baseline Operating Condition —

1



The objective of run # 10 was to make step changes in the cone nitrogen flow, reactor air

flow, reactor pressure, steam flow, coal feed rate, and underflow nitrogen flow around this

optimal condition.

Gasifier run #10 went smoothly for step changes made in reactor air and cone

nitrogen flow. For each, a positive step change followed by a 2X negative step change,

and finally a positive step change (back to the original value) were made. The data is

reasonably good for these changes in reactor air and cone nitrogen. However, the next

scheduled change was reactor pressure which is maintained by a pressure controller (which

manipulates the outlet gas flowrate). When a pressure setpoint change was made, it

appears that the pressure controller overreacted by closing the valve on the exit stream.

l%is likely had serious consequences on the W. AS a result. the g~fler run was

terminatd  at that point. We therefore report only the part of the transfer function matrix for

which data is available from run #10.

Additional data is available from gasifier  runs #8 and #9, however, it is

unreasonable to develop a linear model over such a wide range of operating conditions.

This additional data will be used@ later modeling efforts (see Section VI). The additional

data for the transfer function mcxlel  will be gathered during a run in May 1995.

III. Discussion of Methods Used

This section will discuss the methodology applied in developing transfer function

models from the FBG data. This method is typically used in indusny for developing

simple control relevant models from process data. It will also be used on simulation data

from MGAS to evaluate the applicability of using MGAS for control studies on the FBG.

The method for deriving transfer function models involves two steps: fms~ pose a

reasonable form of the model, and second, evaluate model parameters. Defining a

reasonable model form is the more important step. In Figures 1 and 2 below, a number of
—



Response Type Model

—

t=()

1st order
Lag

1st order Lag
+ deadtime

2nd order
underdamped

KP
G(s) =

qs + 1

KPe”k
G(s) =

Zps + 1

G(s) =
KPe-&

r:s2 + z~a’s + 1

2nd order G(s) =
KPe-&

o v e r d a m p e d (T,s i- 1)(.T2S + 1),

Figure 1: Some common open loop step responses and their appropriate transfer function
models

—
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Response Type

Pure integrator

Model

KPe-&
G ( s )  =  —

s

+ Kze-&
G ( s )  =  A —

qs + 1 ‘r2s + 1
Inverse response where

K, < Kz

Stiff process

K, + Kze-&
G ( s )  =  — —

r,s + 1 ‘r2s + 1

where

K,and Kz>O

K,
G ( s )  =  —

+ Kze”Os
‘rls + 1 ‘r2s + 1

Zero gain where
K, and K, > 0

Figure 2: Some open loop step responses and their appropriate transfer function models
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common ‘open loop’ step responses are shown along with an appropriate model form for

each. ‘Open loop’ means that there are no automatic control systems on-line.

In Figure 1, the most common model transfer function form used to model plant

data is the fwst  order lag plus deadtime (FOLPDT). Complex processes are rarely fkst

order and typically higher order terms am lumped into the deadtime  term. For example, a

distillation column is comprised of a number of fwst order systems (column trays) in series

resulting in a very high order system. These high order systems are often represented as a

FOLPDT. Note that the seeond order overdamped  case can often be modeled reasonably

well with a simple FOLPDT. The seeond  order underdamped response is one which can

occurs frequently in systems such a RC circuits, along with spring and dashpot systems,

but is not all that common in chemical processes. It is theoretically possible for such an

open loop response to occur in a reactor system. However, more often than not, such a

response is the result of an automatic control system somewhere in the process which is

controlling some other process variable.

Figure 2 shows system responses which are more interesting as far as control is

concerned. The,pure integrator is often seen in tank and accumulator levels in addition .to

system pressures. Variables which exhlblt  this type of response can become a problem

because they are not self-regulating (they increase without bound). It should also be noted

that controlling these variables via automatic control systems can become a problem. If

controller gain is set too high or too low, an oscillatory response will result. Since these

variables are typically not primary process variables, it is best to control them only within

certain bounds rather than controlling them tightly.

The inverse response, stiff process, and zero gain responses are typically the result

of competing effects. One effect occurs quickly and the other over a much longer time

period. For example, when steam flow is increased to a boiler, the boiler level may

actually increase initially due to increased bubbling of the liquid. Over the long run, of

course, more liquid will vaporize and the liquid level will drop. The inverse respo]Ke

5



repre.scnts  a particularly difficult control problem. If the controller  reacts to the initial

output response, it will move the manipulated variable in the wrong direction.

Once an appropriate model for has been identified, model parameters are evaluated.

Typically, this is accomplished through standard linear or nonlinear regression. Traditional

graphical fitting techniques should be used as a quick check of nonlinear regression results,

particularly in cases where higher order systems are approximated with a first order lag

plus dead time.

IV. Gasifier Data and Transfer Function Models

Figures 3 through 8 plot 10 second process data, and demonstrate that the

responses presented above are seen in the operation of the gasifier.  It should be noted that

these plots are given for illustration only. A number of phenomenological  and operational

effects must be factored in to their interpretation. Such a discussion is beyond

this progress report.

the scope of

V. Transfer Function Matrix from Process Data and from MGAS

Tables 2 through 7 present the transfer function matrix derived from FBG process

data during mn #10 and fTon~ MGAS. As previously discussed, this represents only part

of the desired transfer function matrix.

A comparison of the Transfer Function models derived using MGAS with those

from the FBG data shows that MGAS gives reasonable results in some cases. In many

areas, however, it does not. This is especially true in predicting process time constants.

As it has been run in these studies so far, MGAS is inadequate for control studies on the

FBG. However, further studies will reconfigure MGAS to include a recirculation of

solids from top to the bottom and some adjustment of model parameters.
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indicated by V ).
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~= K C-G s

Transfer Function:
FNZ (S) 7s+1

TIR 703

TIR 702

TIR 707

TIR 701

TIR 700

TIR 704

TIR 705

TIR714

FBG Data

K T 0

-0.0200 500 -

0.0805 2000 1000

--------- ------ ------.

-0.1051 500 -

-0.2421 700 -

-0.0504 600 -

-0.0298 200 -

-0.0302 200 -

K

-0.0200

-0.0220

-0.0220

-0.0240

-0.0231

-0.0171

-0.0170

-0.0160

MGAS

T

300

280

50

75

100

200

120

75

Table 2: Process parameters for the response of Reactor Temperatures for a change in Cone
Nitrogen from 50 to 100 scfh.

—
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FBG Data MGAs

Pi (S) = K1 e-O1  s + K2 e
-* 2 sPi (S) Ke”es

T.F: -
FN2 (S) ‘T S+-l

Transfer Function:
%2 (s) Tls+l T’2S+1

PDIR KI

706 --

718 --

707 0.0501

708 0.0301

709 0.0232

431 0.0217

710 0.0118

K2 e~

--

--

500

800

1150

1250

1750

PDIR K 0 71

.-

-.

25

25

25

25

25

q

-.

.-

875

1375

1800

2000

2200

706 -0.5769 400

--

--

--

--

--

--

--

--

-0.2400 400718

707
2

708

709

--

0.0672

0.0341

0.0285

0.0226

0.0119

-- --

--

-- --

431 -.

710 -- .-

1
I
Table 3: Process Parameters for the response of Pressure Differentials for a change in Cone Nitrogen from 50 to 100 scfh.



Compositions:
~= ~ ~-os

Transfer Function:
F~ ~ (s) Ts+l

K

Y~~ -0.04

YC02 0.0

‘1120 0.0

Ycl+ ~ 0.0

YI{2 -0.05

YI~2s 0.0

‘fNz 0.12

I?BG Data .M!2.AS
‘t e K

700 - ““ -0.0109

-- -- -0.0187

-- -- -0.0040

-- -- -0.0005

400 - -0.0012

-- -- -0.00002

500 - 0.0331

‘t 0

25 -

30 -

175 -

25 -

20 -

30 -

50 -

outlet flow:
Fg (s)

T r a n s f e r  I%nction:  —  = K e-o s

F~2 (s) 7s+1

F13G Data MGAS

K T e K T 0

FGAS -0.3 1000 - -0.3 1000 -

Table 4: Process Parameters for the response of Compositions and Outlet Flow for a change in
Cone Nitrogen from 50 to 100 scfh. —



Transf’er  Functim]:
~= ~e-os

F~r (s) ‘tS+l

TIR 703

TIR 702

TIR 707

TIR 701

TIR 700

TIR 704

TIR 705

TIR 714

FBG Data

K T e

-0.0918 25 -

0.1764 50 -

----- ----- -----

0.1736 150 -

0.2206 150 -

0.2205 75 -

0.2643 100 -

0.3663 125 -

lYKiAs

K T e

0.1860 275 -

0.2481 175 -

0.1760 30 -

0.2114 60 -

0.2214 100 -

0.1584 225 -

0.1148 175 -

0.0968 125 -

Table 5: Process Parameters for the response of Reactor Temperatures for a change in Reactor
Air from 1060 LO 940 scfh.

—

.

16



0

Pi (S)
Transfer Function: —

= K1  e-el  s + K2 e-OZ s

Ftir (S) ‘rls+l ‘t2 s-!-l

133QDm MGAs

PDIR K1 ‘t~ 91 K 2 72 (12 K 1 T1 f+ K2 q 62

707 0.1178 50 - -0.1000 50 20 0.3094 10 - -0.5890 850 400

708 0.1178 50 - -0.1200 50 20 0.1913 10 - -0.4005 1350 750

709 0.2356 50 - -0.7067 100 50 0.1471 10 - -0.2944 1750 900

431 ----- --- ----- ---- --- 0.1177 10 - -0.3108 2000 1300

710 0.0353 50 - -0.2356 100 50 0.0442 20 - -0.0746 2400 1500

I
Table 6: Process Parameters for the response of Pressure Differentials for a change in Reactor Air from 1060 to 940 scfh.



W

Colnposi!ions:

Transfer Function:

K

Y~~ 0.0873

YC02 -0.0087

‘HZO ------

Y~ ~ ------

YH2 -0.0407

yH2s ------

YN ~ 0.0707

outlet flow:

FBG Data
‘t

75

50

---

---

100

300

0

---

---

---

MGAS
K ‘t

0.0309 75

0.0175 400

-0.0530 75

-0.0018 75

----- ----

----- ----

0.0213 25

0

---

---

Fg (S)
T r a n s f e r  F u n c t i o n :  —  =

K 1  e-ols  + K2  e-gzs

Ftir  (S) ‘tls+l T2S+1

FGAS 3.356 25 - -3.418 200 75 0.027 10 - -0.014 200 25

Table 7: Process Parameters for the response of Compositions and Outlet Flow for a change in
Reactor Air from 50 to 100 scfh. —
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VI. Plan of Action

This is a rough updated plan of action for modeling and control of the METC FBG.

This plan outlines some of the issues that were discussed during USC’s visit to METC

on 3/13/95 and suggests actions to be taken to address them. This plan is consistent

with the original scope of work in the contract.

1.

2.

In this report, we have presented some selected responses meant to show that the

gasifier  exhibits behavior that is challenging from a control point of view. We have

discussed many of these responses with the FBG operations experts at METC to

interpret these results. These discussions were very beneficial from our point of’ view,

and will be factored into later versions of the FBG model.

We will therefore meet in a small group (comprised of S. Noel, J. Rocky, the enginwrs

and technicians responsible for the FBG, and USC) on a more frequent basis and prior

to presenting results in a formal seminar at METC.

It is possible that the primary cause of premature shutdown during run #10 was due to

a poorly tuned pressure controller which manipulates the exit gas flow. It appeam  that

the controller was overacting to small changes (less than 2 psi) in the gasifier

pressure. There is also some uncertainty as to how the pressure control scheme is

configured since there are two valves in the loop. It was suggested that a split-range

controller may be what is employed,

We will examine all of the data during (pressure, exit flow, inlet flows, temps) the time

period of interest to confirm that the controller was indeed the problem.

—
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3.

The operation of the present pressure control system must be detertnined  (by METC).

Once we know what we are dealing with, a general analysis of the control strategy will

be made at USC with suggestions for improvements

The control valve(s) manipulating the exit stream should be checked for proper

operation. If valves are not working properly, no amount of controller retuning will

solve the problem. Once we are certain that there are no hardware problems, the

controller can be retuned. This should be done on-line under gasification conditions.

A trial retuning should be made during cold start to determine that the controller is

acting as expected. Alternatively, one could put the pressure controller in ‘manual’.

However, this will pose other problems for those actually running the gasifier.

In addition, we will supply references on applied controller tuning and on split-range

controllers. We will also send PICLES, a simple controller tuning simulator which will

run on a PC.

The data from gasifier  runs 8,9, and 10 can all be used to develop a simple gasifier

model. The main problem in using all of this data is that the data is spread over a wide

range of operating conditions. The initial control modeling plan was to develop a linear

model based on small perturbations from a single operating condition (during run

#l O). A linear model is generally valid only near the operating conditions for which it

is developed.

We will examine the extent of nonlineu  behavior exhibited by the gasifier (using data

from runs 8,9, and 10). If it is nonlinear as expected, we can train a neural network

model from the steady state data. This model can be used to examine the control at a

given operating point and also to find an optimal operating condition (within thr
.
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f.

4.

5.

6.

envelope of conditions in the process data, i.e.- it won’t extrapolate). ‘i-he accuracy of

the neural network model will depend upon the richness of the data from runs 8,9 and

10.

Note that neural network modeling was part of our contract already. TIis  path will be

pursued in parallel with the linear transfer function modeling presently underway.

Larry Lawson is putting together a control relevant model of PYGAS using TUTSIM.

We would like to stay updated on that work as it appears to be the Ixginnings  of a

useful model for control purposes. We would even like to obtain a copy of the model

at various stages in its development,

As for the present Transfer Function modeling:

S. Reddy will check the present model (there appeared to be some inconsistencies).

Appropriate data from the May gasifier run will be added to this model. We will load

and run the G(,)jet spreadsheet model and compare the gains with the transfer function

model and also the neural network model. He will  also continue with MGAS,

adjusting some model parameters and adding a recirculation loop in an attempt to obtain

better agreement with the data. Of particular interest is the large discrepancy between

the actual time constant and that prtxiicta!  by MGAS.

The success of the modeling and control studies depends upon coupling the process

data with the expertise and experience of those running the gasifier.  The process data

does not always tell the real story. So much is going on during the gasifier  run that an

important event may be completely missed by simply looking at the sensor data.

—
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We will look more closely at the daily log shtwts. More importantly, we will keep in

contact (on a weekly basis) with the JFBG group. Modeling results will be presented

more frequently. This should promote a more frequent exchange of information and

ideas.

—
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