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TASK 3.13 - HOT-GAS FILTER TESTING

1.0 OBJECTIVES

The objectives of the hot-gas cleanup (HGC) work on the transport reactor demonstration
unit (TRDU) located at the Energy & Environmental Research Center (EERC) is to demonstrate
acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term
demonstration tests. The primary focus of the experimental effort in the 3-year project is the testing
of hot-gas filter element performance (particulate collection efficiency, filter pressure differential,
filter cleanability, and durability) as a function of temperature and filter face velocity during short-
term operation (100-200 hours). The filter vessel is used in combination with the TRDU to
evaluate the performance of selected hot-gas filter elements under gasification operating conditions.
This work directly supports the power systems development facility (PSDF) utilizing the M.W.
Kellogg transport reactor located at Wilsonville, Alabama (1) and, indirectly, the Foster Wheeler
advanced pressurized fluid-bed combustor, also located at Wilsonville (2).

2.0 BACKGROUND INFORMATION

The U.S. Department of Energy (DOE) Federal Energy Technology Center (FETC) has a
HGC program intended to develop and demonstrate gas stream cleanup options for use in
combustion- or gasification-based advanced power systems. One objective of the FETC HGC
program is to support the development and demonstration of barrier filters to control particulate
matter. The goal is not only to meet current New Source Performance Standards (NSPS) with
respect to particulate emissions, but also to protect high-efficiency gas turbines and control
particulate emissions to low enough levels to meet more stringent regulatory requirements
anticipated in the future. DOE FETC is investing significant resources in the PSDF under a
Cooperative Agreement with Southern Company Services, Inc. (SCS). The Wilsonville facility will
include five modules, including an advanced gasifier module and a HGC module. The gasifier
module incorporates the M.W. Kellogg transport reactor technology for both gasification and
combustion (3). Several other demonstration-scale advanced power systems also utilizing hot-gas
particulate cleanup technology will benefit indirectly from this research. These systems include the
Clean Coal IV Piiion Pine IGCC Power Project located at the Sierra Pacific Power Company's
Tracy Station near Reno, Nevada.

The TRDU was built and operated at the EERC under Contract No. C-92-000276 with SCS.
The M.W. Kellogg Company designed and procured the reactor and provided valuable on-site
personnel for start-up and during operation. The Electric Power Research Institute (EPRI) was
involved in establishing the program and operating objectives with the EERC project team.

The purpose of the previous program was to build a reactor system larger than the transport
reactor test unit (TRTU) located in Houston, Texas, in support of the Wilsonville PSDF transport
reactor train. The program was to address design and operation issues for the Wilsonville unit and
also help develop information on the operation of the unit to decrease start-up costs.




The TRDU (240-1b/hr coal-limestone feed rate) now provides an intermediate scale to the
TRTU (up to 10-Ib/hr coal-limestone feed rate) and the Wilsonville Transport Reactor (3400-1b/hr
feed rate). Some of the design, construction, start-up, and operational issues for the Wilsonville
transport train are being addressed during this project.

The four major design criteria that were established by EPRI were met. These included coal
feed rate, operating pressure, carbon conversion, and high heating value of the product gas. Major
accomplishments included showing that the TRDU performed well hydrodynamically, that it had
the ability to switch from combustion mode to gasification mode easily and safely, that solids could
be fed to and removed from the system, and that the J-leg/standpipe and cyclone performed
according to their design specifications. The staged char combustion mixing zone design was not
verified because of the lack of nonvolatile char and a reduced operational schedule. This resulted in
oxygen breakthrough from the mixing section into the riser as a resuit of insufficient carbon -
inventory in the circulating solids.

3.0 PROJECT DESCRIPTION

This program has a phased approach involving modification and upgrades to the TRDU and
the fabrication, assembly, and operation of a hot-gas filter vessel (HGFV) capable of operating at
the outlet design conditions of the TRDU, a 200-300-1b/hr pressurized circulating fluid-bed gasifier
similar to the gasifier being tested at the Wilsonville facility. The TRDU has an exit gas
temperature of up to 980°C (1800°F), a gas flow rate of 325 scfm, and an operating pressure of
120-150 psig. Phase I included upgrading the TRDU based upon past operating experiences.
Additions included a nitrogen supply system upgrade, upgraded LASH (lime ash) auger and coal
feed lines, a second pressurized coal feed hopper, the addition of a dipleg ash hopper, and
modifications to spoil the performance of the primary cyclone.

The TRDU system can be divided into three sections: the coal feed section, the TRDU, and
the product recovery section. The TRDU proper, as shown in Figure 1, (figures are at end of
document) consists of a riser reactor with an expanded mixing zone at the bottom, a disengager,
and a primary cyclone and standpipe. The standpipe is connected to the mixing section of the riser
by a J-leg transfer line. All of the components in the system are refractory-lined and designed
mechanically for 150 psig and an internal temperature of 1090°C (2000°F). Table 1 summarizes
the operational performance for the TRDU under the previous test program (4).

The premixed coal and limestone feed to the transport reactor can be admitted through three
nozzles, which are at varying elevations. Two of these nozzles are located near the top of the
mixing zone (gasification), and the remaining one is near the bottom of the mixing zone
(combustion). During operation of the TRDU, feed is admitted through only one nozzle at a time.




- - TABLE 1

TRDU Design and Operational Parameters from Previous Program

Actual

Operating
Parameter Design Conditions’
Coal Illinois No. 6 Wyodak
Moisture Content, % 5 20
Pressure, psig 120 117-122
Steam:Coal Ratio 0.34 0.38
Air:Coal Ratio 4.0 3.5-4.7
Ca:S Ratio, mole 1.5 1.5
Air Inlet Temperature, °C 427 425
Steam Preheat, °C 537 390
Coal Feed Rate, Ib/hr 198 173
Gasifier Temperature, maximum °C 1010 850
AT, maximum °C 17 121
Conversion, % >80 96
HHYV of Fuel Gas, Btu/scf 100 104
Heat Loss as Coal Feed, % 19.5 14-27
Riser Velocity, ft/sec 31.3 28-30
Heat Loss, Btu/hr 252,000 420,000
Standpipe Superficial Velocity, ft/sec 0.1 0.4-0.54

! Steady-state conditions were not achieved.
Y

The coal feed is measured by an rpm controlled metering auger. Oxidant is fed to the reactor
through two pairs of nozzles at varying elevations within the mixing zone. For the combustion
mode of operation, additional nozzles are provided in the riser for feeding secondary air. Hot solids
from the standpipe are circulated into the mixing zone, where they come into contact with the
nitrogen and the steam being injected into the J-leg. This feature enables spent char to contact steam
prior to the fresh coal feed. This staged gasification process is expected to enhance the process
efficiency. Gasification or combustion and desulfurization reactions are carried out in the riser as
coal, sorbent, and oxidant (with steam for gasification) flow up the tube. The solids circulation into
the mixing zone is controlled by the solids level in the standpipe.

The riser, disengager, standpipe, and cyclones are equipped with several internal and skin
thermocouples. Nitrogen-purged pressure taps are also provided to record differential pressure
across the riser, disengager, and the cyclones. The data acquisition and control system scans the
data points every Y2 sec but is only saving the process data every 30 sec. The bulk of entrained
solids leaving the riser is separated from the gas stream in the disengager and circulated back to the
riser via the standpipe. A solids stream is withdrawn from the standpipe via an auger to maintain
the system's solids inventory. Gas exiting the disengager enters a primary cyclone that has been
modified to provide variable particulate collection performance. Solids from the primary cyclone
are collected in a lock hopper. Gas exiting this cyclone enters a jacketed-pipe heat exchanger before




entering the HGC filter vessel. The cleaned gases leaving the HGC filter vessel enter a quench
system before being depressurized and vented to a flare.

The quench system uses a sieve tower and two direct-contact water scrubbers to act as heat
sinks and remove impurities. All water and organic vapors are condensed in the first scrubber, with
the second scrubber capturing entrained material and serving as a backup. The condensed liquid is
separated from the gas stream in a cyclone that also serves as a reservoir. Liquid is pumped either
to a shell-and-tube heat exchanger for reinjection into the scrubber or down to the product receiver
barrels. :

3.1 Hot-Gas Filter Vessel

Subtask 3.13 - Hot-Gas Filter Testing was a hot-gas filter program started in January 1995 as
an addition to the Morgantown Energy Technology Center (METC) Cooperative Agreement. First-
year funding made available in March 1995 supported upgrades to the TRDU, installation of a filter
vessel and the associated inlet-outlet piping, and the performance of three 200-hour filter tests. The
filter design criteria are summarized in Table 2, and a schematic is given in Figure 2.

This vessel is designed to handle all of the gas flow from the TRDU at its expected operating
conditions. The vessel is approximately 48 in. ID and 185 in. long and is designed to handle gas
flows of approximately 325 scfm at temperatures up to 980°C (1800°F) and 130 psig. The
refractory has a 28-in. ID with a shroud diameter of approximately 22 in. The vessel is sized such
that it could handle candle filters up to 1.5 m long; however, 1-m candles are currently being
utilized in the initial 540°C (1000°F) gasification tests. Candle filters are 2.375 in. OD with a 4-in.
center line-to-center line spacing.

TABLE 2

Design Criteria for the Pilot-Scale Hot-Gas Filter Vessel

Operating Conditions ' Design

Inlet Gas Temperature 540°-980°C
Operating Pressure 150 psig
Volumetric Gas Flow 325 scfm
Number of Candles 19 (1 or 1.5 meter)
Candle Spacing 4in. &to &
Filter Face Velocity 2.5-10 ft/min
Particulate Loading ‘ < 10,000 ppm
Temperature Drop Across HGFV <30°C
Nitrogen Backpulse System Pressure up to 800 psig

Backpulse Valve Open Duration up to 1-s duration




The total number of candles that can be mounted in the current geometry of the HGFV tube
sheet is 19. This enables filter face velocities as low as 2.5 ft/min to be tested using 1-m candles.
Phases III through V consisted of 200-hr hot-gas filter tests under gasification conditions using the
TRDU with the HGC operating at temperatures of 540°-650°C (1000°-1200°F), 120 psig, and
increasing face velocities for each test. Higher face velocities would be achieved by using fewer
candles. The current test matrix performed the first filter test at 540°-650°C (1000°-1200°F),
120 psig, 2.75 ft/min face velocity. The second test involved removing six candles to increase the
face velocity to approximately 4.5 ft/min at the same operating temperature and pressure. The
openings for the six removed candles were blanked off. Depending on the approval of the FETC
project manager, the third test will involve removing another six candles to achieve a higher face
velocity (7.5 ft/min) or investigating other parameters such as primary cyclone spoiling to improve
the candle cleaning efficiency. This program is currently testing Industrial Filter & Pump (IF&P)
Fibrosic™ candles along with their ceramic tube sheet, silicon carbon-coated ceramic fiber candles
from the 3M company, along with sintered metal (iron aluminide) and Vitropore silicon carbon
ceramic candles from Pall Advanced Separation Systems Corporation.

Ports were added in the filter vessel to allow temperature and pressure measurements to be
obtained and to allow for the insertion of a water-cooled borescope probe for inspecting candle
filters off-line. The ash letdown system consists of two sets of alternating high-temperature valves
with a conical pressure vessel to act as a lock hopper. Additionally, a preheat natural gas burner
attached to a separate gasifier is used to preheat the filter vessel separately from the TRDU while
the gasifier is heating up. The hot gas from the burner enters the vessel via a nozzle inlet separate
from the dirty gas.

The high-pressure nitrogen backpulse system is capable of backpulsing up to four sets of four
or five candle filters with ambient-temperature nitrogen in a time-controlled sequence. The pulse
length and volume of nitrogen displaced into the filter vessel is controlled by regulating the
pressure (up to 800 psig) of the nitrogen reservoir and the solenoid valves used to control the
timing of the gas pulse. Figure 1 also shows the filter vessel location and process piping in the
EERC gasifier tower. Since the first three filter tests are to be completed in the 540°-650°C
(1000°-1200°F) range, a length of heat exchanger is used to drop the gas temperature to the
desired range. Inserting an existing set of high-temperature valves in the fuel gas heat exchanger
has allowed bypassing the filter vessel during start-up of the TRDU and switching to the preheated
filter vessel when steady-state conditions are achieved. In addition, sample ports both upstream and
downstream of the filter vessel have been utilized for obtaining particulate and hazardous air
pollutant (HAP) samples.

TRDU operation and filter element testing have benefitted other ongoing projects at the
EERC. The same sampling and analysis activities have been conducted to generate HAP-data
concerning trace metal transformations, speciation of mercury, and metal concentrations at selected
points within the TRDU and HGC in support of a project entitled “Trace Element Emissions”
funded by METC. In addition, materials and ash data concerning the high-temperature filter media
and ash interactions have been collected in support of a project entitled “Hot-Gas Filter Ash
Characterization” jointly funded by METC and EPRI. While the cost of this specific data collection
will be covered by the individual projects, the synergy that results from the integration of these
projects will minimize the cost of collecting this information for all involved projects.




3.2 High-Pressure and High-Temperature Sampling System

The high-pressure and high-temperature sampling system (HPHTSS) was designed and
constructed to extract dust-laden flue gas isokinetically from either an oxidizing or reducing
environment. The maximum gas temperature at which the sample probe can be operated is specified
as 980°C (1800°F) for the HPHTSS. The maximum working pressure of the gas stream for the
HPHTSS is specified as 150 psig.

The probe for the HPHTSS is a 3/8-in.-OD and 1/8-in.-ID 304 stainless steel tube. The
probe can be used for only one sampling test. The key to the sampling system is the use of a vessel
designed to withstand high-pressure and high-temperature conditions to enclose the low-pressure
sampling devices.

The vessel was constructed of 5-in. schedule 80 pipe and fitted with raised-face 300-1b
flanges. The material used for the HPHTSS pressure vessel was 316L stainless steel. The HPHTSS
was designed to house both multicyclone assemblies with backup filter and a backup filter alone.

The principle of operation is to pressurize the outside of the sampling device (i.e.,
multicyclone assembly or backup filter) with nitrogen at a slightly higher gas pressure than the
system pressure of the flue gas. The pressure differential between the nitrogen gas within the
pressure vessel and the flue gas within the sampling device is maintained at less than 5 psig.

If the HPHTSS is operating in a reducing environment where the presence of organic vapors
is a possibility, the pressure vessel is capable of operating at temperatures as high as 540°C
(1000°F) and maintaining nitrogen gas pressures up to 150 psig. This will prevent the heavier
organic vapors from condensing while passing through the particulate sampling assembly. Electric
resistance heaters will be used to heat the pressure vessel to specified temperatures. This operating
temperature also allows vapor-phase trace species to be maintained in the vapor phase through the
backup filter.

Once the process gas exits the sampling assembly, the gas pressure is reduced through a
throttling valve to approximately atmospheric pressure. The throttling valve will also act as the flow
control valve for the sampling system. A second throttling valve was installed in series in the event
that the primary throttling valve fails to close.

After the throttling valve, the process gas is cooled through a set of impingers to remove
moisture and organic vapors if present. A set of up to six impingers may be used in this sampling
system. These impingers are rated for 200 psig at 120°C (250°F) maximum operating conditions.
The impingers are made of 304 stainless steel, with the interior surfaces coated with Teflon. The
Teflon-coated surfaces allow the HPHTSS to be used for collecting the vapor-phase trace metal
species.

The dry gas is then metered through a rotameter and dry-gas meter to measure total flow
before it is vented out of the stack.




4.0 ACCOMPLISHMENTS

Two test campaigns were conducted during the weeks of October 21-24, 1996, and
November 12-16, 1996. During these weeks, approximately 105 hours of coal feed and 94 hours
of gasification were achieved, with the system gases and fly ash passing through the filter vessel
during the whole test campaign.

4.1 TRDU Operation

The TRDU was operated at relatively low average temperatures of 825°C to alleviate some
deposition problems seen in the riser and disengager in previous tests. Table 3 summarizes the
operational performance for the TRDU during the last test period. Coal feed rates averaged
266 Ib/hr, and the gasifier pressure averaged 120 psig. The dry product gas produced averaged
6.9% CO, 7.9% H,, 10.7% CO,, 1.5% CH,, with the balance being N, and other trace
constituents. The moisture in the fuel gas averaged 17%. The H,S concentration started at
approximately 1400 ppm and dropped to under 800 ppm over the duration of the test. Calculated
recirculation rates started at approximately 5000 Ib/hr and slowly increased to approximately
6000 Ib/hr at the end of the test. Relative bed density dropped from 100% for a 100% silica sand
bed to approximately 50% with the high-carbon and coal ash bed. The bed particle size remained
relatively constant over the duration of the test at 200 to 225 um. Primary cyclone ash was
becoming progressively finer during the test. Figures 3 and 4 show the particle distributions of the
bed material and primary cyclone ash as they varied with time. Figures 5 and 6 show the bulk ash
chemistry of the bed material and the primary cyclone ash as functions of time. Based on silica and
calcium balances, it appears the bed material was approximately 50 to 60 wt% converted over to .
bed ash in 68 hours, while the primary cyclone was essentially all coal ash after 1 day of operation.
Primary cyclone ash was recycled to the mixing zone only when the calculated standpipe bed height
became less than 5 feet. Returning all of this ash and removing LASH from the standpipe would
hasten the bed changeover seen in the TRDU.

4.2 Hot-Gas Filter Vessel Operation

Figures 7 through 10 show the 24-hour temperature history of the HGFV during its 4 days of
operation in Test PO50. As shown in these figures, the filter temperature started out at the desired
temperature (540°C). However, over the next 2 days, the temperature fell below the desired
operating temperature and efforts to increase temperature only aggravated the problem by putting
the heat exchanger into a film boiling mode which improved the heat transfer coefficient. Finally,
in Day 3, the heat exchanger was switched from water to air-cooling. This resulted in a 100°C step
change in the HGFV operating temperature with a corresponding increase in filter face velocity
from 4.15 t0 4.75 ft/min.

Figures 11 through 14 show the pressure history of the filter vessel outlet static and
differential, ash hopper, and backpulse reservoir. The candles were backpulsed 390 times during
Test PO50 before one candle had a major failure. As can be seen in the backpulse signature, the
filter vessel was backpulsed at 30 to 40 in. H,O above the just-cleaned baseline. As the baseline
climbed initially from 30 to 60 in. H,O, the filter vessel differential pressure trigger was increased
from 60 to 100 in. H,0. However, the backpulsing cycle time decreased to approximately every 10
minutes. Changes in the backpulse operating conditions show up in the




TABLE 3

TRDU Average Operating Conditions for Test P050

Parameter PO50
Conditions Gasification
Coal Wyodak
Moisture Content, % 233
Pressure, psig 120
Steam:Coal Ratio 0.26
Air:Coal Ratio 2.67
Ca:S Ratio, mole 4.7
Coal Feed Rate, 1b/hr 266

Mixing Zone, °C, avg. (min.) (max.)
Riser, °C , avg. (min.) (max.)
Standpipe, °C , avg. (min.) (max.)

834 (765) (886)
812 (786) (876)
709 (624) (751)

Conversion, %, (excluding dipleg) 90 (97)
Carbon in Bed, %, Standpipe (dipleg) 22.3 (36.5)
Riser Velocity, ft/s 35.3
Standpipe Velocity, ft/s 0.21
Circulation Rate, kg/hr 5640
Duration, hr 68

Time 07:00-03:00
Date 11-13t0 11-16

! Not determined.

pressure traces as either a step change in the reservoir peak pressure (i.e., an increase in reservoir
pressure) or a drop in the minimum reservoir pressure (i.e., an increase in the pulse duration).
Backpulse operating parameters initially were a 165 psig reservoir pressure with a % -sec pulse
duration which was increased to 185, 215, and 240 psig with pulse durations of either 2 and

% sec. Appendix A summarizes the major changes in the filter vessel or backpulse operating
conditions. An increase in pulse duration did not appear to provide any improved backpulse
performance; however, an increased backpulse reservoir pressure did appear to provide a small
(~1-min.) decrease in the backpulsing frequency but did not lower the “cleaned” baseline
differential pressure. The mechanical operation of the N, backpulse system and the filter vessel ash
letdown system presented no operational problems.

The candles were backpulsed 390 times during Test PO5S0 before one candle had a major
failure. The only observed problems were that six of the candles did not seal in the tube sheet
correctly. The leakage around the candles is partially the result of mixing four different candle
types in a tube sheet with a common holddown plate. The tube sheet and holddown plate were




specifically designed for the square-flanged IF&P Fibrosic™ candles. Pall’s metal iron aluminide
candle had its flange machined to match that of the IF&P candles; however, the Pall Vitropore and
the 3M candles were installed using specially machined stainless steel adaptors to convert their
hemispherical flange design to match that of the square-flanged tube sheet, resulting in slightly
uneven candle flange heights. In addition, the gas inlet temperature was lower than the desired inlet
temperature of 540°C until the heat exchanger was switched to air cooling. The average particulate
loading going into the HGFV was 3600 ppm, with a d,, of 9 um, while the outlet loading was

77 ppm and increased to 400 ppm after the step change in the filter temperature and face velocity
occurred. Figure 15 shows the particle size distribution of the bulk filter ash which has been
backpulsed from the candles. As can be seen, the filter ash is approximately the same size (7 to

8 um) as the ash from the particulate samples. Generally, the filter ash from combustion systems is
much larger than the entrained ash collected in particulate samples because the ash has had a chance
to agglomerate on the surface of the filter. Figure 16 shows the chemical composition of the major
species of the filter ash collected throughout Test PO50. This figure shows that in less than 12 hours
after entering gasification, the filter ash is steady-state coal ash and does not change with increasing
operating time or changing bed chemistry. This filter ash averaged 55 wt% carbon and had a low
bulk density of approximately 20 1b/ft’. The small size, the lack of the cohesiveness seen in other
filter ashes, and the low density of the ash suggests that a high percentage of the filter cake will be
reentrained back onto the filters after they are backpulsed.

The data acquisition system on the TRDU has been programmed to save the filter vessel
differential pressure and the filter outlet static pressure every 2 sec whenever a backpulse sequence
is started until 30 sec after the last manifold is backpulsed. Figures 17 and 18 show these data for
two backpulse sequences for the same set of backpulse conditions (90 in. trigger, 215 psig, and
% -sec pulse duration) except that the Figure 18 is associated with a backpulse which occurred after
the product gas heat exchanger was switched to air-cooling. This 140°C degree rise in the filter
vessel operating temperature also resulted in a 0.6 ft/min (from 4.15 to 4.75 ft/min) rise in the face
velocity. Comparing the slopes of the initial rate of filter differential pressure recovery between
these two figures indicates that there was much more particulate reentrainment with a relatively
modest increase in face velocity. Figure 19 shows the same two pressure traces for a 100 in. H,O
trigger, “2-sec pulse duration, and a 240-psig backpulse reservoir pressure. Figures 20 and 21
show these pressure traces for the same set of operating conditions on the backpulse immediately
before and during which the candle broke. The slightly lower peak outlet static pressure which
occurred during the backpulsing of the third manifold might be an indication that the candle filter
was about to break. Figure 22 is a photograph of the candle’s removal from the filter vessel
including the broken candle shown in the foreground. This candle broke because of a nominal 2- by
4-in. hole blown out of the side of the candle approximately 6 in. below the tube sheet. Based on
other experiences with this candle, the ability of this candle to withstand gasification’s reducing
environment is uncertain. These candles will be removed from the next gasification test and
replaced with another vendor’s candles.




TABLE 4

Average Operating Conditions for the Pilot-Scale Hot-Gas Filter Vessel
Operating Conditions

Heat Exchanger Cooling Media Water-Cooled Air-Cooled
Inlet Gas Temperature, °C 513-450 580
Operating Pressure, psig 120 120
Volumetric Gas Flow, scfm 360 400
Number of Candles 13 (1 m) 13 (1 m)
Candle Spacing, in. & to & 4 4
Filter Face Velocity, ft/min 4.25 4.75
Particulate Loading, ppm 3200 4000
Temperature Drop Across HGFV, °C 26 25t040
Nitrogen Backpulse System Pressure, psig 165, 185, and 215 215 and 240

Backpulse Valve Open Duration, sec Y5 and % )

5.0 CONCLUSIONS AND FUTURE PLANS

In conclusion, the TRDU and hot-gas filters operated continuously for 68 hours in
gasification mode with no major system upsets. A candle failure after 68 hours of gasification
prematurely ended the scheduled 200-hr test. The TRDU average gasifier temperature was a
relatively low 825°C to alleviate some deposition seen in previous tests. No deposition was
observed in these lower-temperature tests. The candles were backpulsed 390 times during
Test P050 before one candle had a major failure. The baseline “cleaned” filter differential pressure
increased from 30 to 60 in. H,O over the course of the test. The particulate inlet was approximately
3500 ppm with the filter ash averaging 55 wt% carbon. The filter ash particle size was
approximately 7 um in size and was essentially representative of the coal ash from very early in the
gasification test. The short backpulse intervals of approximately 10 minutes and the initial rapid
recovery of the filter differential pressure along with the small size, the lack of the cohesiveness
seen in other filter ashes, and the low density of the ash suggests that a high percentage of the filter
cake will be reentrained back on to the filters after they are backpulsed.

~ Future tests should probably not try to increase face velocity (which would compound the ash
reentrainment problem) but should maintain the same face velocity with significant spoiling of the
primary cyclone to increase the particle-size distribution of the ash entering the filter vessel. In
addition, off-line cleaning of the filter vessel should be attempted to determine if the lack of gas
flowing through the filter significantly decreases particle reentrainment and can decrease the pulse
frequency.
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Figure 1. TRDU and hot-gas vessel in the EERC gasification tower.
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UND EERC Hot Gas
/ Filter Vessel

Internal

Details

Figuré 2. Schematic of the filter vessel design with internal refractory, tube sheet, and shroud.
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Figure 22. Photograph of HGFV candles after Test P050 including broken candle in foreground.
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APPENDIX A

FILTER VESSEL AND BACKPULSE SYSTEM
CHRONOLOGICAL SUMMARY




11/13/96
0300 Started coal feed

0700 Started coal gasification; backpulsed off combustion ash at a 60-in. H,O trigger, 165 psig
reservoir pressure and %-sec pulse duration

1426 Increased pulse duration to %2 sec

1501 Increased reservoir pressure to 185 psig
1635 Increased backpulse trigger to 70 in. H,O
2236 Increased backpulse trigger to 80 in. H,0
11/14/96

1045 Lost coal feed; feed hopper ran empty
1355 Increased pulse duration to % sec

1818 Decreased pulse duration to % sec and increased reservoir pressure to 215 psig
2339 Increased pulse duration to % sec
11/15/96

0059 Increased backpulse trigger to 90 in. H,O

1332 Switched product gas heat exchanger to air cooling; step change in temperature and face
velocity

1816 Increased backpulse trigger pressure to 100 in. H,0O
1908 Increased reservoir pressure to 240 psig

11/16/96

0053 Candle filter broke; backpulsing stopped
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DE-FC21-93MC30097 [Task 3.0 Advanced Power Systems 10-1-96 through 12-31-96
4. Name and Address Energy & Environmental Research Center 5. Program Start Date
University of North Dakota 01-12-93 f
PO Box 9018, Grand Forks, ND 58202-8018 (701) 777-5000 6. Compistion Date ‘
12-31-97
Planned Actual
Milestone Completion Compietion
iD. No. Description Date Date Comments
3.1 Fuel Quality Advisor 12-95
a Develop indices for ranking coal handieability 11-95 11-85
b Develop algorithms for incorporation into low-NOx ash formation model 8-85 7-96
c Develop algorithms for incorporation into the entrained flow gasification ash 11-95 12-95
formation model
d Create a standardized and computerized shell and interface 7-95 7-96
e incorporate ash formation, ash deposition, and coal 12-85 7-96
handieability algorithms into Fuel Quality Advisor sheli
3.12 Small Power Systems 12-95
1a Identify best candidate sorbent for use in optimization studies 7-95 4-95
1b Determine optimal performance over operating range 12-95 - Deleted
2a Review the available data and seiect the best candidate cracking catalyst 4-95 9-95 Revised date
: 8-95
2b Determine optimum operating conditions for the catalyst 12-95 - incorporate
jnto 3¢
3a Select design(s) for further development 8-95 9-95
3b Identify barrier issues and develop demonstration and commercialization plan 12-95 9-95
3c Testing of barrier issues on pilot scale 12-95 12-95 Expanded
scope
3.13 |Hot-Gas Filter Testing
TRDU upgrades 6-95 8-95
b Assembly and Installation of Filter Vessel 6-95 9-85
c 200-HR FILTER TEST (shakedown) 9-95 12-95 Shorter test
performed
d Topical Report on First Filter Test 12-95 7-96
e Complete first 200-hr test 5-96 4-96
f Present Test Results to METC Representatives . 7-96 7-96
g Compilete Second 200-hr Test 11-96 11-96
h Present Test Resuits to METC Representatives 1-97
3.14 Remote Power Gen. Alaska
al Environmental information Documentation 6-7-85 6-95
a2 Regional Workshop 9-15-95 9-95
a3 Site and Technology Selection 10-30-95 1-96
a4 Status Report on McGrath AFBC Demonstration 6-96 6-96
b1 Identify Environmental and Permitting Regulations 2-28-96 2-97
b2 Preliminary Engineering Design 5-31-86 3-97
- Final Feasibility for McGrath Site 3-97
- Tok Site Preliminary Design 3-97
cl Evaluation of Technical Feasibility of Relocating Clean Coal
Technologies to Alaska 12-31-95 9-96 .
c2 NEPA document preparation for CCT project in Alaska 2-97
* Transfer of project approved




