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SUMMARY

This technical report summarizes the research conducted and
progress achieved during the period from July 1, 1996 to Septem-
ber 30, 1996.

An understanding of particle flow characteristics in the
strongly swirling turbulent flow field is important to control
particulate emission and fuel burnout in the swirling fluidized
bed combustor.

Numerical simulation was acquired from the particle trajec-
tories by means of the Reynolds Stress Model (REM) with general
algebraic expressions. The typical particle trajectories for
single particle injection were predicted by the top view, the
side view, and the isolated 3-dimensional view. The simulation
of particle trajectories showed three different stages: ascend-
ing, colliding/bouncing, and slipping stages.

Numerical simulation for the bunch particle injection will
be continued to understand the particle characteristics in the
combustion chamber.

The preliminary system test was continued on the hot model.
Thermal performance of the preliminary test results was analyzed
and predicted. Based upon the preliminary test results, the
auxiliary subsystems were modified and improved for the systemat-
ic test. The development of the computer-assisted data acquisi-
tion system will be continued for the instrumentation of the
temperature measurement, the flow measurement, and the emissions

measurement.
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SECTION 1
Numerical Simulations for Particle Trajectories
1.1 Numerical Simulations for Single Particle Injection
An understanding of particle flow characteristics in the
strongly swiriing turbulent flow field is very important to con-
trol the particulate emissions and fuel burnout in the swirling
fluidized bed combustor.

The single particle injection into the combustor chamber was
simulated by the CFD code, FLUENT. The test conditions for the
single particle injection is summarized in Table 1. Test condi-
tions for the gas phase flow are the same as those shown in Table
1 in the previous report [1]. Experimental method and results
for the particle velocity measurements were stated in the previ-

ous report (2]

Table 1. Test Conditions of Single Particle Injection

Particle type Glass Beads
Size nm 0.04
Density 1b/£t3 156.05

Particle Injection Location

and Initial Velocity:

I degree 45

J inch 1

K at the Fluid Bed Surface inch | 3
Particle Injected Velocity ft/s 2.55

in K-Direction




Since the swirling flow is a strong turbulent flow with
anisotropic behaviors, the k~€ turbulence model is not suitable
for this case. The Reynolds Stress Model (RSM), with a general
algebraic expression, was selected and tested for the swirling
turbulence flow simulation [3]. The gas density was determined
by the universal gas law which takes the gas density as a func-
tion of pressure and temperature. The single particle injection
simulation was conducted in the whole reactor chamber in cylinder
coordinates.

The simulation results for the single particle moving tra-
jectory, in the combustion chamber, are shown in Figures 1, 2,
and 3. Figure 1 is the top view, Figure 2 is the side view, and
Figure 3 is the isolated 3-Dimensions view. The particle trajec-
tory showed that when the particle was injected from the surface
of the fluidized bed, it swirled up. The swirling diameter
increased as it rose.

Below the lower secondary air injection nozzle 1level, at
about 8 inch levels, the particle moved toward the wall, bounced
against the wall several times, then fell into the dense phase
fluidized bed and finally escaped from the reaction region (see
Figure 2 and Figure 3). Particles moved up spirally, but stayed
closer to the wall due to a stronger centrifugal interaction.
After they reached a certain height in the combustion chamber,
they circulated around the wall as shown in Figure 2. For a
given flow condition, particles of certain diameters will be
confined at an equilibrium height under the balance of gravity

and drag force of upflowing gas.




Fig. 1 Top View of Particle Trajectory in the Combustor
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Fig. 2 Side View of Particle Trajectory in the Combustor
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Fig. 3 Three-Dimensional Plot of Particle Trajectory in the
Combustor




The particle moved in two stages: stage I from point A to
point Bl is the ascending stage, stage II from point Bl to B17 is
the colliding/bouncing stage, as shown in Figure 1. In the
bouncing stagé, the particle bounced on the wall seventeen times
before it reached the bottom of the reactor chamber.

In summary, the basic flow pattern of particles in the
combustion chamber includes; (i) uprising spiral flow following
the gas, (ii) horizontal circulation around the combustor wall,

(iii) slowly sliding flow at the bottom.

1.2 Numerical Calculation and Basic Governing Equations
Equations (1) through (4) were used to calculate the parti-
cle trajectory (4,5]. The numerical calculation predicts ' the
trajectory of a dispersed phase particle (or droplet or bubble)
by integrating the force balance on the particle, which is writ-
ten in a Lagrangian reference frame. This force balance equates
the particle inertia with the forces acting on the particle, and

can be written (for the x-direction in Cartesian coordinates) as:

du
T =Folu=up) +9,(pp-p/p ) +Fy (1)

where Fh(u-u& is the drag force per unit particle mass and:

18y CDRe
ppDZp 24 (2)

Fg=

Here, u is the fluid phase velocity, u, is the particle velocity,
i is the molecular viscosity of the fluid, ¢ is the fluid density,
R, is the density of the particle, and Dpis the particle diameter.

Re stands for the relative Reynolds number, which is defined as:




Ree=—Q-I-?E’TL:-E:g

(3)

The drag coefficient, G, , is a function of the relative Reynolds

number of the following general form:

a a
- 2 3
CD-al+.__._ +

Re Re?

where the a’s are constants that apply over

Re [6].

(4)

several ranges of



SECTION 2

The Preliminary System Test of Hot Model

The preliminary system test was continued to analyze the
thermal performance on the exploratory hot model. The auxiliary
subsystems including air supply, water supply, and fuel supply
were carefully inspected by the safety and health guideline [2].
All instruments are checked and calibrated for the tests.

Three tests were conducted at a primary flow of approximate-
ly 45% (0.6 in. H20) as shown in test conditions of Tables 4 to
6. The ratio of the secondary air was the varying factor. The
range of flow rate at both the top and the bottom was 5 CFM to 10
CFM. Test A of Figure 4 was exactly opposite to Test B of Figure
5. The detailed test conditions were shown in Figures 4 to 6.

Varying the secondary air flow rate as in Tests B and C had
no appreciable effect in either the combustor temperature or
inflame stability or color. The significant effect seen when
the three tests are compared is the increase in combustor temper-
ature due to the decreased air flow. Tests B and C with a sec-
ondary air flow of 15 CFM averaged 271.95 F and 275.8 F, respec-
tively, while, test 1 with a 20 CFM secondary air flow has an
average temperature of 254.8 F as shown in Figures 4 to 6. The
least air flow yields the highest combustor temperatures.

Test D of Figure 7 was conducted to determine the condi-
tions at the lowest combined primary and secondary air flow. The
average temperature was 530 F. Primary air versus secondary air
shows the relationship between the amount of primary and second-

ary air versus average combustor temperature. The more primary




air injected into the system lowered the combustor temperatures.

The amount of primary air had a greater influence than did the

secondary air.
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