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INTRODUCTION

Pressurized circulating fluidized bed (PCFB) power plants
offer the power industry significantly increased
efficiencies with reduced costs of electricity and lower
emissions. When topping combustion is incorporated in
the plant, these advantages are enhanced. Figure 1 is a
simplified process block diagram of a coal-fired, topping
cycle PCFB plant.

In the plant, coal is fed to a pressurized carbonizer that
produces a low-Btu fuel gas and char. After passing
through a cyclone and ceramic barrier filter to remove
gas-entrained particulates and a packed bed of emathelite
pellets to remove aikali vapors. the fuel gas is burned in
a topping combustor to produce the energy required to
drive a gas turbine. The gas turbine drives a generator

and a compressor that feeds air to the carbonizer. a PCFB

combustor, and a fluidized bed heat exchanger (FBHE).
The carbonizer char is burned in the PCFB and the
exhaust gas passes through its own cyclone, ceramic
barrier filter, and alkali getter and supports combustion
of the fuel gas in the topping combustor. Steam
generated in a heat-recovery steam generator {HRSG)
downstream of the gas turbine and in the FBHE
associated with the PCFB drives the steam trbine
generator that furnishes the balance of electric power
delivered by the plant.

The low-Btu gas is produced in the carbonizer by
pyrolysis/mild devolatilization of coal in a fluidized bed
reactor. Because this unit operates at temperatures much
lower than gasifiers currently under development, it also
produces a char residue. Left untreated, the fuel gas will
contain hydrogen sulfide and sulfur-containing tar/light
oil vapors; therefore, lime-based sorbents are injected
into the carbonizer to catalytically enhance tar cracking
and to capture sulfur as calcium sulfide. Sulfur is
captured in situ, and the raw fuel gas is fired hot. Thus,
the expensive, complex, fuel gas heat exchangers and
chemical or sulfur-capturing bed cleanup S)'/stems that are
typical of coal gasification combined-cycle plants are
eliminated.

The char and calcium sulfide produced in the carbonizer
and contained in the fuel gas as elutriated particles are
captured by high-temperature filters, rendering the fuel
gas essentially particulate free and able to meet New
Source Performance Standards (NSPS). The captured
particulate and carbonizer bed drains, are collected in a
central hopper and injected into the PCFB through a
nitrogen-aerated nonmechanical valve. The excess air in
the combustor transforms the calcium sulfide to sulfate,
allowing its disposal with the normal PCFB spent sorbent.

In the PCFB, the burning char heats the combustion air-
flue gas to 1600°F; any surplus heat is transferred to the_
FBHE by the recirculation of solids (sorbent and coal ’




ash) between the units. Controlled recirculation is
accomplished with cyclone separators and nonmechanical
valves. The FBHE contains tube surfaces that cool the
circulating solids. Because of the low fluidizing velocity
in the FBHE (<% ft/s), the risk of tube erosion is
virtually eliminated.

The exhaust gases leaving the carbonizer and the PCFB
contain sorbent and fly ash particles -- both of which can
erode and foul downstream equipment. A hot gas
cleanup (HGCU) system. consisting of ceramic barrier
candle filters preceded by cyclone separators, cleans the
gases before they enter the fuel gas topping combustor
and the gas turbine, thus preventing erosion and fouling.
Ceramic cross-flow filters, screenless granular-bed filters
and others are candidate alternatives for the candle filters,
should their performance and economics be found
superior.  All these devices are currently under
development for non-topping PCFB combustion plants.
They should also be applicable to the topping cycle plant.

The topping combustor, which consists of metallic-wall
multiannular swirl burners (MASBs), will be provided in
two external combustion assemblies (topping combustors)
on opposite sides of the gas turbine. Each MASB
contains a series of swirlers that aerodynamically create
fuel-rich, quick-quench and fuei-lean zones to minimize
NO, formation during the topping combustion process.
The swirlers also provide a thick layer of air at the wall
boundary to control the temperature of the metallic walls.

A team of companies -- led by Foster Wheeler
Development Corporation (FWDC) with Foster Wheeler
Energy Corporation and Foster Wheeler USA, Parsons
Power/Gilbert-Commonwealth,  Institute of Gas
Technology, Westinghouse Power Generation Business
Unit (PGBU) and Westinghouse Science & Technology
Center -- is working on a DOE funded three-phase
program to develop the technology for this new type of
plant. A conceprual design of a 3-percent-suifur
Pittsburgh No. 8 coal-fired. topping cycle PCFB plant
with a conventional 2400 psig/1000°F/1000°F/2-% in.
Hg steam cycle was prepared. and its economics were

determined in Phase 1 (Ref. 1). We estimated that, when
operating with a 14-atm/1600°F carbonizer, the plant
efficiency would be 44.9 percent (based on the higher
heating value of the coal) and its cost of electricity would
be 21.8 percent lower than that of a conventional
pulverized coal-fired plant. Tests conducted in our Phase
2 pilot-scale carbonizer yielded performance superior to
that previously estimated. As a result, we now expect a
more energetic fuel gas and a plant efficiency of 46.2
percent with a 1600°F carbonizer (Ref. 2).

PROJECT DESCRIPTION

The first phase of the DOE program has already been

'completed and it was aimed art plant conceptualization,

optimization, and identification of plant R&D needs. The
second phase, involving laboratory-scale tests of the key
plant components, is near completion.

In Phase 2, the key components of this new type of plant
were tested separately to ascertain their individual
performance characteristics. The Phase 2 tests involved
testing (1) a 10-in.-diameter carbonizer with a cyclone
and ceramic barrier filter, (2) an 8-in.-diameter PCFB
with a cyclone and ceramic barrier filter and (3) 12-in.,
14-in. and 18-in. diameter MASBs. The first two test
programs were conducted by FWDC at its John Blizard
Research Center in Li- ingston, New Jersey. A total of
37 carbonizer test points with three coals. one petroleum
coke, and two sorbents were completed; a total of 23 test
points with four coals, one petroleum coke. 3 carbonizer
char residues, and two sorbents were similarly completed
in the PCFB. The test programs were conducted at 10 to
14 atmospheres pressure and were highly successful.
Test reports have been released to the NTIS for
publication. The MASB tests were conducted at the
University of Tennessee Space Institute at Tullahoma,
Tennessee, under the direction of Westinghouse PGBU.
The development effort has culminated in the successful
testing of a full scale 18 in. diameter MASB. Although
a final report has not yet been issued (two additional tests
are planned), test results have been published (Ref.3.4,5).




In Phase 3, a carbonizer and PCFB with their respective
cyclones and ceramic candle filters have been
interconnected and operated successfully as an integrated
subsystem in Livingston.

Improved Carbonizer Performance

Based on the success of our Phase 2 pilot plant test
program, we now expect the commercial plant carbonizer
to perform better than our Phase 1 estimate. Compared
with that estimate, the fuel gas energy content is 10
percent higher (140 vs. 127 Btu/sft’) and emissions will
be lower. At the same 1.75 caicium to sulfur molar feed
ratio. the carbonizer sulfur capture efficiency will be 6
points higher (94 vs. 88 percent) and the fuel gas
ammonia content 21 percent lower (0.23 vs. 0.29 weight
percent).

~ Westinghouse PGBU computer codes predict an optimum
firing temperature of 2425°F for the updated carbonizer
fuel gas. This firing temperature or topping combustor
outlet temperature provides a turbine inlet temperature
(inlet to first rotating stage) of approximately 2300°F.
Figure 2 presents an updated heat and material balance
for the Phase 1 commercial plant. The plant utilizes two
carbonizer - PCFB - gas turbine modules and one steam
tubine to produce a net power output of 538 MWe. The
plant operates with an efficiency of 46.2 percent (7385
Btu/kWh) based on the coal higher heating value. This
efficiency is 1.3 points higher than our Phase 1 estimate
and reflects a higher gas turbine to steam turbine power
split (50/50 vs. 45/55). With the carbonizer and PCFB
operating at 94 and 97 percent sulfur capture efficiency
respectively, the plant overall sulfur capture efficiency
will be 94.6 percent. Although, only one module is
shown in Fig. 2, the flow rates given are for a two
module plant.

Further Efficiency Increases
A 1600°F operating temperature was selected for the

Phase 1 carbonizer because it was the minimum
temperature that enabled the plant to reach a 45 percent
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efficiency goal; higher temperatures were not investigated
as they would involve increased extrapolation risks. Our
pilot plant tests, however, have generated extensive test
data and demonstated successful carbonizer operation, at
temperatures as high as 1815°F with highly caking
Pittsburgh No. 8 coal. Increasing the carbonizer
temperature increases the amount of coal energy
transferred to the fuel gas and conversely decreases the
amount of energy left in the char-sorbent residue
transferred to the PCFB. As a reéult, less coal needs to
be carbonized and with less char residue transferring to
the PCFB, coal must be added to the PCFB to maintain
its prior heat release.

The gas turbine leg of the plant is more efficient than the
steam turbine portion of the plant. As a result, the gas
wrbine to steam turbine power split is an indicator of the
plant efficiency. With coal being added to the PCFB we
now have the ability to reduce the PCFB heat release and
hence heat input into the steam cycle; this reduces the
steam turbine power output, results in a higher gas
turbine to steam turbine power split, and increases the
plant efficiency. In Table 1, the key features of the
1600°F carbonizer plant shown in Figure 2 are compared
with a similar plant. but one operating with a 1700°F
carbonizer and with the above described reduced coal
flow to the PCFB. By purposely reducing the size of the
steam cycle (282.2 vs. 204.5 MWe), the gas turbine to
steam turbine power split increases from 50/50 to 57/43
and the plant efficiency increases from 46.2 to 46.5
percent.

In the above comparison, both plants utilize two 2300°F
gas turbines and one 2400 psig/1000°F/1000°F/2% in.
Hg. steam turbine. If the operating temperatures and
pressures of either these machines are increased, even
higher plant efficiencies (greater than 46.5 percent) can
be achieved. As a result, we see the PCFB topping cycle
as a leading contender for both repowering and new coal
fired capacity additions. As a further step in the
development of this new technology, a 34 MWe. gas
turbine is being integrated with a Foster Wheeler

PCFB - FBHE

carbonizer - subsystem and a




Westinghouse MASB for testing at Southern Company

Services Power Systems Development Facility at , - Table1
Wilsonville, Alabama. Testing is expected to start the ‘ ,
third quarter of 1996 and continue through 1997. We Comparison of Topping Cycle PCFB Plants

look forward to the startup and successful operation of
the Wilsonville plant, the next step in the development of

the PCFB topping cycle.
Carbonizer Temperature, °F 1600 1700
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