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OBJECTIVES - PHASE 3

The three major objectives of Phase 3 are:
= Test a 1.2-MWe equivalent carbonizer and Cir-
culating Pressurized Fluidized Bed Combustor
(CPFBC) with their associated ceramic candle
filters as an integrated subsystem. ® Evaluate the
effect of coal-water paste feed on carbonizer
performance. ® Revise the commercial plant
performance and economic predictions where
necessary.
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BACKGROUND INFORMATION

Advanced or second-generation pressurized
fluidized bed combustion plants (APFBC) that gen-
erate electricity offer utilities the potential for sig-
nificantly increased efficiencies with reduced costs
of electricity and lower emissions while burning the
nation's abundant supply of high-sulfur coal. Fig-
ure 1 is a simplified process block diagram of a sec-
ond-generation PFB combustion plant.




In the plant, coal is fed to a pressurized
carbonizer that produces a low-Btu fuel gas
and char. After passing through a cyclone and
ceramic barrier filter to remove gas-entrained
particulates and a packed bed of emathelite
pellets to remove alkali vapors, the fuel gas is
burned in a topping combustor to produce the
energy required to drive a gas turbine. The
gas turbine drives a generator and a compres-
sor that feeds air to the carbonizer, a CPFBC,
and a fluidized bed heat exchanger (FBHE).
The carbonizer char is burned in the CPFBC
with high excess air. The vitiated air from the
CPFBC supports combustion of the fuel gas in
the topping combustor. Steam generated in a
heat-recovery steam generator (HRSG) down-
stream of the gas turbine and in the FBHE as-
sociated with the CPFBC drives the steam
turbine generator that furnishes the balance of
electric power delivered by the plant.

The low-Btu gas is produced in the car-
bonizer by pyrolysis/mild devolatilization of coal
in a fluidized bed reactor. Because this unit op-
erates at temperatures much lower than gasifiers
currently under development, it also produces a
char residue. Left untreated, the fuel gas will
contain hydrogen sulfide and sulfur-containing
tar/light oil vapors; therefore, lime-based sorb-
ents are injected into the carbonizer to catalyti-
cally enhance tar cracking and to capture sulfur
as calcium sulfide. Sulfur is captured in situ, and
the raw fuel gas is fired hot. Thus the expensive,
complex, fuel gas heat exchangers and chemical
or sulfur-capturing bed cleanup systems that are
part of the coal gasification combined-cycle
plants now being developed are eliminated.

The char and calcium sulfide produced in the
carbonizer and contained in the fuel gas as
elutriated particles are captured by high-
temperature filters, rendering the fuel gas essen-
tially particulate free and able to meet New
Source Performance Standards (NSPS). The
captured material, with carbonizer bed drains, is

collected in a central hopper and injected into the
CPFBC through a nitrogen-aerated nonmechani-
cal valve. The high excess air in the combustor
transforms the calcium sulfide to sulfate, allowing
its disposal with the normal CPFBC spent sorbent.

In the CPFBC, the burning char heats the
high-excess-air flue gas to 1600°F; any surplus
heat is transferred to the FBHE by the recircula-
tion of solids (sorbent and coal fly ash) between
the units. Controlled recirculation is accom-
plished with cyclone separators and nonmechani-
cal valves. The FBHE contains tube surfaces
that cool the circulating solids. Because of the
low fluidizing velocity in the FBHE (<% ft/s), the
risk of tube erosion is virtually eliminated.

The exhaust gases leaving the carbonizer and
the CPFBC contain sorbent and fly ash
particles—both of which can erode and foul
downtream equipment. A hot gas cleanup
(HGCU) system, consisting of ceramic barrier
filters preceded by cyclone separators, cleans the
gases to <20 ppm solids loading before they
enter the fuel gas topping combustor and the gas
turbine, thus preventing erosion and fouling.
Ceramic cross-flow filters, screenless granular-
bed filters and others are candidate alternatives
for the candle filters, should their performance
and economics be found superior. All these
devices are currently under development for first-
generation PFB combustion plants. They should
also be applicable to the second-generation plant.

The topping combustor, which consists of
metallic-wall  multiannular  swirl  burners
(MASBS), will be provided in two external com-
bustion assemblies (topping combustors) on op-
posite sides of the gas turbine. Each MASB
contains a series of swirlers that aerodynamically
create fuel-rich, quick-quench and fuel-lean
zones to minimize NOy formation during the
topping combustion process. The swirlers also




provide a thick layer of air at the wall boundary
to control the temperature of the metallic walls.

A team of companies—led by Foster Wheeler
Development Corporation (FWDC) with Foster
Wheeler Energy Corporation and Foster Wheeler
USA, Gilbert/Commonwealth, Inc., Institute of
Gas Technology, Westinghouse Power Generation
Business Unit (PGBU) and Science & Technology
Center (STC)—has embarked upon a DOE funded
three-phase program to develop the technology for
this new type of plant. A conceptual design of a 3-
percent-sulfur Pittsburgh No. 8 coal-fired second-
generation PFB plant with a conventional
2400 psig/1000°F/1000°F/2-%; in. Hg steam cycle
was prepared, and its economics were determined
[1]. In 1987 we estimated that, when operated with
a 14-atm/1600°F carbonizer, the plant efficiency
would be 44.9 percent (based on the higher
heating value of the coal) and its cost of electric-
ity would be 21.8 percent lower than that of a
conventional pulverized coal-fired plant. Tests
conducted in our Phase 2 pilot-scale carbonizer
yielded performance superior to that estimated in
1987. As a result, we now expect a more ener-
getic fuel gas and a plant efficiency of 46.2 per-
cent with a 1600 °F carbonizer [2].

PROJECT DESCRIPTION

The second-generation PFB combustion plant
development effort is divided into three phases,
the first of which has already been completed and
documented in a series of reports available
through the National Technical Information
Service.

The first phase of the DOE program was
aimed at plant conceptualization and optimization
and identification of plant R&D needs. The sec-
ond phase, involving laboratory-scale tests of the
key plant components is near completion.

The R&D needs of this new type plant were
presented in the Phase 1 Task 2 Report issued
under this contract [3]; an integrated program
plan for meeting these needs was presented in the
Task 3 Report [4].

The move to commercialization of this new
type of plant involves the five steps shown in
Figure 2. Starting from the left and moving to
the right, each succeeding step involves increased
integration of components and increased plant
size/complexity. In the first step—Phase 2 of our
DOE contract—the key components of this new
type of plant were tested separately to ascertain
their individual performance characteristics.
These Phase 2 tests involved testing (1) a 10-in.-
diameter carbonizer (Figure 3) with a cyclone
and ceramic barrier filter, (2) an 8-in.-diameter
CPFBC (Figure 4) with a cyclone and ceramic
barrier filter and (3) 12-in., 14-in. and 18-in.-
(Figure 5) diameter MASBs. The first two test
programs were conducted by FWDC at its John
Blizard Research Center in Livingston, New Jer-
sey. These programs were successful and test
reports have been released to the NTIS for publi-
cation. The MASB tests were conducted at the
University of Tennessee Space Institute at Tulla-
homa, Tennessee, under the direction of West-
inghouse PGBU. Although a final report has not
yet been issued (two additional tests are
planned), test results have been presented at
previous meetings [S][6][7].

In the second step to commercialization—
Phase 3 of our DOE contract—a carbonizer and
CPFBC with their respective cyclones and
ceramic candle filters are being interconnected
and operated as an integrated subsystem. The
FWDC PFB pilot plant in Livingston, New Jersey
was expanded in 1994 to permit this integrated
operation. The new and previously tested units
are compared in Figures3 and 4. The new

CPFBC is 13 inches in diameter by 38.3 feet tall
and operates at a 2 1/2 times higher throughput
than the previous Phase 2 unit.

The new




carbonizer is actually the previous unit
lengthened by a S-foot-tall spool piece that
aliows operation with a commercial-scale, 24-
Soot-deep bed height. The hot shakedown of the
expanded/integrated carbonizer-CPFBC pilot
plant is underway.

In step three of Figure 2, an MASB and a gas
turbine will be integrated with a carbonizer and
CPFBC. This will be the first either has operated
with carbonizer fuel gas as all previous MASB tests
utilized gas mixtures synthesized to the composition
predicted by FWDC for a commercial plant. This
integration will occur at the Southern Company
Services Power Systems Development Facility
(PSDF) at Wilsonville, Alabama. This facility is
being funded by the US DOE, the Electric Power
Research Institute, and Industry for advanced coal-
based power system R&D.

The APFBC process will be tested at the
PSDF and a process flow diagram is presented in
Figure 6. The plant will incorporate a 37-inch-
ID CPFBC, an FBHE with two  tube-bundle-
containing fluidized beds, cyclones and ceramic
candle filters, an 18-inch MASB, and a ~3-MWe
gas turbine. For cost savings a steam turbine will
not be provided and the FBHE heat absorption
will be exhausted to atmosphere via cooling tow-
ers. The 18-in. MASB will combust ~1700°F
carbonizer fuel gas to raise the ~1600°F CPFBC
flue gas/vitiated air to 2300°F. The gas turbine,
being a relatively small unit, operates with a
1975°F turbine inlet temperature. Compressor
discharge air will be injected into the 2300°F
MASB exhaust to cool it to 1975°F, thereby al-
lowing commercial plant MASB operation to be
demonstrated.

The PSDF will be operated with Illinois
No. 6 bituminous and Eagle Butte subbituminous
coals. Limestone from Longview, Alabama will
be injected into the APFBC fluidized beds to
capture sulfur in situ. Each of these feedstocks
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has already been successfully tested in the Liv-
ingston Phase 2 carbonizer and CPFBC pilot
plants. Based on these tests the 1700°F Wil-
sonville carbonizer is expected to produce a fuei
gas with a 124-Btu/SCF heating value when op-
erating with Illinois No. 6 coal. A gas yield of
3.2 Ib/lb of coal is expected and the limestone
sulfur capture efficiency is projected to be
94 percent at a calcium to sulfur molar feed ra-
tion of 1.75. The detailed performance of the
carbonizer is presented in Figure 7. The char-
sorbent residue from the carbonizer will be
transferred to and burned in the CPFBC. Liv-
ingston pilot plant test data shown in Figures 8
and 9 indicate the CPFBC will operate with at
least a 99-percent combustion and a 97-percent
sulfur capture efficiency, respectively.  The
Phase 2 CPFBC was operated with a 12 fi/s gas
velocity, and the effectiveness of staged combus-
tion for controlling NO, emissions was investi-
gated. Because of the low height of the unit
(28.5 feet) the gas residence time in the oxidizing
zone was less than 1 1/2 seconds. The Phase 3
CPFBC is 38.3 feet tall and, with its higher oxi-
dizing zone residence time, we anticipate NOy
emissions will be substantially less than the levels
shown in Figure 10.

The Wilsonville APTBC will be commis-
sioned in stages. Beginning in early 1996 the
plant will be operated as a first generation PFB
(no carbonizer or topping combustion) with coal
being fired in the CPFBC. Then when the top-
ping combustor is delivered in second quarter
1996 integrated carbonizer-CPFBC operation
will begin. With proposed feedstocks and operat-
ing conditions having already been tested in
Phase 2 and with Wilsonville personnel having
witnessed Phase 2 testing and Phase 3 integrated
carbonizer-CPFBC pilot plant commissioning
runs, we anticipate a successful two-year test
program.
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