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Abstract

Linearizing non linear models about their steady state makes

it possible to use the Anderson-Moore Algorithm(AIM) to inves-

tigate their saddle point properties and to efficiently compute

their solutions. Using AIM to check the long run dynamics

of non linear models avoids many of the burdensome compu-

tations associated with alternative methods for verifying the
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saddle point property. In addition, for models that have the

saddle point property, AIM provides a set of terminal condi-

tions for solving the non linear model that work better than

the traditional approach of setting the end of the trajectory to

the steady state values. Furthermore, the asymptotic linear

constraints can also generate initial conditions for the solu-

tion path that are better than initializing the solution path to

the steady state values. Using the improved asymptotic con-

straints typically halves the computational burden associated

with solving the nonlinear problem.

1 A Non-Linear Extension of the Anderson-

Moore Technique

1.1 General Model Specification

Consider the model

h(xt−τ , xt−τ+1, ..., xt+θ−1, xt+θ) = 0 (1)

t = 0, . . . ,∞

Where x ∈ ℜL and h : ℜL(τ+1+θ) → ℜL. We want to determine the
solutions to Equation 1 with initial conditions

xi = x̄i for i = −τ, ...,−1 (2)

satisfying

lim
t→∞
xt = x

∗. (3)

This paper shows how to adapt the methods of (Anderson & Moore,
1985) to determine the existence, and local uniqueness of the so-
lution to Equation 1.

1.2 Asymptotic Linearization

If h were linear, we could immediately apply the methods of (An-
derson & Moore, 1985) to determine the existence and uniqueness
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of a perfect foresight solution and to compute the solution. Since
h is non-linear, we will compute approximate solutions to system
system 1 by using the nonlinear h constraints in Equation 1 for
the initial part of the trajectory, and using a system of linear con-
straints which reflect the asymptotic properties of the system for
the remainder of the trajectory.

This technique can be thought of as a generalization of the ap-
proach used by Fair-Taylor(Fair & Taylor, 1983). This paper de-
scribes a procedure which, unlike the Fair-Taylor approach, allows
the solution to lie in the stable subspace of a linear system charac-
terizing the asymptotic properties of the nonlinear system.

The steady state value x∗ satisfies

h(x∗, ..., x∗) = 0 (4)

Near the steady state, the linear first-order Taylor expansion of h
about x∗ provides a good approximation to the function h.

h(xt−τ , ..., xt+θ) ≈
θ
∑

i=−τ

Hi|x∗ (xt+i − x
∗) (5)

The technique presented in (Anderson & Moore, 1985) can deter-
mine the existence and uniqueness of perfect foresight solutions
near the steady state of linear models. The asymptotic analysis of
the linear model determines convergence properties before burden-
some calculations of the nonlinear solutions. That stability analy-
sis produces a matrix, Q, which restricts values of the endogenous
variables to the stable subspace of the linearized system.

For trajectories which approach a steady state, one can ulti-
mately replace the non-linear system with the constraints codified
in the matrix Q.

Q





















xT−τ − x
∗

...
xT − x

∗

...
xT+θ − x

∗





















= 0 (6)
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Consequently, for solutions which converge to the steady state, we
can, in principal, compute solutions to whatever accuracy required
by increasing the magnitude of T.

1.3 Relationship to Traditional Approach Using Fixed

Points

The more traditional Fair-Taylor approach also increases T to in-
crease accuracy, but it imposes Equation 7

I









xT+1 − x
∗

...
xT+θ − x

∗









= 0 (7)

instead of equation 6.
Since Equation 6 more accurately characterizes the dynamics of

the nonlinear system near the steady state the approach described
in this paper converges more quickly. It will be convenient to nor-
malize the Q matrix so that there is the negative of the identity
matrix in the rightmost block. (Anderson & Moore, 1985) shows
that such a normalization exists for models which have uniquely
convergent saddle points paths from arbitrary initial conditions.

QN =



















−B1 I

−B2 I
...

. . .

−Bθ−1 I

−Bθ I



















(8)

Thus, the traditional approach of setting the end of the trajec-
tory to the steady state would be equivalent to zeroing out the left
half of the normalized Q matrix. Using AIM to Restrict the end of
the trajectory to the asymptotic stable linear subspace provides a
better approximation of the asymptotic behavior of the non linear
function. This improvement in the approximation is reflected in the
length of the trajectory needed to achieve a given level of accuracy
for the values at the beginning of the trajectory. In order to achieve
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a specific number of significant digits in the computation of the
points near the beginning of the trajectory, setting the end of the
trajectory equal to a specific constant would force us to compute a
longer solution path than adopting our approach of restricting the
solution to the asymptotic linear space.

2 Two Non-Linear Examples

2.1 A Money Demand Model

Consider the three equation non-linear system

ln
mt

pt
= α+ β ln(ρ+ (

pt+1 − pt
pt

)) (9)

mt −mt−1 = γ(mt−1 − µ) + δst (10)

st = λst−1(1− st−1) (11)

Where L = 3, τ = 1, θ = 1, and 0 ≤ λ, α < 0 , β < 0 , ρ > 0, γ < 0 , and
µ > 0 exogenously given. This example augments a simple forward
looking money demand function(Equation 9) and a money supply
rule(Equation 10) with an easy to manipulate and much studied
nonlinear function, the quadratic map(Equation 11). Including the
quadratic map provides a convenient way to study the impact of
model parameters on asymptotic behavior. The parameter λ in the
quadratic map provides a simple nonlinear function that can gen-
erate fixed points, limit cycles, and chaotic invariant sets, but this
paper will study values of λ associated with fixed points.

The points m∗ = µ− −δs
∗

γ
p∗ = m∗ exp−(α+β ln(ρ)), where s∗ = 0 or s∗ =

λ−1
λ

, are fixed points for the system. We can linearize the system
and investigate the dynamics of the system near either steady state.

We want to investigate the model with initial conditions

m0 = m̄0

p0 = p̄0
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s0 = s̄0

and terminal conditions

lim
t→∞







mt
pt
st






=







m∗

p∗

s∗







Applying the methods of (Anderson & Moore, 1985) near the
fixed point, the state space transition matrix is

A =









(1 + γ) 0 −δλ(2s∗ − 1)
ρ/β
m∗/p∗

β−ρ
β

0

0 0 −λ(2s∗ − 1)









Which has three non zero eigenvalues, (1 + γ), λ(1− 2s∗), and β−ρ
β

.
The first two eigenvalues are smaller than one in magnitude

provided:

−2 < γ < 0

and

s∗ =







0 and |λ| < 1
λ−1
λ

and 1 < λ < 3

The last eigenvalue has magnitude bigger than one since ρ
β
< 0.

The Q matrix of constraints imposing the saddle point property
consists of two auxiliary initial conditions and one unstable left
eigenvector if 0 < λ < 1 or 1 < λ < 3

Q =









−(1 + γ) 0 0 1 0 −δ
0 0 λ(2s∗ − 1) 0 0 1

0 0 0 − (−β+βλ+ρ−2βλs
∗)

(βδλ(1−s∗))
−m

∗(βγ+ρ)(−β+βλ+ρ−2βλs∗)
ρp∗(βδλ(1−s∗))

1









QN =









1 + γ 0 δλ− 2δλs∗ −1 0 0
(1+γ)ρp∗

(βγ+ρ)m∗
0 δλρ(−β+ρ)p∗(−1+2s∗)

(βγ+ρ)m∗(β−βλ−ρ+2βλs∗)
0 −1 0

0 0 λ− 2λs∗ 0 0 −1









(12)

=
[

B1 −I
]

(13)
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2.2 Boucekkine's Non Linear Example

Boucekkine's(Boucekkine, 1995) presents the following example
nonlinear model. For t > 0

zt − 5y
0.15
1,t x

0.75
1,t = 0 (14)

0.15
y1,t+1

y1,t
+ 5xa1,t − 0.25 = 0 (15)

y2,t+1 − 3
y1.652,t

x1,t−1
wt−3 = 0 (16)

x2,t − 0.75
y1,t−1

y2,t
+ 1.25 = 0 (17)

yb1,t+1 − c
x2,t−1

y2,t+1
y1,t = 0 (18)

wt = 1 (19)

Solving for fixed point solutions x∗1, x
∗

2, y
∗

2, z
∗ in terms of y∗1 pro-

duces

w∗1 = 1.

x∗1 = 50.
−1.
a

x∗2 = −1.25 + 4.06531 50.
1.53846
a y1

y∗2 =
0.184488

50.
1.53846
a

z∗ =
5. y1

3
20

50.
0.75
a

provided y∗1 satifies

y1b −
5.42042 c y1

(

−5.+ 16.2613 50.
1.53846
a y1

)d

4.1. d 50.
−1.
a

20
13

= 0. (20)

Fixing a, b, and c produces a version of the mode whose asymp-
totic behaviour depends only on d. In the text that follows,

{a→ −3, b→
3

2
, c→

5

2
}.

7



Figure 1 graphs solutions for 20 as a function of d. Note that for
values of d between 0.0700073 and 0.38472 y1 is complex valued. This
paper will analyze model solutions over the range of d for which the
solutions for y1 are real valued.

0.2 0.4 0.6 0.8 1 1.2

2

4

6

8 Re[y1]

Im[y1]

Figure 1: y1 Solutions versus d with {a→ −3, b→ 3
2
, c→ 5

2
}

In constructing the transition matrix, the AIM algorithm discov-
ers 4 auxiliary initial conditions. Figure 2 graphs the magnitude
of the second and third largest eigenvalues as a function of d. The
model will have locally unique convergent solutions when there are
exactly two eigenvalues with magnitudes bigger than one. When
the second largest eigenvalue has a magnitude less than one, there
are multiple solutions converging to the steady state. When the
third largest eigenvalue has a magnitude greater than one, there
are no solutions converging to the steady state.

Table 1 displays the eigenvalues for the asymptotic lineariza-
tion when d = 1.0. Since there are 4 roots with magnitudes larger

8



0.2 0.4 0.6 0.8 1 1.2
d       

0.5

1

1.5

2

Multiple Local
 Convergent

  y1
 Complex
 Valued

Explosive
 Solutions

Unique Local
  Convergent

Figure 2: Magnitude of Second and Third Largest Eigenvalues versus d
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than one and 4 auxiliary initial conditions, there are no solutions
converging to the fixed point from arbitrary initial starting points.

Fixed Point {1., 3.68403, 1.14926, 4.38784, 1.37162, 16.5978}
Eigenvalues {2.12643,−0.345383− 1.01957 i, 1.21433,−0.345383+ 1.01957 i}
Magnitudes {2.12643, 1.07649, 1.21433, 1.07649}

Table 1: Solution characteristics for d=1.0

Table 2 displays the eigenvalues for the asymptotic linearization
when d = 0.05. Since there are 4 auxiliary initial conditions and
only one eigenvalue with magnitude greater than one, there are
multiple solutions converging to the fixed point.

Fixed Point {1., 3.68403, 0.412629, 3.04066, 1.37162, 15.7093}
Eigenvalues {1.91557,−0.0795795− 0.402948 i, 0.893593,−0.0795795+ 0.402948 i}
Magnitudes {1.91557, 0.410731, 0.893593, 0.410731}

Table 2: Solution characteristics for d=0.05

Table 3 displays the eigenvalues for the asymptotic linearization
when d = 0.5. Since there are 4 auxiliary initial conditions and two
eigenvalues with magnitude greater than one, so long as the auxil-
iary initial conditions and the eigenvectors associated with the two
roots with magnitudes greater than one are linearly independent,
there are unique solutions converging to the steady state from ar-
bitrary initial conditions. Table 4 on page 11. presents the Q and
normalized Q matrices.

Fixed Point {1., 3.68403, 1.53089, 5.08577, 1.37162, 16.9694}
Eigenvalues {1.99626,−0.216796− 0.743478 i, 1.08733,−0.216796+ 0.743478 i}
Magnitudes {1.99626, 0.774441, 1.08733, 0.774441}

Table 3: Solution characteristics for d=0.5

Appendix B provides additional detail describing the transition
matrix and the auxiliary initial conditions.
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Q =







0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −0.345841 0 0 0
0 −0.490676 0 0 0

· · ·

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −0.345841 0 0 0
0 −0.490676 0 0 0







Q
N =

















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0.0569869 0 0 0 0 0 0.883257 0 0 0 0 0 0.66277 −0.0154686 0.422866 0.0184885 0 0 0 −1 0 0 0 0

1.59759 0 0 0 0 0 0.743066 0 0 0 0 0 0.319599 −0.433653 −0.0930743 0.518313 0 0 0 0 −1 0 0 0

−1.0019 0 0 0 0 0 −2.83148 0 0 0 0 0 −3.56087 0.271957 −0.742194 −0.32505 0 0 0 0 0 −1 0 0

−0.78798 0 0 0 0 0 −0.366502 0 0 0 0 0 −0.157636 0.213891 0.0459071 0.0140497 0 0 0 0 0 0 −1 0

−0.304576 0 0 0 0 0 1.6342 0 0 0 0 0 0.507439 0.0826745 1.08939 −0.0988148 0 0 0 0 0 0 0 −1

















Table 4: Asymptotic Linear Constraints for Boucekkine Example:
({a→ −3, b→ 3

2
, c→ 5

2
, d→ 0.5})

1
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3 Components of the Algorithm for Com-

puting the Convergent Path

One can apply Newton's Algorithm to compute the solution to the
non linear system Equations 1-3. With

yt =



















xt−τ
xt−τ+1

...
xt+θ−1
xt+θ



















(21)

z(T ) =



















x−τ
x−τ+1

...
xT+θ−1
xT+θ



















(22)

Equations 1-3 become

ℵ(z(T ),f) =


























































x−τ − x̄−τ
...

x−1 − x̄−1









h(y1)
h(y2)

...
h(yT−1)
h(yT )f 



xT+1−τ − x
∗

...
xT+θ − x

∗



























































where f = 


Q for AIM
[

0 I
]

for FP (23)

Figures 3 and 4 present pseudo code describing the algorithms
for analyzing the steady state and computing the convergent path.

3.1 Improved Model Diagnostics

It is possible to choose the parameters of the model and initial
conditions so that the number of time periods to convergence is
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begin
if ¬succeedsQ(xStar := computeFixedPoint(h ,xGuessFP))

then failcomment: unable to compute fixed point
else H := linearize(h ,xStar)

if ¬hasSaddlePointPropertyQ(Q := andersonMoore(H))
then failcomment: no saddle point property at this fixed point
else

if ¬hasConvergedQ(xPath :=
convergentPath(xHistory,h ,Q ,TMIN ,TMAX))
then failcomment: path has yet to converge
else success(xPath)

fi
fi

fi
end

Figure 3: Nonlinear Extension of Anderson-Moore Algorithm: Ini-
tial Setup

begin
T := TMIN
xPathOld := solveNonLinearSystem(xHistory,h ,Q ,TMIN ,xGuessPath)
T := T +∆T
xPathNew := solveNonLinearSystem(xHistory,h ,Q ,T)
while (xPathOld 6= xPathNew) ∧ (T ≤ TMAX) do

xPathOld := xPathNew
T := T +∆T
xPathNew := solveNonLinearSystem(xHistory,h ,Q ,T) od

end

Figure 4: Nonlinear Extension of Anderson-Moore Algorithm: con-
vergentPath
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arbitrarily large. Thus, for some parameter settings, procedures
which depends on failure to converge will have trouble determin-
ing the appropriateness of the asymptotic stability conditions. The
asymptotic linearization approach provides this information near
the beginning of computation before undertaking many costly com-
putations leading to uncertain results.

3.1.1 Computational Results

The approach of this paper focuses computational resources on
computing saddle point paths for models which have saddle point
paths. The analysis of the previous section indicates that the
money demand model will have convergent perfect foresight paths
to the s = 0 fixed point for 0 < λ < 1 and to the s = λ−1

λ
for 1 < λ < 3.

There is no need to attempt solutions for models with values of λ
outside this range.

The analysis of the previous section indicates that the Boucekkine
model will have convergent perfect foresight paths for 0.38472 < d <
0.843407. There is no need to attempt solutions for models with
values of d outside this range.

3.2 Improved Initial Path Guess

The Newton iteration requires an initial guess, z0(T ). Define

z∗(T 0,f) ∋ ℵ(z∗(T 0,f),f) = 0 (24)

The z∗(T 0,f) represent solutions to Equation 21 using T 0 non
linear time periods before applying asymptotic constraint f. Using
iterative techniques to get a solution for z∗(T,f), T > T 0 will require
an initial guess z0(T )

3.2.1 Steady State Bootstrap

The traditional approach augments the shorter solution trajectory
z0(T 0) with the fixed point values.

14



z0(T ) =

























z∗(T 0,
[

0 I
]

)

x∗T 0+1
x∗T 0+2

...
x∗T+θ−1
x∗T+θ

























(25)

3.2.2 Aim Bootstrap

Alternatively, one could augment the shorter solution trajectory
z0(T 0) with values consistent with the asymptotic behavior of the
non linear system near the fixed point.

z0(T ) =























z∗(T 0, Q)
x̂T 0+1
x̂T 0+2

...
x̂T+θ−1
x̂T+θ























(26)

with

x̂t = x
∗ +B1









(x̂t−τ − x
∗)

...
(x̂t−1 − x

∗)









∀t > T0 (27)

Where B1 comes from the first few rows of QN of equation 12 on
page 6.

Appendix A presents equations describing the AIM bootstrap ap-
plied to the Money Demand Model.

3.2.3 Computational Results

Using B1 reduces the number of Newton steps required to com-
pute a path of given horizon length whether or not using Q for the
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asymptotic constraint. Figure 5 and 6 show the number of new-
ton steps needed to move from the initial guess to the solution for
each horizon length. The line labeled “FP Initialization” shows the
number of steps required when setting the entire initial path guess
to the fixed point values. The line labeled “Q Initialization” shows
the number of steps required when setting the initial path guess to
the result of applying the B1 matrix to the initial conditions given
in equation 2. The line labeled “FP Extension” shows the number
of steps required when applying the Steady State Bootstrap to the
solution from a horizon on period shorter. The line labeled “Q Ex-
tension” shows the number of steps required when applying the
AIM Bootstrap to the solution from a horizon one period shorter.
The “Q Extension” and “Q Initialization” lines show the number of
Newton steps required to solve equation 24 with f = Q. The “FP
Extension” and “FP Initialization” lines show the number of Newton
steps required to solve equation 24 with f = [0 I]. These results

are typical for applying the two initial path guess strategies to the
two models.

The AIM Bootstrap minimizes the number of Newton steps for
finding the z∗(T,f) for both models. Figure 5 presents computa-
tional results for the Money Demand Model. For example, Figure 5
indicates that at a horizon of 5 periods, initializing the path to the
steady state lead to 13 newton steps. Initializing the path to the
solution obtained by applying the asymptotic linearization to the
initial conditions alone lead to 7 Newton steps. Extending the 4
period solution by adding one period of fixed point values leads to
5 Newton steps. Using AIM to augment the 4 period solution leads
to 3 Newton Steps.

Figure 6 presents computational results for the Boucekkine Model.
Figure 6 indicates that at a horizon of 7 periods, initializing the
path to the steady state lead to 5 newton steps. Initializing the path
to the solution obtained by applying the asymptotic linearization to
the initial conditions alone lead to 4 Newton steps. Extending the
6 period solution by adding one period of fixed point values leads
to 3 Newton steps. Using AIM to augment the 6 period solution
leads to 3 Newton Steps. Extending the path using the Fixed Point
Bootstrap or the AIM Bootstrap lead to the same number of Newton
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steps. The next section will show that the AIM Bootstrap dominates
since the “FP” algorithms require more iterations to converge to the
same accuracy than the “Q” algorithms.

3.3 Shorter Computation Horizon for Given Com-

putation Error

When solving models with the saddle point property near the steady
state, the two approaches compute equivalent paths. However,
using Q improves the tradeoff between computation horizon and
solution accuracy. For a given level of precision, the asymptotic
linearization approach obtains the solution with a shorter compu-
tation horizon. At any given computation horizon, the asymptotic
linearization approach computes a more accurate solution.

This paper defines numerical convergence for the algorithms us-
ing a measure of relative error. The algorithms terminate when

‖DT (x− x̂)‖ ≤ m‖DT x̂‖

where

DT =







{1., 1., 1.} Money Demand Model

{1., 0.27144, 0.65321, 0.19663, 0.72906, 0.05893} Boucekkine Model

‖ǫ‖ =
√

(ǫT ǫ)

x− x̂ = S1kz
k(T )− S2kz

k−1(T )

with S1k =
[

InL 0
]

and S2k =
[

InL 0
]

chosen to select comparable parts of the state vector.

If m = 10−k then larger components of Dx have k significant dig-
its(Numerical Algorithms Group, 1995). The numerical calculation
for this paper set k ≈ 8.

3.3.1 Computational Results

Table 5 presents some computational results for the Money De-
mand Model. The last column demonstrates the equivalence be-
tween the convergent solution paths obtained by using the asymp-
totic linearization and those obtained using the traditional fixed
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Figure 5: Newton Steps as Function of Horizon Length for Various
Initial Guesses for Money Demand Model
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Figure 6: Newton Steps as Function of Horizon Length for Various
Initial Guesses for Boucekkine Model
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point constraint. The computations using Q and using FP each
used a convergence tolerance of 10−8. The ‖ · ‖2 difference between
the initial portions of the trajectories are also within the supplied
convergence tolerance of 10−8.

λ Fixed Point Largest Convergence ‖xQ − xFP‖
EVal Q FP

1.5 0.467, 0.693, 0.333 0.5 11 22 2.17835 10−9

1.9 0.242, 0.359, 0.474 0.1 10 19 4.45944 10−9

2.3 0.0957, 0.142, 0.565 −0.3 9 18 2.43792 10−9

Table 5: Asymptotic Linearization and Fixed Point Solution Char-
acteristics

The following figures employ two measures of error to char-
acterize the rate of convergence of the two algorithms: approxi-
mation error and change in path error. The approximation error
is ‖D(S1k(T )xnow − S2k(T

∗)xconverged)‖2. The change in path error is
‖D(S1k(T + 1)xnext − S2k(T )xnow)‖2.

The top half of Figure 7 reports the variation in approximation
error as a function of the computation horizon when λ = 1.5. For
any given horizon, the approximation error is always about 6 times
larger when using the fixed point instead of the asymptotic lin-
earization. The bottom half of Figure 7 emphasizes this point by
reporting the variation in approximation rescaled so that the initial
approximation errors are the same.

Without prior knowledge of the convergent solution, algorithms
rely on the change in the solution path to determine convergence.
Figure 8 reports the variation in the change in path error as a
function of the computation horizon when λ = 1.5. The asymptotic
linearization algorithm would signal convergence before the fixed
point algorithm. The accuracy of the solution does not suffer since
the aggregate errors are so much less for any given computation
horizon.

Figure 9 reports the variation in approximation error as a func-
tion of the computation horizon when λ = 1.9. Again, for any given
horizon, the approximation error is always significantly less when
using the asymptotic linearization. Figure 10 reports the variation
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Figure 7: Approximation Error as Function of T for λ = 1.5
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Figure 8: Change in Path Error as Function of T for λ = 1.5
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Figure 9: Approximation Error as Function of T for λ = 1.9

5 10 15 20

Q Errors Scaled(6.70091)

0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014

Using Q
Using FP

5 10 15 20

Q Errors Unscaled

0

0.0002

0.0004

0.0006

0.0008

0.001

Using Q

Using FP

Figure 10: Change in Path Error as Function of T for λ = 1.9
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in the change in approximation error as a function of the computa-
tion horizon when λ = 1.9. The asymptotic linearization algorithm
would signal convergence before the fixed point algorithm.

Figure 11 reports the variation in approximation error as a func-
tion of the computation horizon when λ = 2.3. For any given hori-
zon, the approximation error is always significantly less when us-
ing the asymptotic linearization. Figure 12 reports the variation in
the change in approximation error as a function of the computa-
tion horizon when λ = 2.3. The asymptotic linearization algorithm
would signal convergence before the fixed point algorithm.

Figure 13 presents a density plot comparing the number of hori-
zons required for convergence for the two algorithms as a function
of the initial conditions. Since m0 and s0 depend only on initial
conditions they will not vary as the horizon length, T0, changes,
but p0 will depend on the future values and the terminal conditions
and will vary with the horizon length. The asymptotic linearization
converges faster than the fixed point for all initial conditions.

Figures 14 -16 present some computational results for the Boucekkine
Model. Figure 14 reports the approximation error while Figure 15
reports the variation in the change in approximation error as a
function of the computation horizon when d = 0.5 For any given
horizon, the approximation error is always significantly less when
using the asymptotic linearization. The asymptotic linearization al-
gorithm would signal convergence before the fixed point algorithm.
The accuracy of the solution does not suffer since the aggregate
errors are so much less for any given computation horizon.

Figure 16 presents a graph comparing the number of horizons
required for convergence for the two algorithms as a function of
the initial conditions for w. The asymptotic linearization converges
faster than the fixed point for all initial conditions.

4 Conclusions

Linearizing non linear models about their steady state makes it
possible to use the Anderson-Moore Algorithm(AIM) to investigate
their saddle point properties and to efficiently compute their so-
lutions. Using AIM to check the long run dynamics of non linear
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Figure 11: Approximation Error as Function of T for λ = 2.3
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models avoids many of the burdensome computations associated
with alternative methods for verifying the saddle point property. In
addition, for models that have the saddle point property, AIM pro-
vides a set of terminal conditions for solving the non linear model
that work better than the traditional approach of setting the end of
the trajectory to the steady state values. Furthermore, the asymp-
totic linear constraints can also generate initial conditions for the
solution path that are better than initializing the solution path to
the steady state values. Using the improved asymptotic constraints
typically halves the computational burden associated with solving
the nonlinear problem.
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A Aim Bootstrap Example

For T 0 = 0 we can use Equation 12 to compute x̂0, x̂1 . . . for arbitrary
initial conditions:

x̂0 = B1







(m̄−1 − x
∗)

(p̄−1 − p
∗)

(s̄−1 − s
∗)





 =









(1 + γ)(m̄−1 −m
∗) + δ(s̄−1 − s

∗)λ(1− 2s∗)
(1+γ)(m̄−1−m∗)p∗ρ

m∗(βγ+ρ)
+ δ(s̄−1−s

∗)λ(1−2s∗)p∗ρ(ρ−β)
m∗(βγ+ρ)(β−βλ−ρ+2βλs∗)

(s̄−1 − s
∗)λ(1− 2s∗)









x̂1 = B







m̂0
p̂0
ŝ0






=









(1 + γ)(m̂0 −m
∗) + δ(ŝ0 − s

∗)λ(1− 2s∗)
(1+γ)(m̂0−m∗)p∗ρ

m∗(βγ+ρ)
+ δ(ŝ0−s∗)λ(1−2s∗)p∗ρ(ρ−β)
m∗(βγ+ρ)(β−βλ−ρ+2βλs∗)

(ŝ0 − s
∗)λ(1− 2s∗)









...

Since the eigenvalues of B−1 are (1 + γ) and λ(1 − 2s∗) the boot-
strap path ultimately converges to the steady state. The bootstrap
path approximation to the non linear solution improves as the so-
lution approaches the steady state.

For T 0 = 1 after substituting the initial conditions and the AIM
bootstrap path, we must find m0, p0, s0 satisfying the system

−α + log(
m0

p0
)− β log(ρ+

(1+γ)p∗ρm0
m∗(βγ+ρ)

− p0 +
δλp∗ρ(ρ−β)(2s∗−1)s0

m∗(βγ+ρ)(β−βλ−ρ+2βλs∗)

p0
) = 0

−m̄−1 − γm̄−1 + γµ+m0 − δs0 = 0

−(s̄−1λ) + s̄−1λ+ s0 = 0

B Transition Matrix Details
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























































0 0 0 0 0 0 1. 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1. 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1. 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1. 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1. 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1. 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1. 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1. 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1.61688 0 0 0 0 0 −1.22801 0 0 0 0 0 0 0.438889
−1.689852.0.820513−2.dd(−5.+2.18719 y1(d))−1.+d

√
y1(d)

−0.546798 y1(d) 0 0 0 0 0 0 0 0 0 0 0 0 0.148424 y1(d) 0

−0.666667 y1(d) 0 0 0 0 0 0 0 0 0 0 0 0 0.180961 y1(d) 1.733762.1.48718−2.dd
√

y1(d)(−5. + 2.18719 y1(d))−1.+d

1.37162 0 0 0 0 0 0 0 0 0 0 0 0 −0.372315 0

−5.70609y1(d)
3
20 0 0 0 0 0 −3.32393y1(d)

3
20 0 0 0 0 0 0 1.54887y1(d)

3
20

3.876812.−1.26282−2.dd(−5.+2.18719 y1(d))−1.+d

y1(d)
7
20

· · ·

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1. 0 0 0 0 0 0 0 0
0 1. 0 0 0 0 0 0 0
0 0 1. 0 0 0 0 0 0
0 0 0 1. 0 0 0 0 0
0 0 0 0 1. 0 0 0 0
0 0 0 0 0 1. 0 0 0
0 0 0 0 0 0 1. 0 0
0 0 0 0 0 0 0 1. 0
0 0 0 0 0 0 0 0 1.
0 0 0 0 0 0 0 0 0

0 0 0 0 0.333333
5.069552.0.820513−2.dd(−5.+2.18719 y1(d))−1.+d

√
y1(d)

−0.409337
y1(d)

−1.94504 0

0 0 0 0 0 0 0.546798 −0.657775 y1(d) 0
0 0 0 0 0 0 0.666667 −0.801971 y1(d) 0
0 0 0 0 0 0 0 1.65 0

0 0 0 0 0.902255y1(d)
3
20

58.15212.−1.26282−2.dd(−5.+2.18719 y1(d))−1.+d

y1(d)
7
20

0.221596

y1(d)
17
20

−6.86418y1(d)
3
20 0























































Table 6: State Space Transition Matrix
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Aux(d) =

















0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−35

5
6 y1

3
20

42
1
12

0 −3
√

5

22
3
4 y1

17
20

0 1

− 1
10

0 0 0 0 0 0 0 0 0 0 0 0 1

102
1
3 5
2
3

32
−
20
39
−2d

3
7
13 d

(

−5+
93
7
13 y1

52
20
39 5

1
39

)−1+d

55
1
39
√
y1

0 0 0 0 −3

102
1
3 5
2
3

0 −1
20y1

−993
7
13

10002
20
39 5

1
39

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −93
7
13

202
20
39 5

1
39

0 0 0 0 1 0
813

1
13 y1

2002
1
39 5

2
39

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

















Table 7: Auxiliary Initial Conditions Dimension
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vt =



































wt−2
wt−1
x1,t−1
x2,t−1
wt
x1,t
x2,t
y1,t
y2,t



































A(d) =



















0 1. 0 0 0
0 0 1. 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−1.61688 −1.22801 0 0.438889
−1.689852.0.820513−2.dd(−5.+2.18719 y1(d))−1.+d

√
y1(d)

−0.546798 y1(d) 0 0 0.148424 y1(d) 0

−0.666667 y1(d) 0 0 0.180961 y1(d) 1.733762.1.48718−2.dd
√

y1(d)(−5.+ 2.18719 y1(d))−1.+d

1.37162 0 0 −0.372315 0

· · ·

0 0 0 0 0
0 0 0 0 0
1. 0 0 0 0
0 1. 0 0 0
0 0 1. 0 0
0 0 0 0 0

0 0.333333
5.069552.0.820513−2.dd(−5.+2.18719 y1(d))−1.+d

√
y1(d)

−0.409337
y1(d)

−1.94504

0 0 0 0.546798 −0.657775 y1(d)
0 0 0 0.666667 −0.801971 y1(d)
0 0 0 0 1.65



















Table 8: Reduced Dimension State Space Transition Matrix
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