
A Reliable and Computationally Efficient Algorithm for Imposing

the Saddle Point Property in Dynamic Models∗

Gary S. Anderson†

September 5, 2000

(Anderson and Moore, 1983; Anderson and Moore, 1985) describe a powerful method for solving
linear saddle point models. The algorithm has proved useful in a wide array of applications
including analyzing linear perfect foresight models, providing initial solutions and asymptotic
constraints for nonlinear models. The algorithm solves linear problems with dozens of lags and
leads and hundreds of equations in seconds. The technique works well for both symbolic algebra
and numerical computation.

Although widely used at the Federal Reserve, few outside the central bank know about or have
used the algorithm. This paper attempts to present the current algorithm in a more accessible
format in the hope that economists outside the Federal Reserve may also find it useful. In
addition, over the years there have been undocumented changes in approach that have improved
the efficiency and reliability of algorithm. This paper describes the present state of development
of this set of tools.

Draft: Revision1.8 – September 5, 2000 1

1 Introduction and Summary

George Moore and I developed this group of algo-
rithms to facilitate research and analysis activities
at the Federal Reserve.1 Economists at the Board
have an operational need for tools that are useful for
building, estimating and simulating moderate to large
scale rational expectations models. This context dic-
tates a need for careful attention to computational
efficiency and numerical stability of the algorithms.

The algorithms have proved very durable and use-
ful for staff at the central bank. The algorithm pro-
vides helpful diagnostic information at each stage of
the computation. Figure 1 presents a flow chart sum-
marizing the AIM algorithm.

Many economists at the federal reserve use the
algorithm in their daily work.(Bomfim, 1996; Fuhrer
and Moore, 1995a; Fuhrer and Moore, 1995b; Fuhrer
and Moore, 1995; Fuhrer and Madigan, 1997; Fuhrer,
1997b; Fuhrer, 1997a; Fuhrer, 1996; Fuhrer et al.,
1995; Fuhrer and Hooker, 1993; Fuhrer, 1994; Fuhrer,
1997c; Orphanides et al., 1997; Andrew et al., 1998;

1At the Board, economists commonly refer to this family
of algorithms as the AIM algorithm. A metaphor relating our
approach to the “shooting method” inspired the name.

Orphanides, 1998) Yet, few economists outside the
central bank seem to know about the method.

This paper attempts to make the method and ap-
proach more widely available by describing the the-
ory alongside its implementation. The “C”, Matlab,
Gauss and Mathematica code are available from the
author at

(http://www.bog.frb.fed.us/pubs/oss/oss4/aimindex.html).

The most distinctive features of this approach are:

• its algorithm for computing the minimal dimen-
sion state space transition matrix(See Section
6.1)

• its use of biorthogonality to characterize the
asymptotic constraints that guarantee stabil-
ity(See Section 2.2).

This results in a significant reduction in the size of the
eigenvalue calculations and an increase in reliability
of the results for most problems.

Although the ideas that make the algorithm work
are intuitive, an efficient implementation requires some
subtle features. Experience with the algorithm has
inspired some modifications, extensions and improve-
ments in the original algorithm described by Ander-
son and Moore(Anderson and Moore, 1985). These
include:

1

Draft: Revision1.8 – September 5, 2000 2

• Development of a symbolic algebra version of
the algorithm

• Use of QR-Decomposition for rank determina-
tion

• Techniques for accommodating unit roots

This paper describes the new implementation of the
algorithm.

Economists at the Federal Reserve routinely use
these algorithms for solving system of equations with
dozens of variables each with dozens of lags and leads.
Other authors(Binder and Peseran, 1995; Zadrozny,
1996; Sims, 1996) have contributed solutions for these
types of problems. By exploiting the structure of
the problem and doing calculations in place where
possible, the algorithm limits the cost of adding lags
and leads to the model better than these alternative
approaches. The number of floating point operations
increases with the cube of the number of variables
in the state space. In contrast to other approaches,
the number of floating point operations only increases
with the square of the number of lags and leads.

This paper describes how one can apply widely
available numerical routines from LAPACK to effi-
ciently and reliably attack each phase of the problem.
In addition, the example shows how symbolic algebra
programs can exploit the same solution strategy to
get closed form solutions for some dynamic models.

Section 2.1 describes the procedures for comput-
ing the state space transition matrix. Section 2.2
shows how to obtain asymptotic linear constraints
and how to apply the constraints for stability. Sec-
tion A presents floating point operation counts for
each phase of the algorithm. Section 7.1 presents the
results of numerical experiments with the algorithm.

2 The Algorithms

Problem Statement

θ∑
i=−τ

Hixt+i = Ψzt, t = 0, . . . ,∞ (1)

with initial conditions, if any, given by con-
straints of the form

xi = xdata
i , i = −τ, . . . ,−1 (2)

where both τ and θ are non-negative, and xt is
an L dimensional vector with

lim
t→∞ ‖xt‖ =< ∞ (3)

The paper describes several algorithms for ana-
lyzing and solving various apsects of this problem.

Algorithm 1 Given structural model matrices,
Hi, i = −τ, . . . , θ, determine a matrix Zf of aux-
iliary initial conditions and a transition ma-
trix A such that the xt satisfying

Zt

xt−τ

...
xt+θ−1

 = 0

xt−τ+1

...
xt+θ

 = A

xt−τ

...
xt+θ−1

satisfy the linear homogeneous system(See Sec-
tion 2.1).

Algorithm 2 Given a transition matrix, A, and
auxiliary initial conditions, Zf , determine an
asymptotic constraints matrix, Q, such that

Q

xt−τ

...
xt+θ−1

 = 0 =⇒ lim

k→∞
‖xt+k‖ < ∞

for all xt satisfying the linear homogenous sys-
tem(See Section 2.2).

Algorithm 3 Given an asymptotic constraints
matrix, Q, determine the existence and unique-
ness of convergent autoregression matrices, Bi, i =
−τ,−1, such that

xt =
−1∑

i=−τ

Bixt+i

satisfies the linear homogeneous system and
limk→∞ ‖xt+k‖ =< ∞(See Section 2.2).

Algorithm 4 Given structural model matrices,
Hi, i = −τ, . . . , θ and Ψ, convergent autoregres-
sion matrices Bi, i = −τ,−1 determine the exis-
tence and uniqueness of inhomogeneous factor
matrices, Φ and F such that

xt =
−1∑

i=−τ

Bixt+i +
[
0 . . . 0 I

] ∞∑
s=0

(F s

[
0

ΦΨzt+s

]
)

satisfies the linear inhomogeneous system(See
Section 3).

2

Draft: Revision1.8 – September 5, 2000 3

Algorithm 5 Given structural model matrices,
Hi, i = −τ, . . . , θ and Ψ, convergent autoregres-
sion matrices Bi, i = −τ,−1, expectations for
the exogenous factors, E[zt+s|It], s = 0, . . . ,∞,
convergent autoregression matrices, Bi, i = −1 . . . ,−τ
and inhomogeneous factor matrices, Υ and Φ
and setting

E[xt+k|It] =
−1∑

i=−τ

BiE[xt+k+i|It]

+
[
0 . . . 0 I

] ∞∑
s=0

(F s

[
0

ΦΨE[zt+k+s|It]

]
),

k = 0, . . . ,∞

determine the existence and uniqueness of an
observable structure matrix,S, and stochastic
transition matrices ϕ, % such that

εt = S

xt−τ

...
xt

xt−τ+1

...
xt

 = %

xt−τ

...
xt−1

 + ϕ

[
εt + ΨE[zt|It]

]

(See Section 4).

Saddle point problems combine initial conditions
and asymptotic convergence to identify their solu-
tions. The uniqueness of solutions to system 6 re-
quires that the transition matrix characterizing the
linear system have an appropriate number of explo-
sive and stable eigenvalues(Blanchard and Kahn, 1980),
and that the asymptotic linear constraints are lin-
early independent of explicit and implicit initial conditions(Anderson
and Moore, 1985).

The solution methodology entails

1. using equation 6 to compute a state space tran-
sition matrix.

2. Computing the eigenvalues and the invariant
space associated with large eigenvalues

3. Combining the constraints provided by:

(a) the initial conditions,

(b) auxiliary initial conditions identified in the
computation of the transition matrix and

(c) the invariant space vectors

Figure 1 presents a flow chart of the summarizing
the algorithm. For a description of a parallel imple-
mentation see (Anderson, 1997b) For a description of
a continuous time application see (Anderson, 1997a).

'
&

$
%Begin

?
Compute Unconstrained Autoregressive
Representation(H],∗, H[,∗) and Auxiliary

Initial Conditions(Z],∗, Z[,∗),
(See Section 2.1)

H −−−−→ {H],∗, H[,∗, Z],∗, Z[,∗}

?

Compute Convergence Constraint(V)
(See Section 2.2)

{H],∗, Z],∗, Z[,∗} −−−−→ V

?

Compute Asymptotic Constraints (Q),
(See Section 2.2)

{Z],∗, V } −−−−→ Q

?'
&

$
%End

Figure 1: Algorithm Overview

THE EXAMPLE:
The paper describe how to apply the algorithm to

the following model.(Sims, 1996)

3

Draft: Revision1.8 – September 5, 2000 4

wt =
1
N

Et[
n−1∑
i=0

Wt+i]− α(ut − un) + νt

Wt =
1
N

n−1∑
i=0

wt−i

ut = θt−1 + γWt + µ + εt

Et[νt+i] = Et[εt+i] = 0 ∀i ≥ 0

In Section 2, N = 2. Section 7.1, explores the rela-
tionship between N and computation time.

2.1 Algorithm 1 State Space Transi-
tion Matrix Computation

The first phase of the algorithm applies full rank lin-
ear transformations to the original linear system to
express xt+θ in in terms of xt−τ . . . xt+θ−1. This algo-
rithm generalizes and implements a procedure known
as the shuffling algorithm.(Luenberger, 1978) It pro-
duces an autoregressive representation for the evo-
lution of the components of the state space vectors
along with a set of vectors that provide implicit initial
conditions. Section 6.1 will explain the importance of
the latter set of vectors.

Given a system

[
H]∗
−τ . . . H]∗

θ

]

x−τ

...
xθ

 = 0

with H]∗
θ non singular. Let

Γ] = −(H]∗
θ)−1

[
H]∗
−τ . . . H]∗

θ−1

]
(4)

Then

xθ = Γ]

x−τ

...
xθ−1

This unconstrained auto-regression in xt provides
exactly what one needs to construct the state space
transition matrix.

A] =
[
0 I
Γ]

]

so that

x−τ+1

...
xθ

 = A

x−τ

...
xθ−1

Algorithm 1 transforms an equation system like
equation 6 into an equivalent system of the form given
in Equation 4. The process of transformation gen-
erates auxiliary initial conditions that the dynamic
system must obey in addition to the explicit initial
conditions in equation system (6-3).

Figure 2 presents a flow chart for an algorithm for
computing the components of the state space transi-
tion matrix and the auxiliary initial conditions(shift
right equations).

Figure 3 presents a graphic characterization of the
relevant sets of linear constraints. In the figure the
regions where the coefficients are potentially non-zero
are shaded gray. If H],0

θ is singular, one can find a
linear combination of the rows which preserves the
rank of H],0

θ but which annihilates one or more of its
rows. Consequently, one can pre-multiply the matri-
ces presented in Figure 3 to get the distribution of
zeros displayed in Figure 4.

One can regroup the rows in the new tableau to
get H],1. By construction, the rank of H],1

θ can be
no less than the rank of H],0

θ . One can prove that
repeating this process of annihilating and regrouping
rows ultimately produces an H],k = H],∗ with H],∗

θ

non-singular.

Algorithm 1

1 Given H ,
2 compute the unconstrained autoregression.
3 funct F1(H) ≡
4 k := 0
5 Z0 := ?
6 H0 := H
7 Γ = ?
8 while Hk

θ is singular ∩ rows(Zk) < L(τ + θ)
9 do

10 Uk =
[
Uk

Z

Uk
N

]
:= rowAnnihilator(Hk

θ)

11 Hk+1 :=
[

0 Uk
ZHk

τ . . . Uk
ZHk

θ−1

Uk
NHk

τ . . . Uk
NHk

θ

]

12 Zk+1 :=
[Qk

Uk
ZHk

τ . . . Uk
ZHk

θ−1

]
13 k := k + 1
14 od
15 Γ = −H−1

θ

[
H−τ . . . Hθ−1

]
16 A =

[
0 I

Γ

]
17 return{[Hk

−τ . . . Hk
θ

]
, A,Zk}

18 .

4

Draft: Revision1.8 – September 5, 2000 5

'
&

$
%Begin

?

k := 0

?
Initialize Auxiliary Initial Conditions:

Z0 := ?
Initialize Equivalent Linear Sytem

H0 := H

?

���������

HHHHHHHHH

���������

HHHHHHHHH

Hk
θ Full Rank

or
rows(Zk) ≥ L(τ + θ)

Yes

No

-

'
&

$
%

Return
{[Hk

−τ . . . Hk
θ

]
, (Γ, or ?),Zk}

?
Determine a Non-singular matrix

Uk :=
[
Uk

Z

Uk
N

]
that annihilates L− r(Hk

θ) Rows of Hk
θ

?
Shift Rows Right

Set Hk+1 :=
[

0 Uk
ZHk

τ . . . Uk
ZHk

θ−1

Uk
NHk

τ . . . Uk
NHk

θ

]

?
Augment Auxiliary Initial Conditions

Set Zk+1 :=
[Qk

Uk
ZHk

τ . . . Uk
ZHk

θ−1

]

?

k := k + 1

-

Figure 2: Algorithm to Compute Unconstrained Auto-regression: Algorithm 1:F1(H)

5

Draft: Revision1.8 – September 5, 2000 6

τ + θ

H],0

Figure 3: Matrix Tableau Characterization of Algorithm: Initial Tableau

Theorem 1 Let

H =

2
6664

H−τ . . . Hθ

H−τ . . . Hθ

. . .

H−τ . . . Hθ

3
7775

9>>>=
>>>;

τ+θ+1

There are two cases:

• When H is full rank the algorithm ter-
minates with Z]∗(Z[∗) and non-singular
H]∗

θ (H[∗
τ)

• When H is not full rank the algorithm
terminates when some row of

[Hk−τ . . .Hk
θ

]
is zero.

Proof Consider the case when H is full
rank. Each step of the algorithm applies
a rank preserving pre-multiplication by a
nonsingular matrix. Each step of the al-
gorithm where H],k

θ is singular, increases
the row rank of Z],k by one. At each step
Z],k are full rank. The rank of Z],k can-
not exceed L(τ + θ).

�

Annihilating and regrouping rows ultimately produces
H],∗. Figure 5 displays a potential terminal tableau
for the example model. There are many potential
choices for annihilating the rows of the H matrices,
but they all produce linear systems imposing equiva-
lent constraints on the trajectories of the model vari-
ables.

The following corollary indicates that models with
unique steady-states always terminate with non sin-
gular H],∗

θ .

Corrolary 1 If (
∑θ

i=−τ Hi) is non singular then

1. H is full rank.

2. The origin is the unique steady state of
equation6.

3. there exists a sequence of elementary row
operations that transforms H into H∗

Proof Suppose H Then there is a non
zero vector V 3 VH = 0. Consequently,

[
V−τ . . . Vθ

]H

I . . . I
... . . .

...
I . . . I

 = 0

6

Draft: Revision1.8 – September 5, 2000 7

H],1

Z],1 = F],1

Figure 4: Matrix Tableau Characterization of Algorithm: Forward Row Annihilation

and

Vi(
θ∑

j=−τ

Hj) = 0 ∀i

So that (
∑θ

i=−τ Hi) must be singular. �

This paper presents algorithms for efficiently ob-
taining the normal form characterized in Figure 6.

THE EXAMPLE:
The initial matrixH],0, for the example model with

variable order {ε, ν, u, w, W} is

H],0 =

0 0 0 0 0 0 −1 α 1 − 1
2 0 0 0 0 − 1

2
0 0 0 − 1

2 0 0 0 0 − 1
2 1 0 0 0 0 0

0 0 −θ 0 0 −1 0 1 0 −γ 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

We would like to express the time t + 1 variables in
terms of the time t and t − 1 variables. If the sub-
matrix corresponding to the t + 1 variables were non

singular we could immediately write:

εt+1

νt+1

ut+1

wt+1

Wt+1

 = (H],0

θ)−1
[
H],0
−1 H],0

0

]

ε−t+1

ν−t+1

u−t+1

w−t+1

W−t+1

εt

νt

ut

wt

Wt

Since (H],0
θ) is singular, we use equations dated

subsequent to the present time period to construct a
set of linear constraints where the leading block is non
singular.

H],? =

0 0 0 0 0 0 0 0 − 1

2 0 0 0 0 − 1
2

0 0 0 0 0 0 0 −θ 0 0 −1 0 1 0 −
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 α 1 − 1

2 0 0 0 0 −

So that

7

Draft: Revision1.8 – September 5, 2000 8

H],k with H],k
θ non-singular

Z],k

F],k

Figure 5: Matrix Tableau Characterization of Algorithm: Full Rank Leading Block

A =

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2γ ρ 2γ −γ
0 0 0 0 0 0 −4 4α 3 −2
0 0 0 0 0 0 −2 2α 2 −1

(5)

One can adapt the algorithm to compute

x−τ = Γ[

[
xθ

...x−τ+1

]

Section 6.1 explains the utility of exploiting the aux-
iliary initial conditions(shift left equations) of Z[∗.

Where with (H[,∗
θ)−1 non-singular:

Γ[= (H[,∗
θ)−1

[
H[,∗
−τ . . . H[,∗

θ−1

]
It is possible to express xτ in terms of leads of

the x’s. Figure 6 provides a graphical representa-
tion of the normal form associated with computing

these expressions. The State Space Reduction(see
Section 6.1) step of the algorithm exploits the con-
straints generated by constructing the non singular
block in both the forward and backward direction.

2.2 Invariant Space Calculations

In order to compute solutions to equation 6 that con-
verge, one must rule out explosive trajectories. Blan-
chard and Kahn(Blanchard and Kahn, 1980) used
eigenvalue and eigenvector calculations to character-
ize the space in which the solutions must lie. The
AIM algorithm exploits biorthogonality and the com-
putation of left invariant space vectors to constrain
the trajectories so that the solution cannot explode.

The asymptotic analysis exploits the fact that each
left eigenvectors is orthogonal to each right eigenvec-
tor associated with roots of different value. Since vec-
tors in the left invariant space associated with roots
outside the unit circle are orthogonal to right eigen-
vectors associated with roots inside the unit circle, a
given state vector that is part of a convergent trajec-
tory must be orthogonal to each of these left invariant
space vectors.

Theorem 2 Consider a left invariant space and

8

Draft: Revision1.8 – September 5, 2000 9

a right invariant space with no eigenvalues in
common. Suppose V1 spans the left invariant
space and W2 spans the right invariant space.

V1A = T1V1

AW2 = W2T2

With eigenvalues of T1 6= T2. Then V1W2 = 0

Proof A right eigenvector xi and a left-
eigenvector yj corresponding to distinct
eigenvalues λi and λj are orthogonal.(Noble,
1969) The left invariant space vectors are
linear combination of the left eigenvectors
and the right invariant space vectors are
a linear combination of the right eigen-
vectors of the transition matrix raised to
some finite power.

V1 = β1

y1

...
yJ

W2 =
[
x1 . . . xK

]
α2

V1W2 = β1

y1

...
yJ

 [

x1 . . . xK

]
α2 = 0

�

Theorem 3 Let {xconv
t }, t = −τ, . . . ,∞ be a non

explosive solution satisfying equation 6. Let A
be the state space transition matrix for equa-
tion 6 and V be a set of invariant space vectors
spanning the invariant space associated with
roots of A of magnitude bigger than 1. Then
for t = 0, . . . ,∞

V

xconv
t−τ
...

xconv
t+θ−1

 = 0

Proof Using W , the left generalized
eigenvectors of A, one can employ the Jor-
dan Canonical Form of A to write

WHA = JWH

so that

At = (WH)−1J tWH

yt = Aty0

WHyt = J tWHy0

lim
t→∞ yt = 0 ⇒ lim

t→∞WHyt = 0

Consequently,

WH
i y0 = 0 ∀i 3 |Jii| > 1.

so that

V y0 = αWHy0 = 0

�

Thus, if A has roots with magnitude 1 then a path
converges to a limit cycle(or fixed point) if and only
if

V

xt−τ

...
xt+θ−1

 = 0

for some t.

Corrolary 2 Let {xt}, t = −τ, . . . ,∞ be a solu-
tion satisfying equation 6. If A has no roots
with magnitude 1 then the path converges to
the unique steady state if and only if

V

xt−τ

...
xt+θ−1

 = 0

for some t.

Proof

WH
i y0 = 0 ∀i 3 |Jii| > 1.

means yt

Jii 6= 1.

yt = Aty0

�

All convergent solutions converge to the same fixed
point.

Combining V and Z] completely characterizes the
space of stable solutions satisfying the linear system.

Theorem 4 Let

Q =
[
Z]

V

]
=

[
QL QR

]
The existence of convergent solutions depends
on the magnitude of the rank of the augmented
matrix

r1 = rank

([
I 0 xdata

QL QR 0

])

9

Draft: Revision1.8 – September 5, 2000 10

and

r2 = rank

([
I 0

QL QR

])

and L(τ + θ), the number of unknowns.

1. If r1 > r2 there is no nontrivial convergent
solution

2. If r1 = r2 = L(τ + θ) there is a unique
convergent solution

3. If r1 = r2 < L(τ + θ) the system has an
infinity of convergent solutions

Proof The theorem applies well known
results on existence and uniqueness of so-
lutions to linear equation systems(Noble,

1969). If M2 =
[
xdata

0

]
does not lie in

the column space of M1 =
[

I 0
QL QR

]
,

then there is no solution. If M2 lies in
the column space of M1 and the latter
matrix is full rank, then there is a unique
solution. If M2 lies in the column space
of M1 and the latter matrix is not full
rank, then there are multiple solutions.

�

The first set of equations come from the explicit
initial conditions. The second set of equations come
from the equations in equation system 6 which do
not appear in the transformed system of Equation
4 but must nevertheless be satisfied. The last set of
equations come from the constraint that the solutions
are non-explosive. There are three cases.

Corrolary 3 When Q has Lθ rows, QR is square.
If QR is non-singular, the system has a unique
solution and

B
B2

...
Bθ

 = Q−1

R QL

If QR is singular, the system has an infinity of
solutions.

Corrolary 4 When Q has fewer than Lθ rows,
The system has an infinity of solutions.

Corrolary 5 When Q has more than Lθ rows,
The system has a unique nontrivial solution
only for specific values of xdata

Algorithm 2

1 Given V, Z],∗,
2 funct F2(A, Z],∗)
3 Compute V , the vectors spanning the left
4 invariant space associated with eigenvalues
5 greater than one in magnitude

6 Q :=
[
Z],∗

V

]
7 returnQ
8 .

Algorithm 3

1 Given Q,
2 funct F3(Q)
3 cnt = noRows(Q)

4 return

{Q,∞} cnt < Lθ

{Q, 0} cnt > Lθ

{Q,∞} (QRsingular)
{B = −Q−1

R QL, 1} otherwise

5 .

THE EXAMPLE:
For the example model

Q =

0 0 0 − 1

2 0 0 0 0 − 1
2 1

0 0 −θ 0 0 −1 0 1 0 −γ
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 φ4 0 0 0 2 φ5 φ6 1

where the φ’s are defined in Table 1
For the example model

B =
1
φ7

0 0 0 0 0
0 0 0 0 0
0 0 θ − γφ4 + 2θφ6 γφ6 0
0 0 −2 (φ4 + θφ5) −1− γφ5 0
0 0 −φ4 − θφ5 φ6 0

The formulae in Table 2 indicates that the number
of floating operations depends on the size of A, the
dimension of the dominant invariant space, k−1, and
the relative sizes of the roots. Convergence is slower
and the number of floating point operations larger
if the magnitude of roots just inside the dominant
space is close to the magnitude of roots just outside
the dominant space.

For a given saddle point problem, the problem
specification dictates the dimension of the dominant

10

Draft: Revision1.8 – September 5, 2000 11

φ7 = 1 + γ φ5 + 2 φ6φ6 =
−2

(
18 αγ + (−1 + ρ)2 + (2 + ρ) φ2

1
3 + φ2

2
3

)
φ3

φ5=−
−1−3 α γ+3 ρ+21 α γ ρ−3 ρ2+ρ3+φ1+ 108 α2 γ2+(−1+ρ)4+6 α γ (−1+ρ) (1+5 ρ)+2 (−1+ρ) φ1

φ2
1
3

+(12 α γ+(−1+ρ)2)φ2
1
3

γ φ3

φ4 = −
3 αγ

(
216 α2 γ2 − 4 (−1 + ρ)3 + 9 αγ (1 + (−14 + ρ) ρ)

)
+ φ1

2

γ φ2
2
3 φ3

φ3 = 18 αγ + (−1 + ρ)2 + (5 + ρ) φ2
1
3 + φ2

2
3

φ2 = (−1 + ρ)3 + 27 αγ (1 + ρ) + 3 φ1

φ1 =
√
−

(
α γ

(
216 α2 γ2 − 4 (−1 + ρ)3 + 9 α γ (1− 14 ρ + ρ2)

))

Table 1: Q Matrix φ Definitions

space of interest, and the model parameters deter-
mine the root configuration. One can, however, stream-
line the computations by computing a similar matrix
and carrying out the eigenspace calculations on a sub-
matrix of the similar matrix and reconstructing the
invariant space vectors for the original matrix. The
algorithms in Section 6.1 show how to construct this
similarity transformation and how to recover the in-
variant space vectors for the original problem.

3 Inhomogeneous Solution

θ∑
i=−τ

Hixt+i = 0, t ≥ 0 (6)

with initial conditions, if any, given by constraints
of the form

xt = xdata
t , t = −τ, . . . ,−1 (7)

where both τ and θ are non-negative, and xt is an L
dimensional vector with

lim
t→∞xt = 0 (8)

Modelers can augment the homogeneous linear
perfect foresight solutions with particular solutions
characterizing stochastic elements or exogenous fac-

tors. Suppose

θ∑
i=−τ

Hixt+i = Ψzt, t ≥ 0

lim
t→∞xt = x∗

lim
t→∞ zt = z∗

with

θ∑
i=−τ

Hix
∗ = Ψz∗

The Q matrix plays a fundamental role in all sub-
sequent calculations. This set of linear restrictions
codifies all the constraints needed to guarantee the
existence and uniqueness of saddle point solutions.
These solutions provide a foundation for characteriz-
ing many other useful model solutions and properties.

Then one can use Q to write solutions in the form

(xt − x∗) =

[
BL BR

]

(xt−τ − x∗)
...

(xt−1 − x∗)

 +

[
0 . . . 0 I

] ∞∑
s=0

(F s

[
0

ΦΨzt+s

]
)

Where

B =

BL BR

...
...

Bθ
L Bθ

R

 = Q−1

R QL

11

Draft: Revision1.8 – September 5, 2000 12

Φ = (H0 + H+

BR

...
Bθ

R

)−1

F =

0 I
...

. . .
0 I

−ΦH+

0
...
0
I

 −ΦH+

0
...
I

BR

 . . . −ΦH+

I
BR

...
Bθ−1

R

When

zt+1 = Υzt

the infinite sum simplifies to give

(xt − x∗) =
[
BL BR

]

(xt−τ − x∗)

...
(xt−1 − x∗)

 + ϑzt

where

vecϑ =
[
0 . . . 0 I

]
(I −ΥT ⊗ F)−1vec

0
...
0

ΦΨ

B̃ =
[
0 I
B

]
Bk+1 = BkB̃

[
H− H0 H+

]

I
B
...

Bθ+1

 = 0

[
H− H0 H+

]

I

0 I
B
...

Bθ

 B̃

 = 0

H− + (
[
0 H0

]
+ H+

B
...

Bθ

)B̃ = 0

H− + (
[
0 H0

]
+ H+

BL BR

...
...

Bθ
L Bθ

R

)B̃ = 0

BL BR

...
...

Bθ
L Bθ

R

 B̃ =

0 BL

...
...

0 Bθ
L

 +

BR

...
Bθ

R

 B

H− + H+

0 BL

...
...

0 Bθ
L

 + (H0 + H+

BR

...
Bθ

R

)B = 0

Φ = (H0 + H+

BR

...
Bθ

R

)−1

ΦH− + ΦH+

0 BL

...
...

0 Bθ
L

 + B = 0

[
H− H0 H+

]

I 0
. . .

...
I 0

0 . . . 0 I

0

B
...

Bθ

xt+s−τ

...
xt+s

 = Ψzt+s

ΦΨzt+s =

Φ(
[
H− 0

]
+

[
0 H0

]
+

H+

0 BL

...
...

0 Bθ
L

 H+

BR

...
Bθ

R

)

xt+s−τ

...
xt+s

[−B I
]

xt+s−τ

...
xt+s

 = ΦΨzt+s

xt+s = B

xt+s−τ

...
xt+s−1

 + ΦΨzt+s

12

Draft: Revision1.8 – September 5, 2000 13

Φ(
[
H− 0

]
+

[
0 H0

]
+

H+

0 BL

...
...

0 Bθ
L

 H+

BR

...
Bθ

R

)

xt+s−τ−1

...
xt+s−1

 +

ΦH+

I
BR

...
Bθ−1

R

 ΦΨzt+s = 0

[−B I
]

xt+s−τ−1

...
xt+s−1

 + ΦH+

I
BR

...
Bθ−1

R

ΦΨzt+s = 0

xt+s−1 = B

xt+s−τ−1

...
xt+s−2

− ΦH+

I
BR

...
Bθ−1

R

ΦΨzt+s

xt+s−i = B

xt+s−τ−1

...
xt+s−2

 + (−ΦH+

I
BR

...
Bθ−1

R

)iΦΨzt+s

And by superposition

xt = B

xt−τ

...
xt−1

 +

∞∑
s=0

((−ΦH+

I
BR

...
Bθ−1

R

)sΦΨzt+s)

For constants(ie. inhomogeneous equation) re-
quire

(
θ∑

i=−τ

Hi)x∗ = 0

(xt − x∗) = B(xt−1 − x∗) +
∞∑

s=0

F ic

ϑ = (I − I ⊗ F)vec(φ)
(I −B)x∗ = ϑc

Algorithm 4

1 Given H, Ψ,
2 funct F4(H, Ψ, B)

3 Φ = (H0 + H+

BR

...
Bθ

R

)−1

4 F =

0 I
...

. . .
0 I

−ΦH+

0
...
0
I

 −ΦH+

0
...
I

BR

 . . . −ΦH+

I
BR

...
Bθ−1

R

5 return(Φ, F)
6 .

4 Observable Structure

4.1 “Aligned Information Set” Expec-
tation Error Calculations

These saddle point calculations often arise in ratio-
nal expectations models. To compute the error term
for estimation of the coefficients of these models, one
must commit to a particular information set. Two
typical choices are t and t-1 period expectations.

εt =
[
H−τ . . . H0

]

xdata
t−τ
...

xdata
t

 +

[
H1 . . .Hθ

]

E[xt+1|It]
...

E[xt+θ|It]

−Ψzt

Suppose ∃K∗ 3 xt−k ∈ It, ∀k ≥ k∗

then set,

E[xt+1|It]
...

E[xt+θ|It]

 =

B
...

Bθ

 B̃k∗

xdata

t−τ+1−k∗
...

xdata
t−k∗

 +

∑∞
s=0((−ΦH+

I
BR

...
Bθ−1

R

)sΦΨzt+s+1)

...

∑∞
s=0((−ΦH+

I
BR

...
Bθ−1

R

)sΦΨzt+s+θ)

εt = S

xdata

t−τ+1−max(1,k∗)
...

xdata
t

−Ψzt

13

Draft: Revision1.8 – September 5, 2000 14

where

S =
[
0L×L max(1,k∗) H−τ . . . H0

]
+

[
H1 . . . Hθ

]

B
...

Bθ

 B̃k∗ 0L×L max(1,k∗)

Note that for k∗ ≥ 1

∂εt

∂xdata
t

= H0

and for k∗ = 0

∂εt

∂xdata
t

= H0 +
[
H1 . . . Hθ

]

B
...

Bθ

 = Φ−1

Algorithm 5

1 Given H, Ψ,B
2 funct F5(H, Ψ, B)
3 return(%, ϕ)
4 .

5 Unit Roots or Constant Growth

Theorem 5 Suppose we have for some scalar
valued variable yt,

θ∑
i=−τ

Hixt+i −Gyt

yt = gyt−1

then solving the system

θ∑
i=−τ

giHix̄t+i

determines the evolution of xt

x̄∗ = (
θ∑

i=−τ

giHi)−1G

Q(x̄t − x̄∗t) = 0

xt+k = gk+1yt−1x̄t+k

The scalar g may be bigger than one in magnitude.

6 Implementation

The following sections describe the symbolic alge-
bra and numeric algebra implementations of the rou-
tines. The design of the numeric algebra routines
must take care due to the computation with finite pre-
cision arithmetic. These routines rely on unitary ma-
trices to limit rounding error. The symbolic algebra
routines can often use infinite precision arithemetic
and often work faster avoiding routines that renor-
malize linear equations.

6.1 State Space Reduction

One can use vectors associated with zero eigenvalue
and the vectors associated with unit roots to reduce
the size of the eigenspace calculation. State space re-
duction renders the transition matrix full rank and
also typically reduces the dimension by 2/3. Con-
sequently, the computational burden reduces to 1/9
that of the original problem. Thus, given A, Z one
can obtain eigenvalues and invariant space vectors
from Ā and then recover invariant space vectors,V ,
for A.

Algorithm 6

1 Given Γ],∗, Z],∗, Z[,∗,
2 compute vectors spanning the left invariant
3 space associated with large eigenvalues
4 funct F6(Γ],∗, Z],∗, Z[,∗)

5 A :=
[
0 I
Γ]

]
6 {Ā, Π, J0} = stateSpaceReducer(A, Z],∗, Z[,∗)
7 {V̄ , M} := leftInvariantSpaceVectors(Ā)
8 V = stateSpaceExpander(V̄ , M, Π, J0)
9 .

6.1.1 Zero Invariant Space

Theorem 6 The Z]
∗, Z[∗ span the invariant space

associated with zero eigenvalue.[
Z]
∗

Z[∗

]
AL(τ+θ) = 0

Proof

Aτ+θ =

Γ1

Γ2
1
...

Γτ+θ−1
1

[
Γτ+θ Γ1

]

�

14

Draft: Revision1.8 – September 5, 2000 15

Consider the Row Echelon form

Z = RT
Z

[
Z]
∗

Z[
∗

]

The rank deficiency of this matrix is equal to the
rank of the minimal dimension transition matrix for
calculating the eigenvalues and eigenvectors of the
full problem.

To construct the state space reduction, extend Z
to a basis for the whole space.(Noble, 1969, page 119)

[
Z
Z̄

]

We have then

ZA = J0Z

and
[
Z
Z̄

]
non-singular.

Consequently, after defining Zl, Zr, Z̄l, Z̄r from

[
Z
Z̄

]−1

=
[
Zl Zr

Z̄l Z̄r

]

we have [
Z
Z̄

]
A

[
Zl Zr

Z̄l Z̄r

]

=
[
J0 0
Π Ā

]

with

Π = (Z̄A

[
Zl

Z̄l

]
)

Ā = (Z̄A

[
Zr

Z̄r

]
)

Theorem 7 Suppose

Y Ā = MY

so that Y spans the invariant space associated
with the eigenvalues of M, one can compute X
with

[
X Y

]
spans the dominant invariant space of A. From

vec(X) = ((I ⊗M)− (JT
0 ⊗ I))−1(ΠT ⊗ I)vec(Y)

Proof

Consequently, if we compute

Y Ā = MY

so that Y spans the invariant space asso-
ciated with the eigenvalues of M, one can
compute X with

XJ0 + Y Π = MX

So that

[
X Y

]
spans the dominant invariant space of A.
Solving for X we have

vec(X) = ((I ⊗M)− (JT
0 ⊗ I))−1(ΠT ⊗ I)vec(Y)

since

vec(ABC) = (CT ⊗A)vec(B)

V =
[
X Y

]
�

Algorithm 7

1 Given h, H ,
2 asymptotic stability constraints
3 funct F7(V, Z],∗)
4 .

THE EXAMPLE:
Collecting the auxiliary constraints generated by

the auto regression phase of the algorithm for the ex-
ample model one has:

[
Z]
∗

Z[∗

]
=

0 0 0 − 1
2 0 0 0 0 − 1

2 1
0 0 −θ 0 0 −1 0 1 0 −γ
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 −1 α 1 − 1

2 0 0 0 0 − 1
2

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0

15

Draft: Revision1.8 – September 5, 2000 16

One can extend the basis to get a non singular ma-
trix.2

[
Z
Z̄

]
=

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 − 1

θ 0 γ
θ

0 0 0 1 0 0 0 0 1 −2
0 0 0 0 1 0 0 −2α

θ 2 2αγ−3θ
θ

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

A =

 ρ 2γ −γ

4α 3 −2
2α 2 −1

For this model, we expect one large root. Conse-
quently, M =

[
λL

]
, a 1× 1 matrix.

Π =

0 0 0 0 0 0 −2γ
0 0 0 0 0 0 −4
0 0 0 0 0 0 −2

J0 =

0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −8 + 4αγ

θ − 2(2αγ−3θ)
θ

0 0 0 0 0 0 0
0 0 0 0 0 0 0

((I ⊗M)− (JT
0 ⊗ I))−1(ΠT ⊗ I) =

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
−2γ
λL

−4
λL

−2
λL

6.2 Implementation of State Space Tran-
sition Matrix Computation

One can calculate these matrix transformation on a
single copy of the H],k saving on unnecessary repe-
tition of the coefficients present in the full tableau.
Furthermore, for many models, leading rows of spe-
cific equations may be zero. One should immediately
fill in initial rows of Z] with these obvious shift right
equations.

2The top rows are just the row-echelon form of the
Z],∗, Z[,∗ vectors.

6.2.1 Symbolic Algebra Implementation

In symbolic algebra packages using exact arithmetic,
there is no need to worry about roundoff error and
one can compute the row-echelon form of an aug-
mented H],k to determine rank and to obtain matri-
ces for annihilating its rows(Noble, 1969, page 119).
By augmenting the matrix with columns of the iden-
tity matrix, one obtains a full rank matrix that either
inverts H],k or zeroes some of its rows.

rowEchelon(
[
H],k I

]
=

[
R U],k

]
)

6.2.2 Numeric Implementation

For numerical computations one should use the nu-
merically stable unitary matrices generated by QR
Decomposition with column pivoting to annihilate
rows. Note that one can facilitate subsequent ap-
plications of the routines for QR Decomposition by
putting the shifted rows corresponding to the anni-
hilated rows at the top of the matrix. Then, H],k+1

will be closer to Hessenberg form. QR Decomposition
works faster on Hessenberg matrices. Indeed if only
one row was annihilated, the new matrix will be in
Hessenberg form.

With the final QR decomposition in hand, it will
not be necessary to invert H],∗

θ = Q],∗R],∗. Since R],∗

will be upper triangular and (Q],∗)−1 = (Q],∗)T , we
can back solve and multiply to get the columns of Γ.

The construction of the companion matrix leads
to a very sparse matrix. Note the sparsity of the tran-
sition matrix for the example problem in Equation 5.
Section 6.1 shows how to construct a reduced dimen-
sions non-singular matrix for studying the asymptotic
dynamics of the linear system.

Floating point operation counts in Section 6.1 demon-
strate the utility of computing these auxiliary con-
straints in both directions. Section 6.1 shows how
to use the vectors, that arise from computing the au-
toregressive representations, Z],∗, Z[,∗, to construct a
similarity transformation which makes it possible to
compute the non zero eigenvalues and eigenvectors
of the transition matrix with much smaller matrices.
This can be very important for large sparse models
since, as Section 2.2 shows, the computational burden
of the asymptotic analysis increases with the cube of
the problem size.

6.3 Implementation of the Invariant Space
Computation

Numerical routines for computing the invariant space
order the eigenvalues large to small and compute in-
variant space vectors for the dominant invariant space

16

Draft: Revision1.8 – September 5, 2000 17

H],k with H],k
θ non-singular

Z],k

F],k

H[,k with H[,k
θ non-singular

Z[,k

F [,k

Figure 6: Matrix Tableau Characterization of Algorithm: Full Rank Trailing Block and Leading Block

(ie the invariant space associated with the largest
eigenvalues). Invariant space vectors spanning the
invariant space are generally easier to compute than
eigenvectors. In subsequent calculations, one can choose
the invariant space calculation dimension to be one
more than the dimension of the required invariant
space. Although root counting alone cannot discover
all model anomalies, often a modeler knows enough
about the problem to infer from the root count whether
the model seems appropriate for further analysis. If
this is the case, one can intervene after the Schur de-
composition of the transition matrix to abort further
calculations.

6.3.1 Symbolic Algebra Implementation

All is not lost when symbolic algebra packages fail to
compute the entire set of eigenvectors in a reasonable
amount of time. Symbolic algebra packages can of-
ten quickly obtain expressions for the eigenvalues of
the matrices. Having identified which of these corre-
sponds to the large eigenvalues, one can compute the
relevant eigenvectors by computing vectors for the
null space of (AT − λI).

6.3.2 Numeric Implementation

The LAPACK routine DGEES computes the real-
Schur form and the matrix of Schur vectors forming
an orthonormal basis for the dominant invariant sub-
space of a real matrix A. Given an integer m, the
algorithm computes a matrix V with m orthonormal
columns and a real quasi triangular matrix T of order
m such that

V A = TV

The eigenvalues of T are approximations to the m
largest eigenvalues of A. The columns of V span the
invariant subspace corresponding to those eigenvalues
of A. Alternatively, the routine dnaupd in ARPACK
applies Krylov methods for computing the invariant
space vectors.

6.4 Implementation of the State Space
Reduction

For symbolic computation, one can compute the row-
echelon form and use the technique outlined in Noble
to extend the rows to a basis. The most computation-
ally intensive step will involve symbolic computation
of the inverse.

17

Draft: Revision1.8 – September 5, 2000 18

For numerical calculations one can avoid a costly
matrix inversion by computing the QR Decomposi-
tion

QZRZ =
[
(Z],∗)T (Z[,∗)T

]
and to use the orthonormal columns of QT for Z.
Compute

ZT = QZRZ

¯̄Z
T

= QZQT
Z − I

¯̄Z
T

= QZ̄RZ̄

Z̄ = QT
Z̄

Thus, the transpose provides the inverse of the
matrix.

Now [
Z
Z̄

]−1

=
[
Z
Z̄

]T

=
[
Zl Zr

Z̄l Z̄r

]

7 Numerical Experiments

7.1 Total Floating Point Operation Counts

The number of floating point operations provides one
measure of the computational cost of the calculations:

Computing the state space transition matrix re-
quires:

TMFLOPS = L3

(
4
3

+ 26 (τ + θ) + 3 (τ + θ)2
)

The eigenvalue calculations require:

ESFLOPS =
14 (−l + L (τ + θ))3

3
+

12 k (−l + L (τ + θ)) (−k − l + L (τ + θ)) +

−
(
k

(
2 k2 + 6 k (l − L (τ + θ))− 3 (l− L (τ + θ))2

)
f(λk

λ−1+k
)
)

3

The algorithms for reducing the eigenvalue calcula-
tions require:

REDFLOPS =

−2 L (τ + θ)
(
3 l2 + 3 l L (τ + θ)− 8 L2 (τ + θ)2

)
3

The gain from applying the reductions are:

DELTAFLOPS =
1
3
(

2(−18 k2 l + 7 l3 − 18 l2 L (τ + θ) +

24 l L2 (τ + θ)2−8 L3 (τ + θ)3−18 k l (l − 2 L (τ + θ)))+

3 k l (2 k − l + 2 L (τ + θ)) f(
λk

λ−1+k
))

The example model produces 4(N − 1) auxiliary
initial conditions for the forward transition matrix,
4(N−1)−1 ∀N > 1 auxiliary initial conditions for the
reverse transition matrix so that the zero invariant
subspace has dimensions 8(N −1)−1. Consequently,
the minimal dimension transition matrix has dimen-
sion 2N−1. We can carry out eigenvalue calculations
on a matrix of size 2N − 1 instead of 8(N − 1). This
can significantly reduce computation time since the
floating point operations increase with the square of
the matrix dimension.3

With α = 2, γ = 1
10 , θ = − 1

5 , there are (N − 1)
roots larger than 1 in magnitude. Consequently, the
algorithm determines that the model has a unique so-
lution converging to the steady state from arbitrary
initial conditions so long as Q−1

R is full rank. For ex-
ample, with N = 2 there are 1 roots larger than 1
in magnitude. 4 auxiliary initial conditions for the
forward transition matrix, 3 auxiliary initial condi-
tions for the reverse transition matrix for a total of
7 dimension for the zero invariant subspace. Conse-
quently, the minimal dimension transition matrix has
dimension 3.

The graph in Figure7 demonstrates that the ben-
efits from problem reduction dominate the costs for
all values of N and for all values of λk

λk−1
Increasing N

increases the computational burden much more dra-
matically than changes in the rate of convergence.

References

Anderson, Gary (1997a). Continuous time applica-
tion of the anderson-moore(aim) algorithm for
imposing the saddle point property in dynamic
models. Unpublished Manuscript, Board of Gov-
ernors of the Federal Reserve System. Download-
able copies of this and other related papers at
http://www.bog.frb.fed.us/pubs/oss/oss4/aimindex.html.

3For N = 1, the larger matrix is of dimension N and one
can use the auxiliary initial conditions to demonstrate that all
the eigenvalues are less one in magnitude without eigenvalue
calculations.

18

Draft: Revision1.8 – September 5, 2000 19

2
3

4
5

6
7

N

0

20

40

60

80

100

cnvFctr
0

100000

200000FLOPS

2
3

4
5

6
N

Figure 7: Reduction in Floating Point Operations as
a Function of N

Anderson, Gary (1997b). A parallel programming im-
plementation of the anderson-moore(aim) algo-
rithm. Unpublished Manuscript, Board of Gov-
ernors of the Federal Reserve System. Download-
able copies of this and other related papers at
http://www.bog.frb.fed.us/pubs/oss/oss4/aimindex.html.

Anderson, Gary and George Moore (1983).
An efficient procedure for solving lin-
ear perfect foresight models. Unpublished
Manuscript, Board of Governors of the
Federal Reserve System. Downloadable
copies of this and other related papers at
http://www.bog.frb.fed.us/pubs/oss/oss4/aimindex.html.

Anderson, Gary and George Moore (1985). A lin-
ear algebraic procedure for solving linear perfect
foresight models. Economics Letters.

Andrew, Levin, John Williams and Volker Wieland
(1998). Are simple rules robust under model un-
certainty?. Seminar Paper.

Binder, Michael and M. Hashem Peseran (1995).
Handbook of Applied Econometrics. Chap. Mul-
tivariate Rational Expectations Models and
Macroeconometric Modelling: A Review and
Some New Results. Unknown.

Blanchard, Olivier Jean and C. Kahn (1980). The so-
lution of linear difference models under rational
expectations. Econometrica.

Bomfim, Antulio N. (1996). Forecasting the fore-
casts of others: Expectational heterogeneity and
aggregate dynamics. Technical Report 1996-31.
Federal Reserve Board, Finance and Economics
Discussion Series.

Fuhrer, Jeffrey C. (1994). Optimal Monetary Pol-
icy and the Sacrifice Ratio. In: ‘Goals, Guide-
lines, and Constraints Facing Monetary Poli-
cymakers’, (Jeffrey C. Fuhrer, Ed.). pp. 43–69.
Federal Reserve Bank of Boston Conference Se-
ries No. 38.

Fuhrer, Jeffrey C. (1996). Monetary Policy Shifts and
Long-term Interest Rates. Quarterly Journal of
Economics 111, 1183–1209.

Fuhrer, Jeffrey C. (1997a). Inflation/Output Vari-
ance Trade-offs and Optimal Monetary Policy.
Journal of Money Credit and Banking 29, No.
2, 214–234.

Fuhrer, Jeffrey C. (1997b). The (Un)Importance of
Forward-Looking Behavior in Price Specifica-
tions. Journal of Money Credit and Banking 29,
No. 3, 338–350.

Fuhrer, Jeffrey C. (1997c). Towards a Com-
pact, Empirically-Verified Rational Expecta-
tions Model for Monetary Policy Analysis.
Carnegie-Rochester Conference Series on Public
Policy p. forthcoming.

Fuhrer, Jeffrey C. and Brian Madigan (1997). Mon-
etary Policy When Interest Rates are Bounded
at Zero. Review of Economics and Statistics 79,
No. 4, 573–585.

Fuhrer, Jeffrey C. and George R. Moore (1995).
Forward-Looking Behavior and the Stability of a
Conventional Monetary Policy Rule. Journal of
Money Credit and Banking 27, No. 4, 1060–70.

Fuhrer, Jeffrey C. and George R. Moore (1995a).
Inflation Persistence. Quarterly Journal of Eco-
nomics 110, 127–159.

Fuhrer, Jeffrey C. and George R. Moore (1995b).
Monetary Policy Trade-Offs and the Correlation
Between Nominal Interest Rates and Real Out-
put. American Economic Review 85, 219–239.

Fuhrer, Jeffrey C. and Mark W. Hooker (1993).
Learning About Monetary Regime Shifts in an

19

Draft: Revision1.8 – September 5, 2000 20

Overlapping Wage Contract Economy. Journal
of Economic Dynamics and Control 17, 531–
553.

Fuhrer, Jeffrey C., George Moore and Scott Schuh
(1995). A Comparison of GMM and Maximum-
Likelihood Estimates of Quadratic Cost Inven-
tory Models. Journal of Monetary Economics
35, 115–157.

Golub, Gene H. and Charles F. van Loan (1989). Ma-
trix Computations. Johns Hopkins.

Luenberger, David G. (1978). Time-invariant descrip-
tor systems. Automatica 14, 473–480.

Noble, Ben (1969). Applied Linear Algebra. Prentice-
Hall, Inc.

Orphanides, Athanasios (1998). Monetary policy
evaluation with noisy information. Technical Re-
port 98-50. Finance and Economics Discussion
Series.

Orphanides, Athanasios, David Small, David Wilcox
and Volker Wieland (1997). A quantitative ex-
ploration of the opportunistic approach to dis-
inflation. Technical Report 97-36. Finance and
Economics Discussion Series, Board of Gover-
nors, Federal Reserve.

Sims, Christopher A. (1996). Solving linear rational
expectations models. Seminar paper.

Zadrozny, Peter A. (1996). An eigenvalue method of
undetermined coefficients for solving linear ra-
tional expectations models. Seminar Paper.

A Floating Point Operation Counts

A.1 General Floating Point Operation
Counts

The following sections use the total number of float-
ing point operations as a measure of the amount of
computation that various algorithms require. Table
2 summarizes a number of results from Golub(Golub
and van Loan, 1989) that appear in this paper.

A.2 Unconstrained Autoregression Float-
ing Point Operation Counts

The AIM algorithm requires at most

L3

(
4
3

+ 26 (τ + θ) + 3 (τ + θ)2
)

floating point operations to produce the autoregres-
sive representation, Γ. Table 3 reports the floating
point counts by type of operation. The rank of H],0

θ

can be at most L. For typical problems, the rank,
after shifting obvious equations forward, is nearly L.
There can be at most L(τ + θ) shifted equations but
this number is typically about equal to Lθ.

A.3 Eigenspace Calculation Floating Point
Operation Counts

When there are l rows in
[
Z],∗

Z[,∗

]
, and the problem

requires a dominant invariant space of dimension k
the DRRIT algorithm requires:

14 L3 (τ + θ)3

3
+

L2
(
12 k (τ + θ)2 − 14 l (τ + θ)2

)
+

L
(−12 k2 (τ + θ)− 24 k l (τ + θ) + 14 l2 (τ + θ)

)
+

12 k2 l + 12 k l2 − 14 l3

3
+

f(
λk

λ−1+k
)(

−2 k3

3
− 2 k2 l + k l2 +

k + L2 + (τ + θ)2 +
L + 2 k2 (τ + θ)− 2 k l (τ + θ))

Table 4 presents details for components of the algo-
rithm.

A.4 Space Reduction Floating Point
Operation Counts

If l is the number of rows in Z, the number of floating
point operations in the reduction is:

−2 l2 L (τ + θ)− 2 l L2 (τ + θ)2 +
16 L3 (τ + θ)3

3

B Proofs

Theorem 1 If H is full rank, then there exists
a sequence of elementary row operations that

20

Draft: Revision1.8 – September 5, 2000 21

Floating Point Operations Auxiliary Routine
Matrix Multiplication

2 m n p DGEMM(BLAS))
LU Decomposition

2 n3

3 DGETRF(LAPACK))
LU Decomposition Back-solution

n2 DGETRS(LAPACK))
QR Decomposition(with Pivoting)

4 r (3 n2−3 n r+r2)
3 DGEQPF(LAPACK)

QR Decomposition(rank 1 update)
26 n2 DLARTG(LAPACK)

Compute Dominant Invariant Subspace

14 n3

3 + 12 k n (−k + n)− k (2 k2−6 k n−3 n2) f(
λk

λ−1+k
)

3 DRRIT

Table 2: Floating Point Operation Counts

Operation Floating Point Operations

Initial QR Decompositiona 4 r (3 L2−3 L r+r2)
3

QR Rank One Update 26 L2

Multiplication to Annihilate Rows L2 (τ + θ)
Compute Γ 2 L2 (τ + θ)

Max Total L3
(

4
3 + 26 (τ + θ) + 3 (τ + θ)2

)
Table 3: Floating Point Operations to Compute Autoregressive Representation

ar matrix rank

Operation Floating Point Operations
Hessenberg Reduction Step 14 n3

3

Eigenvalue Swaps 12 k n (−k + n)
Orthogonal Iteration Step −2 k2 (k−3 n)

3 + n2 min(k, n)
Total

14 L3 (τ + θ)3

3
+

L
2 �

12 k (τ + θ)2 − 14 l (τ + θ)2
�

+

L
�
−12 k

2 (τ + θ) − 24 k l (τ + θ) + 14 l
2 (τ + θ)

�
+

12 k
2

l + 12 k l
2 −

14 l3

3
+

0
@−2 k3

3
− 2 k

2
l + k l

2 + k L
2 (τ + θ)2 + L

�
2 k

2 (τ + θ) − 2 k l (τ + θ)
�1A f(

λk

λ−1+k

)

Table 4: Invariant Space Calculations Floating Point Operation Count

21

Operation Floating Point Operations

Z QR Decomposition
4 l (l2−3 l L (τ+θ)+3 L2 (τ+θ)2)

3

Z̄ QR Decomposition
4 (−l+L (τ+θ)) (3 L2 (τ+θ)2−3 L (τ+θ) (−l+L (τ+θ))+(−l+L (τ+θ))2)

3

Matrix Multiplications 2 L2 (τ + θ)2 (−l + L (τ + θ)) + 2 L (τ + θ) (−l + L (τ + θ))2

Total −2 l2 L (τ + θ)− 2 l L2 (τ + θ)2 + 16 L3 (τ+θ)3

3

Table 5: State Space Reduction Floating Point Operation Count

transforms H into H∗

H∗ = SH =

Z]∗
−τ . . . Z]∗

θ−1

H]∗
−τ . . . H]∗

θ

. . .
H]∗
−τ . . . H]∗

θ[
I 0

]
H]∗
−τ . . .

[
I 0

]
H]∗

θ

with non-singular H]∗
θ .

Proof Under construction. �

22

