
D
R

A
FT

CONTINUOUS TIME APPLICATION OF THE
ANDERSON-MOORE(AIM) ALGORITHM FOR IMPOSING
THE SADDLE POINT PROPERTY IN DYNAMIC MODELS

Gary S. Anderson 1

Board of Governors
Federal Reserve System
Washington, DC 20551

Voice: 202 452 2687
Fax: 202 452 6496
ganderson@frb.gov

Abstract: (Anderson and Moore, 1983; Anderson and Moore, 1985) describe a powerful
method for solving discrete time linear saddle point models. This paper shows how
one can apply the technique to continuous time models.

1. INTRODUCTION AND SUMMARY

2. THE ALGORITHM

Perfect foresight models with solutions determined
by saddle point property.
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1 I wish to thank Christiopher Sims for helpful comments. I
am responsible for any remaining errors. The views expressed
herein are mine and do not necessarily represent the views of
the Board of Governors of the Federal Reserve System.

To deal with inhomogeneous system one can charac-
terize the system in terms of deviations from steady
state.

We will endeavor to write the system in the
form:(Bellman, 1970)

dx

dt
(t) = Ax(t)

If A has distinct eigenvalues then

x(t) = expAt x(0)

One can investigate the stability properties of the
system by analyzing A even when A has repeated
roots.

The AIM algorithm transition matrix computa-
tion produces A and, when necessary, generates
auxiliary conditions which are important for es-
tablishing a full set of initial conditions for the
solutions.(Anderson, 1997)

To apply the technique, one need only compute the
dominant invariant space vectors spanning space
assoicated with all positive roots.

V A = MV
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But to motivate the solution, recall that one can
always write [

V
W

]
A =

[
M

B

][
V
W

]
with all the eigenvalues of M positive and all the

eigenvalues of B zero or negative so that

A =

[
V
W

]−1 [
M

B

] [
V
W

]
so that [

V
W

]
dx

dt
=

[
M

B

] [
V
W

]
x

so that by choosing x so that

V x = 0

one has

d

[
V x
Wx

]
dt

=

[
0

BWx

]
and one can rest assured Wx converges

d(Wx)

dt
= B(Wx)

Combine results[
V
W

]
x(t) =

[
0

expBt

] [
V
W

]
x(0)

so that

x(t) =

[
V
W

]−1 [
0

expBt

][
V
W

]
x(0)

One need only choose initial conditions guaranteeing
that the initial part of the trajectory is orthogonal
to the left invarinat space associated with positive
roots, that the initial part of the trajectory not
violate any constraints uncovered in computing the
transition matrix, and the other original initial
conditions.

Q =

 Z

Z#

V


For most economic models, one will want an ad-
equate number of constraints to identify a single
trajectory.

Q


d0x

dt0
(0)

...
dθ−1x

dtθ−1
(0)

 =

ξ0
0



3. AN EXAMPLE

A recent paper by Sims(Sims, 1996) presents a
stochastic version of the following example model.

w(t) = ρ

(∫ ∞
s=0

exp−ρsW (t+ s)ds

)
− α(u(t)− un)

W (t) = ρ

(∫ ∞
s=0

exp−ρs w(t− s)ds

)
u̇(t) = −θu(t) + γW (t) + µ

With initial conditions

W (0) = W0

u(0) = u0

One can rewrite the system as:

u̇(t) = −θu(t) + γW (t) + µ

ẇ(t) = ρ(w(t) −W (t))− αu̇+ ρα(u(t)− un)

Ẇ (t) = ρ(w(t) −W (t))

Or:

−ρ ρ −αρ 1 0 α
−ρ ρ 0 0 1 0
0 −γ θ 0 0 1





d0w

dt0
(0)

d0W

dt0
(0)

d0u

dt0
(0)

dw

dt
(0)

dW

dt
(0)

du

dt
(0)


With

Z


d0x

dt0
(0)

...
dθ−1x

dtθ−1
(0)

 =

[
0 1 0
0 0 1

]w(0)
W (0)
u(0)

 =

[
W0

u0

]

For the example problem, AIM generates:

A =

ρ − (αγ)− ρ α (ρ+ θ)
ρ −ρ 0
0 γ −θ


There are no auxiliary conditions for this model.
One can compute the eigenvalues for the system.

With {α→ 0.1, θ→ 0.1, γ → 0.1, ρ→ 0.3}0.3 −0.31 0.04
0.3 −0.3 0
0 0.1 −0.1
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For the example model we will require one positive
root.  0 1 0

0 0 1
ew(λ+) eW (λ+) eu(λ+)


where the ew,W,u come from the components of the
left eigenvector. So that one must havew(0)

W (0)
u(0)

 =

−
ew(λ+)

eu(λ+)
−
eW (λ+)

eu(λ+)
1

1 0 0
0 1 0


W0

u0

0



=

−
ew(λ+)w0 + eW (λ+)W0

eu(λ+)
W0

u0


With {α→ 1

10 , θ→
1
10 , γ →

1
10 , ρ→

3
10}w(0)

W (0)
u(0)

 =

−0.242023u0 + 0.78242W0

W0

u0


With {α→ 1

10 , θ→
1
10 , γ →

1
10 , ρ→

3
10}

expBt =

 cos(0.0834218t)

e0.0826369t
+
i sin(0.0834218t)

e0.0826369t
0

0
cos(0.0834218t)

e0.0826369t
−
i sin(0.0834218t)

e0.0826369t


With {α→ 0.1, θ→ 0.1, γ → 0.1, ρ→ 0.3}[
V
W

]
=

 4.13185 −3.23284 1
0.434077 + 2.08555i −1.13358− 2.53932i 1
0.434077− 2.08555i −1.13358 + 2.53932i 1


w(t) =

−0.242023 cos(0.0834218t)u0

e0.0826369t
+

−0.630612 sin(0.0834218t)u0

e0.0826369t
+(

0.78242 cos(0.0834218t)

e0.0826369t
−

0.127269 sin(0.0834218t)

e0.0826369t

)
W0

W (t) =

−0.870357 sin(0.0834218t)u0

e0.0826369t
+(

1. cos(0.0834218t)

e0.0826369t
+

0.208136 sin(0.0834218t)

e0.0826369t

)
W0

u(t) =

1. cos(0.0834218t)u0

e0.0826369t
+

−0.208136 sin(0.0834218t)u0

e0.0826369t
+

1.19873 sin(0.0834218t)W0

e0.0826369t
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Fig. 1. Impulse Response to Unit Change in u(0)
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Fig. 2. Impulse Response to Unit Change in W (0)
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