Earth Detection by Astrometry and RV in Multi-Planet Systems

Wesley A. Traub¹, James Marr¹, Alan Boss², Andrew Gould ${ }^{3}$, Chas Beichman², Eric Ford ${ }^{5}$, Greg Laughlin ${ }^{6}$, Hal Levison ${ }^{7}$, Doug Lin ${ }^{6}$, Sean Raymond ${ }^{8}$, Andrew Boden ${ }^{4}$, Valeri Makarov ${ }^{4}$, Stefano Casertano ${ }^{9}$, Debra Fischer ${ }^{10}$, Jeremy Kasdin ${ }^{11}$, Matt Mutterspaugh ${ }^{12}$, and Michael Shao ${ }^{1}$
${ }^{1}$ Jet Propulsion Laboratory, California Institute of Technology
${ }^{2}$ Carnegie Institution
${ }^{3}$ Ohio State Univ.
${ }^{4}$ NASA Exoplanet Science Institute
${ }^{5}$ Univ. of Florida
${ }^{6}$ Univ. of California, Santa Cruz
${ }^{7}$ Southwest Research Institute
${ }^{8}$ Univ. of Colorado
${ }^{9}$ Space Telescope Science Institute
${ }^{10}$ San Francisco State Univ.
${ }^{11}$ Princeton Univ.
${ }^{12}$ UC Berkeley, \& Tennessee State Univ.

Extrasolar Planets in Multi-body Systems: Theory and Observations Torun, Poland

25-29 August 2008

Overview

- Q: Can SIM-Lite, with RV, detect Earths in multi-planet systems?
- A: Yes, as shown by the following double-blind study.
- Four teams:
- Team-A: planetary models (5 groups, ~500 systems total)
- Team-B: data simulation (1 group, 48 systems)
- Team-C: data analysis (5 groups)
- Team-D: synthesis (1 group)
- Phase-1: January-August 2008, results presented here.
- Phase-2: Through January 2009.

Participants

Team-A groups

- A-1: Eric Ford, Univ. of Florida
- A-2: Greg Laughlin, UC Santa Cruz
- A-3: Hal Levison, Southwest Research Institute
- A-4: Doug Lin, UC Santa Cruz
- A-5: Sean Raymond, Univ. of Colorado

Team-B

- Andy Boden, Michelson Science Center
- Valeri Makarov, Michelson Science Center

Team-C groups

- C-1: Stefano Casertano, STScI
- C-2: Debra Fischer, San Francisco State Univ.
- C-3: Jeremy Kasdin, Princeton Univ.
- C-4: Matt Muterspaugh, UC Berkeley
- C-5: Mike Shao, JPL

Team-D

- Chair: Wes Traub, JPL
- Vice-Chair: Alan Boss, Carnegie Institution
- Chas Beichman, MSC
- Andy Gould, Ohio State Univ.
- Each PI from Team-C groups

External Independent Readiness Board

- Chair: Vern Weyers, GSFC retired
- Alan Boss, Carnegie Institution
- Ed Groth, Princeton Univ.
- Joseph Wampler, consultant

Constraints

- Fully double-blind exercise.
- Time was very short.
- All teams worked to a common schedule.
- Team-A groups all delivered on time, but for A-4.
- Team-C groups all delivered on time, but for C-3.
- Most experienced team (C5), with a head start, did the best.
- Expect that with more experience, all teams will do very well.
- Detection by one team is a success for this test.
- This is not a test of the teams, it is a test of the technique.
- Addressed more than just Solar System analogs so that teams would not know what to expect.
- Definition: expected SNR = RMS_signal / mission_noise

Summary of Blind Test Results

- Inputs: 48 planetary systems (all 1 Sun @ 10 pc).
- 32 random
- 8 Solar-system-analogs
- 4 single terrestrial in HZ
- 4 no-planets.
- Noise added to all signals(4 levels for astro, 1 level for RV).
- Two timelines: (5 yr astro, 15 yr RV) and (10 yr astro, 20 yr RV).
- Outputs: reliability of detections was 40% to 100% (3 teams $>80 \%$)
- 48 of 95 planets were reasonably detectable, i.e. above threshhold.
- All were found by at least one team (most by 3 or 4 teams).
- 16 HZ planets: all found by at least 2 teams.
- 12 HZ terrestrials: all found by at least 2 teams.

Major Conclusions:

- Single-planet detection is not degraded by presence of other planets.
- Astrometry plus RV can find HZ Earths in multi-planet systems.
- Statistical testing methods need improvement.

Team-A Models

- Team-A groups each generated ~ 100 model planetary systems using their own planet formation theory.
- These 529 models formed the Random-System data pool.
- We randomly selected 32 systems for this study.
- Models were requested to be consistent with Cumming et al. 2008, i.e., 10.5% of FGK stars have a Jupiter ($2<\mathrm{P}<200$ days, $0.3<\mathrm{M}<10$ Jup.)

Team-A Inputs: Planet-System Statistics

Group	PI	$\#$ Stars	Planets IStar (ave.)	Period (median) years	Mass (median) Earths	e (median)	i (median) degrees
A-1	E. Ford	156	5	2	5	0.11	5
A-2	G. Laughlin	159	2	1	1	0.09	4
A-3	H. Levison	74	5	12	17	0.06	2
A-4	D. Lin	190	20	0.6	0.05	0.005	-
A-5	S. Raymond	140	17	6	0.005	0.00	0.06

Medians

Group	Period (\min , \max) years	Mass (\min , \max) Earths	e (\min , \max)	i (min, max) degrees
A-1	$0.007--784$.	$0.05-7250$.	$0.001-0.99$	$0.03-175$.
A-2	$0.008-39$.	$0.001-1340$.	$0--0.49$	$0.02-19$.
A-3	$0.2-270$.	$0.02-1270$.	$0.001-0.93$	$0.0003-58$.
A-4	$0.003-44$.	$0.01-51$.	$0.0001-0.57$	--------
A-5	$0.005-164$.	$0.00001-4060$.	$0-0.71$	$0-42$.

Data Pool: 527 stars, 3862 Objects

Blind Test Data: 48 stars and 581 objects

Team-B Synthetic Data

- Planetary Systems:
- Random, Solar-system analogs, One-Earth, No-Planets.
- Randomized orientations and orbital phase.
- Generated synthetic SIM-Lite \& RV data.
- Target stars:
- One solar mass, $10 \mathrm{pc}, 30^{\circ}$ latitude.
- All significant effects are included in synthetic data:
- Motion of observer (parallax effect).
- Space motion of target star (3D space motion).
- Realistic sampling cadence.
- Astrophysical noise.
- Instrument systematic noise.

Team-B Data Generation

- MATLAB code, many modules.
- Planetary Systems:
- Random, SS analogs, 1 \& 0 Planets.
- Random orientations \& phases.
- Generated synthetic SIM-Lite \& RV data.
- Target stars:
- One solar mass, $10 \mathrm{pc}, 30^{\circ}$ latitude.
- All significant effects are included:
- Motion of observer (parallax effect).
- Space motion of target star in 3D.
- Realistic sampling cadence.
- Astrophysical noise.

- Instrument systematic noise.

Systems vs Type \& Noise

SNR Primer (1 of 2)

The signal to noise ratio (SNR), for astrometry or RV, is defined as

$$
\begin{aligned}
& \text { SNR }=\frac{\text { signal }}{\text { mission_noise }}=\frac{\alpha}{\sigma_{1} / \sqrt{N}} \\
& \text { so.........SNR }(\text { astro, Earth })=\frac{0.30 \mu a s}{0.82 \mu a s / \sqrt{250}}=\frac{0.30}{0.052}=5.8 \\
& \text { and.......SNR }(R V, \text { Earth })=\frac{0.090 \mathrm{~m} / \mathrm{s}}{1.0 \mathrm{~m} / \mathrm{s} / \sqrt{150}}=\frac{0.090}{0.082}=1.1 \ll 5.8
\end{aligned}
$$

where $\alpha=$ RMS motion, $\sigma_{1}=$ single-measurement noise, and $\mathrm{N}=\#$ measurements.

SNR. From statistics, if we have $\mathbf{S N R}=\mathbf{5 . 8}$ or more, then we get good completeness (over 50\%) and few false alarms (under 1\%).

SNR Primer (2 of 2)

For a given SNR, we find minimum mass:

$$
\begin{gathered}
\mathrm{m}(\text { astro })=\left(\sigma_{1} \times \text { SNR } / \alpha_{0} \times \mathrm{N}^{1 / 2}\right) \mathrm{P}^{-2 / 3} \\
\mathrm{~m}(\mathrm{RV})=\left(\sigma_{1} \times \text { SNR } / \beta_{0} \times \mathrm{N}^{1 / 2}\right) \mathrm{P}^{+1 / 3}
\end{gathered}
$$

A minimum-variance bound analysis gives the expected uncertainties:
mass: $\quad \sigma_{m} / m=\operatorname{sqrt}(2) /$ SNR $\sim 1.4 /$ SNR
period: $\quad \sigma_{P} / P=(\operatorname{sqrt}(6) / \pi) \times(P / T) / S N R \sim 0.8(P / T) / S N R$

For long-period planets, an approximate correction factor is mass: $\quad 1+((P / T-0.70) / 0.18)^{2} \quad$ for $P / T>0.70$ period: $1+((\mathrm{P} / \mathrm{T}-0.52) / 0.27)^{2} \quad$ for $\mathrm{P} / \mathrm{T}>0.52$
So the noise is roughly a factor of $4 \times$ worse at $P / T=1$.

What are the Interesting Questions?

1. Is the expected threshold of SNR~5.8 valid?
2. Do other planets interfere with the detection of HZ terrestrials?
3. What is the reliability of detection (probability that a detection is true)?
4. What is the completeness (probability that a planet will be detected)?
5. We can ask the above questions for

- All planets,
- Terrestrial planets,
- Habitable zone planets and
- Habitable Terrestrial planets.

1. Completeness of detection (vs SNR)

- Completeness is the detected fraction of planets.
- Curve is theoretical for 1% FAP (Catanzarite et al 2006).
- Points are \# correct planets / \# total planets, for any team.
- Shows that at $\mathrm{SNR}>5.8$, measured completeness is excellent, as predicted.
- Here SNR is the RSS of the combined RV and Astro SNRs.

2. Errors are \sim Gaussian plus a few outliers

For each Team-C group, when a good, marginal, or "clean-up" planet was reported, we calculated the period and mass offsets in units of the expected astro +RV error. A few cases with $\sigma_{x} / x>1$ were rejected, and $\sigma_{x} / x<0.01$ were set to 0.01 ; little change.

Table entries are number of detectionsper group	$x(o b s)-x$ (model) I sig(model) $=$	<-3	-3 to -2	-2 to -1	-1 to 0	0 to 1	1 to 2	2 to 3	>3
	Period C1	3	2	9	11	15	4	1	6
	Period C2	1	2	4	31	31	3	1	0
	Period C4	0	1	0	29	34	2	0	2
	Period C5	1	1	1	25	33	3	1	1
	Mass C1	7	3	2	7	7	10	0	13
	Mass C2	5	0	5	18	18	12	7	6
	Mass C4	2	2	4	16	14	8	2	17
	Mass C5	3	1	7	13	18	12	4	6
	~Gaussian	0.1	1	9	22	22	9	1	0.1

Periods are slightly better than expected, masses slightly worse.
May need a better theory. But this data suggests that planets are as detectable in multi-planet systems as in single-planet ones.

3. Reliability (vs planet type)

- Astrometric \& RV detection uses a periodogram in the presence of noise.
- A low threshold increases detections, but also increases false alarms.
- Reliability: if we claim to see a planet, what is the probability that it is true?
- Define: reliability = \#detected I (\#detected + false alarms)

Reliability	Team C1	Team C2	Team C4	Team C5
All	70%	87%	89%	98%
Terrestrial	41%	86%	80%	96%
HZ	44%	76%	79%	100%
Terr \& HZ	40%	80%	71%	100%

Figure shows SNR-based detection limits for
RV (blue, upper) 5 \& 10 yrs and
SIM-Lite (red, lower) 5 \& 10 yrs.

4. Completeness (vs planet type)

- There are 70 high SNR (>5.8) planets (plotted).
- 48 of these have a period shorter than 10 years.
- We should have detected all of these, and we did.
- Define: completeness = \#detected I \#detectable

Completeness	Team C1	Team C2	Team C4	Team C5
All	60%	91%	89%	95%
Terrestrial	28%	81%	81%	90%
HZ	53%	84%	84%	100%
Terr \& HZ	42%	71%	71%	100%

Chart shows SNR-based detection limits for
RV (blue, upper), 5 \& 10 yrs and
SIM-Lite (red, lower) 5 \& 10 yrs.

Blind Test Summary/Conclusion

- Study set out to determine:
- Can Earths be detected in Solar Systems at 10 pc?

Answer: Yes

- What is the sensitivity needed to detect Earths?

Answer: 40% of 5 -year, $0.82 \mu \mathrm{as}, 6-\mathrm{m}$ astrometry mission plus 15 years of RV data on ~ 60 stars.

- Study was constrained by time.
- Given more time, team performance expected to improve and converge to the best team's results.
- Phase 2 will address additional important questions.

Tentative Plans for Phase 2 Study

- Double-blind style continued.
- Extend study to real target stars.
- Complete by Winter AAS.
- Improve detection criteria (e.g., F-Test, stability, others TBD).
- Build theoretical model of astro plus RV.
- Future topics:
- non-gaussian, non-stationary instrumental noise
- explicit astrophysical noise
- prediction of planet position for imaging instruments

