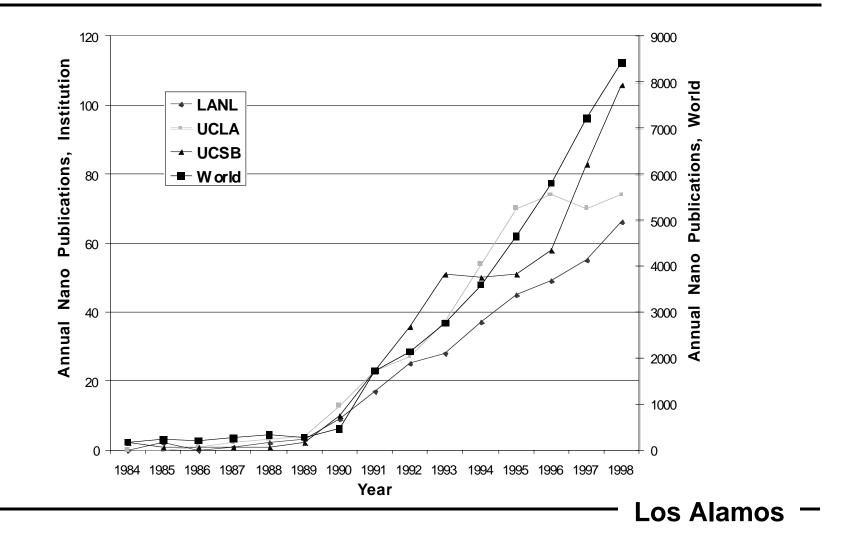
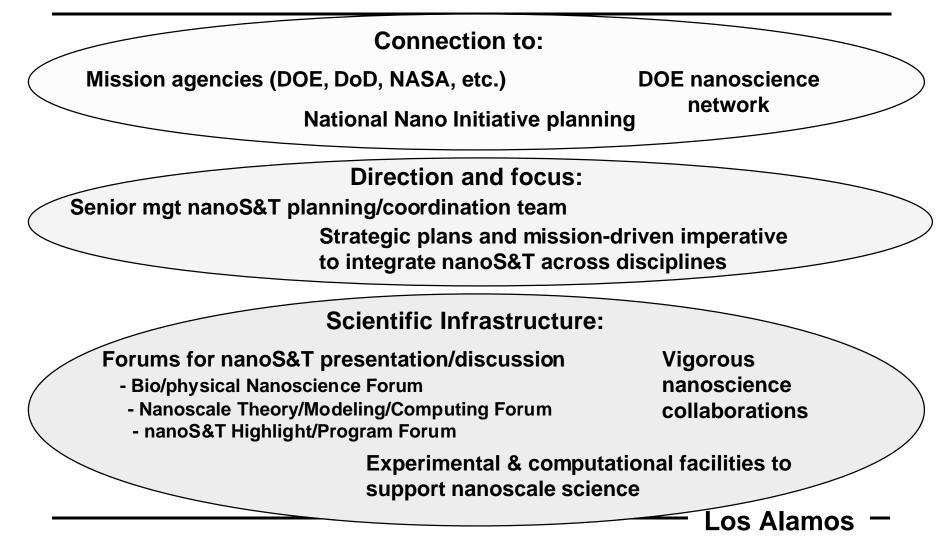
Los Alamos National Laboratory participation in California Nanosystems Institute

Terry C. Lowe


CNSI Workshop UCLA July 15-16, 2000

Los Alamos –


Key points

- We want to strengthen the UC-LANL relationship
- Nanoscale science is a strategic research area at LANL
- LANL strategy for Nanoscience emphasizes partnership (UC partnership is special)
- We want to combine LANL strengths in critical CNSI research areas with those at UCSB & UCLA
- LANL expectations and contributions to CNSI and proposal preparation process

There is parallel growth in nanoscale science at LANL, UCLA, and UCSB

LANL has a rich environment for nanoscale science & technology

Science & Technology Base research proposed by LANL researchers for 2001

Mark Hoffbauer	Achieving the Ultimate Limits in Thin Film Device Nano- Fabrication		
Geoff Waldo	Adaptive Biomimetic Nanomachines for Protein Production and Folding		
Atul Parikh	Bio-inspired Hierarchical Self-Assembly of Nanostructured Materials		
Kevin Ott	Chemistry Below the Diffraction Limit: Design, Synthesis, and Structural Characterization of Nanoscale Compounds and Materials		
Darryl Holm	Coarse-Grained Formulations of Strongly Coupled Multiscale Problems: A Unique Opportunity in Computational Physics		
Dave Reagor	Electron Spin Transport in Novel Materials and Devices		
Victor Klimov	Fundamental Electronic Interactions on Nanometer Length Scales		
Alan Perelson	Modeling Complex Biological Systems: From Gene Circuits to the Immune System		

Los Alamos —

A sample of joint UC campus-LANL research partnership and CULAR projects

Campus Pl	Campus	Title	LANL PI	LANL Org
D. E. Morse	UCSB	Extending the Scale of Self-Assembly to	Basil	CST-1
		Macroscopic Dimensions: Oriented Fluroescent	Swanson	
		Microwires and Biosensors		
Geoffrey	UCSB	Electron Transport in Bio-Engineered Super-	Andrew	CST-4
Strouse		Lattices: DNA-Bridged Arrays of Semiconductor	Shreve	
		Nano-Clusters		
Cyrus	UCSB	Miniaturized Hybrid Materials for the 21st Century:	Gregory	LANSCE
Safinya		Biological Molecules Self-Assembled on Micro-	Smith	
		and Nano- Scale Patterned Surfaces		
Fred Wudl	UCLA	Functionalized Fullerenes: Optimized Materials for	Duncan	CST-6
		Optical Limiting and Self-Assembly	McBranch	
H-W Jiang	UCLA	Physics of Quantum Hall Devices in Ultra-High	Greg	MST-
		Magnetic Fields	Boebinger	NHMFL
Robert	UCSF	Investigations of the Structures of Microtubule-	Rex Hjelm	LANSCE-
Mendelson,		Based Cellular Motors Using Neutron Scattering		MLNSC
Jr.				
Rajesh	UCR	Synthesis and Characterization of Novel	Victor	CST-6
Mehra		Biologically Grown Nanocrystallites	Klimov	
Jin Zhang	UCSC	Development and Characterization of Novel	Duncan	CST-6
		Conjugated Polymer/Semiconductor Nano-particle	McBranch	
		Composite Materials		

Los Alamos —

LANL strengths in nanoS&T are synergistic with CNSI critical research areas

- Macromolecular synthesis: self-assembled FETs, nanosponge, biosensors
- Next generation information technologies: quantum computing, spintronics, organic electronics
- New instrumentation for rapid 3D nanoscale diagnostics to study genomes and proteomes: cytometry, fast SEM, neutron scattering
- Development of new systems architectures, parallel computing, etc. to exploit nanostructure components: Quantum algorithms & error correction, Parallel Replica Dynamics, Hyperdynamics
- Development of multiscale simulation tools: ASCI thrust area, meso-scale methods, Temperature-Accelerated Dynamics

Los Alamos —

LANL expectations for CNSI

- Jointly attract the best students and faculty to the UC system
- Jointly enhance training, education, and lifetime learning in nanoscale science
- Facilitate innovation and scientific achievement:
 - joint research proposals and projects
 - faculty exchange
 - student exchange/internships
 - information exchange
- Facilitate sharing of complementary facilities
 - Synthesis, nano-fabrication (Neutral Beam Facility, etc,)
 - Characterization (LANSCE, Natl High Magnetic Field Lab)
 - Computing (Teraflop computers)
 - Remote "virtual laboratory" capabilities
- Mechanism for sharing of industrial partners
 - LANL has strategic industrial partners (e.g. Motorola, Xerox)

Los Alamos –

LANL contributions

- Aid in proposal preparation
- Member of CNSI governing board
- Direct access to and integration with LANL nanoscale science facilities
- Scientific workshops, intellectual forums
- Partnership in proposing and executing nanoS&T programs to DOE, DoD, NASA, and other federal agencies
- Career path for students, post docs
- Support for faculty exchange/sabbatical

Los Alamos –