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Xenoestrogen-Induced ERK-1 and ERK-2 Activation via Multiple

Membrane-Initiated Signaling Pathways
Nataliya N. Bulayeva and Cheryl S. Watson

Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, Texas, USA

Xenoestrogens can mimic or antagonize the activity of physiological estrogens, and the suggested
mechanism of xenoestrogen action involves binding to estrogen receptors (ERs). However, the fail-
ure of various in vitro or in vivo assays to show strong genomic activity of xenoestrogens compared
with estradiol (E;) makes it difficult to explain their ability to cause abnormalities in animal (and
perhaps human) reproductive functions via this pathway of steroid action. E; has also been shown
to initiate rapid intracellular signaling, such as changes in levels of intracellular calcium, cCAMP,
and nitric oxide, and activations of a variety of kinases, via action at the membrane. In this study,
we demonstrate that several xenoestrogens can rapidly activate extracellular-regulated kinases
(ERKs) in the pituitary tumor cell line GH3/B6/F10, which expresses high levels of the membrane
receptor for ER-0. (mER). We tested a phytoestrogen (coumestrol), organochlorine pesticides or
their metabolites (endosulfan, dieldrin, and DDE), and detergent by-products of plastics manufac-
turing (p-nonylphenol and bisphenol A). These xenoestrogens (except bisphenol A) produced
rapid (3-30 min after application), concentration (107'4-10~% M)-dependent ERK-1/2 phospho-
rylation but with distinctly different activation patterns. To identify signaling pathways involved
in ERK activation, we used specific inhibitors of ERs, epidermal growth factor receptors, Ca* sig-
naling, Src and phosphoinositide-3 kinases, and a membrane structure disruption agent. Multiple
inhibitors blocked ERK activation, suggesting simultaneous use of multiple pathways and complex
signaling web interactions. However, inhibitors differentially affected each xenoestrogen response
examined. These actions may help to explain the distinct abilities of xenoestrogens to disrupt
reproductive functions at low concentrations. Key words: environmental estrogens, ERKs, estradiol,
phytoestrogens, prolactinoma cell line, rapid estrogen effects. Environ Health Perspect
112:1481-1487 (2004). doi:10.1289/ehp.7175 available via hztp://dx.doi.org/ [Online 28 July 2004]

Xenoestrogens are a large and structurally
diverse group of compounds, which can act as
inappropriate estrogens and/or can interfere
with the actions of endogenous estrogens
such as estradiol (E;) or other reproductive
steroids. Many studies have demonstrated
that contamination of the environment or
treatment with xenoestrogens can disrupt
developmental programs to alter sexual
phenotypes and reproductive functions.
Examples of such disruptions are a decline in
the sperm quality of fish, interference with
the sexual development of alligators and tur-
tles, disruption of pregnancies in laboratory
animals, interference with blastocyst implan-
tation, and inappropriately induced proges-
terone receptor expression and uterine weight
increases [reviewed in Witorsch (2002)]. In
addition, environmental estrogens have been
shown to inhibit the human sperm acrosomal
reaction (Turner et al. 1997), and xeno-
estrogens are also suspected of causing breast
cancer cell and vaginal epithelial cell prolifera-
tion (Krishnan et al. 1993; Long et al. 2000).

Most previous studies investigated the
possible actions of xenoestrogens through clas-
sical nuclear estrogen receptors (ERs) modify-
ing gene activity (Long et al. 2000; Massaad
and Barouki 1999; McLachlan 1993; Rosselli
et al. 2000; Sonnenschein et al. 1995). A vari-
ety of in vivo and in vitro screening assays have

been applied to predict the estrogenic poten-
tial of xenoestrogens, including several recep-
tor-reporter-gene assay systems in transfected
mammalian or yeast cell lines (Bonefeld-
Jorgensen et al. 2001; Elsby et al. 2001;
Gutendorf and Westendorf 2001; Hodges
et al. 2000; Inoue et al. 2002; Lee et al. 2002;
Massaad and Barouki 1999; Rajapakse et al.
2002; Willard and Frawley 1998). However,
these methods demonstrated that xeno-
estrogens act very weakly (only at concentra-
tions 1,000- to 10,000-fold higher than E,), if
at all, via genomic activation pathways. Other
tests have been assumed to assess genomic
responses, but may in fact be assays for either
nongenomic or combination mechanisms.
These include cell proliferation test systems
(Gutendorf and Westendorf 2001; Hodges
et al. 2000; Rousseau et al. 2002; Soto et al.
1994), receptor binding assays for ER-o or
ER-B (Granek and Rishpon 2002; Gutendorf
and Westendorf 2001; Lee et al. 2002), and
predictions of ligand binding affinity and con-
formation of ER complexes with xenoestro-
gens by computer modeling (Suzuki et al.
2001; van Lipzig et al. 2004; Yu et al. 2002).
In addition to the classical genomic path-
way, steroids can produce rapid (within a few
minutes after application) nongenomic signal-
ing effects via second messenger systems, for
example, Ca?*, K*, cAMP, and nitric oxide
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level changes; activation of G protein—medi-
ated events; and stimulation of different types
of kinases such as extracellular-regulated
kinases (ERKs), phosphoinositide-3 kinase
(PI3K), p38, and Jun kinase (Junk) (Aronica
et al. 1994; Doolan and Harvey 2003; English
et al. 1999; Filardo et al. 2000; Haynes et al.
2003; Kelly et al. 1999; Nadal et al. 1998;
Prevot et al. 1999; Razandi et al. 2003).
Although the precise molecular mechanisms
of nongenomic actions are not fully under-
stood, it is known that some rapid E, effects
can be initiated by ligand binding to mem-
brane-associated ERs (mERs) that have been
shown to be the same proteins as their nuclear
receptor counterparts in several systems (Chen
et al. 1999; Levin 1999; Norfleet et al. 1999;
Pappas et al. 1994). Therefore, it is reasonable
to suggest that xenoestrogens can bind to
mER and produce rapid changes in signaling,
similar to E,. However, there are few data
(Adeoya-Osiguwa et al. 2003; Nadal et al.
2000; Ruehlmann et al. 1998; Sato et al.
2003; Watson et al. 1999a; Wober et al.
2002) addressing the ability of environmental
estrogens to mediate nongenomic estrogenic
actions, and many studies on this phenome-
non have used concentrations of xeno-
estrogens much higher than would be found
in contamination sites.

In the present study, we investigated the
ability of some of these estrogen mimetics
(belonging to the major classes of environ-
mental estrogens) to produce rapid activation
of ERKSs via various signaling pathways in the
GH3/B6/F10 prolactinoma cell line. We pre-
viously selected this subline for its robust
expression of mER-ot and its capacity for
rapid E;-induced prolactin release (Pappas
et al. 1994), and we also demonstrated that
adequate levels of mER were necessary to elicit
rapid ERK responses (Bulayeva et al. 2004).
Here, we tested organochlorine pesticides
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[dieldrin, endosulfan, and the DDT metabo-
lite 0,p’-dichlorodiphenylethylene (DDE)],
detergents used in plastics manufacturing
(p-nonylphenol and bisphenol A), and the
natural phytoestrogen coumestrol. The signal-
ing pathways that we examined are generally
known to initiate at the plasma membrane
and go through multiple steps before converg-
ing on the ERKs. Others have associated fea-
tures such as G protein involvement, Ca?+
influx, and epidermal growth factor receptor
(EGFR) phosphorylation with downstream
ERK activations, which can lead to diverse
cellular functions such as cell proliferation,
transformation, differentiation, and migration
(Belcheva and Coscia 2002; Razandi et al.
2003). Xenoestrogens, such as endosulfan
and chlordane (Cossette et al. 2002) and
nonylphenol, bisphenol A, and coumestol
(Gutendorf and Westendorf 2001), at rela-
tively low (107°-10~7 M) concentrations, can
produce proliferation in other cell lines, and
this function can be regulated by the xeno-
estrogen benzopyrene through ERK (Tsai
et al. 2004), The alteration of cell prolifera-
tion, as well as other functions downstream
of ERK activation, could lead to endocrine
disruptions known to be caused by environ-
mental estrogens.

To monitor signaling events leading to
ERK activation, we used our fixed cell-based
ELISA (Bulayeva et al. 2004), which allows us
to analyze many samples and thus detailed
time- and concentration-dependent changes
in ERK phosphorylation resulting from
actions of multiple xenoestrogenic com-
pounds and specific inhibitors of signaling
cascade participants. Such comparative explo-
rations of differential signaling pathway
involvement, kinetics, and potencies unique
to each compound may lead to more detailed
predictions about the hazards of exposure
mediated through different subsets of
responses related to endocrine disruption by
individual xenoestrogens.

Materials and Methods

Phenol red—free Dulbecco’s modified Eagle
medium (DMEM) was purchased from
Mediatech (Herndon, VA). Horse serum was
obtained from Gibco BRL (Grand Island,
NY); defined supplemented calf sera and fetal
bovine sera were from Hyclone (Logan, UT).
Endosulfan and DDE were purchased from
Ultra Scientific (North Kingstown, RI). From
Vector Laboratories (Burlingame, CA), we
purchased biotinylated universal anti-
mouse/rabbit IgG, Vectastain ABC-AP
(avidin:biotinylated enzyme complex with
alkaline phosphatase) detection systems,
levamisol (endogenous alkaline phosphatase
subtype inhibitor), and para-nitrophenol
phosphate (pNpp; the substrate for our alka-
line phosphatase reaction). Phospho-p44/42
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ERK (pERK) monoclonal antibody (Ab),
anti-mouse horseradish peroxidase-linked Ab,
and lysis buffer were obtained from Cell
Signaling Technology (Beverly, MA).
Paraformaldehyde was from Fisher Scientific
(Fair Lawn, NJ). BAPTA-AM (B-TA) was
from Molecular Probes (Eugene, OR), and
PP2, Ag 1468 (AG 14), and Ly294002 (Ly)
were from Calbiochem (San Diego, CA).
ICI 182,780 (ICI) was from Tocris (Ellisville,
MO). All other reagents were purchased from
Sigma Chemical Company (St. Louis, MO).
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Cell culture. Our clonal rat prolactinoma
cell line GH3/B6/F10 was selected for high
expression of mER-a (Pappas et al. 1994).
Cells were routinely subcultured in DMEM
containing 12.5% horse serum, 2.5% defined
supplemented calf serum, and 1.5% fetal calf
serum. For individual experiments, cells were
deprived of steroids for 48 hr after plating by
substituting DMEM containing 1% charcoal-
stripped (4X) serum. All test estrogens were
dissolved in ehanol (EtOH) at a 1072 M con-
centration to create a stock solution and then
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Figure 1. Time-dependent changes in the phosphorylation status of ERK. E, (4), p-nonylphenol (B), endo-
sulfan (C), DDE (D), dieldrin (E), coumestrol (A, and bisphenol A (G) were applied at 10° M. Data are pre-
sented as percentage of control values, which were set to 100; n = 48-60 wells/point taken from three

different 96-well plates.

*Statistically significant (p < 0.05) compared with vehicle (0.0001% ethanol)-treated controls.
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diluted into experimental media to yield final
concentrations from 1078 to 1012 M. The
EtOH concentration used as the vehicle con-
trol was 0.0001%.

Fixed cell-based ELISA. To estimate ERK
phosphorylation quantitatively, we used a cell-
based ELISA, which we previously developed
and described (Bulayeva et al. 2004). Briefly,
cells (104 cells/well) were plated in 96-well
plates (Corning Incorporated, Corning, NY)
and withdrawn from serum hormones by incu-
bation in medium containing 1% charcoal-
stripped serum for 48 hr before experiments
began. The cells were next treated with hor-
mones and estrogen mimetics for 3-30 min,
and then fixed with 2% paraformaldehyde/
0.2% picric acid at 4°C for 48 hr. After fixa-
tion, the cells were incubated with phosphate-
buffered saline (PBS) containing 2% bovine
serum albumin (BSA) and 0.1% Triton X-100
for 1 hr at room temperature (RT), and then
with primary Ab against pERK (1:400 in

PBS/1% BSA/0.1% Triton X-100) overnight
at 4°C. After a wash with PBS, biotin-conju-
gated secondary Ab (1:300) in PBS/1% BSA
was added for 1 hr at RT. The cells were again
washed in PBS and incubated with Vectastain
ABC-AP solution (100 pL/well) for 1 hr at
RT, and then Vectastain alkaline phosphatase
substrate (pNpp solution) with levamisole was
added to each well (100 pL). Plates were incu-
bated in the dark for 30 min at 37°C, and the
signal from para-nitrophenol (pNp) was read
at Ajos in a model 1420 Wallac microplate
reader (Perkin Elmer, Boston, MA). The pNp
signal was normalized to cell number, deter-
mined by using the crystal violet (CV) assay
(Campbell and Watson 2001). Briefly, after
washing away alkaline phosphatase reaction
reagents with double-distilled H,O, the plate
was completely dried at RT. CV solution
(0.1% in water, filtered) was added at
50 pL/well, incubated for 30 min at RT, and
washed out with double-distilled H,O. Dye
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Figure 2. Concentration-dependent changes in the phosphorylation status of ERK. Each compound was
tested at its previously determined time optimum (Figure 1): E9 (A) at 3 min, coumestrol (B) at 6 min,
p-nonylphenol (€) and endosulfan (D) at 30 min, and DDE () and dieldrin (F) at 6 min. Data are presented
as percentage (mean = SE) of control values (which were set to 100); n = 78-85 wells from three different

96-well plates.

*Statistically significant (p < 0.05) compared with vehicle (0.0001% ethanol)-treated controls.
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was released from the cells with 50 pL/well
acetic acid (10% in water) at RT for 30 min.
The Asgq signal was then read in the
microplate reader.

Statistics. Data were compared for signifi-
cance of differences using Sigma Stat 3
(Jandel Scientific, San Rafael, CA) and one-
way analysis of variance (significance accepted
at p < 0.05).

Results

Xenoestrogens can cause unique time-dependent
patterns of ERK phosphorylation. E, (107 M)
produced rapid (3, 15, and 30 min after appli-
cation) and bimodal (with apparent periods of
dephosphorylation between activation periods)
ERK phosphorylation. Xenoestrogens at
1072 M also caused ERK activations but with
distinct temporal patterns (Figure 1). According
to these patterns, compounds could be divided
into several groups. Endosulfan and nonyl-
phenol did not cause an initial (3 min) stimu-
lation, but instead caused only a delayed single
ERK phosphorylation peak at 30 min (which
we designated slow-phase-only responders).
DDE and dieldrin caused a single peak of acti-
vation at 6-10 min and were unable to cause a
second sustained activation at 30 min (fast-
phase-only responders). Coumestrol produced
a rapid response (significant by 6 min), but the
phosphorylation levels never declined after the
activation, as was seen with the other active
compounds. Bisphenol A did not produce any
significant changes from the basal level of ERK
phosphorylation during the 30 min assessment
time and was not examined further in this
study. All active xenoestrogens produced only a
monophasic activation, failing to mimic the
bimodal E, activation.

Xenoestrogens can be potent activators
of ERK phosphorylation but with unique
concentration-dependent patterns. At optimal
stimulation time points (Figure 1), different
concentrations of E, and xenoestrogens were
compared in their ability to activate ERKs
(Figure 2). E, (tested at 3 min) was active in
two concentration ranges: very low levels
(1074 M) and higher, but still physiological,
levels (107°-10-% M). Nonylphenol and
coumestrol showed similar patterns of potency,
with dual ranges of activation similar to that
seen with E,. Endosulfan was able to produce
phosphorylation at almost all tested concentra-
tions but still showed an apparent loss of activ-
ity centered on the 107! M concentration.
DDE and dieldrin were not active at low con-
centrations (picomolar and lower) but were
active in the concentration range centering on
10~ M. Thus, although some subtle differ-
ences were observable between activation pat-
terns for each compound, basically two
patterns of stimulation were seen: compounds
active in both the subpicomolar and nano-
molar ranges (E,, endosulfan, nonylphenol,
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and coumestrol) versus compounds active only
in the nanomolar range (DDE and dieldrin).

Possible pathways for ERK activation for
different compounds. To detect possible sig-
naling pathways through which E, and xeno-
estrogens could affect pituitary tumor cells, we
used inhibitors that have been described in the
literature to pinpoint various mechanisms
leading to ERK phosphorylation (Belcheva
and Coscia 2002; Lowes et al. 2002). ICI and
AG 14 are specific antagonists of estrogen and
EGFRs, respectively. Nystatin (Nys) is a cho-
lesterol-binding antibiotic that disrupts mem-
brane architecture (Ushio-Fukai et al. 2001).
B-TA is a Ca?* chelator. PP2 is a Src kinase
inhibitor, and Ly is a PI3K inhibitor. An
example of each type of xenoestrogen based on
temporal activation patterns shown in Figure 1
(fast-phase activator DDE, slow-phase activa-
tor endosulfan, and sustained-activator
coumestrol) was examined for each of these
inhibitor actions. All time points in their acti-
vation profiles were examined to determine
when each mechanism might come into play
(Figures 3-5). Inhibitor data were divided
into two groups for clarity of presentation.
Figures 3A, 4A, and 5A group together the
responses to inhibitor compounds that can
interfere with receptors (ERs, EGFRs) or dis-
rupt membrane structures housing receptors:
ICI, AG 14, and Nys (group A). Figures 3B,
4B, and 5B group together data for com-
pounds whose substrates are mostly localized
in the cell’s cytoplasm or are adjacent to the
cell membrane and part of the downstream
signaling cascades initiated at the membrane:
B-TA, PP2, and Ly (group B).

Inhibition of endosulfan-stimulated ERK
activation is shown in Figure 3. In these assays,
endosulfan stimulated ERK significantly only
at 30 min (as in Figure 1). Only ICI and Ly
inhibited the endosulfan-provoked ERK acti-
vation at 30 min. The activity of ICI impli-
cates ER-0t in this process [because this subline
does not express ER-f (Campbell and Watson
2001; Norfleet et al. 1999)]. However, even at
times when endosulfan could not significantly
elevate basal phosphorylation of ERK
(3-15 min), all tested inhibitors were able to
further deactivate basal ERK activity levels at
some of these time points (e.g., AG 14 at
15 min; all group B compounds were effective
at 3 and 15 min: PP2 at 6 and 10 min; Ly,
ICI, and Nys at 6 min). Such inhibitions are
xenoestrogen dependent because the inhibitors
alone do not cause these dephosphorylations
(Bulayeva et al. 2004).

DDE produced ERK activation only at
6 min (Figure 4), as expected from earlier
studies (Figure 1). At this time point, ERK
phosphorylation was inhibited by AG 14,
PP2, and Ly. Although at other time points
DDE did not raise ERK activation levels above
basal, the addition of inhibitors nevertheless did
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lower activity to subbasal levels (all at 3 min;
AG 14, PP2, and Ly at 15 min). Altogether, all
tested compounds had an effect on basal ERK
activity levels at some time point, but some
tended to affect this outcome earlier in this time
frame compared with others.

Coumestrol activated ERKs from 6 min
onward in our assay (as shown in Figure 1F
and in Figure 5). During the preactivation
phase (3 min), basal levels of phosphorylation
were further lowered by ICI, Nys, and B-TA.
During the 6 min onward coumestrol activa-
tion phase, ICI was never effective at lowering
ERK phosphorylation levels. AG 14 was effec-
tive at 6-15 min time points, and PP2 during
the entire stimulation phase, which suggests
early involvement of EGFR and Src kinase.
Nys disruption of membrane structure
(15-30 min) and Ly inhibition of PI3K
(15 min) were effective only during these short
temporal windows. B-TA’s chelation of Ca®*

== End

== |Cl/End
== Nys/End
— AG14/End

pNp/CV (% of control)

was effective only very late in this sequence, at
30 min. Therefore, most inhibitors were
effective at some point, although some later
than others.

Discussion

An important and surprising conclusion from
our studies was that all tested estrogenic com-
pounds, except bisphenol A, elicited rapid
membrane-initiated actions at very low con-
centrations compared with their reported
potencies in classical genomic pathways
(Gutendorf and Westendorf 2001; Hodges
et al. 2000; Inoue et al. 2002). All active com-
pounds were able to produce rapid (3-30 min)
ERK phosphorylations in the nanomolar con-
centration range, and some (E,, coumestrol,
nonylphenol, and endosulfan) were also active
in the subpicomolar range. Compounds from
different classes of endocrine disruptors with
dissimilar chemical structures (e.g., endosulfan
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Figure 3. Effects of different inhibitors on endosulfan-induced ERK phosphorylation. (A) Inhibition effects
for membrane-level components ICI, Nys, and AG 14. (B) Effects for postmembrane signaling system com-
ponents B-TA, PP2, and Ly. Cells were pretreated with inhibitors at optimal effective concentrations and
for optimal times of action: 1 pM ICI for 40 min, 50 pg/mL Nys for 40 min, 10 uM B-TA for 40 min, 10 pM PP2
for 20 min, 10 pM Ly for 40 min, 250 nM AG 14 for 20 min, or 0.01% DMSO vehicle (control) for 40 min, and
then stimulated with endosulfan (End) at 1 nM, before the timed pERK plate assay. Values shown are mean
+ SE; n=40-90 wells from three to six different 96-well plates.

*Statistically significant (p < 0.05) compared with vehicle control. **Statistically significant (p < 0.05) compared with time-
specific endosulfan-alone stimulated controls.
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Figure 4. Effects of different inhibitors on DDE-induced ERK activation. (A) Inhibition effects for membrane-
level components ICl, Nys, and AG 14. (B) Effects for postmembrane signaling system components B-TA,
PP2, and Ly. Cells were pretreated with inhibitors at optimal effective concentrations and for optimal times
of action: 1 uM ICI for 40 min, 50 ug/mL Nys for 40 min, 10 yM B-TA for 40 min, 10 uM PP2 for 20 min, 10 pM
Ly for 40 min, 250 nM AG 14 for 20 min, or 0.01% DMSO vehicle (control) for 40 min, and then stimulated
with DDE (1 nM). Values shown are mean = SE; n = 45-85 wells from three to six different 96-well plates.
*Statistically significant (p < 0.05) compared with vehicle control. **Statistically significant (p < 0.05) compared with time-
specific DDE-stimulated controls.
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as an organochlorine compound vs. nonyl-
phenol as a simple phenolic detergent) can pro-
duce the same time-dependent activation
pattern for ERKs. Coumestrol, a phyto-
estrogen, initiated a sustained ERK activation
that had no temporal pattern similarity with
any of the other tested compounds, including
E,. None of the tested compounds was able to
precisely repeat the E, pattern of activation,
which may contribute to their distuptive effects
on estrogen-mediated endocrine functions.

The bimodal E, time-dependent response
seems to superimpose the patterns from both
groups of other response-producing com-
pounds: fast phase (during the first 10 min) and
slow phase (not until 30 min). Interestingly,
the most potent endocrine-disrupting chemical
in genomic action assays, bisphenol A
(Cappelletti et al. 2003; Recchia et al. 2004;
Sato et al. 2003), was unable to produce time-
dependent ERK activation. However, studies
in progress show that bisphenol A, although
unable to trigger ERK activation, nevertheless
is somewhat effective at triggering Ca®* influx,
resulting in prolactin secretion (Wozniak et al.,
unpublished data). Thus, there are likely to be
specific pathways within the nongenomic sig-
naling network that individual compounds will

== Coum

== |Cl/Coum
== Nys/Coum
— AG 14/Coum

160 El *

pNp/CV (% of control)

0 3 6 10 15 30
Time (min)

trigger, leading to different functional end
points. Therefore, each xenoestrogenic com-
pound must be tested for an array of possible
mechanistic routes of action.

Several tested xenoestrogenic compounds
(coumestrol, nonylphenol, and endosulfan)
demonstrated a bimodal dose—response curve
for ERK activation similar to that seen with
E,. This is reminiscent of the same bimodal
dose—response pattern reported previously for
rapid prolactin release after E; (Watson et al.
1999b) and E,-BSA (Watson et al. 1995)
treatment. The reason for this gap in dose
responsiveness at intermediate concentrations
is still not understood, but it is interesting
that other estrogens in the present study
demonstrate the same phenomenon. These
very low effective doses for xenoestrogens
demonstrate that many environmental conta-
mination levels previously thought to be
subtoxic may very well exert significant signal-
and endocrine-disruptive effects, discernable
only when the appropriate mechanism is
assayed. Possible reasons for these potent
effects not being noted previously are that lit-
tle testing of the nongenomic pathway has
been done, many tests did not examine such
low concentrations, and some test conditions

== Coum

% == B-TA/Coum
=3 PP2/Coum
— Ly/Coum

pNp/CV (% of control)
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Time (min)

Figure 5. Effects of different inhibitors on coumestrol (Coum)-induced ERK activation. (A) Inhibition effects
for membrane levels components ICl, Nys, and AG 14. (B) Effects for postmembrane signaling system
components B-TA, PP2, and Ly. Cells were pretreated with inhibitors at optimal effective concentrations
and for optimal times of action: 1 pM ICI for 40 min, 50 pg/mL Nys for 40 min, 10 uM B-TA for 40 min, 10 pM
PP2 for 20 min, 10 uM Ly for 40 min, 250 nM AG 14 for 20 min, or 0.01% DMSO vehicle (control) for 40 min,
and then stimulated with coumestrol at 1 nM. Values shown are mean + SE; n = 39-79 wells from three to

six 96-well plates.

*Statistically significant (p < 0.05) compared with vehicle control. **Statistically significant (p < 0.05) compared with time-

specific coumestrol-stimulated values.

Table 1. Xenoestrogens each have unique signaling pathway inhibition patterns during rapidly initiated

estrogenic actions.

Inhibitors E) Endosulfan DDE Coumestrol
CaZ + + + +
Membrane + + +
Src + + + (+
PI3K + + (+) (+)
EGFR (+) (+) + (+
ER (+) (+) + +

+, inhibition effect at 3 min; (+), inhibition effect at > 6 min. For comparison, the E, response inhibition data summarized
here are taken from Bulayeva et al. (2004). All time points where the combination of xenoestrogen and inhibitor showed a
significant reduction in ERK phosphorylation levels below the hormone-untreated background level are shown.
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probably did not adequately remove endoge-
nous estrogen levels (as we have done by use
of low quantities of extensively charcoal-
stripped serum) to reveal effects of these low
concentrations. The potent effects we see on
nongenomic signaling mechanisms could
explain why concentrations previously deter-
mined to be inactive via genomic mechanisms
still have toxic and teratogenic effects on
wildlife (Brucker-Davis et al. 2001). Therefore,
the threat levels of these compounds to
wildlife, and probably humans, need to be
reconsidered.

The complexity of multiple signaling path-
ways triggered simultaneously is probably
related to the organization of ERs within mem-
brane substructures (caveolae or membrane
rafts), where they encounter many signaling
machineries (Chambliss et al. 2000; Nadal et al.
2000; Razandi et al. 2002). Our data indicate
that the disruption of a nongenomic signaling
cascade midway in its time course caused by
Nys (e.g., for coumestrol) probably corresponds
to disruption of this cholesterol-rich meeting
place for ligands and receptors with their down-
stream signaling partners. Interestingly, only
endosulfan effects failed to be inhibited by dis-
ruption of cholesterol-rich membrane structure,
perhaps implicating different membrane sub-
domains as locations for the actions of different
compounds. Alternatively, endosulfan signaling
may move into the intracellular compartment
rapidly after initiation and earlier than 3 min
(and earlier time point assessment using these
methods would be technically difficult).

Although here we have only directly
assessed ERK activation as a signaling cascade
end point, the participation of upstream sig-
naling repertoires was implicated by our spe-
cific inhibitor assays. We found that all
examined pathways can participate in ERK
activation but that different xenoestrogens use
different subsets of these pathways. Table 1
summarizes the vulnerability of E,- (Bulayeva
et al. 2004), endosulfan-, DDE- and coume-
strol-initiated actions to inhibitors of different
signaling components. E,- or xenoestrogen-
treated cells showed inhibitions of both stim-
ulated ERK phosphorylation levels and
background levels of phosphorylation. Our
time course measurements allowed an analysis
of when pathway inhibitions affected the
outcome of ERK phosphorylation, and we
noted whether this was very early after treat-
ment (3 min) or later (= 6 min). Although
these times are arbitrary cutoffs, they allowed
us to highlight some possible temporal differ-
ences in the effects of compounds’ pathways.
All xenoestrogens shared activation via all
pathways, although compounds differed in
their timing of pathway engagement. For
example, inhibitors of action via the EGFR
and ER were sometimes effective only after
6 min. This could mean that the activation
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sequence took some time to reach the level of
a receptor (EGFR is downstream) or that a
unique conformation of receptors in the
plasma membrane could initially prevent
binding by antagonists (ER). Although all
xenoestrogens shared activation via the PI3K
pathway, PI3K inhibitors could not lower
DDE- or coumesterol-mediated ERK phos-
phorylation levels until > 6 min, so perhaps
progression to this level of signaling took vari-
able amounts of time depending upon the
compound initiating the response. A possible
complication to our interpretation of these
data is the recent demonstration that Ly can
have antiestrogenic activity by binding to ER
(Pasapera Limon et al. 2003).

Inhibitors also interfered with ERK phos-
phorylation levels that were not stimulated by
xenoestrogens above untreated background
levels. For example, endosulfan, which elevates
ERK phosphorylation only after 30 min, still
participated in a significant lowering of basal
ERK phosphorylation levels at early time
points. In our previous work (Bulayeva et al.
2004), we demonstrated that these inhibitors
by themselves were unable to change basal lev-
els of ERK phosphorylation; the present study
thus shows that the presence of xenoestrogens
was necessary to produce inhibitor-driven
decreases below basal levels. Because ERK
phosphorylation demonstrated a complex tem-
poral fluctuation, we speculate that periods of
“dephosphorylation” demonstrated by our data
could be the result of desensitization of the
stimulatory pathways and/or phosphatase acti-
vation. Such deactivation and reactivation pro-
files may be very important for specific
estrogenic stimulatory effects because other
hormones and regulators are known to operate
in an oscillatory fashion through kinase inacti-
vation (MacDonald et al. 1997) or protein
degradation (Murray 2004). However, the
rapid recovery times in our pattern argue
against the latter mechanism.

Wide diversity in signaling cascades leading
to ERK activation can perhaps be explained by
the nature of mERs and the probable necessity
of their interactions with many other different
signaling partners. Xenoestrogens are highly
diverse in structure, and the conformation of
different xenoestrogen—ER complexes could be
significantly different from that of an E;~ER
complex (Brzozowski et al. 1997; Suzuki et al.
2001; van Lipzig et al. 2004). This could alter
the receptor protein’s surface topography and
thus its interactions with partner proteins, as
has been demonstrated for ligand effects on
nuclear receptor interactions with coactivators
and corepressors. The nature and magnitude of
responses are probably a function of the con-
formation the receptor assumes around these
diverse molecules and the repertoire of inter-
acting proteins present in different cell types
(so pituitary cell patterns may not be predictive
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for other cell types). The outcomes can be dif-
ferent and multiplex. Therefore, xenoestrogens
will need to be individually examined for these
complex mechanistic and functional outcomes
in different tissues.
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